3 GENESYS

This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Developer's Guide

Genesys Web Engagement 8.1.2

3/10/2022



www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.


Table of Contents

Genesys Web Engagement Developer's Guide
High-Level Architecture
Monitoring
Visitor Identification
Events Structure
Notification
Engagement
Application Development
Creating an Application
Generating and Configuring the Instrumentation Script
Customizing an Application
Creating Business Information
Simple Engagement Model
Advanced Engagement Model
Publishing the CEP Rule Templates
Customizing the SCXML Strategies
Customizing the Engagement Strategy
Customizing the Chat Routing Strategy
Customizing the Browser Tier Widgets
Building and Deploying an Application
Starting the Web Engagement Servers
Deploying a Rules Package
Testing with GWM Proxy
Sample Applications
Get Information About Your Application
Integrating Web Engagement and Co-browse with Chat
Integration with Second-Party and Third-Party Media
Using Pacing Information to Serve Reactive Requests

Dynamic Multi-language Localization Application Sample

13
15
20
26
27
39
43
45
57
60
61
71
77
92
93
125
134
143
145
146
153
168
169
170
187
196
205



Genesys Web Engagement Developer's Guide

Genesys Web Engagement Developer's
Guide

Welcome to the Genesys Web Engagement 8.1.2 Developer's Guide. This document provides
information about how you can customize GWE for your website. See the summary of chapters below.

Architecture Developing a GWE Application
Find information about Web Engagement Find procedures to develop an
architecture and functions. application.

High-Level Architecture Creating an Application

Engagement Instrumentation Script

Notification Starting the Web Engagement Servers
Monitoring Creating a Rules Package
Customizing a GWE Application GWE Sample Applications

Find procedures to customize an Learn about the Genesys Web
application. Engagement Playground application.
Customizing an Application Playground Application

Creating Business Information

Customizing the Engagement Strategy

Customizing the Chat Routing Strategy

Developer Tools Integration

Find information about the GWE Learn how to integrate GWE with other
developer tools. components and media.

Developer's Guide 3


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/Architecture
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/Engagement
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/Notification
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/Monitoring
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CreateanApplication
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/StartyourServers
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CreateaRulesPackage
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/TestwithGWMProxy
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeanApplication
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CreateBusinessInformation
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeEngagement
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeChatRouting
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizetheBrowserTierWidgets
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/Samples

Genesys Web Engagement Developer's Guide

Simple GWM Proxy
Advanced GWM Proxy

Note: GWE also includes InTools, an

Integrating GWE and Co-browse with Chat

Integration with Second-Party and Third-
Party Media

application that helps you create,
validate, and test DSL. You can read more
about it in the User's Guide.

Developer's Guide



https://docs.genesys.com/Documentation/IW/8.1.2/Developer/TestwithGWMProxy#t-0
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/TestwithGWMProxy#t-1
https://docs.genesys.com/Documentation/GWE/latest/User/InTools
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/GCBIntegration
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/MediaIntegration
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/MediaIntegration

High-Level Architecture

High-Level Architecture

Genesys Web Engagement provides web services to interface your website with the Genesys contact
center solution:

* The Browser Tier widgets and Agents are enabled by JavaScript code snippets that are inserted into
your web pages; they run in the visitors' browser and track their browsing activity.

¢ The Frontend Server includes the Web Monitoring Service and the Web Notification Service,
responsible for managing the data and event flow, based on a set of configurable rules and the visit's
defined business events;

* The Backend Server stores data, submits information to the Genesys solution, and manages
engagement requests to the Genesys contact center solution.

Developer's Guide 5



High-Level Architecture

Bo0 E
J Business
A information Rules
i o .
Javascript Code and Libraries Frontend Server
_____________ S P Actionable
Web Monitorin
Monitoring Agent System Suewit:e g events
and
events Processing Engagement
Matification Agent S mfnrmatmn .
Engagement Web Motification
Maotifications Sanvice
Engagement Agent |
L S Engagement 7
---I» HTTP
—= Intemnal to Genesys

High-level architecture of Genesys Web Engagement

Browser Tier Agents

Backend Server
Web Manitoring DB

- T_fﬁ

Senvice Gateway

Engagement
Senvice

Pacing

Engagement

bV

(Genesys Solution

3

The Browser Tier Agents are implemented as JavaScript components that run in the visitor's browser.
To enable monitoring on a web page, you create a short standardized section of JavaScript code with
the Genesys Administrator Extension plug-in and then, you add this code to the <html></html>

section of your web page.

When a customer visits the webpage, the code retrieved within the page loads all the necessary
artifacts like the JavaScript libraries and Domain Specific Language (DSL) rules embedded in the

JavaScript code.

The DSL rules cover:

Developer's Guide



High-Level Architecture

¢ The HTML elements to monitor.
¢ The custom business events to send to the Frontend Server.

e The data to include in the events.

The Browser Tier generates categorized standard System and custom Business events, defined in the
DSL definitions, and sends them to the Frontend Server over HTTP.

Web Engagement Services

1. Retrieve web page
. embedding javascript code

2. Loads web engagement

libraries and tracking code 3 Send business and
L J system events

Web browser

/)

Visitor

Browser interactions at runtime.

Genesys Web Engagement provides the following browser tier agents:

* The Monitoring Agent service records the web browsing activity. It generates basic system events
such as VisitStarted, PageEntered, and additional custom business events, such as 'add-to-shopping
cart'. These events are sent to the Web Engagement Frontend Server for further processing. For further
information about events, see Event Workflow. For details about implementing monitoring, see
Monitoring.

¢ The Notification Agent allows a web server to push data to a browser, without the browser explicitly
requesting it, providing an asynchronous messaging channel between server and browser. It is used for
presenting the engagement invite. For details about implementing notification, see Notification.

« The Engagement Agent provides the engagement mechanism, chat communication or web callback
initialization. For details about implementing engagement, see Engagement.

If you are interested in monitoring features only, you do not need to install the Notification and
Engagement Agent modules. Note that you cannot dynamically activate or deactivate the Notification
and Engagement Agents on a visitor-by-visitor basis.

Web Engagement Frontend Server

The Genesys Web Engagement Frontend Server receives System and Business events from the
browser's Monitoring Agent through its RESTful interface.

Developer's Guide 7


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/Architecture#Event_Workflow
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/Monitoring
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/Notification
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/Engagement

High-Level Architecture

¢ System events are constants which cannot be customized. Two types of system events are available:
* Visit-related events, such as VisitStarted or PageEntered;

* lIdentity-related events, such as Signin, SignOut, Userinfo.
See Visitor Identification for further details.

Business events are additional custom events, that you can create by implementing Advanced
Engagement:

¢ You can create and define them in the DSL loaded by the monitoring agents in the browser, with the
Business Events DSL. For details about their implementation, read Managing Business Events.

¢ You can submit them from your web pages by using the Monitoring Javascript API.
For details about how the Business and System events are structured, see Events Structure.
The Frontend Server analyzes event correlation and attributes (such as the event name, event type,
URL, or page title) and then assigns categories to the events. The integrated Complex Event

Processing (CEP) engine validates these categorized events against the business rules and creates
actionable events, which the Frontend Server sends to the Backend Server.

1. Receive system and business events,

nes such as “visit-started”, "compare-products”,
“page exited”
-
'l:".l'eh hFIJ'WEF_:F
M
Frontend Server
/
G . 2. Categarize and
Web Manitaring Service
! g send actionable events
Complex Event
Processing
3. Receive notification St
for engagement
- Web Motification Senvice &
4. Motify the engagement
invitation A J \

In addition, the Web Engagement Frontend Server also sends real-time invitation notifications to the
Web Notification Agent of the web browser.

Hosting Static Resources

The Frontend Server is also responsible for hosting static resources, which are used in web
applications such as: Invite Widget, Ads Widget, Chat Widget and so on. These resources are all
available in the GWE_installation\apps\application_name\_composer-project\

Developer's Guide


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/VisitorIdentification
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/AdvancedEngagement
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/AdvancedEngagement
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringDSL
https://docs.genesys.com/Documentation/GWE/latest/User/BusinessEvents
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/EventsStructure

High-Level Architecture

WebEngagement_EngagementWidgets\ folder.

-dsl
-domain-model.xml // - default DSL file

_js
-chatAPI.min.js // - chat service API
-chatAPI-noTransport.min.js // - chat service API without transport
-chatWidget.min.js // - chat widget module

-chatWidget-noDeps.min.js // - chat widget module without dependencies
-locale

-callback-en.json // - default English localization file for callback widget

-callback-fr.json // - default Grench localization file for callback widget

ads.html // - ads sample widget

callback.html // - callback sample widget

chatTemplates.html // - default chat template widget

chatWidget.html // - chat widget file witch used in standalone chat mode
invite.html // - invite sample widget

You should not modify the chatAPl.min.js, chatAPl-noTransport.min.js,
chatWidget.min.js, and chatWidget-noDeps.min.js files. They should be used if
you build your solution using the Chat Service JS API or the Chat Widget ]S API.

You can add your own static resources under the Frontend Server, but Genesys recommends you do
this only if the resources are related to the Genesys Web Engagement solution. Alternatively, you can
host your status resources under a third-party server, as long as it supports all the features required
for the Web Engagement solution.

JSONP

The Frontend Server supports the JSONP protocol for all resources. JSONP stands for “JSON with
Padding” and it is a workaround for loading data from different domains. It loads the script into the
head of the DOM and thus you can access the information as if it were loaded on your own domain,
by-passing the cross domain issue.

Tip
For more information about JSONP, see http://en.wikipedia.org/wiki/JSONP.

For example, for this request:
http://{fronend server}/frontend/resources/invite.html?obj=my0Obj&callback=myMethod
the server returns following response body:

myObj .myMethod('<content of http://{fronend server}/frontend/resources/invite.html>");

Developer's Guide 9


https://docs.genesys.com/Documentation/GWE/latest/API/ChatService
https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI

High-Level Architecture

Cross-origin resource sharing

Cross-origin resource sharing (CORS) is a mechanism that allows many resources (for example, fonts,
JavaScript, and so on) on a web page to be requested from another domain outside the domain from
which the resource originated. In particular, JavaScript's AJAX calls can use the XMLHttpRequest
mechanism. These "cross-domain" requests would otherwise be forbidden by web browsers due to
the same-origin security policy.

Tip
For more information about cross-origin sharing, see http://en.wikipedia.org/wiki/
Cross-origin_resource_sharing.

GZIP

The Frontend Server can serve pre-compressed static content as a transport encoding and avoid the
expense of on-the-fly compression. So if a request for GPE.js is received and the file GPE.js.gz
exists, then it is served as GPE.js with a gzip transport encoding. By default, the Web Engagement
solution ships all JavaScript resources in minified and pre-compressed version.

Tip
For more information about GZIP, see

https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/optimize-
encoding-and-transfer#text-compression-with-gzip and

http://en.wikipedia.org/wiki/HTTP_compression.

Web Engagement Backend Server

The Web Engagement Backend Server is the engagement's entry point to the Genesys servers. It
delivers web and visitor information to the contact center, which allows that information to be
correlated with contact information.

The Backend Server stores the events it receives from the Frontend Server, manages contexts and
histories in its embedded Cassandra database, and submits them to the Genesys server.

When the Backend Server is notified that it should present a proactive offer, it retrieves the
engagement information, based on the visit attributes. Then, if the SCXML strategies allow it, the
proactive offer is displayed.

Developer's Guide 10



High-Level Architecture

Frontend server Backend Server Genesys Solu

|'“~—j<—'w
- 2. Manage histories
Web Monitoring Database and contexts

1. Receive
Actionable Events L 5 eyubmit actions Genesy:

Senice Gateway Servers

-

5. Get context

6. Send notification
for engagement

Engagement Senvice 4 Engagement

] N

7

7. Engagement notification B. Engagement

(aoo

e
T

S
-

Web browser

If the visitor accepts, the Engagement service connects to the Genesys servers. Once the connection
is established, the service manages the engagement context information across the visit.

The Backend Server is also responsible for publishing rules for the Frontend Server. In a Standalone
deployment you add a listening port for this purpose in Configuring Genesys Rules Authoring Tool. In
a Clustering deployment scenario, you must configure one Backend Server to be in charge of rules
deployment over the cluster - see Configuring Rules Deployment for the Cluster for details.

Event Workflow

The Genesys Web Engagement Frontend Server receives system and business events from the
browser's Monitoring Agent. This event flow is used to create actionable events which generate
requests to the Genesys solution, and make the engagement, follow up, and additional actions with
the Genesys solution possible.

Developer's Guide 11


https://docs.genesys.com/Documentation/GWE/latest/Deployment/ComponentsSettings#t-1
https://docs.genesys.com/Documentation/GWE/latest/Deployment/InstallCluster#Configuring_Rules_Deployment_for_the_Cluster

High-Level Architecture

HIGH-LEVEL ARCHITECTURE
FLOW UNDER THE COVERS

LT LT, gaEeEEE Ry LTI TR L LT

&7 Session "-. " B/ a

+, " Session "'*..;". Search

implicit and e Sarted e N T"‘* it S19E e ClE
Explicit actions _-" Checkbox -. S tton R page
P ‘+. page loaded . G, selected ot . dlicked o e, unloaded, ..-"
— rrnasanastt Wiheurai ~ Page level rules.
Browser tier rules Defines which ac
become busines:
U orlompare e, e, events.
o ", i Products o e ot e,
‘+. Visit started e [.m(_-nu - |... Visit Ended o Search o
Sys‘temfgusiﬁess pree -l---.....:‘ LR .‘;'.:-u ----- .-u" _t,, ...--i--..,_.::‘-li-ll- .“-'l-"'--'ﬂ",p;u. sans®®
events :" page Enterd 3 & b T Compare™i s buited 3
N E - Store peckup # **--E!E'EE'FF--- e erernemeen s Session level rule
|| ressenasene” - Defines which by
CEP rules events are sent t
- and how to deri
e v G s actionable event
Categorized/tagged ;.‘.."u'nit i.lartﬁt!- 3 :+_ Products + ;..'-'u"mt Fnd?ﬂ.h"-‘.h' “ama a-r-c-n-"" e
Busi t wim -i‘-.-., raagmamenett - ".:; "Ti-r!‘ren?u'“".-:“ -u::+ Raranesd] T l:.'"i' ay ‘JF Hot lead L-'
usiness events, o O T ot +p oo i
Actionable Events v, Page Ehtmrﬂf ; Shipping £ “., E.mducmﬂ age Exted
- Selecled. R ~ Decide whether
SCXML logic proactively enga

¥ L

Proactively engage or
follow up

When a customer visits your website, he or she interacts with your web pages, which generates a
flow of events, such as Session Started, Timeout, Button clicked, and so on.

Event Flow Under the Covers

follow-up, or tak
actions.

The Monitoring Agent handles this traffic and translates all these events into the relevant System and

Business events, according to your page rules, DSL, and category information.

The agent then submits the events to the Frontend Server where the Complex Event Processing

embedded in the server determines the actionable events ("Hot lead Identified" in the above figure)

and sends them to the Backend Server for further processing.

On the Backend Server, the SCXML strategies are used to determine whether to proactively engage,

follow-up, or implement any other action.

Developer's Guide

12



High-Level Architecture Monitoring

Monitoring

The Monitoring Agent service records web browsing activity on your site. It generates basic system
events such as VisitStarted, PageEntered, and additional custom business events, such as 'add-to-
shopping cart'. Then it sends these events to the Frontend Server for further processing (you can
read more about the structure of these events here).

To implement monitoring, you simply include the Monitoring Service ]S script in you web pages. This
short piece of regular JavaScript activates monitoring and notification functions by inserting one of
the following scripts into the page: GT.min.js, GTC.min.js, GPE.min.js. The script depends on your
requirements — see Configuring the Instrumentation Script for details. The JavaScript asynchronously
loads the application into your pages, which means that Monitoring Service JS does not block other
elements on your pages from loading.

Basic Configuration

The simplest way to get the Monitoring Service JS for your site is by using the Genesys Web
Engagement Plug-in for Genesys Administrator Extension. See Generating the Instrumentation Script
for details.

If you plan to use Web Engagement chat, make sure to include the Chat JS Application
script into your web pages, as well. See Engagement for details.

Advanced Configuration

Once you generate the script, you can use it as is or implement the advanced configuration options
to customize the script to suit your requirements. See Configuring the Instrumentation Script for
details.

Monitoring JS API

You can also take a highly customized approach and use the Monitoring JS API to submit events to the
Frontend Server. You can submit Userlnfo, Signln, SignOut, and even your own custom business
events using this API. For example, you can use the API to identify visitors on your website. See
Visitor Identification for details.

Developer's Guide 13


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/EventsStructure
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript#Configuring_the_Instrumentation_Script
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript#Generating_the_Instrumentation_Script
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/Engagement
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript#Configuring_the_Instrumentation_Script
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/VisitorIdentification

High-Level Architecture Monitoring
Related Links

¢ Visitor Identification

e Events Structure
Developer's Guide 14


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/VisitorIdentification
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/EventsStructure

High-Level Architecture Monitoring

Visitor ldentification

Overview

Genesys Web Engagement allows you to capture visitor activities on your website and to build a
complete history of the visitor’s interactions with your contact center.

When a visitor browses your website, the tracking code submits System events to the Web
Engagement servers that constitute a visit, such as VisitStarted, PageEntered, Signin, Userlnfo, and
so on. The association or relationship between the visit and the visitor is based on the flow derived
from System events, in addition to the information retrieved from the Contact Server. In the end, you
can access visit history through the Event Resource in the History REST API.

To associate the visitor with the visit, Genesys Web Engagement must "identify" the visitor as one of
three possible states:

¢ Authenticated — The visitor logged in to the website with a username and password. The username
can be an e-mail address, an account name or other similar identifier, depending on your website.
When a user is authenticated, Genesys Web Engagement can maintain an association between the
visitor and the visit.

* Recognized — The visitor closed the browser window and did not log out, but cookies are saved. The
next time the visitor comes to the website, the website can submit cookie-based user information,
which contains the userld.

e Anonymous — The visitor is anonymous.

Developer's Guide 15


https://docs.genesys.com/Documentation/GWE/latest/API/EventResource
https://docs.genesys.com/Documentation/GWE/latest/API/HistoryREST

High-Level Architecture Monitoring

[Sign I

[Sign Out]

[Leave wio "Sign Cut" & Clear cookies]
Visitor states

Genesys Web Engagement relies on your website to trigger the transitions between visitor states. You
can do this by updating the tracking code with the following events in the Monitoring JS API:

e gt.push(['sendSignIn’, options]) — Send this event when the user is authenticated by the website. This
allows the system to identify the user and creates a new "session" with a sessionld that is unique to a
visit and will last the duration of the visit. Only Authenticated visitors have an associated sessionid.

e gt.push(['sendSignOut’, options]) — Send this event when the user logs out of the website.
Note: The sessionld lasts for the duration of the authenticated user's visit to your website. It is stored
in a cookie and sent with every event that occurs between Signin and SignOut, and is changed
automatically after every Signin event.

e gt.push(['sendUserInfo’, options]) — Send this event when the user visits your website after closing the
browser window on an authenticated session. For details, see Recognized Visitors.

Visitor Event Timeline

The figure below shows the timeline for events that take place when a visitor browses your website.

Developer's Guide 16


https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI#sendSignIn
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI#sendSignOut
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI#sendUserInfo
https://docs.genesys.com/Documentation/GWE/latest/Developer/VisitorIdentification#Recognized_Visitors

High-Level Architecture Monitoring

Search
]
A \ ;'"'I,I : A
.':iPagEEntered If'.ar,!:EE:-cil:e::I\5 Ex { PageEntered PageExited + PageEntered PageExited(
\ i } "}
1". {'. { : \ \
|
Page Page : Page
[ (I [ [
SesﬁonStarted Signin : : : Sign(}u* ' SessionStarted |
: SessionEnded : : : : | SessionEnded
[ o 1 1o
: Session . Session ) . Session
P (I (R [ T |
\ 11 I ] ] | | I 1 1 |
'%Vlslismrted 1 [ [ I [ I T | VisitEnder
11 | 1 ] | 1 I 1 1 ]
1 o [ I I T T
[ | 1 ] | ] [ | 1 1
I o o I e
T 1 | 1 I I | T 1 1 I
L - L L — .1
bl o b i R
| | | ] | | I | 1 ]
[ | | 1 | I T |
| Time |

Visitor Event Timeline

All visitors to your website are identified with a visitld, which can be used to associate the visitor to
events, such as PageEntered or PageExited, during the span of the visit.

Important

SessionStarted and SessionEnded events are internal and cannot be generated by
public API.

Accessing Visitor Information

The History REST API is a RESTful interface for accessing visit and identity information — in the form
of a collection of JSON objects — via POST and GET HTTP requests:

e The visit resource represents the sequence of pages that a given visitor went through.

Developer's Guide 17


https://docs.genesys.com/Documentation/GWE/latest/API/HistoryREST
https://docs.genesys.com/Documentation/GWE/latest/API/VisitResource

High-Level Architecture Monitoring

The identity resource contains information about authenticated and recognized visitors.

¢ The session resource contains information about the events and pages that a visitor browsed during an
authenticated session within a visit.

e The page resource contains information about browsed pages. If a visitor revisits a page, a new page
resource is created.

* The event resource contains information about System and Business events. For details about how
these events are structure, see Events Structure.

Authenticated Visitors

When the visitor is Authenticated on the website, you should use the sendSignin event so that
Genesys Web Engagement can start a new session. When the Backend Server receives this event, it
creates a session resource and an identity resource to store the visitor information. The identifying
information used to login (for instance, the e-mail address) is available in the Signin event and is
used to:

* Create the identityld or search the visitor's identity resource.

e Associate the visitor with a contact in the Genesys solution.

Browser Tier Backend Server

Signin

createSession

assignsession ToVisit

searchldentity

assignObjectsWithldentity

VUV

GPE SignIn event.png

The SignOut and Userinfo events are used to manage the collections of additional information. These

Developer's Guide 18


https://docs.genesys.com/Documentation/GWE/latest/API/IdentityResource
https://docs.genesys.com/Documentation/GWE/latest/API/SessionResource
https://docs.genesys.com/Documentation/GWE/latest/API/PageResource
https://docs.genesys.com/Documentation/GWE/latest/API/EventResource
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/EventsStructure

High-Level Architecture Monitoring

collections, called contacts and useridentifications, are introduced in the Backend Server
database.

¢ The contacts collection maintains the association between the identitylds and the sessionld, visitld,
and globalVisitld.

* The useridentifications collection stores all of the System events.

Recognized Visitors

When an Authenticated visitor closes the browser window without signing out and then later revisits
your site, you can use the gt.push(['sendUserInfo’, options]) command to tell Genesys Web
Engagement that the visitor is now Recognized.

You will need to send the userld in the _gt.push(['sendUserinfo’, options]) event. How you track
the userld depends on your website. For example, you could create a persistent cookie to store the
userld when a visitor logs in to you website. Then when a visitor first browses your site, you could
check the cookie and call the _gt.push(['sendUserinfo’, options]) event if the cookie contains the
userld. There are many possible scenarios - the best implementation is entirely dependent on your
website and its workflow.

The visitor's identity cannot be guaranteed in the Recognized state. For instance,
another member of the visitor's family could be browsing the website with the same
computer.

Anonymous Visitors

If the visitor is not Authenticated or Recognized, no identity is created. The visitor's activity on the
website, including events and pages visited, are still associated with the visit.

Developer's Guide 19


https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI#sendUserInfo

High-Level Architecture Monitoring

Fvents Structure

Overview

When the Tracker Application monitors the current web page, it generates a series of events, which
are represented in JSON format.

There are two available event types:

¢ SYSTEM — These events are generated automatically and cannot be configured.

* BUSINESS — These are additional custom events you can an create.

You can configure when an event should be generated by customizing the DSL, but if
you need more flexibility you can use the Monitoring JS API.

Common Event Structure

The common event structure is a scaffold for generating System and Business events. In table below,
data represents the common structure that is included in both event types.

Field Type Description
eventType String g?ET%\;qent type: BUSINESS or
eventName String The required event name.

. The generated UUID that is used
S =iting to identify the event.
pagelD String The generated UUID that is used

to identify the page.

The time stamp for when the
timestamp Number event was generated. This is
taken from the browser.

A list of categories separated by
category String commas. For more information,
see Managing Categories.

The URL of the page where the

url String event was triggered.

languageCode String The current language. This can

Developer's Guide 20


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/Monitoring
https://docs.genesys.com/Documentation/GWE/latest/User/BusinessEvents
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI
https://docs.genesys.com/Documentation/GWE/latest/User/Category

High-Level Architecture

Monitoring

Field

globalVisitID

visitID

data

Type

String

String

Object

Example of the Common Event Structure

{
"eventName": "PageEntered",
"eventID": "44D25DDB78174DEC8F33E28F96428336",
"pageID": "9A1AD4389AC34FOA86D3EBO4E50D6137",
"timestamp": 1413979605190,
"category": "my-category",
"url": "http://www.genesys.com/products",
"languageCode": "en-US",
"globalVisitID": "b5a93936-b2a4-4042-a5e6-0a2b9681cla9",
"visitID": "8bd4bbb5-3bld-4647-9ede-37820b88e343",
"data": {
}

}

System Event Structure

System events have specific values for the following fields:

Field
eventType

eventName

data

Type

String

String

Object

Description

be configured using the
languageCode configuration
option in the in the
instrumentation script.

globalVisitID is a anonymously
identifier of a particular device or
browser.

visitlD represents a particular
session in the browser.

Container for additional data.
Which depends on event type
and name. See appropriate event
below

Description
SYSTEM

The following values are possible:
PageEntered — generated
when the user enters a page

PageExited — generated
when the user changes
location or closes a page

VisitStarted — generated
when the visit is identified

This field should contain specific

Developer's Guide

21


https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizeMonitoringScript#Advanced_Configuration

High-Level Architecture

Monitoring

Field

System data

Description

information, described in System
data below.

The value of the System event's data field can vary depending on the name of System event. The
following sections provide details about the data provided for each event name.

VisitStarted

The VisitStarted event expands the System event structure with the following value for data:

data field

userAgent

screenResolution

language

timezoneOffset

ipAddress

String

String

String

String

String

Description

The
window.navigator.userAgent
value. This contains information
about the name, version, and
platform of the browser.

The screen resolution at the
moment the event is generated.
The format is width x height. For
example: "1440x900"

The language code from
window.navigator, retrieved
from the first available of the
following objects:

window.navigator.language ||
window.navigator.browserLanguage ||
window.navigator.userLanguage ||
window.navigator.systemLanguage

The timezone offset in
milliseconds.

The client IP address.

"eventType":"SYSTEM",
"eventName":"VisitStarted",
"eventID":"5E1BA21F69F149F280B028385DF16DC3",
"pageID":"300E084345EC412F879D5A835F7CA4F6",
"timestamp":1414074819648,
"category":"my-category",
"url":"http://www.genesys.com/products",
"languageCode": "en-US",
"globalVisitID":"301438c2-3139-4035-aac0-1c9c8ab0c481",
"visitID":"9ccd9489-6a94-4b45-8813-clcca0l0d443",
"data":{

"userAgent":"Mozilla/5.0 (Windows NT 6.1; WOW64; rv:32.0)

Firefox/32.0",

"screenResolution":"1680x1050",
"language":"en-US",
"timezoneOffset":-10800000,
"ipAddress":"123.45.67.890"

Gecko/20100101

Developer's Guide

22


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/EventsStructure#System_data
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/EventsStructure#System_data

High-Level Architecture Monitoring

}

PageEntered
The PageEntered event expands the System event structure with the following value for data:

data field Type Description

A window.document.referrer
value. The referrer property

urlReferrer String returns the URL of the document

that loaded the current
document.

The string representation of the
localTime String time in the browser when the

event was generated.

The page title, taken from

title String window.document.title.

"eventType": "SYSTEM",
"eventName": "PageEntered",
"eventID": "44D25DDB78174DEC8F33E28F96428336",
"pageID": "9A1AD4389AC34FOA86D3EBO4E50D6137",
"timestamp": 1413979605190,
"category": "my-category",
"url": "http://www.genesys.com/products",
"languageCode": "en-US",
"globalVisitID": "b5a93936-b2a4-4042-a5e6-0a2b9681cla9",
"visitID": "8bd4bbb5-3bld-4647-9ede-37820b88e343",
"data": {
"urlReferrer": "http://www.genesys.com",
"localTime": "Wed Oct 22 2014 15:06:45 GMT+0300 (FLE Daylight Time)",
"title": "English"
}
}

PageExited

The PageExited event does not have additional data. The event structure is the same as the System

event structure, but with the PageExited event name specified:

{
"eventType": "SYSTEM",
"eventName": "PageExited",
"eventID": "ESE6F0926F3642BF889DA5SED4342EFA7",
"pageID": "9A1AD4389AC34FOA86D3EBO4E50D6137",
"timestamp": 1413982730013,
"category": "my-category",
"url": "http://www.genesys.com/products",
"languageCode": "en-US",
"globalVisitID": "b5a93936-b2a4-4042-a5e6-0a2b9681cla9",
"visitID": "8bd4bbb5-3bld-4647-9ede-37820b88e343",
"data": {}

}

Developer's Guide

23



High-Level Architecture Monitoring

Userinfo
The UserInfo event expands the System event structure with the following value for data:

data field Type Description

A unique persistent string
identifier that represents a user
or signed-in account across
devices.

userlD String

"eventType":"SYSTEM",

"eventName":"UserInfo",
"eventID":"532BC42B99C341578639A1DF1F2A45D9",
"pageID":"C90206CA44A2401F9408A1581EFOE258",
"timestamp":1419437657401,

Ilcategoryll : nn )
"url":"http://www.genesys.com/products",
"languageCode": "en-US",
"globalVisitID":"c9b891e4-ae04-493b-b554-4ebal9ad7c58"
"visitID":"b5c87b28-a00e-4461-961b-d6a01b754838",

"data":{
"userID":"user@genesyslab.com",
"name" :"Bob",

"sex":"male",
"age":30
}
}
Signin

The SignIn event expands the System event structure with the following value for data:

data field Type Description

A unique persistent string
identifier that represents a user
or signed-in account across
devices.

userlD String

"eventType":"SYSTEM",
"eventName":"SignIn",
"eventID":"DE6826972BDF4820BO3FAF5BB7945426",
"pageID":"C90206CA44A2401F9408A1581EFOE258",
"timestamp":1419437874950,
"category":"",
"url":"http://www.genesys.com/products",
"languageCode":"en-US",
"globalVisitID":"c9b891e4-ae04-493b-b554-4ebal%ad7c58",
"visitID":"b5c87b28-a00e-4461-961b-d6a01b754838",
"data":{

"userID":"user@genesyslab.com",

"name" :"Bob",

"sex":"male",
"age":30

Developer's Guide

24



High-Level Architecture Monitoring

SignOut

The SignOut event does not have additional data. The event structure is the same as the System
event structure, but with the SignOQut event name specified:

{
"eventType":"SYSTEM",
"eventName":"SignOut",
"eventID":"3CE3204E697640A7986C70CA97F0945C",
"pageID":"C90206CA44A2401F9408A1581EFOE258",
"timestamp":1419437925162,
"category":"",
"url":"http://www.genesys.com/products",
"languageCode":"en-US",
"globalVisitID":"c9b891e4-ae04-493b-b554-4ebal9ad7c58",
"visitID":"b5c87b28-a00e-4461-961b-d6a01b754838",
"data":{
}

}

Business Event Structure

Business events have the same structure as the common event structure, with additional data
specified in the DSL configuration. For example, if your DSL (domain-model.xml) has the following
event generation rules:

<event id="TimeoutEventl0" name="Timeout-10" condition="" postcondition="document.hasFocus()
=== true">
<trigger name="TimeoutTrigger" element="" action="timer:10000" type="timeout" url=""

count="1" />
<val name="myValueName" value=
</event>

myValue'"></val>

Then the generated Business event is expanded with the additional data:

{
"eventType": "BUSINESS",
"eventName": "Timeout-10",
"eventID": "11030C008B3D45ACADFB32A1B4EQ1122",
"pageID": "B501B6EE57EF4E2AA05379D468E772D6",
"timestamp": 1413990905565,
"category": "",
"url": "http://www.genesys.com/products",
"languageCode": "en-US",
"globalVisitID": "b5a93936-b2a4-4042-a5e6-0a2b9681cla9",
"visitID": "8bd4bbb5-3bld-4647-9ede-37820b88e343",
"data": {

"myValueName": "myValue"

}

}

Developer's Guide

25



High-Level Architecture Notification

Notification

The Notification Agent provides the browser with the asynchronous notification of the engagement
offer by opening an engagement invite. It opens the engagement window.

To implement notification, you simply include the Notification Service S script in you web pages. This
short piece of regular JavaScript activates monitoring and notification functions by inserting one of
the following scripts into the page: GT.min.js, GTC.min.js, GPE.min.js. The script depends on your
requirements — see Configuring the Instrumentation Script for details. The JavaScript asynchronously
loads the application into your pages, which means that Notification Service JS does not block other
elements on your pages from loading.

Basic Configuration

The simplest way to get the Notification Service JS for your site is by using the Genesys Web
Engagement Plug-in for Genesys Administrator Extension. All you have to do is select the Load
Engagement Script option in the Script Generator window to include notification in the generated
script. See Generating the Instrumentation Script for details.

If you plan to use Web Engagement chat, make sure to include the Chat JS Application
script into your web pages, as well. See Engagement for details.

Advanced Configuration

Once you generate the script, you can use it as is or implement the advanced configuration options
to configure the script to suit your requirements. See Configuring the Instrumentation Script for
details.

Notification Service REST API

You can use the Notification Service REST API to reach your entire user base quickly and effectively
with notifications that are delivered to your web pages. For details, see Notification Service REST API
in the APl Reference.

Developer's Guide 26


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript#Configuring_the_Instrumentation_Script
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript#Generating_the_Instrumentation_Script
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/Engagement
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript#Configuring_the_Instrumentation_Script
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI

High-Level Architecture Engagement

Engagement

The Engagement Agent provides the engagement mechanism — proactive/reactive chat
communication or web callback initialization.

Select a tab below for details about the engagement method.

<tabber> Chat ]S Application=

To implement chat, you simply include the Chat JS Application script in your web pages. This short
piece of regular JavaScript activates chat functions by inserting the GWC.min.js script into the page.
The JavaScript asynchronously loads the application into your pages, which means that Chat JS
Application does not block other elements on your pages from loading.

Basic Configuration

The simplest way to get the Chat JS Application for your site is by using the Genesys Web
Engagement Plug-in for Genesys Administrator Extension. All you have to do is select the "Chat"
option in the "Script Generator" window to include chat in the generated script. See Generating the
Instrumentation Script for details.

Advanced Configuration

The Chat JS Application script consists of two parts: script loader and configuration. The script
loader part actually loads the GWC.min.js script, while the configuration part sets options that
control things like window size and localization.

Script Loader

To load Chat JS Application, you just need to include a short piece of regular JavaScript, the script
loader, in your HTML. That JavaScript will asynchronously load the application into your pages, which
means that Chat JS Application will not block other elements on your web page from loading.

For example, your script loader code might look like this:

//Script loader
(function(v) {

if (document.getElementById(v)) return;

var s = document.createElement('script'); s.id = v;

s.src = ( "https:' == document.location.protocol ? 'https://<Frontend Server
host>:<Frontend Server secure port>'

"http://<Frontend Server host>:<Frontend Server port>') + '/frontend/

resources/js/build/GWC.min.js"';

s.setAttribute('data-gwc-var', v);

(document.getElementsByTagName('head')[0] || document.body).appendChild(s);
(' _gwe');

Developer's Guide 27


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript#Generating_the_Instrumentation_Script
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript#Generating_the_Instrumentation_Script

High-Level Architecture Engagement

The above example uses gwc as the configuration global variable — see the
"Configuration" section below for details.

Configuration

By default the chat application uses the gwc global variable (you can change this in the script
loader) that is created before Chat JS Application script loader is actually added to the page. Some of
the options you set in the configuration code can be overwritten in the Chat Widget JS APl methods
(startChat(options) and restoreChat(options) for a particular chat session, if the parameter name
matches the option name.

For example, your configuration code might look like this:

/* Configuration */
var gwc = {widgetUrl: 'http://<Frontend Server host>:<Frontend Server port>/frontend/
resources/chatWidget.html',

serverUrl: 'http://<Backend Server host>:<Backend Server port>/backend/cometd'};

Options

Default Value Description

URL of the CometD
yes, when default chat server for
"transport" is used default (built-in)

CometD transport.

URL of the chat
widget HTML that
is open in an
external window
when operating in
"popup" mode. By
default, the chat
widget is stored
under the Frontend
Server and is

Option Type Mandatory

serverUrl string undefined

yes, when

widgetUrl

embedded

string

boolean

undefined

false

"embedded" is set
to false ("popup"
mode)

no

available at the
following URL:
http://{frontend_server}:{fronten
resources/
chatWidget.html;
however, you can
store the
chatWidget.html
file as a static
resourced under
any third-party
server.

Sets chat mode of
operation:
"embedded" (chat

Developer's Guide

28


https://docs.genesys.com/Documentation/GWE/latest/API/StartChat
https://docs.genesys.com/Documentation/GWE/latest/API/RestoreChat

High-Level Architecture

Engagement

Option

localization

windowSize

windowName

windowOptions

Type

string

object {width:
<number>,
height:
<number>}

string

object

Default Value Mandatory
undefined no
{ width: 400, no
height: 500 }

genesysChatWindow no

The value of the

windowSize option. no

Description

widget is rendered
directly on a page)
or "popup" (chat
opens in a
separate browser
window).

Default is "popup". Pass
the value true to switch
to "embedded" mode.

URL of JSON file
with chat
localization. If
omitted, default
English localization
will be used.

See Localization for
more on how to localize
the chat widget.

Size of external
chat window when
operating in
"popup" mode.

A string name for
the new window
that will be passed
to the
window.open call
when opening chat
widget window. For
details, see
https://developer.mozilla.org/
en-US/docs/Web/
API/Window.open.

An object
containing window
options that are
passed to the
window.open call
when opening chat
widget window.
You can pass any
window options,
such as position
(top, left),
whether to show
browser buttons
(toolbar), location
bar (Location),
and so on. For
details about
possible window
options, see

Developer's Guide

29


https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI#Localization

High-Level Architecture Engagement

Option Type Default Value Mandatory Description

(https://developer.mozilla.org/
en-US/docs/Web/
API/Window.open.

All options are

converted to a

string that is

passed to the

window.open call.

Set to true to
enable chat
debugging logs (by
default standard
debug boolean false no console.log is be
used, see the
"logger" option if
you want to
override that).

Pass a function
that will be used
for chat logging (if
debug is set to
true) instead of
the default
console.log. The
function has to
support the
interface of the
console.log — it
must accept an
arbitrary number
of arguments and
argument types. To
use the custom
logging function in
a separate
window, you have
to pass it directly
on the widget
page to the
startChatinThisWindow
method.

logger function console.log no

The "logger"
function works only
for the Chat Widget
JS API context.

By default chat

starts with a built-
boolgan or true no in registration form
function (that you can

customize using

ui.onBeforeRegistration).

registration

Developer's Guide 30



High-Level Architecture

Engagement

Option

userData

createContact

maxOfflineDuration

ui

Type

object

boolean

number

boolean or object

Default Value

undefined

true

true

no

no

no

no

Mandatory

Description

Pass the value false to
disable this default
built-in registration
form. See Custom
registration in the Chat
Widget JS API for
details.

Can be used to
directly attach
necessary
UserData to a chat
session.

Determines
whether new
contact should be
created from
registration data if
it doesn't match
any existing
contact. Only
effective if
registration data is
present (collected
either by built-in or
custom
registration
workflow).

See createContact in
the Chat Widget JS API
for details.

Time (in seconds)
during which state
cookies are stored
after page reload/
navigation. If
cookies expire, the
chat is not
restored. Basically,
this option means
"how long shall the
chat session live
after the user
leaves my
website?"

Pass the value
false to disable the
chat widget Ul
completely. Or
pass an object
with "hook"
functions that can
modify the built-in
ul.

Developer's Guide

31


https://docs.genesys.com/Documentation/GWE/latest/API/StartChat#Custom_registration
https://docs.genesys.com/Documentation/GWE/latest/API/StartChat#Custom_registration
https://docs.genesys.com/Documentation/GWE/latest/API/StartChat#createContact

High-Level Architecture

Engagement

Option

transport

disableWebSockets

templates

Type

object

boolean

string

Default Value

undefined

false

undefined

no

no

no

Mandatory

Description

See ui in the Chat
Widget JS API for
details.

Custom transport
instance (for
example, REST-
based).

By default, chat
attempts to use
WebSockets to
connect to the
server. When the
WebSocket
connection is
unavailable (for
example, if your
load balancer
doesn't support
WebSockets), chat
switches to other,
HTTP-based,
means of
communication.
This might take
some time (a
matter of seconds,
usually), so if you
want to speed up
the process, you
can disable
WebSockets for
chat by passing
true to this option.

This option is only
effective with
default (built-in)
transport.

The URL of the
HTML files
containing
templates that are
used to render the
chat widget. The
request is made
via either JSONP or
AJAX, following the
same logic as for
localization files
(see Localization in
the Chat Widget JS
API). Default

Developer's Guide

32


https://docs.genesys.com/Documentation/GWE/latest/API/StartChat#ui
https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI#Localization

High-Level Architecture Engagement

Option Type Default Value Mandatory Description

templates are
included into the
JavaScript source,
so by default no
requests are made
to load them. The
template system is
based on the
popular lodash /
underscore
templates:
http://lodash.com/
docs#template,
http://underscorejs.org/#template

On every page
reload/navigation,
chat automatically
attempts to
restore the chat
widget using the
restoreChat
autoRestore boolean true no method in the
Chat Widget JS API.
You can use this
option to disable
this behavior if you
want more control
over chat widget
restoration.

This field is a
callback function
fired when the
application has
initialized. The
Chat Widget JS API
object is provided
as the first
argument of the
callback function.

_gwc.onReady.push(function(chat
onReady array or function undefined no { alert('Chat

application

ready!"');

k)5

If you use
_gwc.onReady . push,
make sure that
onReady is defined as
an array.

var gwc = {

c.)rl\llkeady: [1

Developer's Guide 33


https://docs.genesys.com/Documentation/GWE/latest/API/RestoreChat

High-Level Architecture Engagement

Option Type Default Value Mandatory Description

Configuration Examples

Basic configuration for proactive engagement integration

/* Configuration */
var gwc = {widgetUrl: 'http://<Frontend Server host>:<Frontend Server port>/frontend/
resources/chatWidget.html'};

// Script loader
(function(v) {

if (document.getElementById(v)) return;

var s = document.createElement('script'); s.id = v;

s.src = ('https:' == document.location.protocol ? 'https://<Frontend Server
host>:<Frontend Server secure port>':

'http://<Frontend Server host>:<Frontend Server port>') + '/frontend/resources/js/

build/GWC.min.js"';

s.setAttribute('data-gwc-var', v);

(document.getElementsByTagName('head')[0] || document.body).appendChild(s);
B _gwe');

Basic configuration for reactive chat

/* Configuration */
var gwc = {widgetUrl: 'http://<Frontend Server host>:<Frontend Server port>/frontend/
resources/chatWidget.html',

serverUrl: 'http://<Backend Server host>:<Backend Server port>/backend/cometd'};

// Script loader
(function(v) {

if (document.getElementById(v)) return;

var s = document.createElement('script'); s.id = v;

s.src = ('https:' == document.location.protocol ? 'https://<Frontend Server
host>:<Frontend Server secure port>':

'http://<Frontend Server host>:<Frontend Server port>') + '/frontend/resources/js/

build/GWC.min.js"';

s.setAttribute('data-gwc-var', v);

(document.getElementsByTagName('head')[0] || document.body).appendChild(s);
B _gwe');

Advanced configuration for chat application

/* Configuration */
var gwc = {

serverUrl: 'http://<Backend Server host>:<Backend Server port>/backend/cometd',

widgetUrl: 'http://<Frontend Server host>:<Frontend Server port>/frontend/resources/
chatWidget.html',

autoRestore: true,

debug: false,

embedded: true,

createContact: true,

localization: 'http://<Frontend Server host>:<Frontend Server port>/frontend/resources/
locale/chat-fr.json',

windowSize: { width: 400, height: 500 },

windowName: 'myWindowName',

Developer's Guide 34



High-Level Architecture Engagement

windowOptions: {
left: 0,
top: 0O
}I
/* Callbacks */
onReady: [function (chatAPI) {
var options = {
registration: true

+
chatAPI.startChat(options);
1]
I

// Script loader
(function(v) {

if (document.getElementById(v)) return;

var s = document.createElement('script'); s.id = v;

s.src = ('https:' == document.location.protocol ? 'https://<Frontend Server
host>:<Frontend Server secure port>':

'http://<Frontend Server host>:<Frontend Server port>') + '/frontend/resources/js/

build/GWC.min.js"';

s.setAttribute('data-gwc-var', v);

(document.getElementsByTagName('head')[0] || document.body).appendChild(s);
(' _gwe');

Tip

For more information about the start parameters, see the Chat Widget JS API

Chat J]S Application API

The Chat JS Application APl is provided by the Chat Widget ]S APl component. The API object provides
two functions: startChat(options) and restoreChat(options). To access the API, use the onReady option
in the Chat )JS Application configuration.

Reactive Chat

The following example shows how you can start reactive chat on a button click using the startChat
method.

$('#startChatButtonl, #startChatButton2, #startChatButton3').click(function () {
_gwc.onReady.push(function (chatAPI) {
chatAPI.startChat();
1)

1)

If you want to provide monitoring information to the chat session, you should attached the visitIiD
and pagelD from the Tracker Application to the chat interaction.

$('#startChatButtonl, #startChatButton2, #startChatButton3').click(function () {
_gwc.onReady.push(function (chatAPI) {
_gt.push(['getIDs', function (IDs) {
chatAPI.startChat({userData: {visitID: IDs.visitID, pageID: IDs.pagelD}});
)

Developer's Guide 35


https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI
https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI
https://docs.genesys.com/Documentation/GWE/latest/API/StartChat
https://docs.genesys.com/Documentation/GWE/latest/API/RestoreChat

High-Level Architecture Engagement

How To

Auto-generate an e-mail address based on the visitID
Use the Tracker JS Application and the Chat JS Application together:

_gwc.onReady.push(function (chatAPI) {
~gt.push(['getIDs', function (IDs) {

/* Start chat with generated email */
chatAPI.startChat({ userData: {
visitID: IDs.visitID,
pageID: ID.pagelD,
email: IDs.globalVisitID + '@anonymous.com'
1)
)
1)

|-| Callback widget=
The callback widget is represented by the callback.html file, which can only be used in separate
window mode — it is not currently supported for embedded mode like chat.

By default, the callback.html file has all its dependencies embedded to avoid extra requests to the
server. The file is located in the

GWE _installation_directory/apps/application_name/_composer-project/
WebEngagement_EngagementWidgets/ folder by default.

Warning

If you modify this file, it will not be backward compatible with any new versions of
Genesys Web Engagement.

Configuration

To configure the callback widget, you can pass the following URL parameters (they must be URL
Encoded):

http://{server}:{port}/frontend/resources/
callback.html?visitId={visitId}&pageld={pageld}&backendUrl={backendUrl}&locale={locale}&debug=
{debug}

Developer's Guide 36



High-Level Architecture Engagement

Parameters

Option Type Default Value Mandatory Description

Unique identifier of
the current visit.
For instance,
visitld string undefined yes 58bd8e65-7390-4c56-8da9-79dd
You could use the
Monitoring JS API
to get this value.

Identifier of the
current page. For
instance,
pageld string undefined yes 662FE0368D654E9D8OBOD1E1E29A
You could use the
Monitoring JS API
to get this value.

URL of the
Backend Server;
for instance,
http://<Backend
Server
host>:<Backend
Server
port>/backend.

backendUrl string undefined yes

Localization tag for
language and
region; for
instance, en-US.
For details, see
Localization.

locale string ‘en’ no

Set to true to
show callback
debug boolean false no widget debug
information in the
browser console.

Configuration Example

http://<Frontend Server host>:<Frontend Server port>/frontend/resources/
callback.html?visitId=58bd8e65-7390-4c56-8da9-79dd74bd73be&pageld=662FEO368D654E9D8OBOD1IEIE29A
E25F&backendUrl=http%3A%2F%2F<Backend Server host>%3A<Backend Server
port>%2Fbackend&locale=en-US&debug=true

Usage

To run the callback widget, simply open it in a separate window with the appropriate parameters:

var url = http://<Frontend Server host>:<Frontend Server port>/frontend/resources/
callback.html +

Developer's Guide 37


https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizetheBrowserTierWidgets#t-2

High-Level Architecture Engagement

'?visitId=' + encodeURIComponent('58bd8e65-7390-4c56-8da9-79dd74bd73be") +

'&pageld=' + encodeURIComponent('662FE0368D654E9D8OBODIEIE29AE25F"') +

'&backendUrl=' + encodeURIComponent('http://<Backend Server host>:<Backend Server
port>/backend') +

'&locale="' + encodeURIComponent('en-US') +

'&debug="' + encodeURIComponent('true');

window.open(urtl,
title,
'toolbar=no, location=no,directories=no, status=no,menubar=no,scrollbars=no, resizable=no, copyhistory=

",width=" + 400 + ',height=' + 500 + ', top=' + 300 + ',left=' + 300);

Customization

For details about how to customize the callback widget, see Customizing the Browser Tier Widgets.

Developer's Guide 38


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizetheBrowserTierWidgets#t-2

Application Development Engagement

Application Development

Overview

Developing an application for Genesys Web Engagement is the process of defining all the
components deployed through the Web Engagement Servers to implement Web Engagement
features in your Genesys contact center, and to add Web Engagement to your website.

When you create and configure your application, you create all the materials that are used to
generate the actionable events: customized business information, conditions, and engagement
strategies. As a result of an actionable event, the Web Engagement servers engage the visitor with a
chat or a web callback invite. Your application also contains the widgets for managing these invites,
including a registration form submitted to anonymous customers who accept the invitation.

The provided script tools creates your application in the apps folder where Web Engagement is
installed. Your newly created application includes all the default rule templates, logic (SCXML), and
events (DSL), in addition to web-specific data and engagement widgets. You can customize the data
and widgets, and then build and deploy your application so all changes take effect.

You can develop two types of applications, both tightly coupled to the engagement models:

¢ Simple Engagement Model — This type of application implements default Web Engagement capabilities
(DSL scripts and rules), and provides customization through categories and rules.

e Advanced Engagement Model — This type of application implements business events (DSL) and uses
event-based capabilities to implement rules.

Application Development Workflow

The following diagram describes the development workflow for a Web Engagement application.

Developer's Guide 39


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CreateBusinessInformation
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/SimpleEngagement
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/AdvancedEngagement

Application Development Engagement

Start here

Create your application

Category-based Model

—
Create Categories
with
Web Engagement
GAX plug-in
LS

Create and Deploy
Rules Create Customized AND { OR
with Genezyz Aules |:> Business Information Advanced Model
Authoring Tool
Create Customized
Business Events
using DSL
Publish
Start Rules Template and
Web Engagement Customize Logic
Semnvers with Genezys Aules

Development Tool

| 3 | 3

Build and Deploy Er?gsaegynignt Nﬂat;leatc?f?cm
your application . ScriptTool | | Model

i i i

Application Development Lifecycle

1. Create your application
Tool: Web Engagement Scripts

Description: For each application you must use script tools to create and configure your
customized Web Engagement application.

2. Create Customized Business Information
Depending on the engagement model that you implement, you must define business information
specific to your web pages that will be used to submit actionable events and web contexts to the
Genesys Solution.

* Create categories (Simple Model)
Tool: Web Engagement Plug-in for Genesys Administrator Extension

Developer's Guide 40


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CreateanApplication
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CreateBusinessInformation
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/SimpleEngagement

Application Development Engagement

Description: The categories contain business-related information to link your application with
your web pages. They are used as parameters to set up conditions on events and generate

actionable items. You can modify category information at run-time. The Frontend Server checks
category information when receiving web requests.

e Create Business Events. (Advanced Model)
Tool: Text editor / Chromium InTools

Description: You can create your own business events and DSL rules loaded in the monitoring
agent. Then, these events are used to generate actionable items. To make DSL changes

available for production, the Frontend Server must be rebuilt and restarted. You can also test
the changes at run-time with Chromium InTools.

3. Publish Rules Template and Customize Logic
Tool: Genesys Rules Development Tool

Description: You must publish a Web Engagement rules template before you can create rules.

Optionally, you can customize logic by Customizing the SCXML Strategies, and you can also
Customize the Browser Tier Widgets.

4. Build and deploy your application
Tool: Web Engagement Scripts

Description: If you create a new application or modify the SCXML, the DSL, or the logic of your
application, you must build and deploy before you start the Web Engagement Servers.

5. Start the Web Engagement Servers
Tool: Web Engagement Scripts.

Description: To enable your application, you must start or restart the Web Engagement Servers.

6. Create and Deploy Rules
Tool: Genesys Rules Authoring

Description: You must create rules to optimize the event flow and create complex conditions to
generate actionable events sent to the Genesys Solution. These rules link with the categories

containing the business information. You can deploy rules only if the Web Engagement servers are
started.

Application Development Tasks

You must complete the following steps to create a Genesys Web Engagement application:

1. Before developing an application, you must first install and configure Genesys Web Engagement and its

components in a lab environment. See the Standalone Deployment Scenario for details and step-by-
step instructions.

2. Creating an Application

3. Generating and Configuring the Instrumentation Script

4. Customizing an Application
a. Creating Business Information
b. Publishing the CEP Rule Templates

c. Customizing the SCXML Strategies

Developer's Guide 41


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/AdvancedEngagement
https://docs.genesys.com/Documentation/GWE/latest/User/InTools
https://docs.genesys.com/Documentation/GWE/latest/User/InTools
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/PublishtheCEPRulesTemplate
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeStrategies
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizetheBrowserTierWidgets
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/BuildandDeploy
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/StartyourServers
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CreateaRulesPackage
https://docs.genesys.com/Documentation/GWE/latest/Deployment/DeploymentScenarios#t-0
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CreateanApplication
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeanApplication
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CreateBusinessInformation
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/PublishtheCEPRulesTemplate
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeStrategies

Application Development Engagement

d. Customizing the Browser Tier Widgets
Building and Deploying an Application
Starting the Web Engagement Servers
Creating a Rules Package

Testing with GWM Proxy

Once you are satisfied with your application and are ready to deploy it to production, you should return
to the Deployment Guide and Deploy and Configure the Web Engagement Cluster. See the Cluster
Deployment Scenario for details and step-by-step instructions.

o e N oW

Developer's Guide 42


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizetheBrowserTierWidgets
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/BuildandDeploy
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/StartyourServers
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CreateaRulesPackage
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/TestwithGWMProxy
https://docs.genesys.com/Documentation/GWE/latest/Deployment/InstallCluster
https://docs.genesys.com/Documentation/GWE/latest/Deployment/DeploymentScenarios#t-1
https://docs.genesys.com/Documentation/GWE/latest/Deployment/DeploymentScenarios#t-1

Creating an Application Engagement

Creating an Application

You must create an application to run Genesys Web Engagement — see Application Development for
details about the workflow for creating and deploying an application.

Complete the procedures on this page to create an application and then define its monitoring
domains.

Creating a New Application

In this procedure you'll run the create script (create.bat on Windows and create.sh on Linux) to
create your project structure. This script creates all the files required to run Genesys Web
Engagement on your website.

Start

1. Navigate to the GWE _installation_directory and type the following command: create
your _application_name.

End

A folder named your _application_name is created in
GWE installation_directory\apps.

. C:"Program Files' GCTI Genesys YWeb Engagement*, apps’.genesys

@v | . = iDEMOSRY = Local Disk {Z:) = Program Files = GCTI = Genesys Web Engagement - .

| File Edit Wew Tools  Help

Organize * o Cpen  Incudein library +  Sharewith = Burn  Mew Folder

) Genesys \Web Engagement ;I Mame *
| apps
_composer-project
| genEsys
| _Composer-projeck . sedad
| backend . environment
J environmenk fFrontend
Fronkend prowy
proxy || pom. sl
| SErvers
) tools

The directory structure for the "Genesys" application.

This folder contains all the materials used to build and deploy your application:

Developer's Guide 43


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/ApplicationDevelopment

Creating an Application Engagement

* _composer_project contains all the SCXML default templates for the routing strategies and GRS rule
template project. In addition, it contains the source code for the Browser Tier Widgets used for

engagements.
¢ backend contains the Backend Server application once the application is built.
* environment contains an environment property file.
» frontend contains the Frontend Server application once the application is built.

e proxy contains the proxy application used for testing purposes.

Next Steps

* Defining the Application's Monitoring Domains

Defining the Application's Monitoring Domains

Complete this procedure to fill in the map.properties file, which contains all the information about
the proxy and the monitoring domains of your application. You need to complete this procedure in
order to Test with the GWM Proxy after you build and deploy your application.

Start

1. Open the \apps\your_application_name\proxy\map.properties file with a text editor.

2. Fill in the domain properties:

* gwmp.domainName — name of the domain. The domain is used by Genesys Web Engagement when it
works with cookies. For instance, genesys. com.

e gwmp.domainList — list of domains, separated with semicolons. The GWM Proxy injects script only
for pages from these specified domains. For instance, genesys. com;www.genesys. com;www-
ssl.genesys.com.

3. Fill in the frontend properties:

» frontend.server.host — host name or IP address of your Frontend Server.
Note: 127.0.0.1 or localhost is not allowed!

* frontend.server.http.port — HTTP port for your Frontend Server.

* frontend.server.https.port — HTTPS port for your Frontend Server.

Tip: You can find your Frontend Server information on the Frontend Server application object in
Genesys Administrator.

4. Save your changes.
End
Next Steps

¢ Generating and Configuring the Instrumentation Script

Developer's Guide 44


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CreateanApplication#Defining_the_Application.27s_Monitoring_Domains
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/TestwithGWMProxy
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript

Generating and Configuring the Instrumentation Script Engagement

Generating and Configuring the
Instrumentation Script

Overview

The Tracker Application instrumentation script is a small piece of JavaScript code that you paste into
your website to enable Web Engagement functionality. You create this script by using the Script
Generator in the Genesys Web Engagement Plug-in for Genesys Administrator Extension.

You typically add the instrumentation script to your site when you are ready to move your application
to a production environment with a Web Engagement cluster or if you need to configure the script
that is used by the GWM Proxy. If you are working in a standalone deployment in a lab environment,
you can use the default GWM Proxy implementation.

You can complete the steps on this page to do the following:

1. Generate the basic instrumentation script.
2. Configure the script, if necessary for your solution.

3. Add the script to your website.

Generating the Instrumentation Script

Prerequisites
¢ You installed the Genesys Web Engagement Plug-in for Genesys Administrator Extension.
Start

1. Open Genesys Administrator Extension.

Developer's Guide 45


https://docs.genesys.com/Documentation/GWE/latest/Deployment/InstallCluster
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/TestwithGWMProxy#Modifying_the_Script_in_the_GWM_Proxy
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/TestwithGWMProxy#Modifying_the_Script_in_the_GWM_Proxy
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/TestwithGWMProxy
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript#Generating_the_Instrumentation_Script
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript#Configuring_the_Instrumentation_Script
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript#Adding_the_Instrumentation_Script_to_Your_Website
https://docs.genesys.com/Documentation/GWE/latest/Deployment/InstallthePlug-inforGAX

Generating and Configuring the Instrumentation Script Engagement

E GEHES‘;‘S Administrator Extension

e demo Log Out

A Home .'. Accounts -f’ Configuration ﬁ.& Operations A Proactive Engageme%

H ome Categories

Script Generator

Home

\ ! | == i
A " Y — A I N I I T I T A AT oAby e A Yy
Jelcome 1o Admin A1TON &=X1rension
¥ . LIRS R | S5 Al | | A | SR 1= b

wad LE A LS

Genesys Administrator Extension introduces the next generation user interface for Genesys that
reduces both the overall operating costs and the time to deployment, by providing user-friendly

intarfarae that narfarm cramnley anaratinne whila at the eama time nrcvrantinn near arenr Thie
Main Home panel in the Genesys Administrator Extension

2. Navigate to Proactive Engagement > Script Generator. The Script Generator interface opens.

3. Fill in the following fields:

Note: These values must be identical to the parameters you used to create your application. See
Defining the Application's Monitoring Domains for details.

e Select the correct Frontend Server or Load Balancer.

e Enter the URL of the Frontend Server for the HTTP Endpoint. For example,
http://198.51.100.12:8081

* Enter the secure URL of the Frontend Server for the HTTPS Endpoint. For example,
http://198.51.100.12:8443

* Select Load Engagement Script, Load Embedded jQuery, and Chat to enable these features.

* Enter the path(s) to the DSL Resource. The path is relative to the /frontend/resources/dsl

directory of your Web Engagement application. You can add your DSL resources to this directory or
sub-directories.

Developer's Guide 46


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CreateanApplication#Defining_the_Application.27s_Monitoring_Domains

Generating and Configuring the Instrumentation Script Engagement

Script Generator

Script Generator '4

Front-end Server or Load Balancer
GWE_F v

HTTP Endpoint
http://idsrvl 3-vm09.us.int.genesyslab.com:B0B1

HTTPS Endpoint
https://idsrv13-vm09.us.int.genesyslab.com:8443
v Load Engagement Script

| Load Embedded jQuery

v Chat

DSL Resource

fdomain-model xmil

Generate

Example fields in the Script Generator.

4. Click Generate. The Generated Script panel opens and you can now copy your script.

Developer's Guide 47



Generating and Configuring the Instrumentation Script

Engagement

Generated Script Loy
<3cript>
var gt = gt [ []:?
_gt.push(["config™, |
dalReaocurce : ("httpa:™ == document.loccation.protoccl 2 "httpa: f/idarvl3-
vmi8.us.int.geneayslab.com: 8443" : "http://idsrvl3-vmi%.us.int.geneayslab.com:8081") +
"/frontend/rescurces/dsl/domain-model L xml™,
httpEndpoint : "http://idsrvl3i-vm09.us.int.genesyslab.com: 2031™,
httpsEndpoint : "httpa: //idsrvl3-vmld.us.int.geneay3lab.com:5443"

e

var _gwc = |

widgetUrl: {"httpa:" == document.location.pro

tocol 2 "httpa://idarvl3-

vmi8.us.int.geneayslab.com: 8443" : "http://idsrvl3i-vmi%.us.int.geneayslab.com:8081") +

"/ frontend/reacurces/chatWidget. html"™

}:

(function (gpe) {
if {document.getElementById{gpe)) return:

var 3 = document.createElement{"script™);s.1id = gpe;
3.3rc = ("httpa:™ == document.location.protoccl 2 "httpa://idarvli3-
vmi8.us.int.geneayslab.com: 8443" : "http://idsrvl3i-vmi%.us.int.geneayslab.com:8081") +

"/frontend/reacurces/js/build/GPE.min.ja";
{document.getElementsByTagiame {"head™) [Q] ||
n{"_gt™):
</ acript>

The generated instrumentation script

document .body) .appendChild{s);

If you are planning to configure the script, you might want to save it to a file so you don't lose your

changes.
End
Next Steps

* You can configure your generated script.

* You can add the script to your website.

Configuring the Instrumentation Script

Back to top

The Tracker Application activates the Monitoring and Notification functions in Genesys Web

Developer's Guide

48


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript#Configuring_the_Instrumentation_Script
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript#Adding_the_Instrumentation_Script_to_Your_Website
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/InstallingGWEServers#top

Generating and Configuring the Instrumentation Script Engagement

Engagement by inserting the GTCJ.min.js package into the page. This package includes jQuery, the
Monitoring Agent, and the Notification Agent. The Tracker Application actually provides several
packages that contain different functions and libraries. You can use these packages to enable
different Web Engagement functionality on your website (these are added to your script when you
use the GAX plug-in).

The table below shows the packages, in minified form, that are included with the Tracker Application.

Script jQuery Mo:;t:;ting Noi:g:?‘::ion Chat
GT.min.js no yes no no
GTJ.min.js yes yes no no
GTC.min.js no yes yes no
GTCJ.min.js yes yes yes no
GPE.min.js yes yes yes yes

You must not make any changes to the scripts listed in the table above; any
modifications will not be supported by Genesys. Please refer to the Genesys Web
Engagement API Reference for information about the supported APIs.

The Tracker Application instrumentation script consists of two parts: configuration and script loader.

Script Loader

To load the Tracker Application, you just need to include the JavaScript in your web pages. This
asynchronously loads the application, which means that it won't block other elements on your web
pages from loading.

One solution for loading the script could be:

(function(gpe) {

if (document.getElementById(gpe)) return;

var s = document.createElement('script'); s.id = gpe;

s.src = ('https:' == document.location.protocol ? 'https://<Frontend Server>:<Secure
Frontend Server Port>':

'"http://<Frontend Server>:<Frontend Server Port>') + '/frontend/resources/js/build/

GTCJ.min.js"';

(document.getElementsByTagName('head')[0] || document.body).appendChild(s);
N _gt');

The script above uses the default " _gt" (Genesys Tracker) as the configuration global
variable.

Developer's Guide 49


https://docs.genesys.com/Documentation/GWE/latest/API/Welcome
https://docs.genesys.com/Documentation/GWE/latest/API/Welcome

Generating and Configuring the Instrumentation Script

Engagement

For more information about best practices for loading the script, see Adding the Instrumentation
Script to Your Website.

Configuration

By default, the Tracker Application script uses the " _gt" (Genesys Tracker) global variable (you can
change this in the script loader — see Changing the Global Configuration Variable for details) that
must be initialized before the script loader is actually added to the page.

The following configuration options are available in the script:

Parameter

httpEndpoint

httpsEndpoint

dslResource

name

domainName

languageCode

debug

Required

yes (if
"httpsEndpoint"
is undefined)

yes (if
"httpEndpoint"
is undefined)

no

no

no

no

no

Type

string

String

string

string

string

string

boolean

Default Value

Second-level
domain (SLD).

en-US

false

Description

The URL of the
Frontend
Server.

The secure URL
of the Frontend
Server.

The DSL
resource
location. If
dslResource is
not defined,
then the DSL is
not loaded.

Name of the
application.
This option is a
part of the
cloud muilti-
tenant, multi-
domain
system.
Currently not
used.

Name of the
domain where
the cookie is
stored.

Localization
tag for
language and
region. Used
for
categorization.

Show
Monitoring
Agent debug
information in
the browser

Example
value

http://genesyslab.com:8081

https://genesyslab.com:8443

http://genesyslab.com:8081/
frontend/

resources/dsl/

domain-

model.xml

genesyslab

For the domain
sub.genesys.com,
the second-

level domain is
genesys.com

en-US

true

Developer's Guide

50


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript#Adding_the_Instrumentation_Script_to_Your_Website
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript#Adding_the_Instrumentation_Script_to_Your_Website
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript#Changing_the_Global_Configuration_Variable

Generating and Configuring the Instrumentation Script Engagement

Example

Parameter Required Type Default Value Description P TIT

console.

Show CometD
debug
debugComet no boolean false information in true
the browser
console.

If
preventlframeMonitoring
is true, the
Monitoring
Agent does not
generate
system and
business
events if the
agent is loaded
in an iframe.
See
preventlframeMonitoring
for details.

Disable
websockets
transport for
the notification
agent. By
default, the
Notification
Agent uses
websocket
transport when
it is possible.
disableWebSocketao boolean false Make sure that  true
your load
balancers
support
websocket
connections;
otherwise,
disable it —
Disabling
Websocket
CometD
Transport.

preventiframeMonimring boolean false true

Basic Configuration

Basic configuration is the default Tracking functionality:
var gt = window. gt || [];
_gt.push(['config', {
dslResource: ('https:' == document.location.protocol ? 'https://server:securePort'

"http://server:port') + '/frontend/resources/dsl/domain-model.xml"',

Developer's Guide 51


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript#preventIframeMonitoring
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript#Disabling_Websocket_CometD_Transport
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript#Disabling_Websocket_CometD_Transport
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript#Disabling_Websocket_CometD_Transport
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript#Disabling_Websocket_CometD_Transport

Generating and Configuring the Instrumentation Script Engagement

httpEndpoint: 'http://server:port',
httpsEndpoint: 'https://server:securePort'
s

(function(gpe) {
if (document.getElementById(gpe)) return;
var s document.createElement('script'); s.id = gpe;
s.src ( "https:' == document.location.protocol ? 'https://server:securePort'
"http://server:port') + '/frontend/resources/js/build/GTCI.min.js"';
(document.getElementsByTagName('head')[0] || document.body).appendChild(s);
N _gt);

This snippet represents the minimum configuration needed to track a page asynchronously. The gt
(Genesys Tracker) object is what makes the asynchronous syntax possible. It acts as a queue, which
is a first-in, first-out data structure that collects API calls until Genesys Web Engagement is ready to
execute them. To add something to the queue, you can use the gt.push method. See the Monitoring
JS API for more information.

Basic Configuration with the Chat JS Application

If you select "Chat" in the GAX plug-in, it adds chat functionality to the basic configuration by loading
the Chat JS Application. Your script should now look something like this:

var gt = window. gt || [];
_gt.push(['config', {
dslResource: ('https:' == document.location.protocol ? 'https://server:securePort'

"http://server:port') + '/frontend/resources/dsl/domain-model.xml"',
httpEndpoint: 'http://server:port',
httpsEndpoint: 'https://server:securePort’
)

var gwc = {
widgetUrl: ('https:' == document.location.protocol ? 'https://server:securePort'
"http://server:port') + '/frontend/resources/chatWidget.html'
}

(function(gpe) {
if (document.getElementById(gpe)) return;
var s = document.createElement('script'); s.id = gpe;
s.src = ( '"https:' == document.location.protocol ? 'https://server:securePort'
"http://server:port') + '/frontend/resources/js/build/GPE.min.js";
(document.getElementsByTagName('head')[0] || document.body).appendChild(s);
N ogth);

Advanced Configuration

The snippet below shows the instrumentation script with extended configuration (refer to the
configuration options table for details):

var gt = gt || [];
_gt.push(['config', {

name: 'demo’,

domainName: 'localhost’,

languageCode: 'en-US"',

dslResource: ('https:' == document.location.protocol ? 'https://server:securePort"':

"http://server:port') + '/frontend/resources/dsl/domain-model.xml"',
httpEndpoint: 'http://server:port',
httpsEndpoint: 'https://server:securePort'’
languageCode: 'en-US"',
debug: true,

Developer's Guide 52


https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/Engagement#t-0
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript#Configuration

Generating and Configuring the Instrumentation Script Engagement

debugCometd: true,
preventIframeMonitoring: true,

)

(function(gpe) {
if (document.getElementById(gpe)) return;
var s = document.createElement('script'); s.id = gpe;
s.src = ( "https:' == document.location.protocol ? 'https://server:securePort'
'http://server:port') + '/frontend/resources/js/build/GTCJ.min.js";
(document.getElementsByTagName('head')[0] || document.body).appendChild(s);
N _gt');

preventlframeMonitoring

Some websites have iframe (or frame) elements on the page. If a website is instrumented so that the
Monitoring Agent is loaded on all web pages (even in an iframe), the agent generates events for all
pages, including iframes. For example, this means that a page with an iframe generates two
PageEntered events, one for the main page and one for the iframe.

To prevent this, you can use a special initialization parameter, preventIframeMonitoring. This
parameter is optional and has a default value of false. If true, the Monitoring Agent does not
generate system and business events if it is loaded in an iframe.

Changing the Global Configuration Variable

You can change the global configuration variable for the Tracker Application by using the data-gpe-
var attribute. For example:

(function(gpe) {
if (document.getElementById(gpe)) return;
var s = document.createElement('script'); s.id = gpe;
s.src = ('https:' == document.location.protocol ? 'https://server:securePort':

"http://server:port') + '/frontend/resources/js/build/GTCJ.min.js"';

s.setAttribute('data-gpe-var', gpe); // set global variable name for Tracker Application
(document.getElementsByTagName('head')[0] || document.body).appendChild(s);

}) (' myVariable');

In the example above global variable "_myVariable" is now used instead of "_gt".
Providing an External jQuery Library

If you already have a jQuery library on your website, you can reduce the size of the Genesys Web
Engagement JavaScript files by using the packages without jQuery (GT.min.js or GTC.min.js). In this
case, make sure that jQuery is available on your site through the global variable window. jQuery and
that jQuery is loaded before the Genesys Tracker Application.

If the jQuery library is present on some pages and not others, you must insert the following snippet of
code before the instrumentation script:

<script>

window.jQuery || document.write("<script src='http://code.jquery.com/
jquery-1.11.0.min.js'>\x3C/script>")

</script>

Developer's Guide 53



Generating and Configuring the Instrumentation Script Engagement

Disabling Websocket CometD Transport

To disable websockets CometD transport, use the disableWebSockets option in your
instrumentation script:

_gt.push(['config', {
disableWebSockets: true,

0y
Enable A New Trigger Combined With A Previous Trigger

DSL is a great tool for creating business events on your website without the need for programming
skills. But there are some use cases where you really need a JavaScript API. For these situations, you
can use the Web Engagement Monitoring API.

The following example uses that API to set up a new trigger that is activated after another trigger has
been activated. In this example, we are assuming that you have a web page that contains a text field
and a submit button.

The first trigger is activated if a customer starts typing in the text field. If 100 seconds pass without
the customer submitting their input, then | want to report that event to the Web Engagement server,
so | need to set up a second trigger to create this action.

Here's one way to do it:

<p><input class="comment" type="text"></p>
<p><input class="submit" type="button" value="submit"></p>

<script>
var timeout;

$('.comment').focus(function() {
if (!'timeout) {
console.log('timer started');
timeout = setTimeout(function () {
console.log('send event');
_gt.push(['event', {eventName: 'myEvent'}])
}, 100 * 1000)

$('.submit').click(function() {
if (timeout) {
console.log('clean timeout');
window.clearTimeout (timeout);
timeout = undefined;
}
1)
</script>

Next Steps

¢ When you are satisfied with your script configuration, you can move on to either Adding the
Instrumentation Script to Your Website or Customizing an Application (if you configured the script so it

Developer's Guide 54


https://docs.genesys.com/Documentation/GWE/8.1.2/API/MonitoringAPI
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript#Adding_the_Instrumentation_Script_to_Your_Website
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript#Adding_the_Instrumentation_Script_to_Your_Website
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeanApplication

Generating and Configuring the Instrumentation Script Engagement

can be used with the GWM Proxy).

Back to top

Adding the Instrumentation Script to Your Website

To add the instrumentation script, you need to have access to the source code for your website. If
you already have an older version of the instrumentation script on your site, make sure you remove it
from each page before you add the new one. If you have customizations you want to add back to
your pages after you add the new snippet, you can use a text or HTML editor to open and save a copy
of each file.

The instrumentation script is loaded asynchronously. One of the main advantages of the
asynchronous script is that you can position it at the top of the HTML document. This increases the
likelihood that the tracking beacon will be sent before the user leaves the page. Genesys
recommends placing the script at the bottom of the <head> section for best performance.

For the best performance across all browsers, Genesys recommends that you position other scripts in
your site either before the instrumentation script in the <head> section or after both the
instrumentation script and all page content (at the bottom of the HTML body).

Make sure that the document type is defined in the head of each of your web pages. If it is not
defined, Genesys Web Engagement will not work on your website.

<!DOCTYPE html>

Prerequisites

* You removed any older versions of the instrumentation script from your site.

* You generated the instrumentation script.
Start

1. Select and copy the generated script from GAX or from your own file, if you configured the script.
2. Paste the script at the bottom of the <head> section of your web pages:

* You can do this manually on each web page that you want to monitor.

* You can do this in the header template of your website, if you have one.
3. If your website includes additional scripts, do one of the following to optimize performance:

* Place your scripts above the instrumentation script in the <head> section.

* Make sure your scripts are located after the webpage contents (at the bottom of the body section).
End

Next Steps

e After you have generated the script and added it to your website (or the GWM Proxy configuration), you
are ready to Customize an Application.

Developer's Guide 55


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/InstallingGWEServers#top
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript#Generating_the_Instrumentation_Script
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeanApplication

Generating and Configuring the Instrumentation Script Engagement

Back to top

Developer's Guide 56


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/InstallingGWEServers#top

Customizing an Application Engagement

Customizing an Application

When you develop a Web Engagement application, you start by creating your application with the
script tools which generates default SCXML strategies, rule templates, and DSL code. You can
customize all of this material through specific tools.

Warning

The contents outside of the
<GWE installation directory>/apps/<application name> directory, including
*.JS resources, SHOULD NOT be modified or reused in any way.

The diagram below shows where you can customize the Web Engagement data used by your
application.

Developer's Guide 57


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/ApplicationDevelopment
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CreateanApplication
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CreateanApplication

Customizing an Application Engagement
Genesys Administrator Extension Genesys Solution
Web Engagement Flugin
1 1. Create
Category Manager . )
- ' I
Rules repository Configuration|Server
2. Publish
7| = CEF Rules 4
a Bl - = — | Template
enesys Rules i
Development Tool* SRl e
2{:{;}:}1 CEP Rules
*To be installed in Composer or in Eclipss s A
3 Load
Genesys Rules 4. Deploy
Authoring Toal 5. Notifies 7. Download data
Web Engagement Backend Server
G, Check
Composer
B. Customize
8. Update
. . ™
Chromium Web Engagement Frontend Server
Instrumentation Tool*
P = -
* For testing purpose only. You must —
redeploy your application to make = Categories
changes available in preduction. >—
Edit ¥5D Events Browser DSL CEP Ruls
Structure Rules - uiss
¥ -~ £
\ f J
* Browser DEL rules are opticnal
‘ 10. Load
‘ A
Web Browser
Developer's Guide 58



Customizing an Application Engagement

Relationship between tools and application data.

1.

10.

If you are following the Simple Engagement Model, you create categorization information with the
Categories interface in Genesys Administrator Extension. This information is added to Configuration
Server and retrieved by the Frontend Server. When the Frontend Server receives a browser request, it
checks the category information. If you are following the Advanced Engagement Model, you create
business events by modifying the DSL using the InTools application.

. You must publish the CEP rule template associated with your engagement model. You can modify this

template before you publish it.

. You can customize the SCXML strategy files available in the composer-project directory of your

application folder. See Customizing the SCXML Strategies for details. At this point you can also
customize the various Browser Tier Widgets.

. The Genesys Rules Authoring Tool (GRAT) loads the CEP Rule template and allows you to create a

package of CEP rules based on your categories (Simple Engagement Model) or on your business events
(Advanced Engagement Model).

. If your application is built and deployed, and the Web Engagement servers are started, you can deploy

rules with GRAT.

. GRAT notifies the Backend Server that rules are available in the Rules repository.
. The Backend Server downloads the rules.

. The Backend Server updates the Frontend Server. You can use the InTools application to customize your

DSL.

. When a browser submits a request to the Frontend Server, the Frontend Server checks the categories

before providing the monitoring data.

The user's web browser loads the updates.

Developer's Guide 59


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/SimpleEngagement
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/AdvancedEngagement
https://docs.genesys.com/Documentation/GWE/latest/User/InTools
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/PublishtheCEPRulesTemplate
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeStrategies
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizetheBrowserTierWidgets
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CreateaRulesPackage

Customizing an Application Creating Business Information

Creating Business Information

You must create business information for your application following either the Simple Engagement
Model, the Advanced Engagement Model, or a combination of both.

e The Simple Engagement Model derives categories from the content of the System events. With this
model, you do not need to create Business events; instead, you create rules and category information
based on the available out-of-the-box system events.

¢ The Advanced Engagement Model uses Business events defined in the Browser Tier Domain Specific
Language (DSL) to create event-related rules. Once the business event is generated by the DSL, all the
event attributes are available for the complex event processing and Orchestrations.

Developer's Guide 60


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/SimpleEngagement
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/AdvancedEngagement

Customizing an Application Creating Business Information

Simple Engagement Model

Overview

The Simple Engagement Model is a simple solution to add Web Engagement to your website with
limited effort. You can use the GWE Plug-in for Genesys Administrator Extension to define, in a few
clicks, Web Engagement categories that contain business information related to URL or web page
titles. These categories are used in the CEP rule templates, which provide rules that define when to
submit actionable events to Web Engagement — this is what starts the engagement process.

For example, lets look at Solutions on the Genesys website. In this scenario, you can define a Solution
category associated with the http://www.genesys.com/solutions page and several or all solution
sub-pages, such as http://www.genesys.com/solutions/cloud or http://www.genesys.com/
solutions/enterprise-workload-management.

¢ To associate the category with all the pages containing the "solutions" string in the URL, you can create
the "solutions" tag. This tag defines the "solutions" string as a plain text expression to search in the
events triggered by the visitor browsers.

* To set up a specific list of sub-pages for the Solutions category, you can create a tag for each sub-page:

e The "cloud" tag, which defines the "cloud" string as the plain text expression to search in the events
triggered by the visitor browsers.

* The "enterprise-workload" tag, which defines the "enterprise-workload-management" string as the
plain text expression to search in the events triggered by the visitor browsers.

Now your rules can use this category to match solution-related pages.

The templates for category-based rules define how to process events sent from the Web Engagement
Frontend Server. They define both the type of events to take into account and the action to perform.
The Genesys Rules Authoring Tool loads the template and uses its content to help you define rules.
These templates are created with your application and can be modified with the Genesys Rules
Development Plug-in (in Composer or in Eclipse).

Default Rule Templates

The default templates for the Simple Engagement Model define how to process events sent from the
Web Engagement Frontend Server. They define both the type of events and the action to perform.
Later, you'll use the Genesys Rules Authoring Tool to create rules based on these templates.

Singleton

The template receives each single event as a
formal parameter. If the event's value matches the
right category, then the actionable event is sent to
the Web Engagement Backend Server.

Description

Developer's Guide 61



Customizing an Application

Creating Business Information

Expression Example

Sequence

Description

Expression Example

Set

Description

event
" [category=="HD1

Wait for event

GWM single.png

When
page transition event occurs that belongs to
category $category

Then

generate actionable event

This template analyses the event stream received
from the categorization engine and builds the
sequence of events by category values. As soon as
the event sequence is completed, the actionable
event is submitted. Note that the event sequence
must follow a specific order.

event
A{category=="HDTV"]

Wait for event

Click to enlarge.

When
page transition event occurs that belongs to
category $categoryl save as $eventl

and
event following $eventl with category
$category?2 save as $event2

énd
event following $event”'1 with category
$category” save as $event”

Then

generate actionable event based on $event”

This template analyses the event stream received
from the categorization engine and collects the
events by category values. As soon as the event
set is completed, the actionable event is

submitted. If you use this template, the event order
is not taken into account.

Developer's Guide

62



Customizing an Application

Creating Business Information

Expressions

Counter

Description

Expressions

Search

X event
~[category=="HDTV

GWM Set.png

event
category="5Suppo

When
(page transition event occurs that belongs to
category $categoryl

page transition event occurs that belongs to
category $category?)

or

(page transition event occurs that belongs to
category $category2

page transition event occurs that belongs to
category $categoryl)

Then

generate actionable event

This template analyses the event stream received
from the categorization engine and counts events
which occur for a given category. As soon as the
counter is reached, the actionable actionable event

is submitted.
counter++ \_.. evi
Wait for event —
i [category:

[na]

GWM Counter.png

When
Category $category counts $count times

Then

generate actionable event

Developer's Guide



Customizing an Application

Creating Business Information

Description

Expressions

Timeout

Description

Expressions

The actionable event is submitted if a Search
event occurs.

When
event with name Search save as $eventl
Then

generate actionable event based on $eventl

The actionable event is submitted if a Timeout
event occurs.

When
event with name Timeout save as $eventl
Then

generate actionable event based on $eventl

Implementing the Simple Engagement Model

Complete the steps below to implement the Simple Engagement Model:

1. Plug-in for GAX Overview

2. Create a Category

3. Create Category Matching Tags

Plug-in for GAX Overview

You can add and remove categories for Web Engagement through the Category interface in the
Genesys Administrator Extension plug-in. You create these categories during the Application
Development process if you use the Simple Engagement Model when you Create Business

Information.

Each category is compliant with the category definition and includes tags to define business
information related to your website. To access the Categories interface, open Genesys Administrator
Extension and navigate to Proactive Engagement > Categories.

Developer's Guide

64


https://docs.genesys.com/Documentation/GWE/latest/User/Category#Plug-in_for_GAX_Overview
https://docs.genesys.com/Documentation/GWE/latest/User/Category#Creating_a_Category
https://docs.genesys.com/Documentation/GWE/latest/User/Category#Creating_Category_Matching_Tags

Customizing an Application Creating Business Information

= Genesys Administrator Extension Welcome demo Log Out

& Home .'. Accounts -f' Configuration g.'& Operations A Proactive Engagement

Categories - Environment

Categories - Environment < >
Y QuickFil m+ O &
Name Description
genesys-about genesys-about ;l
genesys-Contact genesys-Contact
genesys-Login genesys-Login
genesys-Platform genesys-Platform

genesys-SearchCategory genesys-SearchCategory

genesys-Services genesys-Services

genesys-Solutions genesys-Solutions

prs-Contactls prs-Contactls

pfs-home-logged-in pfs-home-logged-in . s
pfs-Loanipplication pfs-Loandpplication .
pfs-login pfs-login

PlayGround-Ads-First PlayGround-Ads-First

FlayGround-Ads-Second FlayGround-Ads-Second

FlayGround-Counter FlayGround-Counter
FlayGround-Pagei FlayGround-Pages
FlayGround-Faged FlayGround-FageB
FlayGround-Search FlayGround-Search
PlavGround-Sea-First PlavGround-Sea-First

A list of Categories

Features

The Categories interface includes the following features:

Developer's Guide 65



Customizing an Application

Creating Business Information

Feature
Create categories.

Create matching tags.

Delete matching tags.

Delete categories.

Important

Usage
See Creating a Category for instructions.

See Creating Category Matching Tags for
instructions.

Select the tag in the Category Matching Tag section
and click X.

Category Matching Tags * i

test category (en-US) I

+
v Show category in Interaction Workspace
Language-specific Display Names i ]
aaaa (en-Us)
zzss2 (ru-RU)

+

Click Delete.

Select the category in the list and click Delete. The
Delete Confirmation dialog opens. Click OK.

Please Confirm.

i This item will be permanently deleted.

Delete Confirmation.

You can also find the categories in Configuration Manager, but you should not edit or
delete them through that interface because it can cause synchronization issues with

Developer's Guide

66



Customizing an Application Creating Business Information

the Categories interface in GAX.

Creating a Category
Prerequisites

e Your environment includes Genesys Administrator Extension. See Genesys environment prerequisites
for compliant versions.

* You installed the Web Engagement Plug-in for Genesys Administrator.

Start

1. In Genesys Administrator Extension, navigate to Proactive Engagement > Categories. The
Categories interface opens.

2. Click Switch Tenant, select the tenant where you deployed Genesys Web Engagement, and click OK.

Categories - Environment

Categories - Environment < >
Quick Filter |+ g E
Mame Description ;
NI TYENESY 3., LA SWIt
Plain Pla :
Switch tenant X

zing
E doy]
raa Py Environment ¥

Environment

ACME
Test_spl

Click the Switch tenant.

3. Click + to add a new Category. The New panel opens.
4. Enter a Category Name. For instance, pfs-login.

5. Optionally, you can enter a Category Description.

Developer's Guide



Customizing an Application Creating Business Information

6. Enable Show category in Interaction Workspace to display this category in Interaction Workspace if
an agent opens interactions that are related to it.

7. Click Save. The Products category is added to the list.

End

Creating Category Matching Tags

Each category should have at least one Category Matching Tag, which contains an expression to
search in the URLs and titles submitted with the events of the browser. For instance, a tag to identify
the http://www.genesyslab.com/products/genesys-inbound-voice/overview.aspx page could be the
plain expression 'genesys-inbound-voice' or the regular expression 'Inbound Voice'.

Prerequisites

* You completed Creating a Category.

Start

1. In Genesys Administrator Extension, navigate to Proactive Engagement > Categories and select a
catetory. The <category name> panel opens.

2. In the Category Matching Tags section, click +. The New panel opens.
3. Fill in the form to create a tag. Consult the table below for more information about the form fields.

Field Description

VR The display name for your tag. For example,
Inbound Voice.

The type of expression to search. There are three
options:

* Regular Expression — A regular expression
search.

e Plain Text — A substring search. This is the
default.

Type e Google Like Expression — Selecting this
option opens a new window where you can
enter an expression using Google search
operators. When you click Generate to
REGEX, it converts the expression to a regular
expression and populates the Expression
field.

. The expression t rch. Thi n lain text
Expression e expression to searc s can be plain te
or a regular expression.

e Selecting this field makes the regular expression
Case-sensitive case-sensitive. It is not selected by default.

Select the language for the tag. This allows you
Language to make the search expression specific to the
localization of the browser.

Developer's Guide 68



Customizing an Application Creating Business Information

Ul

. Click Save. The tag is added to the list of Category Matching Tags.

If needed, you can also define display names for the category that are language specific. In the
Language-specific DisplayNames section click +. The New panel opens.

6. Enter a Name.

7. Select a Language.
8.
9

Click Save. The language-specific display name is added to the list on the <category name> panel.

. Click Save on the <category name> panel.

End

Regular Expressions in Tags

You can create tags that use regular expressions to search for matches by selecting "Regular
Expression" from the Type list. A regular expression is a sequence of elements, either a word or
expression inside quotes. Each search element can be preceded by a '-' to exclude that element. A
wildcard symbol '*' can be used inside or outside of the quotes. If you prefer, you can select "Google
Like Expression" for the Type, which converts anything you enter in the "Expression" field to a regular
expression. If your expression is incorrect, your expression is not converted.

Search Request Patterns (Google Like Expression)

The following table describes the patterns in search requests.

Search for all exact words in any order.
search query

Search Options Description

The result must include all the words. These words
can be substrings attached to other words—for
example, [Web-search queryl].

Use quotes to search for an exact word or set of
words in a specific order without normal

Search for an exact word or phrase. improvements such as spelling corrections and
"search query" synonyms. This option is handy when searching for

song lyrics or a line from literature—for example,
["imagine all the people"].

Add a dash (-) before a word to exclude all results

Exclude a word. that include that word. This is especially useful for
-query synonyms like Jaguar the car brand and jaguar the

Include "fill in the blank".
query *query

animal. For example, [jaguar speed -car].

Use an asterisk (*) within a query as a placeholder
for any terms. Use with quotation marks to find
variations of that exact phrase or to remember
words in the middle of a phrase. For example, ["a *
saved is a * earned"].

Next Steps

1.

Make sure the CEP Rule Templates are ready. See Publishing the CEP Rule Templates for details.

Developer's Guide 69


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/PublishtheCEPRulesTemplate

Customizing an Application Creating Business Information

2. Finish any customizations to the SCXML strategies or Browser Tier Widgets.

3. Continue on with the Application Development Tasks.

Developer's Guide 70


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeStrategies
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizetheBrowserTierWidgets
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/ApplicationDevelopment#Application_Development_Tasks

Customizing an Application Creating Business Information

Advanced Engagement Model

Overview

The Advanced Engagement Model enables customization based on Business events (read more about
how the events are structured here). In the 8.1.2 release, the default DSL contains the Timeout and
Search events. To customize the Advanced Engagement Model, you must first define your own
events using the DSL, which is loaded in the Browser Tier Agents. Then, you can use the rule
templates to create rules based on these events.

Default Rule Templates

The default templates for the Advanced Engagement Model define how to process events sent from
the Web Engagement Frontend Server. They define both the type of events and the action to perform.
Later, you'll use the Genesys Rules Authoring Tool to create rules based on these templates.

Singleton

The template receives each single event as a
formal parameter. If the event's value matches the
condition's event name, then the actionable event
is sent to the Web Engagement Backend Server.

i event
r n i
Wait for event e et
When

event with name $name

Description

GWM single.png

Expression Example Then

generate actionable event

Sequence

This template analyses the event stream received
from the categorization engine and builds the
sequence of events by event names. As soon as
the event sequence is completed, the actionable
event is submitted. Note that the event sequence
must follow a specific order.

. event
Wait for event EﬂmNﬂmF-Eﬂ!Fd'i.] Wait for event

Click to enlarge.

Description

Expression Example When

Developer's Guide 71


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/EventsStructure

Customizing an Application

Creating Business Information

Set

Description

Expressions

event with name $name save as $eventl
and

event following $eventl with name $name2
save as $event?2

event following $event” ! with name $name”
save as $event"

Then

generate actionable event based on $event”

This template collects the events by event names.
As soon as the event set is completed, the
actionable event is submitted. If you use this
template, the event order is not taken into account.

event
>;-nentl'«lamc=”5nlr:h"] ; [wartf
Event
Wait fo
% |mnthhme-'cnmpart']£
When

event with name $namel save as $eventl

GWM Set.png

or

event with name $name?2 save as $event2

(...)

or

event with name $name" save as $event”
Then

generate actionable event

Implementing the Advanced Engagement Model

Complete the steps below to implement the Simple Engagement Model:

1. Business Events Overview

2. Create Business Events by Customizing the DSL File

Developer's Guide

72


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/AdvancedEngagement#Business_Events_Overview
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/AdvancedEngagement#Creating_Business_Events_by_Customizing_the_DSL_File

Customizing an Application Creating Business Information

3. Optionally, you can Create Business Events by Using the Monitoring Agent API.

Business Events Overview

When you create an application, a set of Domain Specific Language (DSL) files that are used by your
application is also created. These files are defined in the apps\Your application name\_composer-
project\WebEngagement_EngagementWidgets\dsl\ directory. You can use the DSL to define
Business events (read about the structure of these events here) that are specific to your solution
needs.

Default domain-model.xml
The domain-model.xml is the main default DSL file for your application:

<?xml version="1.0" encoding="utf-8" ?>

<properties>
<events>
<!-- Add your code here
<event id="" name="">
</event>
-->
<!-- This is template for your search event -->

<l--
<event id="SearchEvent" name="Search">

<trigger name="SearchTrigger" element="" action="click" url="" count="1" />
<val name="searchString" value="" />
</event>

-->
<event id="TimeoutEvent10" name="Timeout-10" condition=

postcondition="document.hasFocus() === true">
<trigger name="TimeoutTrigger" element=

action="timer:10000" type="timeout"

url="" count="1" />

</event>

<event id="TimeoutEvent30" name="Timeout-30" condition=""
postcondition="document.hasFocus() === true">

<trigger name="TimeoutTrigger" element="" action="timer:30000" type="timeout"

url="" count="1" />

</event>

</events>

</properties>

By using the <event> element, you can create as many business events as you need. These events
can be tied to the HTML components of your page and can have the same name, as long as they
have different identifiers (these identifiers must be unique across the DSL file, to make a distinction
between the events sent by the browser). It can be useful to associate several HTML components
with the same event if these HTML components have the same function. For instance, you can define
several events associated with a search feature and give all these events the same name: "Search".

For each event, you can define triggers which describe the condition to match in order to submit the
event:

e Triggers can implement timeouts.

e Triggers can be associated with DOM events.

Developer's Guide 73


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/AdvancedEngagement#Creating_Business_Events_by_Using_the_Monitoring_Agent_API

Customizing an Application Creating Business Information

e You can define several triggers for the same event (see <trigger> for further details).

Each trigger should have an element attribute that specifies the document's DOM element to attach
the trigger to, and the action attribute, which species the DOM event to track.

You can specify standard DOM events for the action:

e Browser Events

¢ Document Loading
* Keyboard Events
* Mouse Events

e Form Events

In addition to the standard DOM events, the DSL supports the following two values: timer and
enterpress.

The following example generates a "Search" event if the visitor does a site search. The "searchString"
value is the string entered in the "INPUT.search-submit" form.

<event id="SearchEventClick" name="Search">

<trigger name="SearchTrigger" element="INPUT.search-submit" action="click" url=
count="1" />

<val name="searchString" value="INPUT.search-submit" />

</event>

If the DSL uses the optional condition attribute, the event's triggers are installed on the page if the
condition evaluates to true. The following example creates a Business event with a time that can be
triggered only if the text inside the <h1> tag is "Compare™:

<event id="InactivityTimeout4CompareProductsEvent" name="InactivityTimeout4CompareProducts"
condition="$('h1l').text() == 'Compare'">

<trigger name="InactivityTimeout4CompareProductsTrigger" element=""
action="timer:10000" type="timeout" url="http://www.MySite.com/site/olspage.jsp" count="1"/>
</event>

If the DSL uses an optional postcondition attribute, this can manage how an event is generated by
checking a condition after the actions are completed. The following example creates a Business event
timeout by timer if a page is in focus. In this case, the event does not generate if the page is opened
in the background:

<event id="TimeoutEventl10" name="Timeout-10" condition="" postcondition="document.hasFocus()
=== true">

<trigger name="TimeoutTrigger" element="" action="timer:10000" type="timeout" url=""
count="1" />
</event>

A DSL trigger can use the type attribute. This can have a value of either timeout or nomove, which
specifies how the timer action works. If the type is timeout, then the timer interval begins after the
page is loaded. If the type is nomove, then the timer resets each time the user moves the mouse.

You can also apply the optional url attribute. This attribute defines the URL of the specific page that
raises the Business event. The Business event is not submitted if the current document's URL does
not match the URL parameter.

Developer's Guide 74



Customizing an Application Creating Business Information

Finally, you can apply the optional count attribute. This attribute specifies how many times the
trigger needs to be matched before the event is generated and sent to the Frontend Server.

For more information about the DSL elements, see the Business Events DSL.

Creating Business Events by Customizing the DSL File

You can edit the apps\Your application name\frontend\src\main\webapp\resources\dsI\
domain-model.xml and add a list of events, with specific conditions, related to your web pages'
content.

Genesys recommends that you use the InTools application to help you modify your
DSL.

The default domain-model.xml file includes a few events to help you get started with your DSL
customizations: SearchEvent, TimeoutEvent10, and TimeoutEvent30. The following sections show you
how you can customize these events to work on your website.

Using the SearchEvent Template

By default, the domain-model.xml file contains commented code that you can implement to trigger
a business event when a visitor tries to search for something on your website. Complete the following
steps to customize the SearchEvent for your website.

Start

1. Remove the comment characters that wrap around the event: <!—and - ->. The event should look like
the following:

<event id="SearchEvent" name="Search">
<trigger name="SearchTrigger" element="" action="click" url="" count="1" />
<val name="searchString" value="" />

</event>

2. Set the element attribute to the jQuery selector that triggers a search. For example, we have an input
(id="search") with a submit button (id="search-submit").

<event id="SearchEvent" name="Search">

<trigger name="SearchTrigger" element="#search-submit" action="click" url=""
count="1" />

<val name="searchString" value="" />
</event>

3. Set the value attribute to the script to retrieve the search string. For example, our input id of "search".

<event id="SearchEvent" name="Search">

<trigger name="SearchTrigger" element="#search-submit" action="click" url=
count="1" />

<val name="searchString" value="$(#search).val()" />
</event>

Developer's Guide 75



Customizing an Application Creating Business Information

Now the search event is triggered when a visitor clicks the search-submit button.

End

Using the Timeout Events

By default, the domain-model.xml file contains two timeout events: timeout-10 and timeout-30.
<event id="TimeoutEventl1l0" name="Timeout-10" condition=""
=== true">

<trigger name="TimeoutTrigger" element=
count="1" />
</event>
<event id="TimeoutEvent30" name="Timeout-30" condition=
=== true">

<trigger name="TimeoutTrigger" element=
count="1" />
</event>

postcondition="document.hasFocus()

action="timer:10000" type="timeout" url=

postcondition="document.hasFocus()

action="timer:30000" type="timeout" url=

You can customize these events or disable one or both to suit your business needs. By default, these
events are triggered with a 10-second and 30-second delay after the tracking script is initialized on
the page. The only difference between the events is the action attribute, which defines the timeout
in milliseconds.

Both events have the postcondition attribute set to "document.hasFocus() === true", which
checks whether the focus is on the current page. The timeout event is only triggered if the
postcondition returns true.

Creating Business Events by Using the Monitoring Agent API

You can also use the Monitoring JS API, which allows you to submit events and data from the HTML
source code.

In this case, you can use the gt.push() method which allows you to decide when events should be
submitted and which data they generate, directly from your web pages. See Monitoring JS API
Reference for further details.

You should also consider using the APl when you have more complex logic that can't be handled by
DSL alone. For an example, see How To — Enable a trigger after another trigger.

Next Steps

1. Make sure the CEP Rule Templates are ready. See Publishing the CEP Rule Templates for details.
2. Finish any customizations to the SCXML strategies or Browser Tier Widgets.

3. Continue on with the Application Development Tasks.

Developer's Guide 76


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/PublishtheCEPRulesTemplate
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeStrategies
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizetheBrowserTierWidgets
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/ApplicationDevelopment#Application_Development_Tasks

Customizing an Application Publishing the CEP Rule Templates

Publishing the CEP Rule Templates

After you create business information by following either the Simple Engagement Model or the
Advanced Engagement Model, you can begin working with the CEP Rule Templates. Even if you do not
plan to customize the CEP rule templates, you still need to import, configure, and publish them in the
rules repository so that they are available when you begin creating your rules.

Complete the following steps to publish the templates:

1. Read the overview information about the rule templates.
2. Importing the CEP Rule Templates in GRDT.

3. Configuring the CEP Rule Templates.

4. If necessary, you can Customize the CEP Rule Templates.

5. Publishing the CEP Rule Templates in the Rules Repository.

Overview

The Complex Event Processing (CEP) Rule Templates define the actions and conditions you can use
when you create your business rules in Genesys Rules Authoring Tool.

You use Genesys Rules System (GRS) to develop, author, and evaluate these business rules. A
business rule is a piece of logic defined by a business analyst. These rules are evaluated in a Rules
Engine based upon requests received from client applications such as Genesys Web Engagement.
GRS implements the CEP (Complex Event Processing) template for GWE. This template type enables
rule developers to build templates that rule authors then use to create rules and packages. These
rules use customized event types and rule conditions and actions. Each rule condition and action
includes the plain-language label that the business rules author will see, as well as the rule language
mapping that defines how the underlying data will be retrieved or updated.

The rule templates are created with your Web Engagement application — in release 8.1.2, there are
two CEP Rule Template projects:

* \apps\application name\_composer-project\WebEngagement_CEPRule_Templates_85 includes
templates that feature reworked conditions for 8.1.2.

* \apps\application name\_composer-project\WebEngagement_CEPRule_Templates includes
templates that are compatible with Web Engagement 8.1.1.

Developer's Guide 77


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/SimpleEngagement
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/AdvancedEngagement
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CreateaRulesPackage
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/PublishtheCEPRulesTemplate#Overview
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/PublishtheCEPRulesTemplate#Importing_the_CEP_Rule_Templates_in_GRDT
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/PublishtheCEPRulesTemplate#Configuring_the_CEP_Rule_Templates
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/PublishtheCEPRulesTemplate#Customizing_the_CEP_Rule_Templates_.28Optional.29
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/PublishtheCEPRulesTemplate#Publishing_the_CEP_Rule_Templates_in_the_Rules_Repository

Customizing an Application

Publishing the CEP Rule Templates

= Template Development - WebEngagement_CEPRule_Templates_85playground,/Actions - Eclipse SDK

File Edit

. Far
-

-

[F_ﬁ Project Explorer &3

Mavigate Search Project  Configuration Server Run  Window  Help

| B e 2@ E LR EE

Ellg WebEngagement_CEPRule_Templates_g5playground ;I

== Actions

----- = Generate Actionable Event
----- = zenerate Actionable Event predefined

=-#[3 Conditions

ol Check search string

-ollg Check search string with category
ol Check search string without save
9[:: Counker

-l Following event with category
-ofj Following event with name

-l Following event with name on the page with the same pageid
o/ Has Cateqory

0[:: Has Category without save

0[:: Has MName

o Has Mame without save

ol Remember last event

0[:: Save category as event

0[:: Timeouk an category

- G Enums |
3 GRS Server Explorer 53 G B EE = 8
[#]- a Service Information
- ']} Ervvironment:

O 4 0ol PRI Qv 47+

i

= Actions [WebEngagerment_CEPRule_Templates_85play

=< Actions Editor [WebEngagement_I

Actions g ¥

|- % Generate Actionable Event
[ = Generate Actionable Event predefined

L 2]

T_~ Problerns ] Properties 52 | El Consale

Property

Ac

Lan

Ruls

CEP rule template in Composer

In order to use these templates to define rules, you must first publish them — see Publishing the CEP

Developer

's Guide

78



Customizing an Application Publishing the CEP Rule Templates

Rule Templates for details about when the templates should be published in the Web Engagement
application development workflow.

Before you publish the templates, you can edit them to suit your business needs using the the
Genesys Rules Development Tool. For more information about rule templates, refer to the Genesys
Rules System documentation.

Note that if you customize your rule templates, you must republish them.

Actions

The list of actions available in the template is listed in WebEngagement_CEPRule_Templates >
Actions. You can edit, add, or remove these actions. In the Genesys Rules Authoring Tool (GRAT),
when you create a rule based on the template, you can add an action by clicking Add action; GRAT
displays all the actions defined in the template. You'll see how actions are implemented once you
start creating rules. The default actions are:

¢ Generate Actionable Event

¢ Generate Actionable Event Predefined

Enums

The enumerations available in the template are listed in WebEngagement_CEPRule_Templates >
Enums. You can edit, add, or remove these enumerations. When you create a rule based on the
template, you can specify a Phase by clicking Add Linear Rule; GRAT displays all the enumerates
available in the template. In the default template, no specific enumeration is available.

Conditions

The conditions are listed in WebEngagement_CEPRule_Templates > Conditions.

Developer's Guide 79



Customizing an Application

Publishing the CEP Rule Templates

e |

([ Project Explorer &2 =R =S

v:E

= Template Development - WebEngagement CEPRule_Templates/Conditions - Eclipse SDK
File Edit Mavigate Search Project Configuration Server Run Window Help

o @ (2] &

EREPREEET 2Ly

=+ Actions [WebEngagement_CEPRule_Templates]

|Qu||:'r. ACcess

E| B

{3 Conditions |

El@ WebEngagement_CEPRule_Templates, ;I
i = Actions

=-#[® Conditions

ol Check search string

--olg Check search string with category
o[y Check search string without save
0[:: Counter

--o{le Following event with category
ol Following event with name

ol Following event with name on the
0[:: Has Category

0[:: Has Category without save

0[:: Has Mame

o' Has Name without save

-#[lg Remember last event

0[:2 Save category as event

-ofle Timeout on category

F-{3 Enums

- EEtE Fact Model

i @, Functions

- f: Parameters
.—-I wHBY e 1

[y GRS Server Explorer 52 o7

ﬁ Environment LI
E: Rule Packages

E||E? Templates

----- + ACME Rules Template

----- “ BlueSky Rules Template

----- # BlueskyRules

..... = WD _Standard_Rules_Migrated

----- #1 OEssampleTemplate

----- + OPMSampleRules

----- 2 PFS Rules Template

..... v PFS_Rules

J ..... e wEbErEagmmt_wel_Tmtfill
Z 3

L2 Conditions Editor [WebEngagement _CEPRule_Ter

Conditions

ol Check search string with catege
--afle Check search string without sav
ol Counter

—-ofle Following event with category
o3 Following event with name
o3 Following event with name on t
'[:: Has Category

'[:: Has Category without save
'D[:: Has Name

--afle Haz Name without save
—-ofe Remember last event
9[:: Save category as event
0[: Timeout on category

1 | 3

[* Problems [ Properties 52 | [l Console
Property

Condition Details

Mame: | Check search string I

Language Expression:

| event 'Search’ with paramete

Rule Language Mapping:

{fevent}: Event{eval{{event}l

MName
Tenant
Version

Developer's Guide

80



Customizing an Application

Publishing the CEP Rule Templates

List of conditions in the CEP rule template.

You can edit, add, or remove these conditions. Each condition associates a name with an expression.
When you create a rule based on the template, you can add one or more condition to this rule by
clicking Add condition; GRAT displays all the condition expressions available in the template. For
complex templates, you need several conditions to implement a rule.

Condition Name

Check search string

Following event with category

Following event with name

Has Category

Has Category without save

Has Name

Has Name without save

Remember last event

Save category as event

Timeout on category

Condition Details

Expression

event searches {searchString}

AND event following {prevEvent}
with category {category} save
as {event}

AND event following {prevEvent}
with name {eventName} save as
{event}

page transition event occurs that
belongs to category {category}
save as {event}

page transition event occurs that
belongs to category {category}

event with name {eventName}
save as {event}

AND event with name
{eventName}
Precondition: save last event

category is {category} save as
{event}

Timeout event occurs with
category {category}

Importing the CEP Rule Templates in GRDT

Condition details

Returns true if the event Search
occurs and if the {searchString}
label is found, this event's result
is saved in the {event} label.

If the event follows {prevEvent}
and contains the {category}
label, this event's result is saved
in the {event} label.

If the {eventName} follows
{prevEvent} in parameter, this
event's result is saved in the
{event} label.

If the event is a page transition
for the given category, this
event's result is saved in the
{event} label.

Returns true if the event is a
transition to the given category's

page.
If the {eventName} occurs, this

event's result is saved in the
{event} label.

Returns true if {eventName}
occurs.

Saves the last event.

If the event contains the given
category, this event's result is
saved in the {event} label.

Returns true if the Timeout event
occurs for the given category.

Complete this procedure to import the CEP rule templates in the Genesys Rules Development Tool.
Even if you do not plan to customize the templates, your rule template must be published in the
Rules System Repository before you try to create rules.

Prerequisites

¢ The Genesys Rules Development Tool is installed, configured, and opened in Composer.

Developer's Guide

81



Customizing an Application Publishing the CEP Rule Templates

Start
1. Navigate to Window > Open Perspective > Other > Template Development to switch to the
Template Development perspective of the Genesys Rules Development Tool.
Select File > Import....
In the Import dialog window, navigate to General > Existing Projects into Workspace. Click Next.

Select Select Root Directory:, then click Browse.

u A~ W N

Import your project. In release 8.1.2, Genesys Web Engagement includes two sets of rules templates:
\_composer-project\WebEngagement_CEPRule_Templates is compatible with 8.1.1, while
\_composer-project\WebEngagement_CEPRule_Templates_85 is compatible with 8.1.2 and
features reworked conditions. Select the rules template project to import:

* Browse to the \apps\application name\_composer-project folder in the Genesys Web
Engagement installation directory and select a project.

* Click OK. WebEngagement_CEPRule_Templates_85application name is added to the Projects
list.

* Select the WebEngagement_CEPRule_Templates_85application name project.

* Warning: Do not enable the option Copy projects into workspace.

Developer's Guide 82



Customizing an Application Publishing the CEP Rule Templates

% Impork

Import Projects

' Select a direckary ko search For existing Eclipse projects,

(¥ Select root directory: | C:\Program Files\GCTIiGenesys Web Engagem  Erowse...

" Select archive file: | Browse, ..

Projects:

WebEngagement_CEPRule_Templates_85Splayground (CHProgram Select Al

----- [ webEngagement_CEFRule_Templates_plavgraund (C:\Pragram Fil
Deselect Al

dH N

Refresh

1] | i

[ 1 Copy projects into workspace

Working sets

[ Add project to working sets

Working seks: j Select. .. |

@:l < Back Mexk = | Finish I Cancel

Import the default templates by clicking Finish.

e Click Finish to import the project. WebEngagement_CEP_Rule_Templates_85application name
is added to the Project Explorer.

[ Praject Explarer 52 m o

El@ “WebEngagement_CEPRuUle_Templates_3

= Ackions

0[:: Conditions

G Enums

EEE Fact Model

E‘, Functions

'Eg Parameters

WebEngaéement_CEP_RuIe_Templates_85playground is added to the Project Explorer.

Developer's Guide 83



Customizing an Application Publishing the CEP Rule Templates

End

Configuring the CEP Rule Templates

Prerequisites

« The Web Engagement Categories business attribute is defined in Genesys Administrator.

Start
1. In the GRDT Project Explorer, right-click on the WebEngagement_CEPRule_Templates project.
Click Properties.

2. In the Properties dialog window, navigate to Template Properties. In Publishing Data, set Type to
web_engagement.

Developer's Guide 84



Customizing an Application

Publishing the CEP Rule Templates

Properties for WebEngagement_CEPRule_Templates H=]

i Resource

----- Builders

----- Project References

----- Refackoring History

..... RunDebug Settings
----- Server

----- Task Tags

[#--EE! Template Properties

F-  validation

@ Template is reserved by wou,. .. settings cannot be changed

L

10 |'u'u'eI:Engagement_CEF‘RuIE_TempIates

—Publishing Data

j Configure bvpes

1

Base version: 7

Tvpe: Iwel:-_engagement
Tenantk: IEnvianment j
Descripkion: ;I

(2)

o]

Cancel

Set the type to web_engagement.

3. Navigate to Template Properties > Imports. The Imports panel opens.

4. Select the Enable global imports option.

Developer's Guide

85



Customizing an Application Publishing the CEP Rule Templates

il #8 Properties for WebEngagement_CEPRule_Templates =]

It';.fpe Filker bext Imports - -
o Re.scuurce Configures globally available Jawva import declaration Faor this kemplate project. Reguires wersion
----- Builders 1.1 REST interface
""" Project References [ Enable global imparts
----- Refackoring Histary
----- Run/Debug Settings ~ Imparts
""" Server 4— com, genesyslab,wme.cep. api, Event e,
""" _ Task Tags 4— com. genesyslab, wme.cep.drools EventDispatcher

[=-EE Template Properties
o Impoarts
b Variables

F#-  validakion

Restore Defaulks | Apply |

@:J ik I Cancel |

Enabling global imports.

Note: The com.genesyslab.wme.cep.api.Event and
com.genesyslab.wme.cep.drools.EventDispatcher packages must be present.

5. Click OK.

6. In the Project Explorer, navigate to WebEngagement_CEPRule_Templates > Parameters >
category.

7. In the Parameters Editor panel, set Attribute Name to Web Engagement Categories.

Developer's Guide 86




Customizing an Application

Publishing the CEP Rule Templates

Fle Bt Piegae Bewch Proed Ay Jofupestion beve

plelcy Taramlors
el Help

|- |+ |pilis ERD AR+ =0 F#8 | - =
T | 5 Tempetn Corartopemert 3 0 Datagang [ omger Fiuger - Conponts [wagn ol <Pemplats [uesiopeents 5, Colposss

% Paramatars Editor PAehEngaqemsent_CEPRula_Templabes]

Paramestors +E XS [coemgars

L
wvme
e

gl

[-1-F-T2

ATy
O gueir
18 et

B protess [ . Em‘l
geors, X2 marrirgs, Oother
PRI

] = fveen (3R]
= Ereroersrt

WA W (I e

Iogpn, = |ras

T mewem @

| i oot e i e

8. Click Save.

End

Customizing the CEP Rule Templates (Optional)

Start

1. Open the CEP rule template project with GRDT and navigate to the Conditions item
2. Expand Conditions to open the Conditions editor.

3.

In the Conditions tab, click +.

The Add Condition window opens.

Developer's Guide

87



Customizing an Application Publishing the CEP Rule Templates

~ Add X
Add Condition

Create a new template condition

Name: I Page following with category|

| % I Cancel

4. Enter a name and click OK. The condition is added and selected in the condition list; the condition detail
panel opens.

Add a condition

5. Insert the Language Expressions and Rule Language Mapping:

(422 Contions [WebEngagement_CEPRLs_Templates Japlsn] 52 =0)
<2 Conditions Editor [WebEngagement_CEPRule_Templates_kaplan] (151
Conditions & X Coaraefiit bon Dt asils:

<12 Chack searth string Maie: [ Page Folowng with category

(3 Chsck smarch strirg without s4ve

{3 Folowing event wih category - sty

(2 Folowing event with name [parge Foowareg lpreEvert) with category fakegory) save as fevent)

»{3 Has Category

#i Has Category without save Rule Langusge Mapping:

o

‘:_E ::m vy save {evert}: Eventieval{{event}.getName(). equals(FageEntered)) && evall {event} hasCategory( {category} ), this after {prevEvent)) j
+(= Page folowng with category

=[5 Remember last evert
#[3 Save caRequry 45 event
o3 Trmeout on eategery

: of]

6. Click Save Now when the rule template is published, the rule will be available in GRAT:

Developer's Guide 88



Customizing an Application

Publishing the CEP Rule Templates

@ Genesij ' QENESYS R.ULES AUTHORING

e, demo null

[Enviranmert =l General Rules Auit Trail
i} Hame Description Phase Calendar Pending Deployment | Start Date End Date
-1 Environment I”
= | Rule-100 | products test nev condition * (Mone selected) © @ ‘

= o Daly City
ﬁ Mew Rule Package
ff .,’J products.genasysiab.com
8 Demo Solution

._-;- Hew Decision Table ” _,; Hew Linear Rule ” J Import Rule |

products

test new condition

Section Expression

Parameters

‘ Add Condition |v‘ Add Action |V| Group |v

event "Search’ with parameter "{searchString)" save as {event} (WebE, _CEPRule_ ;i

event "Search” with parameter *{searchString)® (Webd#; _CEPRule_ _WvProject)

Wwhen

event following {prevEvent} with category {category) save as {event} WedEngagement_CEPRule_Template

Then

End

event following {prevEvent} with name {eventHame)} save as {event} WebE, _CEPRule_

event with name WedE _CEPRule_ Ay Project)

event with name {eventHame)} save as {event} WebE, _CEPRufe_ _NyProject)

page following {prevEvent} with category {category} save as {event} (WebE, _CEPRule_

page transition event occurs that belongs to category {category} (WebE _CEPRule_ Vi

page transition event occurs that belongs to category [category) save as [event} \WebdEngagement_CEPRu,

Publishing the CEP Rule Templates in the Rules Repository

Prerequisites

* Your user has the correct permissions to manage rules in GRAT, as detailed in the Genesys Rules System

Deployment Guide.

* You configured GRDT to enable a connection to Configuration Server and Rules Repository Server.

Start

1. In Project Explorer, right click WebEngagement_CEPRule_Templates.

2. Select Publish. The Publish Template Wizard opens.

Developer's Guide

89



Customizing an Application Publishing the CEP Rule Templates

Template Development - YWebEngagement_CEPRule_Templates_Genesyslab;/Cq

File Edit Mavigate Search Projeck Run  Configuration Server  Window  Help

Jes-i e |7 S A0 AR

ﬁ’ | Template Developrent 'ﬁ Composer

p
L?_ﬁ Project Explorer &3 [—| ‘5 Y = 0| &) default.workflaw &) de
= 5| |
E@ WebEngagement_CEPRule_Tem, e Hitol
(- = Actions ey g
0[:: Conditions 0 e
;? Enums |=|Copy ChrlC
- Fact Model Paste Crly _
@, Functions 3 Delete Delete skring
'Eg Parareters Move ik ik
I i il
I:::I 51 WebEngagement _ChatRouting FENaME. .. Ez mk ik
--{51' webEngagement_EngagementLe
#-1== WebEngagement_Engagementyy fugImport. .. withe
G Expart...
= rech nouk <
& | Refres Fa beve

Close Project
Close Unrelated Projects

e |

K_‘ .
Li3 GRS Server Explarer & l:‘_é} EEReservatu:uns...

as e
tegor

E Service Information Yalidate

']} Environmment Run As
Debug As
Profile fs
Tearn

v v v v v

Compare ‘With

Restore from Local History.. .
Source g
Configure r

Propetties Alk+Enter

The Publish Template Wizard.

3. Select WebEngagement_CEP_Rule_Templates.

Developer's Guide

90



Customizing an Application Publishing the CEP Rule Templates

Publish Template Wizard =]

Project Selection

Select project to publish to the rule repositary

Praoject | Targek | Tvpe |
£ BlueskyRules i Environment COMYERSATION MGR
@ﬁOESSampleTemplate 5} Environment WD
& PFS_Rules i Environment COMYERSATION_MGR
@ﬁTestRules ']} Erviranment WD

i Environment

Edit propetties. ..

@:I Einish I Zancel

Select WebEngagement_CEP_Rule_Templates.

4. Click Finish.

End

Next Steps

* You can continue customizing your application:
* Customizing the SCXML Strategies

* Customizing the Browser Tier Widgets

* You can build and deploy your application.

Developer's Guide

91


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeStrategies
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizetheBrowserTierWidgets
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/BuildandDeploy

Customizing an Application Customizing the SCXML Strategies

Customizing the SCXML Strategies

When you create your application, Genesys Web Engagement also creates default chat routing and
engagement logic strategies in the \apps\application_name\_composer-project\ folder.
Orchestration Server (ORS) uses these strategies to decide whether and when to make a proactive
offer and which channels to offer (chat or web callback). You can modify these strategies by
importing them into Composer.

The following shows the Chat Routing workflow, where interactions are routed to agents with
"Customer Service" or "Customer Care" skills:

g n- g 1 " (= | a Ty e 1 . T 3

[ Package Explorer &3 - “"1'1 A = | ik Sweebrne_chat_arorkasorkfow §3

32 webEngagement_CEPRue_Teeplates_plavground
=] ‘WebEngagement_ChatRouting
= db
# = include
| Bl Interaction Processes
all | B META-INF
= Reports
HS s
Fl= sre-gen
= WEE-INF
5142 Workflows
=g WebEngagement_EngagementLogic
H-E=db
#H=r include
& {72 Interaction Processes
#-= META-INF
H-2 mrc
(= sre-gen
#-(= WEE-INF
== Workflows:
|52 cleam.markfiow
] decision. workflow
(] defauit. workPow
4] engage.morkfiow
(2] getRESTinfo.workflow
] noengage.workflon
A Chat Routing workflow example.

It s possible bo send message in
routed bo an agent. Enable this
demonstration of this feature

- H - Branching block enables three po
[ = Branching depending on variable” categorie:
1. Support branch (IF categ
anchingByCate... 2. Contactls branch (F cab
- awalable)
. 3. Defauk branch (F neithe:
da 'Contactlls’ conditions are met)
% Route Inter... @RouteInter..  ~Route Inter...
RoubeCustormers... RouteCustomerC. .. FLORE e 3o s
Route to agent in Route to 5klad in ed categories (Custor
‘Custormer Service' "Customer ice) are mot applicable -
group Web Engag

When you alter the strategies, you must save your changes, generate the code, redeploy, and restart
your Genesys Web Engagement application to apply those changes.

You can customize the routing strategies to help meet your specific business needs:

¢ Customizing the Engagement Strategy

¢ Customizing the Chat Routing Strategy

Developer's Guide

92


https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizeEngagement
https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizeChatRouting

Customizing an Application Customizing the SCXML Strategies

Customizing the Engagement Strateqgy

When you create your Web Engagement application, Genesys Web Engagement also creates default
Engagement Logic and Chat Routing SCXML strategies in the \apps\application_name\_composer-
project\ folder. Orchestration Server (ORS) uses these strategies to decide whether and when to
make a proactive offer and which channels to offer (chat or web callback).

The Engagement Logic strategy processes Genesys Web Engagement interactions, and consists of
sub-workflows to handle: general processing, decision making, obtaining additional information from
the Cassandra database through the REST API, and contacting the Backend Server with instructions
according to the engagement (or non-engagement) process.

You can modify the Engagement Logic SCXML by importing the Composer project into Composer. The
project is located here: \apps\application name\_composer-project\
WebEngagement_EngagementLogic\. Refer to the sections below for details about the
Engagement Logic strategy and how it can be modified.

Note: The strategies deployed out of the box with GWE 8.1.2 are made for Composer 8.1.300.89
projects. If you use a newer version of Composer, make sure that you upgrade these projects by
following the upgrade procedure.

Main Interaction Process and Workflow

The default entry point to the Engagement Logic strategy is the Interaction Queue specified in the
wmsg.connector.interactionServer.queueQualified option on the Backend Server application.

Developer's Guide 93



Customizing an Application

Customizing the SCXML Strategies

s e e

PROVISIOMING = Environment = Applications = Web_Engagement_Backend_Server_0G

Navigation
[ Search +
|l Environment

(g} Alarm Conditions

(g} Scripts

(g} Application Templates
|3 Applications
(g} Hosts

(g} Selutions

g} Time Zones

(g} Business Units/Sites
(g} Tenants

[} Table Access Points
(g} Formats

(g} Fields

= Switching

= Routing/eServices

= Desktop

+ || [*][+] ][+

=1 Accounts

The Interaction Queue

£ IWeh_Engagement_Backend_ServeEI_ - Stopped - Exited - \Applications),

# Cancel H Save & Close H Save H Save & MNew LﬁF‘.eluad @Uninsmll E:) Start [ Stop @

service:pacing (7 Items)
service:wes (8 Ttems)

serviceswmdb (2 Ttems)

Ellservice:wmsg (11 Items)

service: wmsghw msg.connector. defautEngagementChannel
service: wmsghw msg.connector.engagementExpirationTime
service:wmsghw meg.connector.interactionServer.queueiccepted
service wmsghw msg.connector.interactionServer.gueueEngaged

service:wmsg/wmsg.connector.interactionServer. gueueFailed

SEIVICE WMmSg
SEMVICE WMmsg
BErviCe Wmsg
SEMVICE WMSg

SEMVICE WMSg

- l Configuration H Options ” Permissions H Dependencies ” Alarms
[C|MNew [fgDelete ¥ Export o3 Import
Mame & Section Option
T |Filter Filter Filter

WMEg.connecC
WMmag. connec
WM2g.connec
WMag.connec

WMEg.connec
:

service wmsghw meg.connector.interactionServer.gueueQualified

SErviCe Wmsg

WM2g.connec

service wmsghwmsg.connector.interactionServer.gueueRejected
service: wmsgiw msg.connector.interactionServer. gueueTimeout
service wmsghw meg.connector. phoneNumber

service wmsalw msa.connector.reaistrationFormExpirationTime

Passing Parameters into the Engagement Logic Strategy

SEMVICE WMSg
SEMVICE WMSg
SEIVICE WMmSg

SEMVICE WMmsa

When Genesys Web Engagement creates an engagement attempt, the Backend Server creates an
Open Media interaction of type webengagement and places it into the Interaction Queue specified

by the wmsg.connector.interactionServer.queueQualified option. By default, this option is set to

the Webengagement_Qualified queue. Orchestration Server (ORS) monitors this queue and pulls the
interaction to process it with the Engagement Logic strategy.

Since ORS does not connect to the Backend Server(s), certain parameters must be passed to the
Engagement Logic strategy in order to provide ORS with the data it needs.

1. The address where the SCXML strategy is located. Note: The default Engagement Logic and Chat
Routing strategies are located as resources under the Backend Server. Provisioning automatically
specifies this address in the related Configuration Server objects when GWE is installed. Since you can
host strategies in other places, you can manually update the parameters in the related objects.

2. The address where the Backend Server can be accessed (if a secure address is present, pass this as
well). This information is used to issue REST requests to the GWE Cassandra database and to start or

Developer's Guide

94

WMag.Connec
WM2g.Cconnec
WMEg.connecC

Wm0, connec



Customizing an Application

Customizing the SCXML Strategies

cancel the engagement procedure through the Backend Server.

The parameters are passed to ORS through the Routing script object
Webengagement_Qualified.Routing that is associated with the Webengagement_Qualified Interaction

Queue.

DEPLOYHMENT

PROVISIONING = Envirorment = Scripks

 Hawngatbion L
._'Saarr:h +
zp Environment -

[ AMamm Canditions

[ Application Templates
[ Applicaticns

|__‘ Hasts

[l Solutions

[ Tirme Zones

[ Business Units/Sites
G Tenants

C§ Table Access Points

G Farmats
[ Fields

| Lep Switching

Sonpts

Hame «

T Wabsngagemant
View: =] Root = [ Scripts

]
[
b
I
k¥
[ ]
[
b
b
I

Visbengagemenl_Chal ChalRouling. WView
Viebengagement_Chal.Rouling
Viebengagement_Engaged
Veéebengagement_Engaged.Clean
Yebengagement_Engaged Routing
Webengagement_Failed
Viebengagement_Failed Clean
Viebengagement_Failed Routing
Viebengagemant_Cualified

Seripl Type
|| Fiter

Interaction Queue View
Enhanced Routing
Interaction Clueue
Interaction Clusue View
Enhanced Routing
Interaction Queue
Interaction Queue View
Enhanced Routing
Interaction Quaus

Vigbengagement Clualfed En ementLogic. View Interaciion Qugue Wigw
Iilr Visbengagement_Qualified Routing Enhanced Routng

O
MONTTORERE HEPLOYMENT

DFERATIONS |

e Webengagement_Qualified Routing

g Seanch

PROVISIONING = Brwironment = 5!;

_..qﬂmrmmnt

[ 'Eﬁd._.mmt_

)= TlMew ... [ MewFalder F*Edt... [fgRemove ... EaChange state [MiMave to

Slate
Filter

Enablad
Enabled
Ennbled
Enabled
Enablad
Enablad
Enabled
Ennbled
Enabled
Enablad
Enablad

)| W cancel [l Save & Ciose [ save [ Save & tew aﬁ.:bﬂd () Check LA

— i Canfiguratian plions

Permisons

Dependendes

QRS

[ &larm Conditions

= |7 General

COnlex]_ MANRGETET_SE0vicaa_usentams

; Apphcabon Templabes ™ Marme: Webengagemeant_Quaified Routing
1 Apglicatiors Tanant:
[ Hoasts ~ Scrpt Type: E F
[ Solutions State: ¥ Enzblec
? lire Lories
[ Busiress Units/Sites = | dchestration
] Tanznts IURJ! ﬂ:tﬂ-!.'_rDEWUKWLT.IJS.I":.\'.]E'IEE‘.'SH".'I.EI]H'!QUE'._“JEE{EI’IU."ES-DJTEES,IIS-EA.I'I'I;'E"E-I]EF_"FD_I]UEJEEEEEI:_II"D’.'I
[ Table Access Points Faamatars [Eladd $3edt Fhemove
[ Formats . e
[ Foeids BecsendUAL it DGAT UKSA-LT.us.nt genesysab.comS001/bacsend
g Suitching - BaciendUALSscure hips U DR UKDY-LT. us. Nk genesysiab. com 5001 backend
— contexi_managesen_ssrvices_password
Ratrg/e5erices +
L2 contexi_managesent_services_url hiip:rl 35 235 54, 736:8080
g Deskino +

The Webengagement_Qualified.Routing

The Engagement Logic strategy has two interaction processes:

Developer's Guide

95



Customizing an Application Customizing the SCXML Strategies

¢ clean.ixnprocess — This process is explained in Cleaning Interaction Process
¢ queueBased.ixnprocess — This process features the major logic for the strategy.
To access BackendURL and BackendURLSecure (as shown in the above image), use the button

marked with a green square, which opens Project Variables. Note: In order to access Project
Variables, your current tab in Composer must display Interaction Process (not Workflow).

The block and properties related to the entry point Interaction Queue (Webengagement_Qualified)
are marked with green rectangles shown in the following image:

Developer's Guide 96



Customizing an Application Customizing the SCXML Strategies

vl gl WERE W A E D PRERS D& S QRN R RS U
‘Tahoma "o -BIATSr sy B Reme| | B 0% -

[{ Project Explorer 2 BR|e Y= 0 | queueBased.ixnprocess 53

- —_—

E:J? develop-wmbackend - Prosect Varal

E'—,_,d develop-wmfrentend L

= WebEngagement CEPRule_Temnplates 85multi &

= WebEngagement_CEPRule_Templates_multi dlﬂeruﬁm L1
£y WebEngagement_ChatRouting

{# WebEngagement_EngagementLogic

EngagemeniLogic.View —

b & db L Variable Nam

b @& include _ I ————

4 = Interaction Processes & Log | f BackendURL

) BackendURLS
queu DINprocess l
p -TNF

b = Reports .
b sre = Workflow
b & src-gen defaukWorkflow
I+ = WEB-INF -
= Workflows
= WebEngagement_Engagement\Widgets
2 webme-common-app-core
2 webme-common-channels
2 webme-common-db
E.PJ webme-common-logd)2
2 webme-common-protocols 4
;:5 webme-common-utils
;:5 webme-common-websecurity ® Markers '[E] Properties 53 4% Servers [ Data Source Explorer [ Snippet
E wme-archetype
E wmie-backend-connections fz" Interaction Queue

£ wme-backend-db o

i wme-backend-es Core ) mpﬂt"'r
*2l wme-backend-pacing Appearance | 4 Alias
= wme-backend-root Name

i wme-backend-sg 4 Anngtation
b Fg wme-backend-web Bl.ﬂfk Nﬂtt‘.i |
I P wme-backend-web-ext a Configuration Server

b §2 wme-common Object Name

b §2 wme-common-category m 4 Q“E“ »
[ _:;‘,J. wme-commaon-itest nabl

b 52 wme-frontend-cepspi Existing q“":'e
P = T S p—— 18 '.'Ju-:ue ﬁtscrlptmn

Set the Projec
Set the Project

Incoming

[~ = -

m

{’igtnﬂ —

StopinteractionOnEror

L - -2 - - - - - - - - - - -

The queueBased.ixnprocess

After the interaction is taken into processing, it is placed into a set of workflows for processing. All
workflows have notes related to specific blocks, however, this document highlights the most
important items.

Developer's Guide 97



Customizing an Application Customizing the SCXML Strategies

Preventing Interaction Termination into Sub-flows

For all workflows, you must make sure that the workflow is configured to not terminate the
interaction upon exiting. If this step is not followed, the entire interaction process will not be able to
finish due to termination of the interaction in one of the sub-flows.

Note: Out-of-the-box Engagement Logic strategies already have the correct specified value (0) for
the system.TerminatelxnOnExit variable.

You must perform the following steps to turn-off the termination of the interaction at the end of the
sub-flow:

1. Open the workflow diagram in Composer (note that in the images, it is shown as default.workflow).
2. Select the Entry block, and in the properties of this block, open Global Settings > Variables.

3. Scroll down and locate the variable system.TerminatelxnOnExit. Set the value to 0.

See the process in the following image:

Developer's Guide 98



Customizing an Application Customizing the SCXML Strategies

[ Project Explorer [ ER|le T=0 i queueBased.improc | default.workflow 33
b g develop-wmbackend - N
b h develep-wmfrentend T ":
1 1=+ WebEngagement_CEPRule_Ternplates_85multi i
1 1= WebEngagement_CEPRule_Templates_multi 5;'33" o E
¢ {4 WebEngagement_ChatRouting Stoplnteraction(...| interactign. deletad
EBEngagement_Engagementlogic | i Entry block is
> = db : pmte::_rln mm
| nclude :n:f':.!?ﬁimslltllnzl?p;ﬁwant I
4 [ Interaction Processes us from endless oops specific (ueer
businessDec
a clean.xnprocess
a quw:hs:d.mPrn-gﬁ i
. = META-INF ﬂ Application Variables ‘
. = Reports
. B sie Set the application variables
+ kS sre-gen Set the application variables
+ = WEB-INF
d [= Workflows Ecrra S
ﬁ. "‘“_"_—“‘"Mln* Variable Mame Categary Value - Add | ig ﬂ';';
systern.LastVirtualQueueSelect... System ‘undefined” -to save
% App_Last_VirtualQd_Selected System system LastVirtualQueueSelected ||| | Pelete Lk
1 getRESTinfo.workf systern.StartEvent System undefined [U—P]
1) neengage.werkdla I —App Startfuent System sctem.StadEyent d
= WehEngagemnt_Enga 2 [WTWMM-&“M---H--------I Down |
%3 webme-common-app- App_Terminate_bmn_On_Exit System emn. TerminatelnOnEat =)
3 webme-comman-chann systern. WebServiceStubbing System L3 i
» 2 webme-commen-db s M | i
> fr webme-commen-logdi2 | | [ Hide deprecated variables Vake
» |2 webme-commen-protoce
%2 webme-common-usls | | | Restore system variables default values |
I ::“ webme-common-websed o Staet
b f wme-archetype ® B
b B wme-backend-connecti -
b b wne-backend-db - - o
 f wme-backend-es — e
¢ = wme-backend-pacing I_"ﬂh::f:;w 3 '
¢ = wme-backend-root Lk

Turn off interaction termination

Parsing User Data from the webengagement Interaction and Passing it into Sub-
flows

One of the most important items for Engagement Logic is the ability to access User Data of
webengagement interaction. This data is fulfilled inside of the Backend Server and includes, among
other items, information provided by a pacing algorithm. The following is the process of passing basic
pacing algorithm data into a decision sub-flow.

The first step is to parse User Data available in the webengagement interaction. This is done in the
ParseEvent block:

Developer's Guide 99



Customizing an Application

Customizing the SCXML Strategies

Project Explorer &1 =R-N
- & develop-wmbackend
! H develop-wmirontend
. = WebEngagement CEPRule_Templates 85mult
& WebEngagement_CEPRule_Templates_multi
- 184 WebEngagement_ChatRouting
| {4 WebEngagement_EngagementLogic
b db
b = nclude
4 [ Interaction Processes
) clesn innprocess
E queueBased.pnprocess
b = META-INF
b = Reports
b= src
b = sre-gen
= WEB-INF
4 & Workflows
U clean.workflow
| decision.workflow
| default.workflow |
&] engage.workiiow
4l getRESTinfo.werkflow
5| noengageworkflow
= WebEngagement_EngagementWidgets
- 12 webme-common-app-core
12 webme-commen-channels
- 82 webme-commen-db
- & webme-common-logdj2
2 webme-commen-protocols
- i webme-common-utils
1 webme-comman-websecurity
' Eﬁ' wme-archetype
- & wme-backend-connections
& wme-backend-db
- B wme-backend-e&5
2 wme-backend-pacing
- i wme-backend-root
. =4 wme-harkend-cn

The ParseEvent block

5| default.workflow 2

&) Bpre:
Stoplnteractiond... ntemctifn.deleted Express

. . Build ar
g should stop processing afrer- Entry categor
interaction in case of f"_"i . Start

efrar. This should prevent | ¥

us from endless loops P

Lopy C

# log Expressio

QueueSourcelog |1 var ev
In gueue-based —g_ -
strategy we should 3 event

read user data from (=] Assign 4 event
interaction User Data GetUDataEvent 5 ovenk
G event_
- 7 event
fm ECMA Script 8 event
9 i
ParseEvent 10 ::rl
é 1 )
12 [even
# log 13 |even
LegincamingEvent 14 “even
15 if (ev
16 evel

1 18 even

— 19 |
[ Properties 52 | &L Servers [ Data Source Explorer [} pets [5 mﬁﬁ.
21 even

én ECMA Seript e

Model - Property T
| & Exceptions 25 if (eve
Appearance
! Exceptions 1
# Logging Reonwrld C
Condition
Logging Details
Log Level
4 npt
" ®

F] us

The variable jsonEvent, which is present in the described block is created in the GetUDataEvent

block before as the following:

_genesys.ixn.interactions[system.InteractionlD].udata.jsonEvent that is, from the current
interaction we take key jsonEvent from User Data.

After data is parsed and assigned to variables, it can be propagated to sub-flows and used there. Sub-
flows are also able to pass output data in a backward direction. In the example we pass (among
other) parameters event_chatLoad and event_voicelLoad into decision.workflow and obtain
back parameters cancelCode, cancelDescription and decision:

Developer's Guide

100



Customizing an Application

Customizing the SCXML Strategies

i

E Project Explorer &2

[» E:‘f- develop-wmbackend
> E;‘J develop-wmfrontend

[» 1= WebEngagement_CEPRule_Templates_85multi
[» = WebEngagement_CEPRule_Templates_multi

I+ {4 WebEngagement_ChatRouting
4 (% WebEngagement_EngagementLogic
P = db
P = include
4 (= Interaction Processes
&) clean.ixnprocess
a gueueBased.ixnprocess
I = META-INF
[» = Reports
I = src
[» [= src-gen
[ = WEB-INF
4 = Workflows
5| clean.workflow
(o] decision.workflow
I = default.workflow I
iﬂ] engage.workflow
ifﬂ] getRESTinfo.workflow
@] noengage.workflow
b =+ WebEngagement_EngagementWidgets
b 12 webme-common-app-core
[» 'f:a’- webme-common-channels
b 12 webme-common-db
b e webme-common-logdj2
b Y= webme-common-protocols
b 2 webme-common-utils
b 2 webme-common-websecurity
b b wme-archetype
[» E:‘,J- wrmne-backend-connections

[» E:‘,J- wme-backend-db

[ E:‘f- wme-backend-es

[» :;‘,J- wme-backend-pacing
b == wme-backend-root

Passing output data

&

= =

2| *default.workflow 57

8 8 J queueBased.ixnprocess =2
Subroutine block
TakeEngagementDecsion is used to
invoke the “decsion” workflow. The —
‘decision” workflow & purposed to
make the decision whether to ==
engage customer or not based on
its business logic. The result is T
stored in "businessDecision” variable .
S |
i8] Parameters
Input Output Parameter Sync
Mame Type Variable DE:I
cancelCode output  cancelReasonCode Cod
cancelDescription output  cancelReasonDescription Desi
Ldecision outout _businessDecizion .
event_chatLoad input event_chatload Rest
event_engagement_attermpts input event_engagement_attempts Tot:
event_engagements_in_progress  input event_engagements_in_progress Cou
event_engagemet_type input  event_engagement_type Typ
event_inType input  event_bmType Frir
event_voiceload input event_voiceload Res.

Developer's Guide

101



Customizing an Application Customizing the SCXML Strategies

Engagement Policy (Decision Workflow)

Engagement policy is the other name of decision workflow.
Consider the most important points provided by the out-of-the box strategy:

Check count of engagement attempts already proposed to the current visitor. This check is executed
in the ApplyEngagementPolicy block (see image below). Default value is 3, which means that no
more that three engagement attempts should be proposed for a particular visitor. Note: If the
engagement attempt was closed by a timeout, it will not be taken into count, as soon as there is no
guarantee if the visitor has seen it at all. For example, the invitation may appear on a non-active
browser tab or window.

Developer's Guide 102



Customizing an Application

Customizing the SCXML Strategies

5 Project Explorer &2 =3 =08 eueBase = I'l" decision.workflow 53
[ | T ——
55 9ev€ 1) Branching Conditions = Jrmm
i dew ]. £+ Branching
5 = w . .
= Wel | Branching Node settings ]- ApplyEngagementPolic
= We _ .
> {ai We Curres.ponLTupoliw
4 &y We .
b B i Mame Expression Add... = Branching
4 = CorrespondsToPolicy Number(event_engagement_atter(_..] CheckDefaultEngagementCh
S 8] Expression Builder
s Expression Builder: Corres
=
> & - Build an expression in the Exg
) = ® [ QK i l the categories and subcatego
F

wl| decision.workflow

| default.wo rkflow
wl| engage.workflow
&| getRESTinfo.workflow
@l noengage.workflow

i+ =% WebEngagement_EngagementWidgets

» 2 webme-common-app-core

o I:‘J, webme-common-channels

» T2 webme-common-db

b E:\s'» webme-common-logd)2

. 12 webme-common-protocols

;"L:‘yj webme-common-utils

- N2 webme-commeon-websecurity
E*_}J wme-archetype

i wme-backend-connections
E'_—‘ﬂ- wme-backend-db

+ b3 wme-backend-es

w7

Check the engagement attempts count.

ECMA Script
MegativeDecision

1 result: wmmntdmﬂ%-
pterted. Fnnanement attemnt i
4

B o

3 = X
Copy Cut Paste Delete

Markers [ Properties 53

2 Branching

Model Property
Alias
Appearance 4
—— Name
T 4 Annotation

Block Motes

al | 1 Mumber{event_engagemen
| :

'_..I.. F

Row:l Column:38

@

| Conditions

Check pacing information. This is executed inside of the CheckPacingEngagementChannel block.

Note: Out-of-the-box strategy operates only general information obtained from
pacing algorithm: variables event_chatLoad and event_voicelLoad, passed
from default.workflow, contain accumulated (by channel) count of interactions
that can be triggered in the particular moment. It is possible to pass into the
decision workflow detailed information provided by the pacing algorithm and
build a more sophisticated decision maker. The image below shows the general
idea: do not engage the visitor if the count of available "interactions to produce"

Developer's Guide

103



Customizing an Application

Customizing the SCXML Strategies

is O for both channels:

Tahopa Trﬂ TLH P (Y 5 = DB‘-%DQ_.| n | E"'”lﬂﬂ?"&u
@ Branching Conditions

& fonprocess |£,: decision.workflow 3 |
b Branching Node settings R
b Cunewonlﬂ
B
b |
b 4| | Name Expression [ Add.. | [puttengagement channe i & Brs
- Ichann:lCantBeDe‘rected event_chatload <= 0 Bl eve| ,,, of padng algorithm CheckDefaultEng

@) Expression

¢ 11

@ I

x|

S weoemr —

m

4 [= Workflows
= clean.workflow
ot default.workflow
(5]l engage.workflow
(2] getRESTinfo.workflow
| noengage.workflow
b 1= WebEngagement_EngagementWidgets
¢ 52 webme-commeon-app-core

b §2 webme-common-channels

b 2 webme-common-db

[ E:"; webme-common-logdjd

[ H webme-common-protocols

b §23 webme-common-utils

b §= webme-common-websecurity
[ Eﬁ wme-archetype

f H wme-backend-connections

b 5> wme-backend-db

B Eﬁ wme-backend-es

Check the pacing information.

i -= i
£= Branching Expression E
CheckPacingEngagementChannel Build an expr
. elementis) fr
channelCantieDetected N
Cancel I afau B o
O . Copy Cut B
’ i ECMA Script
NegativeDecision Expression fiel
Negative result: engagement channel Posi M
not be detectsd. Engagement attempt i githir
not allowed de F]
& [Row:1 Columr
]
Markers [E] Properties £3 4 Servers
t= Branching
Model Property
Appearance | 4 Alias
Mame
4 Annotation
Block Notes
4 branching '
[ Conditions
— TUFENTINNT :

Developer's Guide

104



Customizing an Application Customizing the SCXML Strategies

Obtaining Data from the GWE Cassandra Database through REST
Requests

Requesting data from Backend Server through the REST

During the decision making process, it might be useful to access data from the Web Engagement
Cassandra database. For example, to check additional parameters that are collected there.

The out-of-the-box Engagement Strategy provides an example of accessing the Cassandra database
in order to get the TimezoneOffset of the visitor's browser, and correspondingly modify the
greetings good evening, good morning, and so on.

Consider how Engagement Strategy does this task.

1. Use SCXML State block in order to make the REST request with specified parameters.

Developer's Guide 105



Customizing an Application Customizing the SCXML Strategies

(5 Project Explorer 53 B®|%® T = 0 B queveBassedinproce engegemorifion  [i) getRESTinfo.workfiow 51

b G develop-wmbackend :: Properties of Entry black «
b & develop-wmfrontend ?HMFH-EE:“EMSEM
» & WebEngagement CEPRule_Templates 85mutti e B
b = WebEngagement_CEPRule_Templates_mutti Important paramaters for
5 : ‘Backend RL', “visitlD' and
I faj WebEngagement_ChatRouting _ ey B
4 4 WebEngagement_EngagementLogic st

v = db

b= include

4 = Interaction Processes
E clean.bnprocess
E queueBased.xnprocess
» (= META-INF
& (= Reports
b e
b = src-gen
v = WEB-INF
4 = Workflows
i cleanworkflow
1] decisionworkdlow
i default warkflew

(.

Cenfigure Body

2| moengage.workflow
1 1= WebEngagement_Engageme
¢ 52 webme-common-apg-core
P I;!l webme-common-channels
52 webme-common-db

i & webme-common-logdj2

b §2 webme-common-protocels
B :ﬁ webme-common-utils

52 webme-comman-websecurity
b i wme-archetype @
I EFJ wme-backend-connections
I EI?J wme-backend-db

i & wme-backend-es

[ H wme-backend-pacing | M_
L R - | Transitions L

Valwe: ]t:nm-ntry‘:-
<session: fetch sroexpr="BackendURL + "/data/visitss" + visitID” method=""get'™ usernames"f
</sesslon:fetch>

< fonentry>

Use the State block to make REST requests

Note: BackendURL and visitlD parameters are passed from the parent workflow into this sub-flow.

2. Parse response to the REST request. After the response is successfully obtained, it should be parsed in
order to extract required data. In this example, the timezoneOffset parameter is obtained from the
data of the VisitStarted event:

Developer's Guide 106



Customizing an Application

Customizing the SCXML Strategies

el
DLdILRED | LNTTUBILLCK

iy SCAML State
MakeRESTRequest

/—Malss Fa
i

&)/ getRESTinfo.workflow &3

Maldrrill

sery| =5
pErs

Expression Builder

Expression Builder

Build an expression in the Expression fi

from the categories and subcategories
i
Parse results obtained éﬂ ECMA Script éﬂ ECMA Script D o [@ R |
from DB and fullfill outdit = . _ E=l LE]
parameters Success Fail Copy Cut Paste Delete u
eventTimestamp and L
eventlocalTime L Expressicn field
I 1 RESTData = _event.data;
L 2 var content = JSOM.parse(RESTData.
& Log 3 eventTimezoneOffset = content.5)
PrintRESTData
— it Variables to return isj}
] 0 I
1
Markers B2 Properties F2 il Servers Data Scurce Explorer 5 Snippets 12 ‘
) Row:3 Colurmn:46
an ECMA Script
S ]
Model Property |
Exceptions
Appearance 4
—_———— Exceptions @
4 Logging
Condition _
Logging Details =
Log Level "= Project Default: Error
4 Script
Script I= RESTData = _event.data;var co

Parse the response to the REST request

Note: Alternatively, instead of the SCXML State block, you can use a Web Request or Web Service
block. In this case, Composer requires this logic to be hosted as a web application, which means the
entire Composer project must be hosted outside of the Web Engagement application. With Composer,
you can export the project as a web application in WAR format. This approach is not used in out-of-the-

box strategies.

Developer's Guide

107



Customizing an Application Customizing the SCXML Strategies

Configure Authentication in the out-of-the-box SCXML Strategy

Genesys Web Engagement 8.1.2 provides basic access authentication on the base of providing
username/password pairs.

Username and password parameters, used in the SCXML State block, are passed into getRESTInfo
workflow from the parent workflow:

¥ queueBased.ixnprocess engageworkflow &) getRESTinfo.workflow &3 default.workflow

P —

Properties of Entry block contain definition of impartant

!" 1 ,Mﬁﬁﬂﬂﬂﬂiﬁﬂiﬂmm&mﬁ__

o - . E Application Vanables _-__ -
Exit errar._ -‘ Entry
@ Ermr[’gﬁ@mctinﬂxd g @ Entry I Set the application variables
" 5 Set the application variables
&
# Log Variable Mame Category Value
StartRESTInfoBlock pagelD Input
eventLocalTime User
eventTimezoneOffset User !
UsEr Input " |
um SCXML State password Input !
MakeRESTRequest system.baselJRL Systermn getE»a'
I system.RelativePathURL Systemn getRe
s Fa ' 1l |
[ Hide deprecated variables
Parse results obtained i ECMA Script e I#l [ Restore system variables default values
fram DB and fullfill output
parameters Su ccess

< t @
kA -1 - F Mecmclao sl « mn [ r - L3

The username and password application variables in getRESTInfo.workflow.

The username and password parameters are specified in variables of the Entry block in
default.workflow:

Developer's Guide 108



Customizing an Application

Customizing the SCXML Strategies

i S-S
mbackend
mfrontend
ement_CEPRule_Templates 85multi

= O 58| queueBased.ixnprocess

@ Bxity ror.interacti

ErrorExit

I E Application Variables

engage.workflow
Stop Interact
Fer

StopInteractionO... intemctitl:n.deleted

Set the application variables
Set the application variables

Yariable Mame

| | event_custom erFirstMame
event_customerLastMame
cancelReazsonCode

cancelReasonDescription

Category Value
User "
User "
Uzer ]
User !

user User ‘userl’
password User ‘passwordl’

| s_vstem.ﬁa seURL System getﬁa seURL()
4 | m |

i
Delete
Up

D Down

[] Hide deprecated variables

’ Restore systern variables default values

The username and password application variables in the default.workflow.

getRESTinfo.workflow

# Log

QueueSourcels

Assign
GetlDataEven

o ECMA Scrip

Parsebvent

!

# Log
LaglncomingEwe

T

T

plorer  |f5 Snippets

You must check that these credentials are compliant with credentials specified in the security section

of the Backend Server options:

Developer's Guide

109



Customizing an Application

Customizing the SCXML Strategies

MONITORING

DEPLOYMENT OPERATIONS

PROVISIOMIMNG = Environment > Applications > Web Engagement Backend Server_0G

Navigation i |Web_Engagement_Backend_Server_... {Stopped - Exited - \Applications\,
|y Search 3¢ cancel [zl Save & Close | Save =l Save & New Iaﬁ‘.eload @Uninsmll Ep Start [ Stop E

I_QL Environment

g Alarm Cenditions

(g} Scripts

Application Templates
(5} Applications

g Hosts
g Solutions

g Tirne Zones
g Business Units/Sites

g Tenants

I Configuration H Options ” Permissions H Dependencies ” Alarms

[C|New [fgDelete % Export o Import

MName « Section Option
T | Filter || Filter || Fitter
H log (11 Items)
H security (3 Ttems)
BECUITy aUin-scneme SECUTTY AUIN-SCNEmE '
security/password securty password
security/user-id security user-id
Service:pacing ems | '

The username and password are specified in the security section

See Configuring Authentication for details.

Start Engagement as a Result of the Engagement Logic Strategy

Sending the "start engage" Request to the Backend Server

The special workflow engage.workflow notifies the Backend Server about the start engage

command.

Notification of the Backend Server is executed through the REST request using the SCXML State

block:

Developer's Guide

110



Customizing an Application

Customizing the SCXML Strategies

j queueBased.xnprocess

&l engageworkflow 5

Fullfill variables, needed far

notification with information about
possible engagement session: visit
ID, customer information, type of

defaultworkfloy

GetRESTDatz

“:n ECMA Script

finteraction {engagement channel),

FulfillEngagementProfile

etc, I
# Log
MakeEngagementAttempt stat
Send to Backend LogFulfilledProfile has 2 possible transitions:
E;ﬁ i. cbent sernver 4 Success (notification was
zggagﬁérlr?gn?: auttuernpt X successfully delivered to
stored in variable | miy SCXML State | FDHE#EE Pwdlgsee}wer} =
xenProfile MakeEngagementtternpt
+——*
Succlass Fah
’
&; Body e —— ol
Configure Body

| | Value: [konentry>
M <session:fetch srcexpr="BackendURL

<content _expr="ixnProfile”/>

</session:fetchs
<fonentry>

r

+ "Sdota/goteway/engage ' method=""post

roar

type=""app

4 SCHML details

TansIIons

Body

The REST request notifies the Backend Server

Note: Authentication aspects shown here are the same in getRESTInfo.workflow.

I=<onentry>...

T=5u CCEss, Fail

Developer's Guide

111



Customizing an Application Customizing the SCXML Strategies

Fulfilling IxnProfile for "start engage" Request

Take note of the IxnProfile structure, which is passed in REST request to the Backend Server. This
structure is fulfilled in the ECMA Script block called FulfillEngagementProfile.

The following object is sent to the Browser:

ixnProfile = {
'data': data
}

Consider the structure of the data object:

var data = {
'chat': engageProfile,
'event': event,
'notification': notification message

}

As you can see, there are three fields:

e chat — represented by the variable engagementProfile.

e Content of this variable will be considered below. You can change the content of this variable if the
SCXML strategy worked in the area of visitor identification.

* |tis not recommended to change it if related items are not a part of your modified strategy.

e event — this is a technical field, which provides for the Backend Server possibility to identify an event,
on the base of which the engagement decision was done.

* You should not change the structure or content of this member.

notification — represented by the variable notification_message.

e Structure of the notification message is described in Chat Invitation Message and Callback Invitation
Message.

Consider the structure of engagementProfile variable:

var engageProfile = {
'visitId': event visitID,
'nickName': profile.FirstName,
"firstName': profile.FirstName,
'lastName': profile.LastName,
'userState': state,
'userId': event customerID,
'ixnId': system.InteractionID

}

You can change the fields nickName, firstName, lastName and state in the case of additional
work being executed in the visitor identification area. In this case, the Backend Server applies passed
values to the identity record of specified visitld.

The following states are allowed: Authenticated, Recognized, and Anonymous.

Developer's Guide 112



Customizing an Application Customizing the SCXML Strategies

Cancelling Engagement as a Result of the Engagement Logic
Strategy

Sending "cancel engagement" to Backend Server

This is similar to sending start engage, request cancel engagement; it also uses the SCXML
State block to trigger a REST request to the Backend Server:

Developer's Guide 113



Customizing an Application Customizing the SCXML Strategies

i &8 queueBased.xnprocess engage.workflo default.workflc I éi] noengage.workflow 3
no EMENT SESSI0N: VISIT LY, i,
5 mmﬂmﬂide and description. PeaE FulfillMcEngagementData
T, User Data For historical statistical purposes it may be i
] to User Data reason code | description of er
AssignUData canceling
Send to Backend server T CancelEngagementAttempt
notification about j; state has 2 possible transitions:
canceling engagement = SCUML State Success (notification was
attempt __ successfully delivered to

N
CancelEngagementAttempt backend server) and Fail
T . f (otherwise)

Sucgkss  Fal
— L L — !._........'
Eﬂndy s 2§ pe—

Configure Body

Value: konentry> |
<secgion: fetch crcexpr="BochendURl + '/dota/gateway/noengage’” methods"'post’” type="'agppli
<content _expr="cancelData"/>
</scESIOMITELLn,
K/ onentry» |
Pl m

i @
S .

Erceptions = ,
4 SCKML details

Body i=<onentry>...

L = Casrrmes Cail

The REST request cancels the engagement

Security (authentication) aspects are the same as described in the getRESTInfo.worfkflow'.

Fulfilling "no engage" Data

no engage data contains five mandatory fields:

Developer's Guide 114



Customizing an Application

Customizing the SCXML Strategies

B epremion s [

Expression Builder

from the categaries and subcategories below.

Build an expression in the Expression field by selecting the operator(s) and data element(s)

Ii.] noengage.workflow 27
—

FulfillNoEngagementData

(B £ & X ¢ 9 &
Copy Cut Paste Delete Undo Redo Validate
Expression field type filter text &
' . =, User Data For historical statistical
| ||t kanceiData={ . » [ Project variables . to Liser Data reason oo
| |[p vistiaevent visie, » 3 Workflow variabl Assgnubata canceling
3 'pageld:event_pagelD, . :
Il |4 ‘bnld': system.InteractiondD, > O Wurkfll:.nwfunctl:
|| |5 'noEngagelcde engagement_policy_cancelReasonCode, o [ Javabeript CanceEngagem
|| |J6 ‘'noEngageDescription:engagement_policy_cancelReasenDescription [ Orchestration Ses ) state has 2 pos
7} » [ Context Services ﬁ SCHML State Success (notific
| : successfully deb
[ Standard Respan CancelEngagementAttempt backend server’
I (1) User Functions . (otherwise)
I' Succkss  F2
! 1 [T r
: o | ECMA Script ¢,
rt
i B | Fai Ll
| —— ]
|
| |
I |
| | Snippets [B) Console o Progre
|
i -
4
! Value
|| [Rowsl Column:l
| L
C o
| =
I @ T
| =
d-paci =
end-paci
end-:utng Log Level = Project Defa
end-sg 4 _Cnpt - =
snd-web |;| Script iE cancelData =

The "no engage" fields

Cleaning Interaction Process

The interaction, for various reasons, might be stuck in one of the Interaction Queues and fall out of

processing. For example:

¢ Visitor obtained engagement invitation. This means that the webengagement interaction was put into

Developer's Guide

115



Customizing an Application Customizing the SCXML Strategies

Webengagement_Accepted queue.

e Power-off appeared on visitor's host, so the answer (Accept, Reject, or Timeout) was not delivered to
Genesys Web Engagement.

In this case, you need to define the cleaning process, which is also built on the top of ORS strategies.

{4 Project Explorer &2 Bg|® Y= 0O 8] queueBased.ixnprocess I clean.ixnprocess 53 I
> {32 develop-wmbackend -
> 2 develop-wmfrontend

¢ = WebEngagement_CEPRule_Templates_85multi

i 1= WebEngagement_CEPRule_Templates_multi & o

> {4 WebEngagement_ChatRouting | Interaction Q... " Interaction Queue

4 i Wenkngagement_EngegementLogic \Webengagemen... . Webengagement_Ac...
b = db i

b = include T

“q Cledn

L
Clean

B queue
¢ = META-INF
» [= Reports
b = src
b [= src-gen
b (= WEB-INF
4 = Workflows
= clean.workflow

1]

&) decision.workflow
o default.workflow
| engage.workflow
getRESTinfo.workflow
noengage.workflow 1
¢ = WebEngagement_EngagementWidgets

BBE

» 5= webme-common-app-core Markers S Properties B2 &L Servers §48 Data Source Explore

[ :';‘,J- webme-commaon-channels )
B :;‘J webme-common-db .@ Interaction Queue

|
Core Property
4 Alas

> 52 webme-common-logdj2
» §2 webme-common-protocols

» 52 webme-comman-utils Appearance
B :;‘,J- webme-commen-wehsecurity |

I MName

I 4 Annotation

.
[ wme-archetype
= Block Motes

> fg% wme-backend-connections

a Configuration Server
Object Mame

4 Queue
Enabled
Existing Queue

I E;‘f- wme-backend-db

s 2 wme-backend-es

» 42 wme-backend-pacing
b = wme-backend-roct

b Egi wme-backend-sg

QUEUE Descn EII on

b et wme-backend-web -
The clean.ixnprocess

Developer's Guide 116



Customizing an Application Customizing the SCXML Strategies

As shown, the same cleaning process is applied for all Web Engagement-related Interaction Queues.
The only exemption is Webengagement_Qualified queue; this queue is not cleaned by the strategy.

The cleaning task in this queue is executed in scope of major Engagement Logic interaction process.

Cleaning Interaction Workflow

Out-of-the-box cleaning workflow is short and straightforward. It contains one block only: stop
interaction.

Propagating Data from Engagement Logic strategy into Chat
Routing Strategy

Use Case Description

In the routing process, it often makes sense to use business data from events that are produced on
the browser side. This data is propagated by the Backend Server to the webengagement interaction
automatically, but you can also propagate it to the chat or web callback interactions.

For example:

e Business data produced on the page provides information about language.
e This information is passed as a sub-key of the jsonEvent key into the webengagement interaction.

e During the Engagement Logic strategy, language information is re-attached and propagated to the chat
interaction.

* The Chat Routing strategy reads language information from the chat interaction and decides into which
group to route the chat interaction.

The following are details of the described data propagation.

Attach UserData to the webengagement Interaction

All data that comes from System events is stored in the Open Media webengagement interaction as a
KVlist under the key jsonEvent. You can access this data from the engagement strategy. If you want
to store this user data and then copy it into the chat or webcallback engagement interaction, you
must attach it manually to the Open Media webengagement interaction in the engagement strategy.
For example, you can do this with the User Data block:

Developer's Guide 117



Customizing an Application Customizing the SCXML Strategies

":] queleBased.ixnprocess Wlﬂj aetRESTinfa . warkflow \I

ﬁﬁi default workFlow &3

- '
BA Assign Data

Configure Assign Data

& ECMA Script

ParseEvent
% Default " Business Attributes € Skills  Categories
: | alua .
rule ‘ariablefevent_rule)
# Log atkemnpt_number ‘Wariablelevent_engageme

LogIhcarningEwvent
»

=, User Data

AssignlData

,—---E' Identify Custo...

il
Brror. session - dantifyCustomer @
errar,comm. genesyslabicomposer. badfagch

|

Assigning User Data

Genesys recommends that you collect all the data you need and attach it to the
interaction in a single Assign Data block. You should avoid using multiple Assign
Data blocks unless is it absolutely necessary.

Control Copying UserData from webengagement Interaction to the Chat (or web
callback) Interaction

When a chat or web callback interaction is created, GWE attaches the UserData available in its parent
Open Media webengagement interaction. You can control how this data is attached by using the
wes.connector.interaction.copyUserData option in the [service:wes] section of the Backend Server
application. This option has three modes:

e Copy all UserData

* Do not copy UserData

e Copy only specific KV pairs from UserData

Developer's Guide 118



Customizing an Application Customizing the SCXML Strategies

The following tables provide example values for the wes.connector.interaction.copyUserData option.
In these examples, the Open Media webengagement interaction UserData contains the keys ORS
Data, rule, strategy, some data.

Value of

wes.connector.interaction.copyUserData L5 [ T G EnmEnls (e e e

all All keys are copied: ORS Data, rule, strategy, some

data.
no No keys are copied.
rule;strategy The rule, strategy keys are copied.

If the value of
blank or empty wes.connector.interaction.copyUserData is absent
or has an empty value, no keys are copied.

The ORS Data key is copied. my_key1 is ignored
my key1;ORS Data because it is not part of the keys in the Open Media
webengagement interaction UserData.

Accessing Pacing Information from the Engagement Logic
Strategy

In release 8.1.2, Web Engagement provides the Engagement Logic strategy with pacing data for the
chat and web callback channels. You can access pacing information in two ways:

e Through the consolidated channel capacity (measured in the number of "allowed" interactions).

e Through detailed information for each channel, which contains capacity (measured in the number of
"allowed" interactions) for each particular group in a channel.

The pacing information available to the Engagement Logic strategy is different from
the information returned from the Pacing API. You should evaluate each type of pacing
information carefully before deciding how to use it.

Pacing information is added to webengagement open media interaction User Data by the Backend
Server. This information can then be read in the SCXML strategy — see Main Interaction Process and
Workflow for an example. The information is located (among other specific data, like data provided in
business-event) in the User Data of the webengagement interaction, under the jsonEvent key. This
key contains the JSON object, which should be parsed prior to access information.

In the SCXML strategy, you can access jsonEvent data in the following way:

var jsonEvent
var eventData

_genesys.ixn.interactions[system.InteractionID].udata.jsonEvent;
JSON.parse(jsonEvent);

Developer's Guide 119



Customizing an Application Customizing the SCXML Strategies

Understanding How the Pacing Algorithm Works

A dedicated pacing algorithm serves each particular group of agents, so if you have 2 chat-oriented
and 1 web callback-oriented group of agents, there will be 3 instance of the pacing algorithm (1 for
each group).

The agent availability on the specific channel is calculated taking into account the following:

* The agent state on the particular media (chat and web callback are different)
e Capacity rules.

For example, consider an agent who has a capacity rule for 2 chat interactions. In this scenario, the
following statements are true:

¢ Agent is Ready and has no interactions in progress. In this case, the agent is treated as 2 Ready agents
with a capacity rule of 1.

* Agent is Ready and has one interaction in progress. In this case, the agent is treated as 1 Ready agent
with a capacity of 1.

¢ Agent is Ready and has two interactions in progress. In this case, the agent is treated as 0 Ready agents
with a capacity of 1.

e Agent is Not Ready (count of interactions in progress does not matter). In this case, agent is treated as
0 Ready agents with a capacity of 1.

The agent availability on the specific channel is also handled differently in the two main pacing
algorithm methods, SUPER_PROGRESSIVE and PREDICTIVE_B.

The SUPER_PROGRESSIVE method consumes the following major parameters:

¢ The number of Ready agents in the group.
* The number of pending (waiting for answer) interactions.

¢ HitRate - the percentage of accepted invitations compared to the general number of proposed
engagement invitations.

It is important to remember that the values of these parameters are continuously
changing.

Consider the following example: There are 7 Ready agents (each with a capacity rule of 1), the
number of pending interactions is 5, and the HitRate is 0.05.

In this case, the pacing algorithm might predict the number of allowed interactions approximately as
(7/0.05-5) =135.

Developer's Guide 120



Customizing an Application Customizing the SCXML Strategies

This example is intended to provide a basic idea of how the pacing algorithm works.
The finer details are more complex.

The PREDICTIVE_B method consumes the following major parameters:

e The number of logged in agents in the group.

e The Average handling time of interactions. For example, the average duration of a chat session with
visitors.

¢ HitRate - the percentage of accepted invitations compared to the general number of proposed
engagement invitations.

It is important to remember that the values of these parameters are continuously
changing.

This algorithm is more complex than SUPER_PROGRESSIVE, but the general information described for
SUPER_PROGRESSIVE also applies to PREDICTIVE_B: The number of 'allowed" interactions will
significantly exceed the number of Logged In agents (depending, first of all, on the HitRate
parameter).

Consolidated Pacing Information by Channel
Capacity for the chat channel is available in the data.chatChannelCapacity' field (called
data.chatLoad before version 8.1.200.26), and capacity for the web callback channel is

available in the data.webcallbackChannelCapacity field (called data.voiceLoad before version
8.1.200.26).

For example:

var jsonEvent
var eventData

_genesys.ixn.interactions[system.InteractionID].udata.jsonEvent;
JSON.parse(jsonEvent);

var chatChannelCapacity = eventData.data.chatChannelCapacity;
var webcallbackChannelCapacity = eventData.data.webcallbackChannelCapacity;

Detailed Pacing Information
Detailed pacing information is available as a nested JSON object with the following structure:

pacing: {
channels :
[
{

name: <name of this channel>,
groups:

Developer's Guide 121



Customizing an Application Customizing the SCXML Strategies

{
name: <name of this group>,
capacity: <count of allowed interactions for this group>,
reactiveTrafficRatio: <portion of inbound chat\webcallback traffic that should be
'left' in the system>
H

] ’
capacity: <count of allowed interactions for this channel>

]
}

The names of the pacing information fields were changed in release 8.1.200.26. See the table below
for details.

Name prior to 8.1.200.26 Name as of 8.1.200.26 Description
Name of the channel (or group,
channelName / groupName name depending on the type of

container object).

The number of 'allowed'
interactions for a channel (or
group, depending on the type of
container object).

intrNumber capacity

Portion of inbound chat traffic
that should be 'left' in the
system.

reactiveTrafficRatio reactiveTrafficRatio Valid values: from 0 to 1 For example,

reactiveTrafficRatio 0.8 means that only 8
of 10 'reactive' chat interactions should
be 'allowed' .

You can access detailed information in the Engagement Strategy SCXML as follows:

var jsonEvent
var eventData

_genesys.ixn.interactions[system.InteractionID].udata.jsonEvent;
JSON.parse(jsonEvent);

var detailedPacing=JSON.parse(eventData.data.pacing);
var event chatEnglishCapacity = pacing.channels[0].groups[0].capacity;
var event chatDutchLoadCapacity = pacing.channels[0].groups[1l].capacity;

In the example above, IDs (0, 1, and so on) in the arrays are used for sample purposes only. You
should use the specific names of the channels and groups to extract the data you need.

Example of Using Pacing Information
Agents

Consider the following scenario where there are four chat and voice groups with agents in each
group:

e English Language Chat Group = Adam (logged in and ready) and Anna (logged in, not ready)

Developer's Guide 122



Customizing an Application

Customizing the SCXML Strategies

e Dutch Language Chat Group = Bart (NOT logged in) and Berta (NOT logged in)
¢ English Language Voice Group = Adam (logged in and ready) and Amanda (logged in and ready)
e Dutch Language Voice Group = Dan (logged in, ready)

The following group configuration options are set on the Backend Server application:

e pacing.connector.chatGroup = English Chat Group;Dutch Chat Group

e pacing.connector.voiceGroup = English Voice Group;Dutch Voice Group

Customers

On the customer-facing website, two events are triggered simultaneously:

e Chris triggers a Hot Lead event on an English page.

e Merijn triggers a Hot Lead event on a Dutch page.

Pacing information

When events are triggered simultaneously, pacing information is the same. In this scenario, the

SUPER_PROGRESSIVE algorithm is used and the following parameters were true at the moment the

events were triggered:

e English Chat Ready agents: 1

¢ Dutch Chat Ready agents: 0

¢ English Voice Ready agents: 2
e Dutch Voice Ready agents: 1

e HitRate: 0.2

¢ Pending engagement invites: 0

e Reactive traffic is turned off

In this case, the results might look like this:

chatChannelCapacity : 5,
webcallbackChannelCapacity : 16,
pacing: {
channels :
[
{
name: "chat",
groups:
[
{
name: "English Language Chat Group",
capacity: 5,
reactiveTrafficRatio: 0
T
{

name: "Dutch Language Chat Group",

Developer's Guide

123



Customizing an Application Customizing the SCXML Strategies

capacity: 0,
reactiveTrafficRatio: 0,

}
] ’
capacity: 5

name: "webcallback",
groups:
[
{
name: "English Language Voice Group",
reactiveTrafficRatio: 0O,
capacity: 11

{

name: "Dutch Language Voice Group",
reactiveTrafficRatio: 0,
capacity: 5

]I
capacity: 16

]
}

Possible Engagement Logic SCXML flows

In this scenario, the following SCXML flows are possible for the two customers, Chris and Merijn:

¢ Chris
We can extract the capacity for the "English Language Chat Group" (5) and "English Language
Voice Group" (11) from the pacing data.

In the decision workflow, it is possible to engage Chris on the chat or web callback channel. It is
also possible to show him a modified invitation, where he can explicitly choose chat or web
callback.

¢ Merijn
We can extract the capacity for the "Dutch Language Chat Group" (0) and "Dutch Language Voice
Group" (5) from the pacing data.

In the decision workflow, it is possible to engage Merijn on the web callback channel only.

Developer's Guide 124



Customizing an Application Customizing the SCXML Strategies

Customizing the Chat Routing Strategy

When you create your Web Engagement application, Genesys Web Engagement also creates default
Engagement Logic and Chat Routing SCXML strategies in the \apps\application_name\_composer-
project\ folder. Orchestration Server (ORS) uses these strategies to decide whether and when to
make a proactive offer and which channels to offer (chat or web callback).

The default Chat Routing strategy delivers chat interactions that are initiated in Genesys Web
Engagement to a specific target. Although this strategy is included as part of the Web Engagement
installation, it is possible to use your own existing strategy for routing. For example, a URS-based
chat routing strategy; however, in this scenario you will need to adjust the Web Engagement solution
to support the pacing algorithm functionality.

You can modify the Chat Routing SCXML by importing the Composer project into Composer. The
project is located here: \apps\application name\_composer-project\
WebEngagement_ChatRouting\. Refer to the sections below for details about the Chat Routing
strategy and how it can be modified.

Note: The strategies deployed out of the box with GWE 8.1.2 are made for Composer 8.1.300.89
projects. If you use a newer version of Composer, make sure that you upgrade these projects by
following the upgrade procedure.

Main Interaction Workflow

The default entry point to the GWE Chat Routing strategy is the Interaction Queue specified in the
wes.connector.chatServer.queueWebengagement option on the Backend Server application.

Developer's Guide 125



Customizing an Application

Customizing the SCXML Strategies

PROVISIONIMNG = Environment = Applications > Web_Engagement_Backend_Server_0G

Hawvigation L
[ Search +
= Environment =

@ Alarm Conditions

() Scripts

(g} Application Templates

(5} Applications
@ Hosts
@ Solutions

(g} Time Zones

(g} Business Units/Sites
(g} Tenants

(g} Table Access Points
(g} Formats

(g Fields

=l Switching +
=l Routing/eServices +
=l Desktop +

The Interaction Queue.

eh_Engagement_Backend_Serv‘eq

- Stopped - Exited - \Applications),

3 cancel L‘ﬂ Save & Close L‘ﬂ Save H Save & Mew LﬁF‘.eluad ﬁumnsmll E:) Start [l Stop E

Configuration Options Permissions Dependencies Alarms
= =
Mew |igDelete g Export < Import
MName - Section * (Option
T | Filter Filter Filter
H log (11 Items)
# security (3 Ttems)
# service:pacing (7 Ttems)
nﬂlsemicemes (B Items) I
service wes/wes. connector.chatServer.identifyCreateContact SEMVICE Wes Wes. conne
service wesiwes.connector.chatServer. queuekey SEMVICE WES WES.CONne
.
service wes/wes connector.chatServer.gueueWebengagement SETVICE WES WES.CONNE
.
zervice wes/wes. connector.chatServer.refrezhPeriod BETVICE WES WER.CONNe
service wesiwes.connector.chatserver.requestPoolSize SEMVICE WES WES.COnne
zervice wes/wes connector.chatServer zezsionRestoreTimeout BErVICE WES WES.CONNE
service wesiwes. connector.interaction. copyUzerlata SEMVICE WES WES. Conne
zervice wes/wes connector.interactionServer.wcb.gueusSubmit SETVICE WES WES.CONNE

The interaction process pulls interactions from this queue and sends them through the chat workflow:

Developer's Guide

126



Customizing an Application

Customizing the SCXML Strategies

[J] Configurati... [J] AbstractFle... engage.workflow

Source of interactions for
this IPD is Chat Server

E Media Server
ChatServer

L J
webfne

m BackendConfi... webme_chat_w... @ webme_ct

(@ Interaction Q...

WebME_[;hatQu...

ChatRoutihg. View

Workflow
chatWorkWaorkflow
i::lr ________________ s U T
%0 Dynamic Target ‘ % Dynamic Target ‘ ‘
RouteCustomerservice RouteCustomerCare R
1 | i
[#l Markers 'E= Properties 52 4L Servers [ Data Source Explorer [ Snippets B Console 3 Progress Search fff TestNG
> Interaction Queue
N
Core Property Value
Appearance 4 Alias
Mame 'S WebME_ChatQueue

4 Annotation
Block Motes

4 Configuration Server
Object Name

= Webengagement_Chat

4 Cueue
The chat workflow

If you decide to change the value of

Developer's Guide

127



Customizing an Application Customizing the SCXML Strategies

wes.connector.chatServer.queueWebengagement, make sure to also adjust the
name of the queue in the Chat Routing strategy.

The default Chat Routing strategy is straightforward and includes the following highlights in the
workflow:

1. Obtain information from the User Data of the chat interaction that is being routed. See the
AssignCategory block in the Chat Routing Strategy for details.

2. Send messages to the chat session from the routing strategy. See Sending Messages from the Chat
Routing Strategy into the Chat Session for details.

3. Branch the workflow based on categories obtained from the chat interaction User Data. See the
BranchingByCategory block for details.

4. Route to skill-based Virtual Groups. See the RouteCustomerServer and RouteCustomerCare blocks
for details.

5. Route to a static Agent Group. See Routing to a Static Agent Group for details.

Routing to a Static Agent Group

When you plan to route an interaction to a static Agent Group, you should specify the name of this
group and the name of the Stat Server in the Target property of the RoutelnteractionDefault block.

Developer's Guide 128



Customizing an Application Customizing the SCXML Strategies

rﬂ Targets 4 [ u

Targets
/I Mot connected to Configuration Server

Type Mame Stat Server

Variable(_data.5tatServerMame) |
| | Bemove

E.Agent Group Web Engagement Chat

Remowve All

Add...
|

Targets AtAgent Group(Web Engagement Chat)

limeout =200

The Target property of the RoutelnteractionDefault block.

In the image above, the Stat Server name is specified through the
Variable( data.StatServerName) variable. You can define this variable, or others like it, in
Composer and Genesys Administrator.

Specifying Variables in Composer

Start

1. Double click the interaction process - in this case, webme chat.ixnprocess.
2. Make sure that there are no elements selected in the opened interaction process.

3. Access the interaction process variables by clicking "Access Project Variables", marked with a red
square in the image below:

Developer's Guide 129

ebug &



Customizing an Application

Customizing the SCXML Strategies

C gl mieEEE D B@ R L CRBEE S ¢ 0@ IRINT R &
Tahcuma -9 H | .":__v Iy W v—}v|_'|5$5v’ﬂ%v§_—qﬂv| |}|i{j!{rEv
([ Project Explorer 532 == | @ ~ = 0 engage.workflow webme_chat_work.workflow
> E!_—‘,,J- develop-wmbackend -
b 2 develop-wmfrontend |
[ 1= WebEngagement_CEPRule_Ternplates_85multi
[ 1= WebEngagement_CEPRule_Ternplates_multi
4 % WebEngagement_ChatRoutin
il db 979 - J Source of interactions for
b= this IPD is Chat Server
[ = include
. = Reports E Project Variables
b & s Set the Project Variables
[» [ src-gen ) )
L = WEB-INF Set the Project Variables
a = Workflows .
%webme_chat_work.wor] - e
4 % WebEngagement_Engageme Variable Mame Category Value Descripticon |
| StatServerMame User Mame of StatSen

= db

[ = include

[» [ Interaction Processes

[» = META-IMF

[» [ Reports

[ [ src

[+ [ src-gen

[» [= WEB-INF

4 = Workflows
2| cleanworkflow
|| decisionworkflow
= default.workflow
=/ engage.workflow
&l getRESTinfo.workflow
=l noengageworkflow

[ = WebEngagement_Engagem Er‘t

Access the project variables

End

In the image above, the StatServerName variable is used in the default Chat Routing strategy.

Developer's Guide

130



Customizing an Application Customizing the SCXML Strategies

Specifying Variables in Genesys Administrator

The StatServerName parameter is set automatically by the Provisioning Tool when you install
Genesys Web Engagement, but it can be changed manually.

Start
1. Navigate to Provisioning > Environment > Scripts and find the script with the entry-point
Interaction Queue. In this case, the script is Webengagement Chat.Routing.
2. In the Configuration tab, open the Orchestration section.

3. Now you can see a list of parameters that are passed into the Chat Routing strategy, including
StatServerName.

il P2 o e el

PROVISIOMIMNG = Environment = Scripts = Webengagement_Chat.Routing
Navigation “ Webengagement_Chat.Routing - \Scripts}

| g Search +||| 3¢ cancel [l Save & Close | Save [l Save & New L%F‘.eluad () Check URI
I_E# Environment =
(g} Alarm Conditions

|E Scripts I | * General

Configuration I" Options H Permissions ” Dependencies ”E

(g} Application Templates * Mame: |

(gl Applications Tenant:

(gl Hosts * Script Type:

(gl Solutions Siate: Enzbled

[l Time Zones

(g} Business Units/Sites 4| Orchestration

Q Tenants LURI: http://OGRYUKOV-LT.us.int.genesyskab. com:9081/backend/ re
[} Table Access Points Parameters: Add . 3Edit [gRemove

(g} Formats Name

(g} Fields StatServerlams |
LEﬂ Switching + context_management_services password

| & Routing/eServi + context_management_services_url
outing/eServices

The StatServerName parameter.

End

Sending Messages from the Chat Routing Strategy into the Chat

Developer's Guide 131



Customizing an Application Customizing the SCXML Strategies

Session

There are times when you might need to send messages into the chat session directly from the
routing strategy. For example, this could be additional information messages, advertising messages,

and so on.

The default Chat Routing strategy contains an External Service block that provides this
functionality:

ngage.workflow @wehme_chat_wnrk.wnrkﬂnw &1 g# webme_chat.i OCESS

Entry block is used to began an application, and

Entry
. to define and initialize system( predefined) and
Entryl user{custom) variables
Assign Assign block is used to assign a category to a variable

) ‘categories’, depending on user data parsing
AssignCategorny
¥

It is possible to send message into chat session prior it is
] . routed to an agent. Enable this blodk to turn an
demonstration of this feature

(2 Markers [ Properties 52 4 Servers [ Data Source Explorer |5 Snippets [ Console & Progress - Search [ TestNG

4 External Service

Model Property Value
Appearance o
—_— Mame "= SendMsgToChatSession

4 Annotation
Block Motes

4 Exceptions
Exceptions

rice [Tetaile .

Application 1= Chat Server()

Method Mame = Message
Method Parameters U= MessageText="You can specify post

Service Mame 1= Chat .
Service Timeout =10

The External Services block lets you send message from the routing strategy.

Developer's Guide 132



Customizing an Application Customizing the SCXML Strategies

Important
The External Service block is disabled by default.

Developer's Guide 133



Customizing an Application Customizing the Browser Tier Widgets

Customizing the Browser Tier Widgets

Genesys Web Engagement includes pre-integrated Browser Tier widgets that are used for
engagements. These widgets are based on HTML, CSS, and JavaScript, and can be customized to suit
the look and feel of your website.

Warning

If you make customizations to the widget HTML files, they will not be backward
compatible with any new versions of Genesys Web Engagement.

Invitation Widget

Overview

The default invitation approach in Genesys Web Engagement is represented by invite.html (chat
and callback invitation). This HTML file, by default, has all the required dependencies embedded to
avoid extra requests to the server.

The invite.html file has three code sections:

 |nitial HTML Section
e JavaScript Third-party Libraries (dependencies) Section

e JavaScript Invitation Business Logic Section

Customization

There are four main ways you can customize the invitation widget:

e HTML/CSS — You can edit the HTML/CSS of your page or the invite.html file.

¢ Business Logic — You can modify the business logic including in the invite.html file to work with
second- or third-party integration.

¢ Notification Service — You can change the JavaScript configuration through the Notification Service
REST API.

e You can build your own version of the invitation. The default invitation widget is an example of a
custom-built widget.

Developer's Guide 134


https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI

Customizing an Application Customizing the Browser Tier Widgets

HTML/CSS

In the paragraphs below, Genesys assumes that you have basic knowledge of CSS and
HTML technologies.

If you need to change the basic style of the invitation (color, company logo, size, and so on) Genesys
recommends that you use the HTML/CSS approach.

By default, the invite widget also contains all of the CSS needed for invite rendering, which is
automatically added to the beginning of the <head> section of the web page when the invite is
initialized.

If you need to modify these default styles, but you don't want to make it difficult to upgrade to newer
versions of the widget, you can can create custom override styles. Make sure that your overrides are
scoped to the components that need additional styling, and structure them so that they don't conflict
with or overwrite any stand CSS files.

When overriding styles, consider the following points:

1. Review how the classes are assigned in the invite widget markup to better understand how they're
applied (and how they can be overridden).

2. Create an override stylesheet. The best way to safely fine-tune a widget's appearance is to write new
style rules that override the invite widget's styles and append these "override rules" in a separate
stylesheet. Override rules are written against widget CSS class names and must appear in the source
order after your theme stylesheet; since styles are read in order, the last style rule always takes
precedence. By maintaining override styles in a separate file, you can customize the widget styles as
much or as little as you'd like and still preserve the ability to easily upgrade the widget files as needed
and simply overwrite your existing theme stylesheet, knowing that your override rules remain intact.
Override rules can be listed in a dedicated stylesheet for overriding default website styles, or if you
prefer to limit the number of files linked to your pages (and therefore limit the number of requests to
the server), append override rules to the master stylesheet for your entire project.

To see exactly what you can override, you can use the developer tools that are commonly found in
most modern web browsers. Currently, the Web Engagement CSS selector is not documented and
there is no guarantee for backward compatibility for future versions of the invite widget.

Customization Examples

Change subject, message, buttons caption

<div title="New Subject" class="gpe-helper-hidden gpe-dialog">
<div class="gpe-branding-logo"></div>
<div class="my-message-content">
<span>New Message</span>
</div>
</div>

Change colors (message, subject, background, and so on)

Developer's Guide 135



Customizing an Application Customizing the Browser Tier Widgets

For example, if you want to change the dialog style to red colors, you can add these styles to your
page:

<style>
.gpe-dialog .gpe-dialog-titlebar {
background-color: red;
}

.gpe-dialog .gpe-button-text {
color: red;
}

</style>
Or message color:

<style>
.gpe-dialog .message-content {
color: blue;
background-color: red;

}
</style>
Or inline customization:

<div title="Chat" class="gpe-helper-hidden gpe-dialog">

<div class="gpe-branding-logo"></div>

<div class="message-content" style="color: #ffcc00; background-color: #0066ff "></div>
</div>

Invite Size
To change the size (width and height) of the invite widget, you can use following snippet:

<style>
.gpe-dialog {
width: 300px !important;
height: 200px !important;

}
</style>

Branding Logo

To customize the branding logo, you can use the CSS class "gpe-branding-logo". By default, the
invite.html file uses an embedded image resource with a Data URI Scheme (http://en.wikipedia.org/
wiki/Data_URI_scheme) in base64 format:

<div class="gpe-branding-logo" style="
background-image: url( ... AAASUVORK5CYII=);

"

To customize the logo, you can generate the same base64 data code for your own image with the
generator (http://base64converter.com/).

Alternatively, you can just use CSS:

<div class="branding-content" style=" background-image:url('myLogo.png'); "></div>

Developer's Guide 136



Customizing an Application Customizing the Browser Tier Widgets

Business Logic

The invite.html file includes functions that you can change or replace for second- or third-party
media integration:
e init()
startChat()
e startCallback()

e sendInviteResult()

e onAccept()
Generally, you will need to work inside the startChat() or startCallback() functions, but you can
also make additional changes in other functions. For example, if you need to integrate another type
of media besides chat or callback, you can use onAccept() to extend the number of medias the

invite supports. You must also be sure to make any necessary changes in the Engagement Logic
Strategy.

Customization Examples

* Integration with Second- and Third-Party Media - Examples

Notification Service

The Notification Service is used to pass data to the invitation from the server. By default, data is
composed in the engage.workflow of the Engagement Logic Strategy (apps/application
name/_composer-project/WebEngagement_EngagementLogic/Workflows/
engage.workflow).

You can use predefined commands in the Notification Service REST API to show your own invitation —
particularly, gpe.callFunction and gpe.appendContent.

Customization Examples

* Notification Service REST API - Using the API to Customize Widgets

Localization

You can localize the invite by using the Notification Service REST API. Use the subject, message,
acceptBtnCaption and cancelBtnCaption options to set specific text for the invite widget.

Developer's Guide 137


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/MediaIntegration
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/MediaIntegration
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeEngagement#Start_Engagement_as_a_Result_of_the_Engagement_Logic_Strategy
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeEngagement#Start_Engagement_as_a_Result_of_the_Engagement_Logic_Strategy
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/MediaIntegration#Examples
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeEngagement
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI#gpe.callFunction
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI#gpe.appendContent
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI#Using_the_API_to_Customize_Widgets
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI

Customizing an Application Customizing the Browser Tier Widgets

Chat Widget

Overview

The chat widget provides the main chat functionality for Genesys Web Engagement. It's a versatile
widget that can be customized through the Chat Service JS API and the Chat Widget JS API.

Customization

There are three different customization types available for modifying the chat widget Ul: Template-
based, CSS-based, and JavaScript-based. Using these customization types, you can do any of the
following:

¢ modify the structure of the widget

¢ add content

* add css classes

* modify the style (including the logo and buttons)

e use JavaScript Ul hooks to modify the widget

For details about the customization types and how you can use them, see Customizing the User
Interface, part of the Chat Widget JS API.

You can also use the Chat Service JS API to build your own chat widget and control chat sessions.
Before creating your own chat widget, be sure to review the default chat widget — it's highly

customizable through the Chat Widget JS API, and it also provides access to the same Chat Service JS
API.

Localization

You can use the startChat and restoreChat methods of the Chat Widget JS API to enable
localization for the chat widget. For details and step-by-step instructions, see Localization.

Callback Widget

Developer's Guide 138


https://docs.genesys.com/Documentation/GWE/latest/API/ChatService
https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI
https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI#Customizing_the_User_Interface
https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI#Customizing_the_User_Interface
https://docs.genesys.com/Documentation/GWE/latest/API/ChatService
https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI
https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI
https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI#Localization

Customizing an Application Customizing the Browser Tier Widgets

Overview

The callback widget is represented by the callback.html file. The callback widget can only be used
only in separate window mode and is currently not supported in embedded mode (like chat). The
HTML file, by default, has all the required dependencies embedded to avoid extra requests to the
server.

The callback.html file has three code sections:

* Initial HTML Section
e JavaScript Third-party Libraries (dependencies) Section

e JavaScript Invitation Business Logic Section

Customization

There are three main ways you can customize the callback widget:

e HTML/CSS — You can edit the HTML/CSS of your page or the callback.html file.

* Notification Service — You can change the JavaScript configuration through the Notification Service
REST API.

¢ You can build your own version of the callback widget. The default callback widget is an example of a
custom-built widget.

HTML/CSS

In the paragraphs below, Genesys assumes that you have basic knowledge of CSS and
HTML technologies.

If you need to change the basic style of the callback widget (color, company logo, size) Genesys
recommends that you use the HTML/CSS approach.

By default, the callback widget also contains all of the CSS needed for rendering. You can override
any of the default styles by adding a <link> or <style> tag with your own CSS rules for the callback
widget.

To check which CSS you can override, you can use developer tools that are commonly found in most
modern web browsers. Currently, the Web Engagement CSS selector is not documented and there is
no guarantee for backward compatibility for future versions of the callback widget.

Developer's Guide 139


https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI

Customizing an Application Customizing the Browser Tier Widgets

Customization Examples

Change color scheme
For example, you change the color scheme by adding the following CSS style section to the
callback.html file:

<style>
.callback-content{
color:green
background-color:#E1E2E3

</style>

Note that by default we use embedded resources for calback.html. All scripts, style sheets, images
are embedded.

Branding Logo

To customize the branding logo, you can use the CSS class "branding-content". By default, the
callback.html file uses an embedded image resource with a Data URI Scheme
(http://en.wikipedia.org/wiki/Data_URI_scheme) in base64 format:

<div class="branding-content" style="
background-image: url( ... GK5CYII=);
"></div>
</div>

To customize the logo, you can generate the same base64 data code for your own image with the
generator (http://base64converter.com/).

Alternatively, you can just use CSS:

<div class="branding-content" style=" background-image:url('myLogo.png'); "></div>

Notification Service

The Notification service is used to pass data to the invitation from the server. By default, data is
composed in the engage.workflow of the Engagement Logic Strategy (apps/application
name/_composer-project/WebEngagement_EngagementLogic/Workflows/
engage.workflow).

You can use predefined commands in the Notification Service REST API to show your own callback
widget — particularly, gpe.callFunction and gpe.appendContent

Customization Examples

Change the page size and position

You can use the Notification Service to set the callback size and position. For example, you could use
the gpe.setVariable method to add a global variable, called com.genesyslab.gpe.invite.data, with
a value of callbackPage which includes the modified page size and position:

var notification message = [
{
'page': event.pagelD,
'channel': 'gpe.setVariable',

Developer's Guide 140


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeEngagement
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI#gpe.callFunction
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI#gpe.appendContent
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI#gpe.setVariable

Customizing an Application Customizing the Browser Tier Widgets

‘data': {
'variable': 'com.genesyslab.gpe.invite.data',
'value': {
callbackPage: {

pageWidth: 320,
pageHeight: 380,
pageTop: 150,
pagelLeft: 150

}
}I
}
}I
{
'page': event.pagelD,
‘channel': 'gpe.appendContent',
'data': {
‘url': '/frontend/resources/invite.html'
}
}

1;

Other examples

* Notification Service REST API - Using the API to Customize Widgets

Localization

The callback widget localization uses the jQuery Localize approach. A localization file for each
language is represented by the JSON file, which contains one or more key-value pairs. The keys
correspond to the HTML template.

Enable Localization

1. Open the Web Engagement installation folder and navigate to the application name\_composer-
project\WebEngagement_EngagementWidgets\locale directory. This folder contains the
localization resources:

» callback-lang.json for the callback invite.

2. To add a new supported language lang for these widgets, where lang is the short locale name of the
language (en, fr, ru, and so on) or the full locale name in IETF (en-US, fr-FR), follow these steps:

* Create a copy of the name of the widget-en.json locale file.
* Rename it to: name of the widget-lang.json.
* Edit name of the widget-lang.json and replace all the text values with your translations.
* Save.
3. To deploy these localization files:
* Stop the Web Engagement Servers.

e Build your application.

Developer's Guide 141


https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI#Using_the_API_to_Customize_Widgets
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/BuildandDeploy#Building_your_Application

Customizing an Application

Customizing the Browser Tier Widgets

» Deploy your application.

» Start the Web Engagement Servers.

4. Change instrumentation to use the new language. Use the "languageCode" option in the Tracker Script.

Example of Localization File (callback-en.json)

The JSON file might contain any of the fields listed below. Fields that are not present are taken from

the built-in default localization.

{

"windowTitle"
"firstName"
"lastName"
"phone"
"required"
"callMe"
"cancel"
"message"
"messagel"

button.",
"message2"

shortly.",
"messageFailCallback"
"yourPhone"
"validationPhoneRequired"
"validationPhoneWrong"
"validationNameWrong"

"Genesys Web Callback",
"First name:",

"Last name:",

"* Phone:",

: "is a required field.",

"Call Me",
"Cancel",
"Our representative will call you in a few minutes.",
"Please enter your contact details and click Call Me

"Next available customer representative will call you
"Callback is not available now. Try again later.",

"Your phone number is",
"Phone number is required!",

. "Phone number format +1(234)567-8910",

"Need more than 2 characters"

Developer's Guide

142


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/BuildandDeploy#Deploying_your_Application
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/StartyourServers
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeMonitoringScript#Advanced_Configuration

Building and Deploying an Application Customizing the Browser Tier Widgets

Building and Deploying an Application

Complete the procedures on this page after you have created and customized your Genesys Web
Engagement application.

Building your Application

After you complete this procedure, your application's .war files are created in sub-directories of the
<GWE_installation>\apps\<your application name> folder.

Start

1. Navigate to the installation directory for Genesys Web Engagement and open a new console window.
2. Use the build script (build.bat on Windows and build.sh on Linux) to build your application:

build <your application name>
End

The script builds .war files used for deployment. If the build is successful, the console output displays
a BUILD SUCCESSFUL messages at run-time, and the .war files are created in the sub-directories:

* <GWE_installation>\apps\<your application_name>\backend\target\backend.war

* <GWE installation>\apps\<your application name>\frontend\target\frontend.war

In addition, a new map.xml file is created in the
<GWE_installation>\apps\<your application name>\proxy\target\ directory.

Next Steps

¢ Deploying your Application
Deploying your Application

Warning

You must only deploy an application when the GWE servers are not running.

Prerequisites

¢ Your build was successful. If your build fails due to errors, try to fix them, then rebuild. You can neither

Developer's Guide 143


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CreateanApplication
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeanApplication
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/BuildandDeploy#Deploying_your_Application

Building and Deploying an Application Customizing the Browser Tier Widgets

deploy nor start your Web Engagement servers if the build is not successful.
Start

1. Navigate to the installation directory for Genesys Web Engagement and open a new console window.
2. Use the deploy script (deploy.bat on Windows and deploy.sh on Linux) to build your application:
deploy <your application name>

End

The deploy script copies files to the appropriate locations. If the deploy is successful, the script
output displays a BUILD SUCCESSFUL messages at run-time.

Warning

Do not deploy if errors occurred during the building step! See Building your
Application.

Next Steps

e Starting the Web Engagement Servers

Developer's Guide 144


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/BuildandDeploy#Building_your_Application
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/BuildandDeploy#Building_your_Application
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/StartyourServers

Starting the Web Engagement Servers Customizing the Browser Tier Widgets

Starting the Web Engagement Servers

If you have created, built, and deployed your application, you can start the Web Engagement
Frontend and Backend Servers from either Genesys Administrator or the start.bat script.
Start

To start your servers from Genesys Administrator:

1. Navigate to Provisioning > Environment > Applications.
2. Select the Web Engagement Frontend and Backend servers.

3. Click Start applications in the Runtime panel.

To start your servers using the provided start script (start.bat on Windows and start.sh on Linux):

1. Navigate to the Web Engagement installation directory and launch a console window.
* For Windows, type: start.bat

e For Linux, type: start.sh
End

The Web Engagement Frontend and Backend servers are started.

Next Steps

* Deploying a Rules Package

Developer's Guide 145


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CreateanApplication
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/BuildandDeploy#Building_your_Application
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/BuildandDeploy#Deploying_your_Application
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CreateaRulesPackage

Deploying a Rules Package Customizing the Browser Tier Widgets

Deploying a Rules Package

Creating a rules package is the final step before you are ready to test your new application. Refer to
the Application Development Tasks for details about the previous steps.

Rules are mandatory for managing actionable events generated from the System and Business event
flows submitted by the Browser Tier. To add rules, you must create a package and then a set of rules.
For details about rules, refer to the Genesys Rules System documentation.

After completing the steps on this page, the rules are deployed to the Frontend Server (in a
Standalone deployment) or servers (in a Clustering deployment).

Complete the following steps to create and deploy a rules package:

1. If you need to map your rules to a particular domain, review Multi-Package Domain Oriented Rules.
2. Creating a Rules Package

3. Creating Rules in the Rules Package

4. Deploying the Rules Package

Multi-Package Domain Oriented Rules

As of version 8.1.2, Genesys Web Engagement supports multi-package domain oriented rules. You
can map your rules package to a particular domain by reversing the domain zone in the name of the
rules package. For example, the blog.genesys.com domain would have a rules package called
com.genesy.blog.

You can have multiple rules packages on the same server at the same time. New rules packages
(with a different package name) that are deployed do not rewrite the current rules, but are instead
added to the current rules set. When the existing rules package is deployed, it rewrites selected
package rules in the current rules set.

This domain mapping is applied hierarchically - the "root" domain is processed by the "root" package
and the sub-domain is process by the sub-package and all parent packaged (including "root").

For example, your website contains the following sub-domains:

* genesys.com
* blog.genesys.com
e communication.genesys.com

e personal.communication.genesys.com
And you have the following rules packages:

e com.genesys

Developer's Guide 146


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/ApplicationDevelopment#Application_Development_Tasks
https://docs.genesys.com/Documentation/GWE/latest/Deployment/DeploymentScenarios#t-0
https://docs.genesys.com/Documentation/GWE/latest/Deployment/DeploymentScenarios#t-1
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CreateaRulesPackage#Multi-Package_Domain_Oriented_Rules
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CreateaRulesPackage#Creating_a_Rules_Package
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CreateaRulesPackage#Creating_Rules_in_the_Rules_Package
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CreateaRulesPackage#Deploying_the_Rules_Package

Deploying a Rules Package Customizing the Browser Tier Widgets

e com.genesys.blog
* com.genesys.communication

* com.genesys.communication.personal

The rules packages are processed as follows:

Domain com.genesys com.genesys.blog com.genesys.commepricajgarsys.communication.|
genesys.com + = - i
blog.genesys.com + + - -
communication.genesys.com - + -
personal.communicati®n.genesys.com - + +

This feature is turned off by default. You can turn on domain separation rule execution
on the specified Frontend server by setting the cep.domainSeparation option to true.

Creating a Rules Package

Complete the steps below to create the rules package associated with your Web Engagement
application. This procedure is an example of how to create a rules package. For further information
about creating rules, refer to the Genesys Rules System Deployment Guide.

Prerequisites
¢ Your environment includes Genesys Rules Authoring Tool. See Genesys environment prerequisites for
compliant versions.

* Roles are configured to enable your user to create rules.
Start

1. Open the Genesys Rules Authoring Tool and navigate to Environment > Solution > New Rule
Package.

2. In the General tab:
e Enter a Package Name. For example, myproject.rules.products.
e Enter a Business Name. For example, Products.

* Select web _engagement for Package Type. WebEngagement CEPRule Templates appears in the
Template table.

e Optionally, you can enter a Description.

Developer's Guide 147



Deploying a Rules Package Customizing the Browser Tier Widgets

3. Select WebEngagement CEPRule Templates in the Template table.

S Genesys GENESYSRULES AUTHORING
| Environmet = General
| New Rule Package Business Export Rule Package
+ ﬂ Dema Sokation Maime |F’r|:"'.'1"':"l
F'ad:_:gz |weh_ergagemert ﬂ
Descrighion
TEMESE  gelected Mame Wersion

b ‘WebEngagement_CEFRule_Templates 4

1]

GWENewPackageGRA.PNG

4. Click Save.

End

Creating Rules in the Rules Package

Prerequisites
¢ Creating a Rules Package
Start

1. In Genesys Rules Authoring Tool, select the rules package you created in the previous procedure.
2. Select the Rules tab.

3. Click New Linear Rule. This creates a new rule in the Rules table.

Developer's Guide 148



Deploying a Rules Package Customizing the Browser Tier Widgets

4. Select the created rule:
e Enter a Name. For example, Products.

* Enter a Phase. The list of rule phases can be modified by changing the values of the Phases
enumeration in the CEP Rules Template. The default value is *.

5. Click Add Condition:

* Scroll down to select a condition. For example, page transition event occurs that belongs to
category, which launches the actionable event any time that a user enters or leaves a page on
your website.

Qc Genesvs GENESYS RULES AUTHORING
| Ervvironment =] Genersl Rulbes At Tral
I Harme Description Pleass Calendar Pending Start Date Er
= [ Environment I [ Deployment
i @ Dabv |4 Rue-10] products . | (rare seiected [] [ |
1 Mo Rule Package
= 1 Product
] Busness Calendars
& Deploy Rues (*)
\ Search - - -
& € Demo Soksion | i MWew Decigion Table __,rqumrmu___,mpmma|
products Add Condition v|ndcll.t.1lnn = Group -

ANHD category is {category} save as {event) (WebErgagem
ANRD event following {prevEvent} with category {category]

‘ Sectin Expression Parameters

Vibhen | | AND ewvent following {prevEsent} with name {cventMame}
| Then AND event searches {scarchString) (WedExgagement_CE
| AND event with name (eventiame) (WebEngagement_CE
| Precondition: save last cvent (WebEngagement_ CEPR e
: euent with name {eventlame) save as [event) WebEnga
' page transition event occurs that belongs to category [
I page traneition avent occurs that belongs to categony
|

Seject o i

Select your rule's condition.

* Select a category in Parameters</t>. For example, Products. The Parameters list displays
the categories that you previously created.

Developer's Guide 149



Deploying a Rules Package Customizing the Browser Tier Widgets

Sectic4 Expression Parameters |

When

| | page transition event oc| {category} I
Then Products

{rateqory

[~

Set the condition's parameters.
6. Click Add Action and select an action in the list. For example, generate actionable event.

7. Click Save. ...
You can create as many rules as you need in your rules package.

End

Deploying the Rules Package

Prerequisites

* You started the Web Engagement servers.

Start

1. In Genesys Rules Authoring Tool, navigate to Solution > your rules package > Deploy Rules.

Developer's Guide 150



Deploying a Rules Package

Customizing the Browser Tier Widgets

£ Logon - Genesys Rules Auth % ¥ £ Genesys Rules Autharing »

€& - C [192.168.3.189/genesys-rules-authoring/indesx. jsp

& Genes

| Ervironment

GENESYSIRULESALITHERING

']

Outstanding Deployments

Fackage Snapshots

Last Log In: Ju

Ceployment Histony

= =) Enviranrment

- G Playground
[ Mew Rule Package

[ comyplspground

Selectad
-

Enapshot Name

LATEST

Conmnent

Date

Represents latest contents of thiz rule package Jun &, 2014 3:57 &M

& Deploy Rules (5)

Create Snapshot
4, Search

E:xport Snapshot Oelete Snapshot Refresh

Deployw Mo

22014 Genesys Telecommunications Laboratories, Inc. All rights reserved.

Schedule Deployment Show Package Source

2. Select the checkbox next to your rules package in the Package Snapshots section.

3. Click Deploy Now. The Deploy window opens.

4. Select your Genesys Web Engagement Server for the Location.

Developer's Guide

151



Deploying a Rules Package

Customizing the Browser Tier Widgets

£ Logon - Genesys Rules Auth % ¥ £ Genesys Rules Autharing »

& Genes

| Ervironment ¥ |

= =) Enviranrment

- G Playground
[ Mew Rule Package

[ comyplspground

€& - C [192.168.3.189/genesys-rules-authoring/indesx. jsp

Outstanding Deployments

Fackage Snapshots

Selectad
-

GENESYSIRULESALITHERING

Ceployment Histony

Last Log In: Ju

Enapshot Name

LATEST

Conmnent

Date

Represents latest contents of thiz rule package Jun &, 2014 3:57 &M

& Deploy Rules (5)

Create Snapshot
4, Search

E:xport Snapshot

Oelete Snapshot

Refresh

Deployw Mo

22014 Genesys Telecommunications Laboratories, Inc. All rights reserved.

Schedule Deployment

5. Click Deploy. The rules package is deployed to the Web Engagement system.

End

Next Steps

Show Package Source

¢ If you are following the Standalone deployment scenario, you can test your application with the GWM

Proxy.

Developer's Guide

152


https://docs.genesys.com/Documentation/GWE/latest/Deployment/DeploymentScenarios#t-0
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/TestwithGWMProxy
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/TestwithGWMProxy

Testing with GWM Proxy Customizing the Browser Tier Widgets

Testing with GWM Proxy

The GWM Proxy is a development tool, which enables you to test your application without adding the
JavaScript tracking code to your website. Once you have configured this proxy, you can launch it and
start the Genesys Web Engagement servers to start testing your application by emulating a visit on
your website. In a few clicks, without modifying your website, Genesys Web Engagement features will
show up on a set of web pages, according to the rules and categories that you created.

There are two proxy tools available in the Genesys Web Engagement installation: Simple and
Advanced. See the appropriate tabs below for details and configuration information.

Simple GWM Proxy

To use the Simple GWM Proxy, you must first complete a few procedures to configure the tool and
your web browser.

Getting the GWM Proxy Port

Complete this procedure to retrieve the GWM Proxy port, which you will need later when you
configure your web browser.

Start

1. Navigate to C:\Users\current user\GWMProxy.
If this folder does not exist, navigate to your Web Engagement installation directory and launch
servers\proxy\startserver.bat (on Windows) or servers\proxy\startserver.sh (on Linux). The
GWMProxy folder appears automatically.

2. Edit config.xml' and find the <proxy> tag.

3. Check that the value of the <ip> tag is set to your host IP address.
Note: You cannot use 127.0.0.1 or localhost for this value.

4. Note the value of the <port> tag (usually 15001).

5. Save your changes.

End

Starting the Proxy

Navigate to your Web Engagement installation directory and launch servers\proxy\startserver.bat
(on Windows) or servers\proxy\startserver.sh (on Linux). The Simple GWM Proxy starts.

Developer's Guide 153



Testing with GWM Proxy Customizing the Browser Tier Widgets

EAveb Engagement Prony [_|Of =]

201468718 @7:37:53,.486 DEBUG ConfigurationlUtils — Configuration loaded from thel’
abszolute path C:isllzerssAdministrators~GUMProxysconfig.xml

201468718 @7:37:53,.447 DEBUG ConfigurationlUtils — Configuration loaded from thel
abszolute path C:isllzserssAdministrators~GUMProxysconfig.xml

20148718 @7:37:53,.455 INF0O GUHMProxy — GUMProxy 3.2.13 started.

2014-87-18 A7:-37:53.751 DEBUG Configurationltils — Configuration loaded from the
abzolute path C:\UserssAdministratorsGUMProxysconfig.xml

2014-@7-18 A7:-37:53.763 DEBUG Configurationltils — Configuration loaded from the
abzolute path C:\UserssAdministratorsGUMProxy config.xml

2014-87-18 @7:-37:53.772 DEBUG Configurationlltils — Configuration loaded from the
abzolute path C:sUserssAdministratorsGUMProxysconfig.xml

2014-87-18 @7:37:54,.263 INFO Control — new session file created

The Simple GWM Proxy

Setting Up your Web Browser

Configure your web browser to use the Simple GWM Proxy.

Start

1. Start your web browser.

2. Open your Internet settings. For instance, in Mozilla Firefox, select Tools > Options'. The Options
dialog window appears.

3. Select Advanced’, and in the Network tab click Settings... The Connection Settings dialog
windows appears.

4. Select the Manual proxy configuration option:
* Enter your host IP address in the HTTP proxy text box.

* Enter the port used by the GWMProxy in the Port text box. This is the value you retrieved in
"Getting the GWMProxy Port".

* Select the option Use this proxy server for all protocols.

Developer's Guide 154



Testing with GWM Proxy Customizing the Browser Tier Widgets

Connectinn Settings
J O d 0 G Q B | ermeremesemterio
=l | ] rﬂ == i = go
Gereral  Tabs Content  Apphcstions  Prively  Secuity  Sync | Advanced Mo pray.

~ Bubo-debect proncy settings For this nstywork.

Geraral lH:m-kll.pd.m|Elw'mMm| P T —

L2l @ [Marwdproey conigueabion: ]
Configure how IFrefox connects bo the Intemet Sgttings I HTTP Proy: | Port: | j
- Cached Wb Conbenk ' Usge this prowy server For all protocols
Your web corkent caches i ourrently using 13.7 M8 of disk space Chear Now I SoLProwy | Pk I :I
r mmm_mrw EPprony | Potk: | :l
Limit cache b 124=={ ME of space

sagstost: | Bort: | :l
- (iffine Web Content and User Data ™ OfkEwd I SOCES S
our apphcation cache is ourrently using 0 kytes of disk space Clear flow I e Proey Foms |
' Lol me when awebske asks to store data for offine use ml

Example: mozilla.ong, net.nz, 192,163, 1.0124
" gubomatic proxy configuration LELL;
I FEhosd

The Followsing webesitbes ara abesad o store data for of flire usa;

HEToye I | o ] o] I W |

GWMProxy used in Firefox

5. Click OK. Now your browser is set up for the GWM Simple Proxy. To use the proxy, all you need to do is

navigate to the site where you want the proxy to inject the Web Engagement instrumentation script
and browse through the web pages.

End

Modifying the Script in the GWM Proxy (Optional)

You can edit the map.xml file in the /tools/proxy directory to customize the code injected in the
HTTP response retrieved through the proxy.

To do this, add your code under the <content></content> element with CDATA masking.

If you want to browse a secure domain, insert your code under
<secure><content>...</content></secure> elements; otherwise, use the
<simple><content>...</content></simple> element.

In the root <map> tag, the "replace" attribute uses regular expressions to specify where the code

must be injected. For instance, the string "%s </head>" means that the "%s" code must be added
before the "</head>" tag.

Do not forget to restart GWM Proxy after making modifications to the map.xml file so

Developer's Guide 155



Testing with GWM Proxy Customizing the Browser Tier Widgets

that your changes will take effect.

Here is an example of a modified map.xml file that injects the DSL code in the HTTP response.

<?xml version="1.0"7?>
<mapping>
<map replace="%s </head>" domains="genesyslab.com;www.genesyslab.com;www-
ssl.genesyslab.com;">
<simple>
<content>

<! [CDATA[
<script>

var gt = gt || [];

_gt.push(['config', {

dslResource: ( 'https:' == document.location.protocol ?
"https://demosrv:8443'
"http://demosrv:8081') + '/frontend/resources/dsl/domain-model.xml',

httpEndpoint: "http://demosrv:8081',
httpsEndpoint: "https://demosrv:8443'
)
var gwc = {
widgetUrl: ( 'https:' == document.location.protocol ?

"https://demosrv:8443"' :
"http://demosrv:8081') + '/frontend/resources/chatWidget.html'

’

(function(gpe, gwc) {
if (document.getElementById(gpe)) return;
var s = document.createElement('script'); s.id = gpe;
s.src = ( 'https:' == document.location.protocol ?
"https://demosrv:8443"'

"http://demosrv:8081') + '/frontend/resources/js/build/GPE.min.js";
s.setAttribute('data-gpe-var', gpe);
s.setAttribute('data-gwc-var', gwc);
(document.getElementsByTagName('head') [0] ||
document.body) .appendChild(s);

P _gt', ' gwc');
</script>
11>
</content>
</simple>
</map>
</mapping>

Advanced GWM Proxy

The Advanced GWM Proxy is based on the OWASP Zed Attack Proxy Project (ZAProxy). In addition to
acting as a proxy, the Advanced GWM Proxy also provides a Ul and validates vulnerabilities in your
website at the same time.

Developer's Guide 156



Testing with GWM Proxy Customizing the Browser Tier Widgets

While Genesys Web Engagement requires a minimum of Java version 1.6, the
Advanced GWM Proxy requires JDK 1.7 or higher.

To use the Advanced GWM Proxy, you must first complete a few procedures to configure the tool.

Starting the Proxy

Navigate to your Web Engagement installation directory and launch servers\proxy2\zap.bat (on
Windows) or servers\proxy2\zap.sh (on Linux). The proxy starts.

Developer's Guide 157



Testing with GWM Proxy Customizing the Browser Tier Widgets

File Edit “iew Analyse Report Tools Online Help

(Standardmode ju) | | B 5 & BE OO ¢V =«b X%k E o
J i@ Sites T L] Seripts ] J < Quick StartWT = Request T 4= Response T 3 Bre
@ Sites

Welcome to the OWASP Zed

FAP is an easyto use integrated penetration testing tool for fi
Please be aware that you should only attack applications that

To quickly test an application, enter its LIRL below and press

LIRL to attack: hitpSf

l L Aftack J M stop

Progress: Mot started
E ] i
[ #° Farced Browse T L Fuzer T [ ] Params T =} Hittp Sessions T i) Zest Results T P
j = Histary T Cl, Search T 24 Break Paints I U slerts
@ | FilterOFF

| Alerts M0 fO D RQ

The Advanced GWM Proxy

Configuring the Proxy

Once the proxy is running, you can configure it using the GUI.

Start

Developer's Guide 158



Testing with GWM Proxy Customizing the Browser Tier Widgets

1. Open Tools > Filter....

Eile Edit iew Analyse Report ﬂnline Help

| standard mode |=] | ] L [ o == PN @
; i : Erowse AP|
o 8l L SEripts
—[-“& SH’;EET o= E ] Encode/Decode/Hash. ..
@ Sites Manual Request Editor...

Run the Garbage Collector
Manual Send WebSocket Message

Options...

Select the Filter menu item.

2. In the list of filters, select Replace HTTP response body using multiple patterns and click ... to
edit the filter.

Developer's Guide 159



Testing with GWM Proxy Customizing the Browser Tier Widgets

g GTETT W R W W

2L Bre
| - ’;r‘i?;-lgﬂ]:&k,_:
Filters el & 1
Filter . |elcol
Enable All | | Disable Al e
i T e be aw
Filte QO (o OWASPZAP ¥ & & |EE-- |
Ay i
Repl tterns list: ickly tes
168 eplace patterns lis =
Log Ol
Cog Ie bt B o attack
Rep tern. E &
Rep . ™ .
I | Rep isttern. B olE:
Rep = ern, O Qf
Det: | LAdd | [ Edit | | Delete | in HTTP... [ _
Rep B =l more in
LDg [ Ok ] l Cancel J D are usit
Det: sponse ... [ |
Change user agent to other browsers. [] (o]gure you
Replace HTTP response body using multiple patterns. n@ int your
Send ZAP session request ID D

Select the filter.

3. Click Add and enter the following information:
* Pattern - </head>
* Replace with -

<script>

var gt = gt || [];

_gt.push(['config', {

dslResource: ( 'https:' == document.location.protocol ? 'https://localhost:8081'
"http://localhost:8081') + '/frontend/resources/dsl/domain-model.xml',
httpEndpoint: 'http://localhost:8081',

httpsEndpoint: 'https://localhost:8081'

s

var gwc = {

Developer's Guide 160



Testing with GWM Proxy Customizing the Browser Tier Widgets

widgetUrl: ( 'https:' == document.location.protocol ? 'https://localhost:8081 :
"http://localhost:8081') + '/frontend/resources/chatWidget.html'

(function(gpe, gwc) {

if (document.getElementById(gpe)) return;

var s = document.createElement('script'); s.id = gpe;

s.src = ( 'https:' == document.location.protocol ? 'https://localhost:8081'
"http://localhost:8081') + '/frontend/resources/js/build/GPE.min.js";
s.setAttribute('data-gpe-var', gpe);

s.setAttribute('data-gwc-var', gwc);
(document.getElementsByTagName('head')[0] || document.body).appendChild(s);
ne_gt', '_gwe');

</script>

</head>

Developer's Guide 161



Testing with GWM Proxy

Customizing the Browser Tier Widgets

'Q ”~ Filters D
¥ Filters Filter ()
Enable all Disable All

Fiter | & W Edit pattern

fvoid B g Enter a regular expression as the pattern,
Logun — Pattern: '-c:fhead:-
Log un
Log ref | Replace with: —
Replac wvar _gt = _gt || [l
Replac _gt.pushi['config’, {
Replac dslResource: ( 'https:' == document.location.protocol 7
Replaf ‘http:fflocalhost:BOBL') + 'ffrontend/resources/dsl/doms

Pag i httpEndpoint: ‘http:/flocalhost:8081",

Detecl L httpsEndpoint: 'https:/flocalhost: 8081
Replac 10
Log co
Detectin. var _gwe = {
chanael widgetUrl: ( 'https:' == document.location.protocol 7 'ht

‘http:/flocalhost:BO81') + ‘ffrontend/resources/chatWwidc
1= dilE ]_:
Send ZAF (functionigpe, gwc) {

Enter the pattern and text to replace it with

4. Click OK to save the pattern.

End

Configuring the URL Filter

if (document.getElementByldigpe)) return;

var s = document.createElement('script'}; s.id = gpe;
s.src = [ 'https:' == document.location.protocol 7 'http:
‘http:/flocalhost:B081') + 'ffrontend/resources/js/build/C
s.setittribute('data-gpe-var', gpel:
s.setAttribute('data-gwe-var', gwcl;
{document.getElementsByTaghame('head')[0] || docum
0 gt '_gwe');

=(script=

<(head=|

Complete this procedure to use the GUI to configure URLs that the proxy should ignore.

Developer's Guide

162



Testing with GWM Proxy

Customizing the Browser Tier Widgets

Start You can exclude a site in one of two ways:

* In the Sites tab, right-click on a site and select Exclude from > Proxy.

Eile Edit iew Analyse

Report Tools Online Help

[Standardmode i | | E M 2 o EE 22 Y =+« 1k b

[ @ sites | | | scripts |

v & [ sites

|| VI GET:event
| P http:/fedn.op
| W http://mozorg
|| Fhttp:/ivideos
L B http:/fwww. gg
L] P http:/fwww. m
L Fhttp:ffwww.m

¥ ¥yyy¥Tyr

Delete

Include in Context
Flag as Context

Fun application
Exclude from Context
Exclude from
Brealk...
Alerts for this node

Fesend..,

Mew Alert. ..

Shew in History tab

Open URL in Browser

Copy URLs to clipboard
Generate anti CSRF test FORM
Imvoke with script...

&dd to Zest Script

Compare 2 requests

Compare 2 responses
Fefresh Sites tree

Save Raw

LAYy Y vy

75585,5248048108,t,u

Scanner
Spider

Select a site to exclude

e Select File > Properties. In the Session Properties window, select Exclude from proxy, add your

URL, and click OK.

Developer's Guide

163



Testing with GWM Proxy Customizing the Browser Tier Widgets

.

File Edit iew Analyse Report Tools Online Help

(Standardmede ) | B H M 2 & DE OEE § =«b P 0XL& 0 o
J._-@-Sitas_] L Scripts ]

v @ v Sites

Y& ™ http: (/246059135 log. optimizely.com
,_L: U GET:event(a.d.f.n 5245617832 5245677587, 5245875585,52460481 08, t, u,wxhr.y)

» [ ] P http:/fcdn.op Ay L Session Properties
e !-tl http.!!mnzar ¥ Session [Exclude from proxy
» ] o http:/fvideos e bbb e
. Fu http:/fwww.g Exclude from proxy URLs which will be ignored by the proxy
| RO http e Exclude from scanner R
* ] P http:fAww.n Exclude from spider g
F Contexts

Exclude from WebSock

ok

Enter a URL to exclude.

* If you want the proxy to remember the excluded URLs beyond the current session, select File >
Persist session... and select a file to save your session.

End

Developer's Guide 164



Testing with GWM Proxy Customizing the Browser Tier Widgets

Working with the Proxy

After you have configured the proxy, keep it open and open up a web browser. Now you can browse
through your web pages that are instrumented with Genesys Web Engagement and they will be
displayed in the Sites tab of the proxy GUI:

W

File Edit Wiew Analyse Report Tools Cnline Help
Standardmode ) [ 1 B M £ % @2 OE5@ V =« P %&N o
Jﬁ Sites_T L] Scripts ]

v @ Msites

» || http://426-tdw-681.mktoresp.com

» B ™ http://707225039.l0g. optimizely.com
» | [ http:/fapi.demandbase.com

» || [ httpyfedn. optimizely. com

» || [ http://d3foqifuyf87qj.cloudfront.net
* | U http:/dnns06yrbagrg. cloudfront.net
U http:ffgenesyslab.com

F http:ffigenweb.genesyslab.com

F httpdfmunchkin.marketo.net

F httpiifstart. ubuntu.com

| http://stats.g.doubleclick.net

L [ http:ffwww, genesys.com

L P http:/fwww.genesyslab.com

| M http:/fwww.google-analytics.com

L M http:/fwww.google.com

| http:/iwww.google.com.ua

__| M http:/fwww.googleadservices.com
__| [ http:/fwww.googletagmanager.com

B |

[

¥y ¥ ¥ ¥y ¥y ¥y ¥y ¥y " o™

Your instrumented pages show up in the Sites tab

For more information about working with ZAProxy, see https://www.owasp.org/index.php/
OWASP Zed Attack Proxy Project

Security Testing with ZAProxy

Genesys performs security testing with OWASP Zed Attack Proxy (ZAProxy) to make sure the Genesys
Web Engagement solution is invincible to known attacks.

Developer's Guide 165



Testing with GWM Proxy Customizing the Browser Tier Widgets

/AP Overview

The ZAProxy is an easy-to-use, integrated penetration testing tool for finding vulnerabilities in
websites and web applications.

Among others, ZAProxy supports the follow methods for penetration security testing:

* passive scan

e active scan

Genesys uses both methods.

Passive Scan Overview

ZAP is an Intercepting Proxy. It allows you to see all of the requests made to a website/web app and
all of the responses received from it. For example, you can see AJAX calls that might not otherwise be
obvious.

Once set up, ZAP automatically passively scans all of the requests to and responses from the web
application being tested.

While mandatory use cases for the application that is being tested are followed (either manually or
automatically), ZAProxy analyzes the requests to verify the usual operations are safe.

Active Scan Overview

Active scanning attempts to find potential vulnerabilities by using known web attacks against the
selected targets. Active scanning is an attack on those targets. ZAProxy emulates known attacks
when active mode is used.

Through active scanning, Genesys Web Engagement is verified against the following types of attacks:

e Spider attack — Automatically discovers all URL links found on a web resource, sends requests, and
analyzes results (including src attributes, comments, low-level information disclosure, and so on).

¢ Brute browsing (based on the Brute Force technique) — Systematically makes requests to find secure
resources based on known (commonly used) rules. For example, backup, configuration files, temporary
directories, and so on.

e Active scan — Attempts to perform a predefined set of attacks on all resources available for the web
resource. You can find the default set of rules here.

¢ Ajax spider — Automatically discovers web resources based on presumed rules of AJAX control (JS
scripts investigation, page events, common rules, dynamic DOM, and so on).

Developer's Guide 166



Testing with GWM Proxy Customizing the Browser Tier Widgets

Requests to other web applications must be excluded from scanning in order to see a
report for a particular web application.

Web applications that are being tested should be started on the local box because
some types of verification (like active scanning) can be forbidden by network
administrators.

References

If you want to examine your website against vulnerabilities in a similar way, refer to the OWASP Zed
Attack Proxy Project or other documentation to learn about how to perform security testing with ZAP.

Developer's Guide 167



Sample Applications Customizing the Browser Tier Widgets

Sample Applications

Genesys Web Engagement current includes the sample Playground application. It's a website and
Genesys Web Engagement application solution that you can use to test and demonstrate Web
Engagement's functional capabilities. The application is fully described in the Genesys Web
Engagement Quick Start Guide, which provides step-by-step instructions to help you quickly see Web
Engagement in action using the Playground application.

Developer's Guide 168


https://docs.genesys.com/Documentation/GWE/latest/Quick/Welcome
https://docs.genesys.com/Documentation/GWE/latest/Quick/Welcome

Get Information About Your Application Customizing the Browser Tier Widgets

Get Information About Your Application

After you have started your Web Engagement Frontend and Backend servers, you can explicitly
request version information from the servers.

To get this information, you should send a GET HTTP request to the appropriate URL for the Frontend
or Backend server.

Frontend Server

URL: http(s)://<frontend server host>:<frontend server port>/frontend/about

Build info:

Archiver-Version: Plexus Archiver

Build-Jdk: 1.6.0 27

Build-Number:

Build-Started-At: 20140618-0041

Built-Bv: prodalu

Created-Bv: Apache Maven 3.1.1

Implementation-Title: GPE Frontend server

Implementation-Vendor: Genesys Telecommunication Laboratories, Inc.
Implementation-Vendor-1d: com_genesvslab webme wme
Implementation-Version: £.1.200.17

An example Frontend Server response

Backend Server

URL: http(s)://<backend server host>:<backend server port>/backend/about

Developer's Guide 169



Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

Integrating Web Engagement and Co-
browse with Chat

The Integrated JavaScript Application provides the functionality of Web Engagement monitoring, Co-
browse, and Chat in one easy to configure JavaScript application, rather than using the individual
applications for each component.

The Integrated JavaScript Application is a JavaScript file that contains the Chat, Tracker, and Co-
browse JavaScript applications, as well as code for their integration.

The integration consists of the following:

¢ For Chat and Tracker: The pagelD and visitlD are automatically attached to the chat session's
userData when the chat session is started (either via the "Live Chat" button or the Chat JS API).

e For Chat and Co-browse: The application automatically detects if the agent is connected via chat and, if
yes, the agent automatically joins the Co-browse session when it is started.

The physical integrated application file, named genesys.min.js, contains the pre-integrated Chat,
Tracker and Co-browse JavaScript applications.

Tip
Another form of the app (gcb.min.js) is only shipped as part of the Co-browse
solution and contains pre-integrated Chat and Co-browse (no Tracker).

To successfully integrate Chat and Co-browse when chat is configured to operate in
"popup" mode, you must host chatWidget.html in the same domain as the website
(subdomain is also possible).

To use the Integrated Application in your Web Engagement or Co-browse solution, review the
information on this page and add the instrumentation snippet to your website, along with any
necessary configuration (this can vary depending on your solution — see Configuration for details.

Developer's Guide 170


https://docs.genesys.com/Documentation/GWE/latest/Developer/Engagement#t-0
https://docs.genesys.com/Documentation/GWE/latest/Developer/Monitoring
https://docs.genesys.com/Documentation/GCB/latest/Deployment/WebsiteInstrumentation
https://docs.genesys.com/Documentation/GCB/latest/Deployment/WebsiteInstrumentation
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/GCBIntegration#Configuration

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

Instrumentation Snippet

The JavaScript files are obfuscated and minified. You are not allowed to decompile
and/or modify them. If you do, support can not be guaranteed. Instead, you can use
the public JavaScript APIs and other documented methods to customize the
functionality.

You can activate the integrated functionality on a website by inserting the following snippet before
the closing </head> tag:

<script>(function(d, s, id, o) {

var fs = d.getElementsByTagName(s)[0], e;

if (d.getElementById(id)) return;

e = d.createElement(s); e.id = id; e.src = o.src;

e.setAttribute('data-gcb-url', o.cbUrl);

fs.parentNode.insertBefore(e, fs);
}) (document, 'script', 'genesys-js', {

src: "<SERVER URL>/genesys.min.js",

cbUrl: "<COBROWSE SERVER URL>/cobrowse" // this line is required only if Co-browse is used
});</script>

This script asynchronously (which means the loading won't block your site performance) loads and
executes the required JavaScript file.

You should only modify the following (except for the special case of changing global variable names,
described below) lines:

e src: "<SERVER URL>/genesys.min.js", — This defines the src (the URL) of the script that is loaded
and executed. You can load the script from the GWE Frontend Server, the Co-browse Server, or your
own server:

* To load the script from the Web Engagement Frontend Server, the URL format should be
http(s)://FRONTEND HOST[:FRONTEND PORT]/frontend/resources/js/build/genesys.min.js

* To load the script from the Co-browse Server, the URL format should be
http(s)://COBROWSE HOST[:COBROWSE PORT]/cobrowse/js/genesys.min.js

* To load the script from one of your own servers, use one of the above URLs to download the file and
then copy it to your server. If you choose this option, make sure to configure the caching properly
(see Note on Caching for details).

e cbUrl: "<COBROWSE SERVER URL>/cobrowse — This line is only required if you use Co-browse. It
defines the URL that is used by the Co-browse JavaScript to get and receive Co-browse-related data.

The Co-browse URL is also used by chat to connect to the Genesys infrastructure via the Co-browse
server. If you remove it, make sure to configure the serverURL option for chat, otherwise chat will not
work. Also, be sure to remove the trailing comma from the src: "<SERVER URL>/genesys.min.js",
line so that your script looks like this:

<script>(function(d, s, id, o) {
var fs = d.getElementsByTagName(s)[0], e;
if (d.getElementById(id)) return;

Developer's Guide 171


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/GCBIntegration#Note_on_Caching
https://docs.genesys.com/Documentation/GWE/latest/Developer/Engagement#t-0

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

e = d.createElement(s); e.id = id; e.src = o.src;
e.setAttribute('data-gcb-url', o.cbUrl);
fs.parentNode.insertBefore(e, fs);

}) (document, 'script', 'genesys-js', {
src: "<SERVER URL>/genesys.min.js"

});</script>

Note on Caching

If you choose to serve static resources (JavaScript) on your servers, you should
implement the analogous caching strategy to achieve best performance and minimum
traffic load.

All static resources (JavaScript in our case) are served with caching HTTP headers when loaded from
the Web Engagement Frontend Server or Co-browse Server. Both servers use the combination of
HTTP headers that lead to the following caching workflow:

¢ When the client (browser) receives the resource, it stores it on disk for a configured time interval.

e During this time interval, if the resource is requested, the browser loads it from disk without sending
any requests to the server (which speeds up the initialization of the scripts).

¢ After the time interval expires, the browser requests the resource again from the server. Then

» if the resource has not changed since the previous request, the server replies with an empty
response with 304 Not Modified status, to minimize the traffic. The browser then caches the
resource on disk for yet another configured time interval.

» if the resource has changed since the previous request, the server replies with a new version of the
resource. The browser, again, caches the resource on disk for a configured time interval.

The default time interval for both servers is 30 minutes.

Configuration

Configuration for the integrated application (except for Tracker, see Configuring Tracker) is stored as
a JavaScript object assigned to a global _genesys variable. This variable should be accessible to
genesys.min.js when it is loaded. So the entire instrumentation might look like this:

<script>

var genesys = {/* configuration goes here*/};
</script>

<INSTRUMENTATION SNIPPET>

Developer's Guide 172


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/GCBIntegration#Configuring_Tracker

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

For backwards compatibility with previous versions of Co-browse, the name of the
global configuration variable can also be _gcb. This is deprecated and may be
discontinued in later versions, so it is recommended that you switch to _genesys now
if you're using _gcb.

Disabling Services

You may encounter cases where you want to disable the Integrated Application and its services based
on some specific critieria. In this case, you can use a global variable to enable or disable services.

For example, if we create a global enableGenesys variable, we can enable Genesys services on the
page when it is set to true and disable servies when the variable is set to false.

<script>
var enableGenesys = true; // or false
<script>

The configuration snippet would look like this:

var _genesys = {
// custom options
+

if (!enableGenesys) {
// overwrite cobrowse/chat options
_genesys.chat = false;
_genesys.cobrowse = false;

The idea is to disable a service by overriding its configuration with false when enableGenesys is
false.

Changing the " _genesys" name

You can actually store the configuration in any global variable, _genesys is just the default
convention. To tell the application that the configuration is stored in another variable, you have to
modify the instrumentation snippet by adding a line there:

e.setAttribute('data-cfg-var', 'myCustomVariableName');

For example:

<script>
var myCustomConfiguration =
debug: true
I
</script>
<script>(function(d, s, id, o) {
var fs = d.getElementsByTagName(s)[0], e;
if (d.getElementById(id)) return;
e = d.createElement(s); e.id = id; e.src = o.src;
e.setAttribute('data-gcb-url', o.cbUrl);
// Use myCustomConfiguration variable as configuration (don't forget the quotes!):
e.setAttribute('data-cfg-var', ' myCustomConfiguration');
fs.parentNode.insertBefore(e, fs);

Developer's Guide 173



Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

}) (document, 'script', 'genesys-js', {
src: "<SERVER URL>/genesys.min.js"
cbUrl: "<COBROWSE SERVER URL>/cobrowse"

});</script>

Common Options

The following options are shared between services. They are shared by Chat and Co-browse. For
Tracker, see Configuring Tracker. These options can be set as direct properties of an object assigned
to the genesys variable:

var genesys = {
<OPTION>: <VALUE>
}s

If an option is set as in the example above, the option will be inherited by both Chat and Co-browse.
It is also possible to set an option for only one service or to set an option globally and override that
option for a particular service.

Examples:

// Set the option for all services:
var _genesys = {

<OPTION>: <VALUE>
}

// Set the option only for Chat:
var _genesys = {
chat: {
<OPTION>: <VALUE>
}

+
// Set the option for all services, but override for Co-browse:
var _genesys = {

<OPTION>: <VALUE 1>,

cobrowse: {
<OPTION>: <VALUE 2>
}

}i
debug

The debug option is set to false by default. To enable debug output to the browser console log, set it
to true.

var _genesys = {
debug: true
+

This option is not valid for the Tracker application. For details about configuring debug
for the Tracker application, see Tracker Application Advanced Configuration.

Developer's Guide 174


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/Monitoring
https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizeMonitoringScript#Advanced_Configuration

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

disableWebSockets

Default: false

Set this option to true to disable Web Sockets. See corresponding Chat option and Co-browse option
for more information on the purpose and impact of this option.

// Example: disable WebSockets for Chat and Co-browse (not recommended)
var _genesys = {

disableWebSockets: true
T
// Example: disable WebSockets for Chat, but enable for Co-browse
var _genesys = {

chat: {

disableWebSockets: true
}

};

Tip
When used with Chat, this option is automatically passed from configuration to
startChat() and restoreChat().

This option is ineffective for Tracker. See Configuring Tracker for information on
configuring Tracker.

Configuring Buttons

The _genesys.buttons section allows some basic configuration of the "Live Chat" and "Co-browsing"
buttons. It has three optional properties:

e position: Can be either "left" (default) or "right"

¢ cobrowse: Defaults to true

¢ chat: Defaults to true

Note that you can override only the properties that you want to be changed. Other properties are
used with their default values. For example this configuration:

var _genesys = {
buttons: {
chat: false
b
I

actually means this:

Developer's Guide 175


https://docs.genesys.com/Documentation/GWE/latest/API/StartChat#disableWebSockets
https://docs.genesys.com/Documentation/GCB/latest/API/JSConfigAPI#disableWebSockets
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/Monitoring

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

var _genesys = {
buttons: {
chat: false,
cobrowse: true, // inherited default
position: 'left' // inherited default
}
+

Disabling Buttons

As seen in the snippet above, you can pass false to disable the "Co-browsing" and/or "Live Chat"
button. This might be useful if you want to start chat or co-browsing from your own custom button (or
from any other element or event), using the Co-browse API or Chat Widget ]S API.

Providing Custom HTML for Buttons

You can also pass a function that returns HTML elements to buttons.cobrowse or buttons.chat. In
this case, the output of the function is used to render the button instead of default image.

Note that in this case your custom button(s) inherit the positioning of the default button(s).
Here's a simple example that makes use of the jQuery library to generate HTML elements:

function createCustomButton() {

return jQuery('<div class="myButtonWrapper"><button
class="myButton">Chat!</button></div>")[01];
}

var _genesys = {

buttons: {
chat: createCustomButton
}

};

jQuery is NOT mandatory to use in order to provide a custom HTML element. The
example above does return an HTML element out of a jQuery object by retrieving the
first element from jQuery collection via [0].

Configuring Tracker

In the current version of the Integrated JavaScript Application, the Genesys Web Engagement Tracker
Application is configured in its traditional way, via the global _gt (or other, if configured) variable.
See Tracker Application for details.

This means that the full instrumentation might look like this:

<script>
// Configure tracker:
var gt = window. gt || [];

_gt.push(['config', {
dslResource: <DSL RESOURCE>,
httpEndpoint: <HTTP_ENDPOINT>,

Developer's Guide 176


https://docs.genesys.com/Documentation/GCB/latest/API/JSCobrowseAPI
https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI
https://docs.genesys.com/Documentation/GWE/latest/Developer/Monitoring

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

httpsEndpoint: <HTTPS_ENDPOINT>
)

// Configure integrated application:
var genesys = { /* Integrated application, Chat and Co-browse configuration */ };
</script>

<INSTRUMENTATION SNIPPET>
Changing the "_gt" Variable Name

If you use genesys.min.js to include the Tracker Application onto your page, and want to modify the
name of the variable that Tracker is exported to, you must add the following line to the
instrumentation snippet:

e.setAttribute('data-gpe-var', '<NAME OF THE VARIABLE>');
For example, let's export Tracker to the _myTracker variable:

<script>(function(d, s, id, o) {
var fs = d.getElementsByTagName(s)[0], e;
if (d.getElementById(id)) return;
e = d.createElement(s); e.id = id; e.src = o0.src;
e.setAttribute('data-gcb-url', o.cbUrl);

e.setAttribute('data-gpe-var', ' myTracker'); // note the quotes around variable name
fs.parentNode.insertBefore(e, fs);
}) (document, 'script', 'genesys-js', {

src: "<SERVER URL>/genesys.min.js"
cbUrl: "<COBROWSE SERVER URL>/cobrowse"
});</script>

Using External Tracker

It is possible to use the integrated application with an external Tracker application (that is, a Tracker
application loaded from another script).

This might be useful if you have configured a Tracker application and want to use it with gcb.min.js
(provided by Co-browse solution) instead of loading Tracker from genesys.min.js (although this
setup is not recommended).
To do that, pass a reference to the external tracker to _genesys.tracker:
var _genesys = {

tracker: gt
T

The passed external Tracker is integrated with the chat widget.

Configuring Chat
Configuration for chat is stored in the chat subsection of the global configuration object:

var _genesys = {
chat: {/* chat configuration */}
}

Developer's Guide 177



Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

Configuring the Server URL

The main thing you might want to configure for chat is the URL of the server.

In most cases the server here is the Web Engagement Backend. Use the template below to construct
the URL:

var _genesys = {
chat: {
serverUrl: 'http(s)://<BACKEND HOST>[:<BACKEND PORT>]/backend/cometd’
}

};

If you use Co-browse, you can use Co-browse Server for chat. In this case, you don't
have to configure the serverUrl option explicitly. The cbUrl option in the
instrumentation snippet is used to automatically create the proper URL to connect
chat to the Genesys infrastructure via Co-browse Server.

Disabling Chat

You can disable the built-in chat completely by passing false to _genesys.chat.
var _genesys = {

chat: false
}

In this case, the "Live Chat" button is also disabled (it is not added to the page). If you want to
disable chat and to enable the "Live Chat" button (for example, to bind your own chat widget to this
button), you can do it by explicitly enabling the button in configuration (see Configuring Buttons):

var _genesys = {
chat: false,
buttons: {
chat: true
}
}

Now the button is added to the page, but clicking it does not open the chat widget.

Tip

Also see Disabling Services.

autoRestore

On every page reload / navigation, the chat widget is automatically restored if there is an ongoing
chat session. You can disable this behavior with the autoRestore option, which is set to true by

Developer's Guide 178


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/GCBIntegration#Configuring_Buttons
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/GCBIntegration#Disabling_Services

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

default. You might disable this behavior if you want more control over chat widget restoration or if
you want to get access to the chat session service API.

<script>
var _genesys = {
chat: {

autoRestore: false,
onReady: function(chat) {
chat.restoreChat().done(function(session) {
// Use chat session API here, e.g.:
// session.sendMessage('hello world');
// session.onAgentConnected(function(event) {...});

1)
}
}
}
</script>
Tip
See Obtaining Chat and Co-browse APIs if the onReady syntax above looks confusing
to you.

"Live Chat" and "Co-browsing" buttons appear only after restoreChat is called. So, if
you set autoRestore to false, it becomes your code's responsibility to call
restoreChat. If it is not called, buttons do not appear.

Chat Widget Options

All options (except for autoRestore and onReady) that are stored in the _genesys.chat object are
automatically passed to chat the startChat()/restoreChat() methods. See Chat Widget S API for
the full list of options.

The integrated application provides some defaults for your convenience, so that minimal or no
explicit chat configuration is required. The provided defaults are:

e debug is inherited from _genesys.debug

* maxOfflineDuration is aligned with Co-browse's maxOfflineDuration option and defaults to 600 seconds
(10 minutes)

e serverUrl is set automatically to use the Co-browse Server (if Co-browse is used)

Configuring Co-browse
Co-browse configuration is stored in the cobrowse subsection of the global configuration object:

var genesys = {

Developer's Guide 179


https://docs.genesys.com/Documentation/GWE/latest/API/ControlChat
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/GCBIntegration#Obtaining_Chat_and_Co-browse_APIs
https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/GCBIntegration#debug
https://docs.genesys.com/Documentation/GWE/latest/API/StartChat#maxOfflineDuration
https://docs.genesys.com/Documentation/GCB/latest/API/JSConfigAPI#maxOfflineDuration
https://docs.genesys.com/Documentation/GWE/latest/API/StartChat#serverUrl

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

cobrowse: {/* Co-browse configuration */}

};

See Co-browse Configuration API for the full list of options.
Disabling Co-browse

You can disable Co-browse completely by passing false to _genesys.cobrowse:

var _genesys = {
cobrowse: false
+

In this case, the "Co-browsing" button is also disabled (not added to the page). If you want to disable
Co-browse, but enable the "Co-browsing" button, you can do so by explicitly enabling the button in
configuration (see Configuring Buttons):

var _genesys = {
cobrowse: false,
buttons: {
cobrowse: true
}

}

Now the button is added to the page, but clicking it does not start the Co-browse session.

Tip

Also see Disabling Services.

Localization of Chat and Co-browse

The Tracker application does not have localization because it does not have a user
interface.

The integrated application is shipped with English localization. You can configure localization by
passing a URL to the localization option of the respective sub-module (cobrowse or chat). The URL
must point to a valid JSON response hosted on a server with JSONP support. If localization is
configured, you should implement proper caching of the localization resource to avoid delays in app
initialization (see Note on Caching).

See Localization for more information.
Example:

var _genesys = {
cobrowse: {

Developer's Guide 180


https://docs.genesys.com/Documentation/GCB/latest/API/JSConfigAPI#Co-browse_Configuration_Options
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/GCBIntegration#Configuring_Buttons
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/GCBIntegration#Disabling_Services
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/GCBIntegration#Note_on_Caching
https://docs.genesys.com/Documentation/GCB/latest/Developer/Localization

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

localization: 'http://example.fr/cobrowse-fr.json'

}I
chat: {

localization: 'http://example.fr/cobrowse-chat-fr.json'
}

}

Obtaining Chat and Co-browse APIs

For the Tracker API, see the Tracker ]S API.

If you are using Chat as part of Web Engagement GPE.js (and not part of the
Integrated Application), see Chat S Application for information on Chat API.

Using onReady Callbacks

There are three "ready" events in the integration module which can be used to gain access to the
APls:

e "Main", or global, "ready" event which is fired after all the parts of the app have initialized. It provides
access to both Chat and Co-browse APIs.

* Chat "ready" event.

¢ Co-browse "ready" event.

For each of the events, there is a dedicated onReady property in the configuration, which can be
used to add callbacks for the event.

You can add subscriptions (callbacks) to any of these events via the mechanisms described below.

Tip
"ready" events are fired after the DOM is ready, so you don't have to wrap code that
uses the provided APIs into jQuery(document).ready or similar constructions.

Subscribing to APIs using One Dedicated Function

Use this method if you want to provide one, and only one, subscription to a "ready" event.

Developer's Guide 181


https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI
https://docs.genesys.com/Documentation/GWE/latest/Developer/Engagement#t-0
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/GCBIntegration#.22Main.22_onReady_Callbacks
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/GCBIntegration#Chat_onReady_Callbacks
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/GCBIntegration#Co-browse_onReady_Callbacks

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

To use it, simply assign a function to the onReady property of the configuration section:

<script>
var _genesys = {
onReady: function(APIs) {
// Feel free to use the APIs here.
}
b

</script>

Tip

See "Main" onReady Callbacks for details about what APIs is in the example above.

Inside this function you can, for example, pass the provided arguments (the APIs) to your code so
that it can be used multiple times there.

Also, if you need to use the APIs in different parts of your code, you can use an array as described in
the next section.

Using an Array for Multiple Subscriptions to APIs

To use this method, you have to pass an array to the onReady property. This array may contain 0 or
more subscription functions:

<script>
var _genesys = {
onReady: [function(APIs) {
// Feel free to use the APIs here.
11

};

</script>
Now you can add subscriptions using the _genesys global variable in any part of your code:

genesys.onReady.push(function(APIs) {
// Another use of the API here.
3

Tip

See "Main" onReady Callbacks for details about what APIs is in the example above.

Tip
If you push a callback after the respective "ready" event has already happened, the
callback is called immediately.

Developer's Guide 182


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/GCBIntegration#.22Main.22_onReady_Callbacks
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/GCBIntegration#.22Main.22_onReady_Callbacks

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

To use the .push(callback) mechanism, you MUST pass an array to configuration, otherwise it is not
guaranteed that the push method is always available.

For example, if you want to make use of the above push functionality for adding multiple
subscriptions to each of the three onReady events, the minimum required configuration is this:

<script>
var _genesys = {
cobrowse: {

onReady: []

}I

chat: {
onReady: []

}I

onReady: []

b
</script>

"Main" onReady Callbacks

Tip
See Using onReady Callbacks for detailed information about how you can add the
callbacks.

These callbacks can be used to access the Co-browse API and/or the Chat API, and are also fired after
the Ul has been created. They can be used, for example, to attach custom handlers to the "Live chat"
and "Co-browsing" buttons, add additional buttons, and so on.

All attached callbacks receive two arguments:
1. An object containing Chat (only in top context) and Co-browse APIs. APIs can be accessed via object
properties:
a. .chat for Chat Widget JS API

b. .cobrowse for Co-browse API

2. A Boolean property indicating whether the code executes in the "top" context (true) or in an iframe
(false). This is useful for Co-browse API users (see Co-browse in iframes).

Example:

_genesys.onReady.push(function(APIs, isTopContext) {
// Check if we're in iframe:
alert('We are ' + (isTopContext ? '' : 'not') + ' in an iframe');

// Start a chat session:

if (isTopContext) {
APIs.chat.startSession();

}

// Mark an element as "service" to Co-browse (so that it won't be shown to agent):
APIs.cobrowse.markServiceElement(document.getElementById('myCustomChatWidget'));

Developer's Guide 183


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/GCBIntegration#Using_onReady_Callbacks
https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI
https://docs.genesys.com/Documentation/GCB/latest/API/JSCobrowseAPI
https://docs.genesys.com/Documentation/GCB/latest/API/JSCobrowseAPI#Co-browse_in_iframes

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

Chat onReady Callbacks

Tip
See Using onReady Callbacks for detailed information about how you can add the
callbacks.

These callbacks are fired as soon as the Chat Widget |S API is available and they provide the same
APl methods the chat widget provides:

e startChat()

e restoreChat()

The only difference is that the provided methods use options from genesys.chat configuration, so
you don't have to pass options to them.

If you still need to pass options directly to startChat() or restoreChat() call, you can but the
options are merged with options from configuration, and will take higher priority:

<!-- Suppose you have the following configuration: -->
<script>
var _genesys = {

chat: {

registration: false,
embedded: false,

onReady: []
}
}
</script>
<!-- And then somewhere in your code: -->
<script>

_genesys.chat.onReady.push(function(chat) {
chat.startChat({
embedded: true
1)
1)

</script>
<!l-- The final options passed to startChat() will be: -->
{

registration: false, // taken from configuration
embedded: true // overriden by options from chat.startChat() call

Co-browse onReady Callbacks

Tip

Developer's Guide 184


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/GCBIntegration#Using_onReady_Callbacks
https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/GCBIntegration#Configuring_Chat

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

See Using onReady Callbacks for detailed information about how you can add the
callbacks.

These callbacks receive two arguments:

e cobrowseApi: Instance of the Co-browse API (you can name it api, cobrowse or any other name that
is convenient to you).

¢ isTopContext: Boolean property indicating whether the code executes in the "top" context (true) orin
an iframe (false). See Co-browse in iframes.

For example:

<script>
var _genesys = {
cobrowse: {
disableBuiltInUI: true,
onReady: function(cobrowseApi, isTopContext) {
createCustomCobrowseUI(cobrowseApi, isTopContext);
}

}
I
</script>
<INSTRUMENTATION SNIPPET>

Versions and Compatibility

The Integrated JavaScript Application has its own versioning; different versions of the application are
compatible with different versions of Co-browse and Web Engagement.

The general rule is that the version of the integrated application shipped with a particular solution is
compatible with that version of the solution.

To find out the version of the integrated application, see the value of genesys.version (execute
_genesys.version in the browser console) when the site is instrumented with the integrated
application:

# Y £ ) J= Consolev HIML (55 Script DOM Net Cookies Page Speed Psearchwith| & | v | EE

lg | Clear Persist Profile | All| Errors Warnings Info DebuglInfo Cookies 1

» _geneaya.version
“1.0.0"

Compatibility Table

Note: The following table indicates which versions of Web Engagement and Co-browse are
compatible with the indicated versions of the Integrated Application. It does not show which version
of the Integrated Application is shipped with each version of Web Engagement and Co-browse.

Developer's Guide 185


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/GCBIntegration#Using_onReady_Callbacks
https://docs.genesys.com/Documentation/GCB/latest/API/JSCobrowseAPI
https://docs.genesys.com/Documentation/GCB/latest/API/JSCobrowseAPI#Co-browse_in_iframes

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

Integrated Application Web Engagement Server ) .
version (_genesys.VERSION) versions (S SR U
8.1.302.06+ up to, but not
including 8.5
1.0.0 8.1.200.38+
(Co-browse 8.5 is not supported)
850.0.X, 850.1.X 8.1.200.38+ 8.5. XXX. XX

Developer's Guide 186



Integration with Second-Party and Third-Party Media Customizing the Browser Tier Widgets

Integration with Second-Party and Third-
Party Media

Overview

The Genesys Web Engagement solution integrates with second-party and third-party media to extend
the Web Engagement capabilities beyond what is available with the basic GWE installation. The key
integration points for both media types are the Notification Service or proactive invitation:

* The second-party media is a first-class citizen in the Genesys platform that can carry extra business
attributes (attached data), like visitlD, pagelD, and so forth, for operational and reporting purposes.
The key differentiator is that the second-party media is processed by Genesys components like
Interaction Server. The principle of the integration is simple — taking control of the proactive invitation
and Notification Service. Examples of second-party media include GWE Chat, Genesys Mobile Services
(GMS) Chat, and Web API Chat.

¢ The third-party media is provided by third-party services that are not tightly integrated with the
Genesys cross-channel platform (particularly with Interaction Server). The integration with third-party
media boils down to taking control of the proactive invitation, which is part of the Notification Service.

The proactive invitation (represented by the Invitation Widget) is the key integration point that
should be used when you need to overlay the widget on a page. The Notification Service should be
used in all other cases.

Second-Party Media Integration

In order to integrate with second-party (Genesys) media, the media widget and media server
components must propagate the Web Engagement visitiD and pagelD attributes to the interaction
as attached data. You can get the visitlD and pagelD in the widget through the public Monitoring JS
API (_gt.push(['getIDs',callback]) method). You should also attach a key-value pair with a key of
webengagement. The value can be any string, even an empty one. For reporting purposes, this key
will be considered as the sign of a proactively created media interaction.

The diagram below shows an example of the data flow between components in a second-party media
integration. Web engagement is initiated by Genesys Orchestration Server (ORS), which sends a
notification to Genesys Web Engagement. As a result, the custom Invitation Widget appears in the
browser. After the invitation is accepted by the user, the Invitation Widget passes the Web
Engagement attributes (visitlD and pagelD) to the Media Widget. The third-party media server then
starts a new interaction with the attributes as attached data. Based on this data, the Web
Engagement Plug-in for Interaction Workspace can provide the browser history of the current user
and other information.

Developer's Guide 187


https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI
https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizetheBrowserTierWidgets#t-0
https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizetheBrowserTierWidgets#t-0
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/Engagement#t-0
https://docs.genesys.com/Documentation/GMS/8.5.001/ClientSamples/JavaScriptSamples
https://docs.genesys.com/Documentation/GMS/8.5.001/ClientSamples/JavaScriptSamples
https://docs.genesys.com/Documentation/ES/8.5.0/WebAPI/Chat
https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizetheBrowserTierWidgets#t-0
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI
https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizetheBrowserTierWidgets#t-0

Integration with Second-Party and Third-Party Media Customizing the Browser Tier Widgets

2nd party attachUserData(visitID, pagelD)

media
server

Media Widget

startMedia(visitID, pagelD)

init{) send(megssages)

Invitation Tracker Genesys
Widget Application y Web

Engagement

sendInviteResult()

w

visitlD, pagelD

Browser

plugin

- Customizable component
. 2nd or 37 party component
e Default Data Workflow - GWE component

PR 2™ gor 379 party media
Data Workflow Genesys platform

Here is another view of the data flow in a second-party media integration, shown in a sequence
diagram:

Developer's Guide 188



Integration with Second-Party and Third-Party Media Customizing the Browser Tier Widgets

= Tracker Invitation
-“F‘F'li':atlon
I

1 1 I
|
: notify(messages) | 1 | i ;

4.‘1 - ] 1 |
i ! : ! {
send(messages) | | " .

et

1 1 |
I init() | : t
I | B S & 1 !
1 ] i ;
I I | :
I 1 : I
I 1 ] r
: : startMedia(visitID, pageID) i

! ¥

| | sendInviteResult() t

attachUserData [vi[s itID, pagelD)
y—_——

attachUserData(visitID, pagelD)

Bt ittt

1
1
1
1
1
1
1
1
1
1
1
: T R N | .
1
1
1
1
1
1
1
1
1
1

. Custorizable component

. 2rd or 3" party component
. GWE componant
. Genesys platform

Third-Party Media Integration

The diagram below shows an example of third-party media integration. Web engagement is initiated
by ORS, which sends a notification to Genesys Web Engagement by using the Notification Service
REST API. As a result, the custom Invitation Widget appears in the browser. After the invitation is
accepted by the user, the Invitation Widget initiates the Media Widget. The third-party media server
does not create an interaction in Genesys Interaction Server as it does in the second-party media
integration scenario, but the same customization points are still available: Notification Service and
proactive invitation.

Developer's Guide 189


https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI
https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizetheBrowserTierWidgets#t-0

Integration with Second-Party and Third-Party Media Customizing the Browser Tier Widgets

3rd party
media
server

Media Widget

startMedia()

init() send({messagas)
notify{rmessages)
Invitati Tracker — . %
Widget Application enesys
Web strategy

Engagement

sendInviteResult()

Browser

Customizable component

2 or 374 party component

ey Default Data Workflow

» 2™ or 37 party media
Data Workflow

GWE component

Genesys platform

Examples

GWE Chat Integration

Genesys Web Engagement chat and callback use the same integration path as described in the
Second-Party Media Integration section:

Developer's Guide 190



Integration with Second-Party and Third-Party Media Customizing the Browser Tier Widgets

startChat(visitID, pagelD) init() send(messagd
Invitation Tracker
Widget Application

Genesys
Web

sendinviteResult()
Engagement

visitlD, pagelD

Browser

GWE
plugin

- Customizable component

- GWE component

- Default Data Workflow . Genesys platform

GMS Chat Integration

Let's look at how to integrate the second-party chat offered by Genesys Mobile Services instead of
the standard Genesys Web Engagement chat. In this example, we use the GMS Chat Widget and
initiate a chat session when the user accepts the proactive invitation.

The diagram below shows the data flow between components involved in the integration:

Developer's Guide 191


https://docs.genesys.com/Documentation/GMS/latest/ClientSamples/JavaScriptSamples

Integration with Second-Party and Third-Party Media Customizing the Browser Tier Widgets

attachUserData(visitID, pagelD)
GMS Server oo

GMS Chat )
Widget ™ B

startGms(visitlD, pagelD, “"CHAT-NOW™)

init()
send{messages)

Invitation Tracker ‘
Widget Application
Genesys

sendInviteResult() Web
4 Engagement

notify(messages)

strategy

Browser

plugin

. Customized component

. 2nd gr 37 party component
——p Default Data Workflow
GWE companent

» 2" or 3 party media
Data Workflow . Genesys platform

To integrate GMS with Genesys Web Engagement, we need to modify the following:

* GWE Proactive Invitation
* GWE Engagement Logic Strategy
¢ GMS Chat Widget

GWE Proactive Invitation

The proactive invitation is represented by the invite.html file (see Invitation Widget for details), but
Genesys recommends that you make a copy of this file to modify for the integration. In this example,
we use a copy called inviteGMS.html.

In this file, we need to change how the invitation reacts when it is accepted by a visitor. We can do
this in the onAccept () function, which checks the invitation type and calls either startChat() or
startCallback(). Since we want to integrate chat, we need to replace the standard startChat()
with our own function called startGms (). This function opens the GMS Chat Widget window
(indexGPE.html — we will create this file in the GMS Chat Widget section below) and passes the
gmsScenario variable.

%ﬂﬁction startGms (gmsScenario) {
openWindow (
"http://<GMS Host>/genesys/admin/js/sample/cb/indexGPE.html"', // Customized GMS

Developer's Guide 192


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/MediaIntegration#GWE_Proactive_Invitation
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/MediaIntegration#GWE_Engagement_Logic_Strategy
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/MediaIntegration#GMS_Chat_Widget
https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizetheBrowserTierWidgets#t-0
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/MediaIntegration#GMS_Chat_Widget

Integration with Second-Party and Third-Party Media Customizing the Browser Tier Widgets

widget
'GMS!', // Window title
gmsScenario // GMS scenario name
)
}
function onAccept() {
log('onAccept()');
closeInviteDialogWindow();
if (_config.type === INVITE TYPE.CHAT) {
startGms('CHAT-NOW'); // Start GMS 'CHAT-NOW' scenario
sendInviteResult (INVITE RESULT.ACCEPT CHAT);

} else if (_config.type === INVITE TYPE.CALLBACK) {
startCallback();
sendInviteResult (INVITE RESULT.ACCEPT CALLBACK);

} else {

error('Invitation type not defined');

}

You can add callback integration the same way. Replace the startCallback()
function with your own appropriate function in the onAccept() handler.

GWE Engagement Logic Strategy

In the previous section we made a new invitation widget for GMS chat, called inviteGMS.html, and
now we need to modify the Engagement Logic Strategy to use this widget. The final notification
message should look like the following:

var notification message = [ {
‘page’': event.pagelD,
‘channel': 'gpe.appendContent',
‘data': {
'url': '/frontend/resources/inviteGMS.html'
}

L

For more information about Engagement Logic, see Start Engagement as a Result of
the Engagement Logic Strategy.

GMS Chat Widget

The GMS Chat Widget is represented by the index.html file, which is included as part of the GMS
Javascript (Web) Sample. Again, Genesys recommends that you make a copy of this file to modify for

Developer's Guide 193


https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizeEngagement#Start_Engagement_as_a_Result_of_the_Engagement_Logic_Strategy
https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizeEngagement#Start_Engagement_as_a_Result_of_the_Engagement_Logic_Strategy
https://docs.genesys.com/Documentation/GMS/8.5.001/ClientSamples/JavaScriptSamples
https://docs.genesys.com/Documentation/GMS/8.5.001/ClientSamples/JavaScriptSamples

Integration with Second-Party and Third-Party Media Customizing the Browser Tier Widgets

the integration. In this example, we use a copy called indexGPE.html.

The GMS Chat Widget is an HTML page that can be loaded as either an iframe or a pop-up, which
makes it simple to pass additional data through URL variables. In the GWE Proactive Invitation
section, we added the gmsScenario variable to the URL in the startGms () function. Now we need to
change the GMS Chat Widget so that it automatically starts the GMS scenario defined in that variable.

First, we need to get gmsScenario from the URL:

function getUrlVars (name) {
var vars = [], hash, i,
hashes = window.location.href.slice(window.location.href.index0f('?') +
1).split('&');
for (i = 0; i < hashes.length; i += 1) {
hash = hashes[i].split('=");
vars.push(hash[0]);
vars[hash[0]] = hash[1];
}

return vars[name];

Next, we need to change the scenario name and connect to GMS Server:

function gpeStartScenario() {

var scenario = getUrlVars('gmsScenario') || 'CHAT-NOW'; // Fetch scenario name.
Default is 'CHAT-NOW'

$('#settings [name=service name]').val('samples new'); // Example GMS Service

$('#scenario').val(scenario); // Set scenario name

connect(); // Connect to GMS

Finally, we need to add the required parameters (visitlD and pagelD) to the connect () function,
which is responsible for setting up the connection to GMS Server:

function connect(e) {
// get data from ui
var headers = new Object();
headers.gms user = $('#user name').val();
var params = new Object();
params.first name = $('#first name').val();
params.last name = $('#last name').val();
params. provide code = $('#provide code').val();

params.visitID = getUrlVars('visitId'); // Required parameters
params.pagelID = getUrlVars('pageld'); // Required parameters

var scenario = $('#scenario').val();

if ($('#scenario').val() == "VOICE-SCHEDULED-USERTERM") {
params. desired time = $('#available time slots').val();

}

var serviceName = $('#service name').val();

var serviceUrl;

var responseHandler = onResponseReceived;

if (scenario == "REQUEST-INTERACTION") {
serviceUrl = 'request-interaction';

Developer's Guide 194


https://docs.genesys.com/Documentation/IW/8.1.2/Developer/MediaIntegration#GWE_Proactive_Invitation
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/MediaIntegration#GWE_Proactive_Invitation

Integration with Second-Party and Third-Party Media Customizing the Browser Tier Widgets

// request interaction requires phone number instead of customer number as
required by callback
params. phone number = $('#contact number').val();
responseHandler = onBuiltinCallbackResponseReceived;
} else if (scenario == "REQUEST-CHAT") {
serviceUrl = 'request-chat';
params. customer number = $('#contact number').val();
responseHandler = onBuiltinCallbackResponseReceived;
} else {
servicelUrl = 'callback/' + serviceName;
params. customer number = $('#contact number').val();
}
// post data
gmsInterface.createCallback(scenario, $('#url').val(), serviceUrl, params, headers,
responseHandler);
//gmsInterface.call agent();
}

Now that we've customized the GMS Widget, it can be started automatically with a connection to

GMS Server in gpeStartScenario().

// inside onready callback
gpeStartScenario();

Developer's Guide

195



Using Pacing Information to Serve Reactive Requests Customizing the Browser Tier Widgets

Using Pacing Information to Serve Reactive
Requests

General information about Pacing Algorithms

The Web Engagement pacing component is designed to predict the number of media interactions
that should be proactively generated by the Web Engagement Server in each succeeding time
interval.

Web Engagement also supports dual pacing, in which the pacing algorithm is able to determine how
much of its capacity should be set aside in order to handle reactive traffic without allowing the
proactive traffic to exceed the desired range.

In order to work with dual pacing, you should understand that:

e The pacing component works with a set of Agent Groups.

e The term Channel refers to a set of Agent Groups in which each group of agents is configured to work
on the same, specific media channel, such as chat, web callback, or Web RTC.

¢ The pacing component makes predictions for each Agent Group separately by creating a dedicated
thread for each Agent Group and running an instance of the pacing algorithm in each one.

e The pacing algorithm is executed at the frequency specified by the pacing.connector.refreshPeriod
option in the [service:pacing] section.

e The pacing algorithms used for each Agent Group monitored by the pacing component are identically
configured.

¢ In addition to group-based predictions, the pacing component also calculates consolidated results for
every channel—that is, the sum of the results for all groups belonging to a particular channel.

e There are two types of workflows:

* Proactive—in which a media interaction is created every time a visitor accepts a proactively
generated invitation (that is, an invitation that was triggered by specific rules associated with the
Web Engagement software). With a proactive workflow, Web Engagement has complete control over
when and if a given interaction is created.

* Reactive—in which media interactions are created as a result of a visitor's reaction to static
elements on the website, such as clicking a button or following a link. This kind of workflow is
beyond the control of the Web Engagement software, since it can't control the behavior of the
people who visit the site.

Note that both proactive and reactive workflows produce the same kinds of
media interactions, such as chat or callback interactions. But from the
standpoint of the pacing component, proactively and reactively generated
interactions have vastly different implications.

¢ When the pacing component is configured to calculate information for both proactive and reactive

Developer's Guide 196


https://docs.genesys.com/Documentation/GWE/latest/Deployment/Backendservicepacing#pacing.connector.refreshPeriod

Using Pacing Information to Serve Reactive Requests Customizing the Browser Tier Widgets

workflows, we say that it is in dual mode and that it has been configured to use a dual pacing
algorithm.

* Proactive workflow predictions can be calculated in both the simple proactive mode and in dual mode.
But Reactive predictions are only calculated in dual mode.

e The pacing component cannot distinguish between Agent Groups that have been configured to service
proactive workflows and ones that are servicing reactive workflows. This distinction is completely
controlled by your Genesys configuration, including the way your strategies are configured.

* The pacing component assumes that each agent it is monitoring only belongs to one of the Agent
Groups it is monitoring.

¢ You can set up an environment where an Agent Group is configured to work with several interaction
types (or channels) simultaneously. This is known as blended mode. In blended mode, the pacing
component executes a dedicated instance of the pacing algorithm for each channel that is configured
for a particular Agent Group.

e The pacing algorithms use statistical information obtained both from Stat Server and from the Web
Engagement software, which has access to information that can't be obtained from Stat Server, such as
the pending invitation count and the average time it takes to obtain a disposition code for an invitation.

Configuring dual pacing mode

You can specify which type of pacing algorithm to use by setting the pacing.connector.algorithm
option in the [service:pacing] section. This option supports the following values:

e SUPER_PROGRESSIVE—The Super Progressive optimization method only affects the Abandonment
Rate parameter and provides a higher Busy Factor then the Predictive one. It is efficient for relatively
small agent groups (1 to 30 agents) when the Predictive method gives poor results.

* PREDICTIVE_B—A Predictive method based on the Erlang-B queuing model. Recommended for large
agent groups (more than 30 agents) with impatient customers who cannot stay in the queue, even for
a short time.

e SUPER_PROGRESSIVE_DUAL—AnN adaptation of the Super Progressive method for environments
serving both proactive and reactive interactions.

* PREDICTIVE_B_DUAL—AnN adaptation of the Predictive B method for environments serving both
proactive and reactive interactions.

As you can see, you must specify either SUPER_PROGRESSIVE_DUAL or PREDICTIVE_B_DUAL if
you want to use a dual pacing algorithm.

The most important parameter calculated by a simple pacing algorithm is called
InteractionsToSend. This parameter determines how many proactive invitations should be sent
during each refresh period. When you use a dual pacing algorithm, you need to set a balance
between the percentage of agents in each group who are handling proactive invitations and those
who are handling reactive ones. Without doing this, you run the risk of having your reactive traffic
take over, meaning that proactively created hot leads—people who are likely to be prime
customers—may be displaced by random visitors about whom you know nothing.

You can use the pacing.connector.proactiveRatio option to adjust this balance.

Web Engagement helps avoid this issue by calculating the InboundPortion parameter, which
specifies how much capacity should be set aside for inbound (reactive) traffic. The calculated values

Developer's Guide 197


https://docs.genesys.com/Documentation/GWE/latest/Deployment/Backendservicepacing#pacing.connector.algorithm
https://docs.genesys.com/Documentation/GWE/latest/Deployment/Backendservicepacing#pacing.connector.refreshPeriod
https://docs.genesys.com/Documentation/GWE/latest/Deployment/Backendservicepacing#pacing.connector.proactiveRatio

Using Pacing Information to Serve Reactive Requests Customizing the Browser Tier Widgets

for InboundPortion can range from 0 to 1:

* 0 means that the affected page should not allow inbound traffic (for example, by disabling chat request
buttons). This value will be returned by the pacing algorithm in situations where each new reactive chat
request "seizes" an agent who could potentially handle a proactive chat session, thereby making it
impossible to serve proactive traffic.

¢ 1 means that there are enough agents to serve the predicted count of proactive invitations, even if
reactive interactions are started on the affected page.

* A value between 0 and 1 means that if a reactive interaction is started on the affected page, then it can
potentially seize an agent who would otherwise be serving a predicted proactive interaction. This
situation may be undesirable, especially if the potential value of your proactive interactions is high. In
that case, you probably want to suppress the calculation of InboundPortion.

Suppressing Calculation of InboundPortion

Web Engagement provides two ways to suppress the calculation of InboundPortion:

¢ Use a simple, proactive-only pacing algorithm. In this case, InboundPortion will not be calculated at
all.

¢ Use a dual pacing algorithm, but specify pacing.connector.proactiveRatio at 100. In this case, the value
of InboundPortion will always be 0, meaning that the affected page is instructed to block all inbound
chat traffic, if possible—for example, by disabling chat request buttons.

The Pacing REST AP|

For times when reactive chats can only be controlled from the page, Web Engagement provides a
RESTful Pacing API that gives you access to the value of the InboundPortion parameter calculated
by the dual pacing algorithm.

You can also use the Pacing API to access statistical information about agent availability in the
monitored Agent Groups. Although this statistical information is provided in a raw format that is used
as input by the pacing algorithm, it can sometimes be critical for your understanding of how to
control activity from the affected page.

Obtaining the Reactive State

Reactive state is another term that is used when talking about the InboundPortion parameter
described above.

You can query the reactive state by issuing this request:

http://<backend host:backend port>/backend/data/pacing/
reactiveState?channel=<channelName>&groups=[<names>]

The information returned by this request helps you understand whether reactive traffic is displacing
proactive traffic on the specified channel for the specified Agent Group. If an Agent Group is not
specified, the result will be calculated for the entire channel.

The response to this request is a float between 0 and 1 that indicates the probability with which the

Developer's Guide 198


https://docs.genesys.com/Documentation/GWE/latest/Deployment/Backendservicepacing#pacing.connector.proactiveRatio
https://docs.genesys.com/Documentation/GWE/latest/API/PacingAPI

Using Pacing Information to Serve Reactive Requests Customizing the Browser Tier Widgets

affected page should allow reactive interaction:

e 1—There are no limitations on the number of reactive interactions.
¢ 0—The page should not allow any reactive interactions.

e |If the value is between 0 and 1, the page should use the specified probability to determine whether to
allow a given reactive interaction.

Let's consider an example of this last situation. If the reactiveState request returns a value of 0.7,
this means that you probably only want 7 out of 10 of your recently loaded pages to allow reactive
interactions. Therefore, the other 3 pages should prohibit them. If you don't set up this kind of
scenario, newly created reactive interactions can spiral out of control, meaning that some of them
will seize agents who should have been left available for proactive customers. This means that Web
Engagement will produce failed hot leads.

In JavaScript you can issue a reactiveState call like this:

<script>
$.ajax({url: 'http://{server}:{port}/backend/data/pacing/reactiveState?channel=chat'})
.done(function( result ) {
console.log('result: ' + result.reactiveState);
var rndValue = Math.random();
if(rndValue > result.reactiveState) {
// Disable reactive chat buttons

}
else {
// Enable reactive chat buttons
}
3
</script>

Here's a sample:

http://example.com:9081/backend/data/pacing/
reactiveState?channel=chat&groups=Web%20Engagement%20Chat

And the response:
{"reactiveState":1.0}
Note: This example uses the jQuery JavaScript library, which requires that jQuery be loaded on the

page.

Obtaining Channel Capacity

You can use the channelCapacity method to understand how many concurrent interactions to allow
on a specific channel for a specific Agent Group (or for the specified channel only, if a group is not
explicitly specified).

Important: This method takes into account both agent state and the capacity rules that have been
configured for each agent. For example, if the channel contains 1 Ready agent with a capacity of 2
and 1 Ready agent with a capacity of 3, then the cumulative channel capacity will be calculated as 5.

Important: An InboundPortion value of 1 does not always mean that a reactive chat will be
immediately delivered to an agent.

Developer's Guide 199



Using Pacing Information to Serve Reactive Requests Customizing the Browser Tier Widgets

Let's consider a situation where no agents are ready in the system and the proactive traffic is
predicted at 0. This means that the value of InboundPortion will be 1 (because there isn't any
proactive traffic to displace). However, because none of our agents are ready, you also don't want to
allow any immediate reactive interactions.

By issuing a channel capacity request, you can get more information on whether or not you have to
allow new reactive interactions.

Here's how to call the method:

http://<backend host:backend port>/backend/data/pacing/
channelCapacity?channel=<channelName>&groups=[<names>]

And here is an example of how to use it in a script:
<script>
$.ajax({url: 'http://{server}:{port}/backend/data/pacing/channelCapacity?channel=chat'})
.done(function( result ) {
console.log('Chat channel capacity is:
3

</script>

+ result.capacity);

This request:

http://example.com:9081/backend/data/pacing/
channelCapacity?channel=chat&groups=Web%20Engagement%20Chat

Might yield this response:
{"capacity":254}

Note: The channel capacity request provides information about the current state of channel. But you
need to keep in mind the potential for race conditions.

For example, if ten browsers have requested the channel capacity concurrently, each of them could
be told that the value is 1. By itself, this would lead each browser session to think that it can trigger a
reactive interaction. But if an interaction is triggered on more than one browser, you will have a race
condition in which the first interaction to seize an agent will use up all of the available capacity, and
all other interactions will be in a wait state.

Note: This example uses the jQuery JavaScript library, which requires that jQuery be loaded on the
page.

Step-by-Step Examples
Let's consider an example of how to use pacing information to determine how to serve reactive chats.
There are 2 use cases:

¢ The page makes sure that proactive traffic is not displaced.

* The page is not aware of proactive traffic and is interested only whether any agents are Ready.

Developer's Guide 200



Using Pacing Information to Serve Reactive Requests Customizing the Browser Tier Widgets

Making sure that proactive traffic is not displaced

This is the most general use case, in which you need to avoid two different pitfalls:
¢ Reactive interactions should not be allowed to displace potential proactive interactions (which are
calculated based on the result of the reactiveState method)

* Reactive interactions should only be triggered when at least one Ready agent is available on the
channel

Here is the algorithm for this situation:

1. Determine whether reactive interactions are undesirable. If so, disable the request buttons on the page.
2. If reactive interactions are allowable, find out whether there are any available agents.

3. If no agents are available, disable the request buttons on the page.
4

. If one or more agents are available, make sure the request buttons are enabled.

And here is a JavaScript sample:

function reactiveChatPacing() {
$.ajax({url: 'http://{server}:{port}/backend/data/pacing/reactiveState?channel=chat'})
.done(function (reactiveResult) {
var rndValue = Math.random();

// Check that reactive chat is allowed with probability result.reactiveState

if (rndValue >= reactiveResult.reactiveState) {
disableReactiveChatButtons();

} else {

// For the case result.reactiveState == 1 we should check channel capacity
// as there is no guarantee that there are Ready agents
if (reactiveResult.reactiveState == 1) {

$.ajax({url: 'http://{server}:{port}/backend/data/pacing/
channelCapacity?channel=chat'})
.done(function( capacityResult ) {

if (capacityResult.capacity == 0) {
disableReactiveChatButtons();
} else {
enableReactiveChatButtons();
}
1
h
else {
enableReactiveChatButtons();
h

1

function disableReactiveChatButtons () {
// Disable reactive chat buttons
¥

Developer's Guide 201



Using Pacing Information to Serve Reactive Requests Customizing the Browser Tier Widgets

function enableReactiveChatButtons() {
// Enable reactive chat buttons
}

Note: This example uses the jQuery JavaScript library, which requires that jQuery be loaded on the
page.

Ignoring proactive traffic

This case is a shorter variant of the first one, since you only need to determine the channel capacity.
Note that you should reserve the use of this approach for situations in which you only want to support
reactive interactions.

Here is the algorithm:

1. Find out whether any agents are available.

And the JavaScript:

function reactiveChatChannelCapacity() {
$.ajax({url: 'http://{server}:{port}/backend/data/pacing/channelCapacity?channel=chat'})
.done(function (capacityResult) {

if (capacityResult.capacity == 0) {
disableReactiveChatButtons();
} else {

enableReactiveChatButtons();
b
1)
)

function disableReactiveChatButtons () {

// Disable reactive chat buttons
}

function enableReactiveChatButtons() {
// Enable reactive chat buttons
}

Note: This example uses the jQuery JavaScript library, which requires that jQuery be loaded on the

page.

Some Sample Calculations

70% Proactive Traffic, 30% Reactive Traffic

1. First, set your configuration options like this:

* pacing.connector.refreshPeriod = 2 (default value)

Developer's Guide 202


https://docs.genesys.com/Documentation/GWE/latest/Deployment/Backendservicepacing#pacing.connector.refreshPeriod

Using Pacing Information to Serve Reactive Requests Customizing the Browser Tier Widgets

* pacing.connector.proactiveRatio = 70

* pacing.connector.optimizationGoal = 3 (default value)

* pacing.connector.optimizationTarget = ABANDONMENT RATE (default value)

* pacing.connector.algorithm = SUPER_PROGRESSIVE DUAL
2. Then get the InboundPortion value by using the corresponding HTTP request on the browser side.
3. If InboundPortion is 1, check the channel capacity.

4. Either reduce or increase the reactive traffic, or leave it alone—depending on the result of your request,
as shown in the above example script.

30% Proactive Traffic, 70% Reactive Traffic

1. First, set your configuration options like this:

* pacing.connector.refreshPeriod = 2 (default value)

* pacing.connector.proactiveRatio = 30

* pacing.connector.optimizationGoal = 3 (default value)

* pacing.connector.optimizationTarget = ABANDONMENT RATE (default value)

e pacing.connector.algorithm = PREDICTIVE B DUAL
2. Then get the InboundPortion value by using the corresponding HTTP request on the browser side.
3. If InboundPortion is 1, check the channel capacity.

4. Either reduce or increase the reactive traffic, or leave it alone—depending on the result of your request,
as shown in the above example script.

Disable Reactive Traffic

That is, provide 100% proactive traffic by disabling all reactive chats.

1. First, set your configuration options like this:
e pacing.connector.refreshPeriod = 2 (default value)
* pacing.connector.proactiveRatio = 100
e pacing.connector.optimizationGoal = 3 (default value)
* pacing.connector.optimizationTarget = ABANDONMENT RATE (default value)
* pacing.connector.algorithm = SUPER_PROGRESSIVE DUAL

2. Then get the InboundPortion value by using the corresponding HTTP request on the browser side (it
must be 0).

3. Deny reactive traffic by disabling your chat buttons.

Disable Proactive Traffic

Provide 100% reactive traffic.

Developer's Guide 203


https://docs.genesys.com/Documentation/GWE/latest/Deployment/Backendservicepacing#pacing.connector.proactiveRatio
https://docs.genesys.com/Documentation/GWE/latest/Deployment/Backendservicepacing#pacing.connector.optimizationGoal
https://docs.genesys.com/Documentation/GWE/latest/Deployment/Backendservicepacing#pacing.connector.optimizationTarget
https://docs.genesys.com/Documentation/GWE/latest/Deployment/Backendservicepacing#pacing.connector.algorithm
https://docs.genesys.com/Documentation/GWE/latest/Deployment/Backendservicepacing#pacing.connector.refreshPeriod
https://docs.genesys.com/Documentation/GWE/latest/Deployment/Backendservicepacing#pacing.connector.proactiveRatio
https://docs.genesys.com/Documentation/GWE/latest/Deployment/Backendservicepacing#pacing.connector.optimizationGoal
https://docs.genesys.com/Documentation/GWE/latest/Deployment/Backendservicepacing#pacing.connector.optimizationTarget
https://docs.genesys.com/Documentation/GWE/latest/Deployment/Backendservicepacing#pacing.connector.algorithm
https://docs.genesys.com/Documentation/GWE/latest/Deployment/Backendservicepacing#pacing.connector.refreshPeriod
https://docs.genesys.com/Documentation/GWE/latest/Deployment/Backendservicepacing#pacing.connector.proactiveRatio
https://docs.genesys.com/Documentation/GWE/latest/Deployment/Backendservicepacing#pacing.connector.optimizationGoal
https://docs.genesys.com/Documentation/GWE/latest/Deployment/Backendservicepacing#pacing.connector.optimizationTarget
https://docs.genesys.com/Documentation/GWE/latest/Deployment/Backendservicepacing#pacing.connector.algorithm

Using Pacing Information to Serve Reactive Requests

Customizing the Browser Tier Widgets

1. First, set your configuration options like this:

pacing.connector.refreshPeriod = 2 (default value)
pacing.connector.proactiveRatio = 0

pacing.connector.optimizationGoal = 3 (default value)
pacing.connector.optimizationTarget = ABANDONMENT RATE (default value)
pacing.connector.algorithm = SUPER_PROGRESSIVE DUAL

2. Then get the InboundPortion value by using the corresponding HTTP request on the browser side (it
must be 100).

3. Allow reactive traffic by enabling your chat buttons.

Developer's Guide

204


https://docs.genesys.com/Documentation/GWE/latest/Deployment/Backendservicepacing#pacing.connector.refreshPeriod
https://docs.genesys.com/Documentation/GWE/latest/Deployment/Backendservicepacing#pacing.connector.proactiveRatio
https://docs.genesys.com/Documentation/GWE/latest/Deployment/Backendservicepacing#pacing.connector.optimizationGoal
https://docs.genesys.com/Documentation/GWE/latest/Deployment/Backendservicepacing#pacing.connector.optimizationTarget
https://docs.genesys.com/Documentation/GWE/latest/Deployment/Backendservicepacing#pacing.connector.algorithm

Dynamic Multi-language Localization Application Sample Customizing the Browser Tier Widgets

Dynamic Multi-language Localization
Application Sample

Prerequisites

1. Use the latest version of Genesys components.

2. Configure UTF-8 in the Frontend and Backend servers.

Creating multilingual categories

Create one or more categories by following the instructions in Creating a Category.

All tags for multi-language categories must have a different expression.

Dynamically adding the language in the instrumentation script

The language code is transmitted as a URL parameter. You can pass a language code as part of the
URL or you can set the code statically.

Here is an example of the code as part of the URL:
http://<host>:<port>/multi/main.jsp?title=&&&language=zh-CN

Placing the language code in the instrumentation script allows you to localize the registration form
and chat. To do this, complete the following:

1. Add Localization Files to Your Web Engagement Application.

2. Add the language code to your instrumentation script.

The following example shows how to add the language code to your instrumentation script:

<% String title = request.getParameter("title"); %>

<% String langCode = request.getParameter("language"); %>
<title><%=title%></title>

<script>

var gt = gt || [];

Developer's Guide 205


https://docs.genesys.com/Documentation/GWE/latest/Deployment/UTF8
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/SimpleEngagement#Creating_a_Category
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizetheBrowserTierWidgets#t-2

Dynamic Multi-language Localization Application Sample Customizing the Browser Tier Widgets

_gt.push(["config", {

"name" : "multi",

"domainName" : "135.17.36.10",

"frontendServers" : "432",

"languageCode" : "<%=langCode%>",

"dslResource" : "http://demosrv.genesyslab.com:8081/frontend/resources/dsl/domain-
model.xml",

"secureDs1Resource" : "https://demosrv.genesyslab.com:8443/frontend/resources/dsl/domain-
model.xml",

"httpEndpoint" : "http://demosrv.genesyslab.com:8081",

"httpsEndpoint" : "https://demosrv.genesyslab.com:8443"

s

(function () {
var gt = document.createElement("script");
gt.setAttribute("async", "true");
gt.src = ("https:" == document.location.protocol ? "https://demosrv.genesyslab.com:8443"
"http://demosrv.genesyslab.com:8081") + "/frontend/resources/js/build/GTC.min.js";
(document.getElementsByTagName("head")[0] || document.body).appendChild(gt);

NO;

</script>

Parsing the address of the page and switching the invitation text

You can get the language code from the page address in the strategy. The page address is passed to
the strategy when the rule is triggered and an invitation is generated.

The event _url variable is declared and initialized in the default.workflow strategy:

I ,
H £F Application Yariables

. Setthe application variables

Set the application variables

Yariable Mame | Cakeqgaory | Yalue | Cescripkion |
; syskerm, PM Syskem getOPMParameters) Cperational Parameters Data Yariable

syskem, OC5_RecordURT Tyskem getwarkflowRecord URIO 5 Record LRI

syskem, OC5_LRI Syskem getiarkflowCSURI 5 URI

syskem, OC5_Record Syskem getwiarkflowoCSRecord() 5 Record

systerm, ParentInkeractionID  Syskem _genesys.ixn.interackions[system. InteractionID].par...  The current interackion parent ID,

st o i . L .

event_url ‘Enter Yalue'

[ Hide deprecated variables

@ .

The event _url variable is then transmitted to the engage.workflow strategy:

Developer's Guide 206



Dynamic Multi-language Localization Application Sample Customizing the Browser Tier Widgets

{Frarameters E

Input Output Parameter Sync

Mame | TypeE | Yariable | Descripkion :l
event_rule input event_rule Rule which trigger. .

evenk_timestamp input event_timestamp Timeskamp of even,

event_url event_url
evenk_wisitlD IRpU evenk_wisitlD

VisIEID where even.
event_voiceload inpukt event_voiceload Results of pacing a.
password inpuk password Iser passyword

resulk oukput engageResult Enter Description
user input user ser login

1] |
Ik I Cancel |

The following shows the description of the entering variable in the event url in the
engage.workflow strategy:

|
1% application Yariables

- Set the application variables

Set the application variables

Yariable Mame | _ateqory: | Yalue | Descripkion

syekem, OCS_RecardUR] Syskem getwarkflawRecordURIO S Record URT

syskem, OCS5_URI Swskem getWorkflowZSURID QC5 LRI

syskem.OC5_Record Swskem getWorkflowOZSRecord)) OZ3 Record

system, ParentInter actionID Syskem _genesys,ixn.interactions[system, InteractionID].par... | The current interaction parent I

event_url

[ Hide deprecated variables

© oK

The following example shows fetching the language code of the URL address and switching the labels
in the FullfilEngagementProfile ECMA Script block in the engage.workflow strategy:

var language=event url.substr(-5);

Developer's Guide 207



Dynamic Multi-language Localization Application Sample Customizing the Browser Tier Widgets

var invitation=" Would you like some help with the selection? Qur technical experts are
available to answer questions.";

var acceptBtnText= 'Chatl’';

var acceptBtnVoice='Call Me';

var cancelBtnText = 'No Thanks';

var greetingDefault 'Hello!';

var greetingMorning 'Good morning!"’;

var greetingEvening 'Good evening!';

var greetingAfternoon = 'Good afternoon!';
var titleChat = 'Chat’;
var titleVoice = 'Voice';

switch (language)

case "zh-CN":
invitation=" OQOOROOROOOOOOOOOOOOOOOR";
acceptBtnText= '&"';
cancelBtnText = '&&&Q";
acceptBtnVoice='&0000Q";
greetingDefault = '&&&";
greetingMorning = '&o&Q";
greetingEvening 'OROR";
greetingAfternoon ='&Q R ";
titleChat = '¢&';
titleVoice = '®&&';
break;
case "en-US":
invitation=" Would you like some help with the selection? Our technical experts are
available to answer questions.";
acceptBtnText= 'Chat';
cancelBtnText = 'No Thanks';
acceptBtnVoice='Call Me';
greetingDefault = 'Hello!"';
greetingMorning = 'Good morning!';
greetingEvening = 'Good evening!';
greetingAfternoon ='Good afternoon!';
titleChat = 'Chat';
titleVoice = 'Voice';
break;
case "fr-FR":
invitation=" Voulez-vous un peu d'aide avec la sélection? Nos experts techniques sont
disponibles pour répondre aux questions.";
acceptBtnText= "T'Chat";
cancelBtnText = 'Non Merci';
acceptBtnVoice='appelez-moi';
greetingDefault = 'Bonjour!"’;
greetingMorning = 'Bonjour!';
greetingEvening = 'Bonne soirée!’;
greetingAfternoon ='Bon aprées-midi!';
titleChat = "T'Chat";
titleVoice = 'voix';
break;
case "ja-JP":
invitation=" OQOOOOOOOOOODOOOODOOOOOOOOOODODOOOOOOOOOOOD";
acceptBtnText= 'O ";
cancelBtnText = 'OQORORQ";
acceptBtnVoice='d>d";
greetingDefault = '®OOROR";
greetingMorning = 'QOOOOOOOROR";
greetingEvening = '&0OORQ";
greetingAfternoon ='&0OORR";
titleChat = '&@®Q";
titleVoice = '&"';

Developer's Guide 208



Dynamic Multi-language Localization Application Sample

Customizing the Browser Tier Widgets

break;

}

var channelName = titleChat;

var acceptBtnCaption = acceptBtnText;

var cancelBtnCaption = cancelBtnText;

if (channelType == 'proactiveCallback') {
channelName = titleVoice;
acceptBtnCaption = acceptBtnVoice;

}

var greeting = 'Hello!'
if (event timeStamp != ) {

realLocalTime = event timeStamp - event timezoneOffset + (new

Date()).getTimezoneOffset()*60000;
var date = new Date(reallLocalTime);
var hours = date.getHours();
if (hours < 6) {

greeting = greetingDefault;
} else if (hours < 12) {
greeting = greetingMorning;
} else if (hours < 17) {
greeting = greetingAfternoon;
} else {
greeting = greetingEvening;
}

}

var engageProfile = {
'visit id': event.visitlID,
'nick name': profile.FirstName,
'first name': profile.FirstName,
‘last_name': profile.LastName,
'subject': channelName,
'message’':greeting + invitation,
‘time_zone_ offset': 8,
'wait_for_agent' : false,
"routing point':sipRoutingPoint,
'ixn_type': channelType,
'pageld': event.pagelD,
'inviteTimeout': 30,
'acceptBtnCaption': acceptBtnCaption,
'cancelBtnCaption': cancelBtnCaption

Localized widgets examples

Implementing the code above will result in localized versions of the Web Engagement widgets. For
example, if the language is Japanese, the text in the widgets would appear as follows:

Engagement invitation:

Developer's Guide

209



Dynamic Multi-language Localization Application Sample Customizing the Browser Tier Widgets

= Genesys

CAIEAIT L BETIIRIREN OO BITELIL 7 SHO EiTE
FIRDERICEA BN TRETY,

Feub | LasmFs |

Registration form:

") Genesys Chat - Mozilla Firefox [_ |O]
| ) demosry, genesyslab,com: 3051 ffrontend/resources registration, htmls 2 | - -
= Genesys

BT OEEFRO T A LTS EF pubAR—MER
DEI ) OLET,

SRIEA RS RRETE DS (3, TG (TaUET

Tr—AkE =i
i |
A=)l |

| Fovbabam || EmsERyy

Chat:

Developer's Guide 210



Customizing the Browser Tier Widgets

Dynamic Multi-language Localization Application Sample

") Genesys Chat - Mozilla Firefox H[=] E3
L) demosky . genesyslab, com: 8031 frontend/resources)chat, bkmltwisitId= © | W -

‘ Fouh T

S Genesys

IT—¥zH, EREdEe—IEUET

u[ll]]

=3

Interaction Workspace:

211

Developer's Guide



Dynamic Multi-language Localization Application Sample Customizing the Browser Tier Widgets

J Anonymous Anonymaous t_j (D0:00:53) |
Case Information gl [P
8 | Activity
Origin: Inbound chat =]
= = = . .
Current Web Page: H#s= 9 All Categories JUNEE
| Engagement Start Page: =S
N :
ame iy Current Visit
Priority: 90
Subject: WebSupport Description Started
%‘ BHAZE  10/9/2013 4:42:44
w Anonymous Anonymous () Connected (10) =)y 10/9/2013 4:42:32 AM
o < O B£E 10/9/2013 4:41:48 AM
% null 10/9/2013 4:41:38 AM
- - - ’
% =~ = F e 1
[9:43:20 PM] New party "Anonymous Anonymous ' has joined the session il
[9:43:42 PM] New party "Agent Jones' has joined the session %
E ‘| 1 |
[4 4 Page1 of1 ¥ E
| Details |
China (F130)
Germany (Deutsch)
« | United States (English)
5 France (Francais)
C v | =  haly(ltaliano)
- 3 Japan (B£aD)
| Dispositions || Note Brasil (Portugués)
Fussia (pveciaii)
Signln
Save SignOut

Developer's Guide 212



	Developer's Guide
	Table of Contents
	Genesys Web Engagement Developer's Guide
	High-Level Architecture
	Monitoring
	Visitor Identification
	Events Structure

	Notification
	Engagement

	Application Development
	Creating an Application
	Generating and Configuring the Instrumentation Script
	Customizing an Application
	Creating Business Information
	Simple Engagement Model
	Advanced Engagement Model

	Publishing the CEP Rule Templates
	Customizing the SCXML Strategies
	Customizing the Engagement Strategy
	Customizing the Chat Routing Strategy

	Customizing the Browser Tier Widgets

	Building and Deploying an Application
	Starting the Web Engagement Servers
	Deploying a Rules Package
	Testing with GWM Proxy
	Sample Applications
	Get Information About Your Application
	Integrating Web Engagement and Co-browse with Chat
	Integration with Second-Party and Third-Party Media
	Using Pacing Information to Serve Reactive Requests
	Dynamic Multi-language Localization Application Sample

