3 GENESYS

This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

WeDbRTC Private Edition Guide

Deploy

1/8/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

¢ 1 Assumptions

¢ 2 Deploy
* 2.1 Deploying WebRTC using internal CoTurn Load Balancer
* 2.2 Deployment with external CoTurn Load Balancer

» 2.3 Cutover

¢ 3 Validate the deployment

WebRTC Private Edition Guide

Learn how to deploy WebRTC Media Service (WebRTC) into a private edition environment.

Related documentation:
* For private edition

Assumptions

¢ The instructions on this page assume you are deploying the service in a service-specific namespace,
named in accordance with the requirements on Creating namespaces. If you are using a single

namespace for all private edition services, replace the namespace element in the commands on this
page with the name of your single namespace or project.

¢ Similarly, the configuration and environment setup instructions assume you need to create namespace-
specific (in other words, service-specific) secrets. If you are using a single namespace for all private

edition services, you might not need to create separate secrets for each service, depending on your

credentials management requirements. However, if you do create service-specific secrets in a single
namespace, be sure to avoid naming conflicts.

Make sure to review Before you begin for the full list of prerequisites required to
deploy WebRTC.

WebRTC uses blue-green model of deployment. It has the following main
deployment principles:

¢ Both components - WebRTC Gateway and CoTurn Server - are deployed for each color and switched
together

* Blue WebRTC Gateway is always configured to work with Blue CoTurn and green WebRTC Gateway is
always configured to work with green CoTurn

* WebRTC have two FQDNs to reach active and inactive deployments:
* webrtc.domain.com - active deployment. For example: webrtc.genesyshtcc.com

* webrtc-test.domain.com - inactive deployment for tests. For example: webrtc-
test.genesyshtcc.com

WebRTC Private Edition Guide

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Deploy
You can deploy WebRTC using:

¢ |nternal CoTurn Load Balancer or

e External CoTurn Load Balancer

Deploying WebRTC using internal CoTurn Load Balancer

Initial deployment and Upgrade use the same sequence:

1. Deploy/upgrade inactive color of deployment

2. Make the cutover

You need to deploy the Color Infra package with CoTurn Load Balancer to get the
IP address assigned automatically for the CoTurn Load Balancer by the
infrastructure. Then, the infrastructure team should assign the IP to the CoTurn
Load Balancer, create the FQDN for the IP and ensure that the IP is set in the
firewall and is available from outside the cluster.

The IP address assigned to the CoTurn Load Balancer must be external and available
outside the cluster. Else, the media will not get through the WebRTC.

The following image shows the steps involved in deploying WebRTC using the
internal CoTurn Load Balancer:

Color Infra Color Gateway

Gateway Blue ‘Gateway Blue Gateway Blue
Gateway Blue Gateway Blue Deployment Metric Pod KEDA
Network Policy Load balancer

Common Infra

O Faon o O © s
@ Gateway Green Gateway Green Gateway Green

Dasboards Gateway Green Gateway Green Firewall/DN§ Deployment Metric Pod KEDA Ingress

Network Policy ~Load balancer Names
Color Coturn
Coturn Blue Coturn Blue Coturn Blue Coturn Blue
Aarms Network Policy ~Load balancer Deployment KEDA
Coturn-blue

@ 0" 86 @

Coturn Green Coturn Green Coturn Green ~ Coturn Green
Network Policy Load balancer Deployment KEDA

© ® © ® © ©

WebRTC Private Edition Guide

https://all.docs-qa.genesys.com/File:WebRTC-Internal-Deployment.png
https://all.docs-qa.genesys.com/File:WebRTC-Internal-Deployment.png

Follow the below steps to deploy WebRTC using internal CoTurn Load Balancer:

1. Create common infrastructure elements such as dashboards and alarms: This step deploys
dashboards, alarms, and other common infrastructure elements.

You should perform this step even if you do not require the dashboard and alarms.

Run the following command to create the common infrastructure elements:

helm upgrade --install -f {Webrtc Values files} --set-string deployment.type=infra --
set-string deployment.color="" webrtc-infra {HelmRepoPath}/webrtc-service --
version={WebRTC Charts Version}

Example:

helm upgrade --install -f ./k8s/values.yaml --set-string deployment.type=infra --set-
string deployment.color="" webrtc-infra wrtchelmrepodevwestus2/webrtc-service --
version=0.1.93 -n webrtc

2. Create infrastructure elements for the deployment color: This step deploys the infrastructure
objects such as Turn Load Balancer, Gateway Service Object, Gateway Network Policies, and Turn
Network Policies for the given color of deployment.

You should also specify the INACTIVE color of deployment in this step.

You should configure the deployment.coturnDeployment option with the value internal in your
values.yaml file.

Run the following command to deploy the infrastructure objects:

helm upgrade --install -f {Webrtc Values files} --set-string deployment.type=infra --
set-string deployment.color={INACTIVE COLOR} webrtc-infra-{INACTIVE COLOR}
{HelmRepoPath }/webrtc-service --version={WebRTC Charts Version}

Example:

helm upgrade --install -f ./k8s/values.yaml --set-string deployment.type=infra --set-
string deployment.color=blue webrtc-infra-blue wrtchelmrepodevwestus2/webrtc-service
--version=0.1.93 -n webrtc

3. Get the IPs from the CoTurn Load Balancers, create DNS records and firewall rules: This step
gets the IP address from the Colurn Load Balancer created in Step 2. The name of LoadBalancer will be
similar to: webrtc-coturn-service-{COLOR}.

Create appropriate FQDN for this IP address in your DNS. This FQDN will be used by the WebRTC
agents from outside the cluster to establish the RTP stream. Though you can use the IP address as
it is, it is not the best practice to do so.

4. Create CoTurn elements for the deployment color: This step is to Upgrade/Deploy CoTurn for
INACTIVE color.
Run the following command to upgrade/deploy the INACTIVE color of deployment:

WebRTC Private Edition Guide 5

helm upgrade --install -f {Webrtc Values files} --set-string deployment.type=coturn --
set-string deployment.color={INACTIVE COLOR} webrtc-coturn-{INACTIVE COLOR}
{HelmRepoPath }/webrtc-service --version={WebRTC Charts Version}

Example:

helm upgrade --install -f ./k8s/values.yaml --set-string deployment.type=coturn --set-
string deployment.color=blue webrtc-coturn-blue wrtchelmrepodevwestus2/webrtc-
service --version=0.1.93 -n webrtc

5. Create Gateway elements for deployment color using the information from Step 3: This step
is to Upgrade/Deploy Gateway for INACTIVE color. You shoud also specify the extenal FQDN of the
CoTurn LoadBalancer in this step using the gateway.turnExternalUriBlue or
gateway.turnExternalUriGreen options.

Run the following command:

helm upgrade --install -f {Webrtc Values files} --set-string deployment.type=gateway
--set-string deployment.color={INACTIVE COLOR} --set-string
gateway.turnExternalUri{INACTIVE COLOR}={COTURN FQDN INACTIVE COLOR} webrtc-gateway-
{INACTIVE COLOR} {HelmRepoPath }/webrtc-service --version={WebRTC Charts Version}

Example for Blue deployment:

helm upgrade --install -f ./k8s/values.yaml--set-string deployment.type=gateway --set-
string deployment.color=blue --set-string gateway.turnExternalUriBlue=turn-

blue.ext.mydoamin.com webrtc-gateway-blue wrtchelmrepodevwestus2/webrtc-service --
version=0.1.93 -n webrtc

Or, you can specify the IP of the Blue CoTurn Load Balancer

helm upgrade --install -f ./k8s/values.yaml--set-string deployment.type=gateway --set-
string deployment.color=blue --set-string gateway.turnExternalUriBlue=12.106.34.55
webrtc-gateway-blue wrtchelmrepodevwestus2/webrtc-service --version=0.1.93 -n webrtc

6. Create/update Ingress controller rules for Active/lnactive routing for Gateway deployments:

This step is to Install/upgrade ingress without changing the active color. The same step is used for the
Cutover.

Important

If you are deploying/upgrading green, specify the current ACTIVE color of deployment in the
deployment.color option. Then specify blue and vice versa. If you deploying/upgrading green and

specify green for the cutover step, the current active deployment will be switched to the just deployed/
upgraded green.

You must perform this step even if you are not planning to make the cutover right now. This step is
to upgrade the ingress and environment.

Run the following command to create/upgrade Ingress controller rules:

helm upgrade --install -f {Webrtc Values files} --set-string deployment.type=cutover
--set-string deployment.color={ACTIVE COLOR} webrtc-ingress {HelmRepoPath }/webrtc-
service --version={WebRTC Charts Version}

Example:

helm upgrade --install -f ./k8s/values.yaml --set-string deployment.type=cutover --

set-string deployment.color=green webrtc-ingress wrtchelmrepodevwestus2/webrtc-
service --version=0.1.93 -n webrtc

WebRTC Private Edition Guide 6

Deployment with external CoTurn Load Balancer

Initial deployment and Upgrade use the same sequence:

1. Deploy/upgrade inactive color of deployment

2. Make the cutover

The following image shows the steps involved in deploying WebRTC using the external CoTurn Load
Balancer:

Common Infra Color Infra Color Gateway
Gateway Blue Gateway Blue Gateway Blue
Gateway Blue Gateway Blue Deployment Metric Pod KEDA
Load balancer Network Policy

PWIPVC

= | o o 6 0. ©® -

Dasboards GatewayGreen Gateway Green Gateway Green
Gateway Green Gateway Green Deployment Metric Pod KEDA Ingress
Static IPs DNS Names Load balancer Network Policy
‘Color Coturn
Aarms

Coturn Blue CoturnBlue Coturn Blue CoturnBiue Coturn Blue

Static IP ’7 Load balancer Network Policy Deployment KEDA
Coturn Green L Coturn Green Coturn Green Coturn Green Coturn Green

static IP i Load balancer Network Palicy Deployment KEDA

O—0 ® © ® O, ©

Follow the below steps to deploy WebRTC with external CoTurn Load Balancer
1. Create static IPs for CoTurn: This step is to specify the pre-created public IP for CoTurn Green in the
coturn.lbIpGreen option and public IP for CoTurn Blue in the coturn.lbIpBlue option.

2. Create DNS records for the created IPs: This step is to specify the public FQDNs for CoTurn. Specify
the pre-created public FQDN for CoTurn Green in the gateway.turnExternalUriGreen option and
public FQDN for CoTurn Blue in the gateway.turnExternalUriBlue option.

3. Create common infrastructure elements: This step will deploy Persistent Volumes, Persistent
Volume Claims, dashboards, alarms, and other common infrastructure elements.

You need to run this step even if you are not using the dashboard and alarms.

Run the following command to create the infrastructure elements:

helm upgrade --install -f {Webrtc Values files} --set-string deployment.type=infra --
set-string deployment.color="" webrtc-infra {HelmRepoPath}/webrtc-service --
version={WebRTC Charts Version}

Example:

helm upgrade --install -f ./k8s/values.yaml --set-string deployment.type=infra --set-

WebRTC Private Edition Guide 7

https://all.docs-qa.genesys.com/File:WebRTC-External-Deployment-1.png
https://all.docs-qa.genesys.com/File:WebRTC-External-Deployment-1.png

string deployment.color=
version=0.1.93 -n webrtc

webrtc-infra wrtchelmrepodevwestus2/webrtc-service --

4. Create infrastructure elements for deployment color: This step is to deploy the infrastructure
objects such as Turn Load Balancer, Gateway Service Object, Gateway Network Policies, and Turn
Network Policies for the given color of deployment.

You must specify INACTIVE color of deployment for this step.

Important

Configure the deployment.coturnDeployment option with the value external in your values.yaml file.

Run the following command to create the infrastructure elements:

helm upgrade --install -f {Webrtc Values files} --set-string deployment.type=infra --
set-string deployment.color={INACTIVE COLOR} webrtc-infra-{INACTIVE COLOR}
{HelmRepoPath }/webrtc-service --version={WebRTC Charts Version}

Example:

helm upgrade --install -f ./k8s/values.yaml --set-string deployment.type=infra --set-
string deployment.color=blue webrtc-infra-blue wrtchelmrepodevwestus2/webrtc-service
--version=0.1.93 -n webrtc

5. Create CoTurn elements for deployment color: This step is to upgrade/deploy CoTurn for inactive
color.
Run the following command to specify the INACTIVE color of deployment:

helm upgrade --install -f {Webrtc Values files} --set-string deployment.type=coturn --

set-string deployment.color={INACTIVE COLOR} webrtc-coturn-{INACTIVE COLOR}
{HelmRepoPath }/webrtc-service --version={WebRTC Charts Version}

Example:
helm upgrade --install -f ./k8s/values.yaml --set-string deployment.type=coturn --set-
string deployment.color=blue webrtc-coturn-blue wrtchelmrepodevwestus2/webrtc-

service --version=0.1.93 -n webrtc

6. Create Gateway elements for deployment color: This step is to upgrade/deploy the Gateway for
inactive color.

Important

CoTurn DNS name is used for Gateway deployment as a parameter in the corresponding values.yaml
file.

Run the following command to specify the INACTIVE color of deployment:

helm upgrade --install -f {Webrtc Values files} --set-string deployment.type=gateway
--set-string deployment.color={INACTIVE COLOR} webrtc-gateway-{INACTIVE COLOR}
{HelmRepoPath }/webrtc-service --version={WebRTC Charts Version}

Example:

WebRTC Private Edition Guide

helm upgrade --install -f ./k8s/values.yaml--set-string deployment.type=gateway --set-
string deployment.color=blue webrtc-gateway-blue wrtchelmrepodevwestus2/webrtc-
service --version=0.1.93 -n webrtc

7. Create/update Ingress controller rules for Active/Inactive routing for the Gateway
deployments: This step is to install/upgrade ingress without changing the active color. The sampe
step is also used for the Cutover.

If you are deploying/upgrading green, specify the current ACTIVE color of deployment in the
deployment.color option which is blue and vice versa. If you deploying/upgrading green and specify
green for the cutover step, the current active deployment will be switched to the just deployed/
upgraded green.

You must perform this step even if you do not plan to make cutover right now. This step is to upgrade
the ingress and environment.

Run the following command to create/upgrade Ingress controller rules:

helm upgrade --install -f {Webrtc Values files} --set-string deployment.type=cutover
--set-string deployment.color={ACTIVE COLOR} webrtc-ingress {HelmRepoPath }/webrtc-
service --version={WebRTC Charts Version}

Example:

helm upgrade --install -f ./k8s/values.yaml --set-string deployment.type=cutover --
set-string deployment.color=green webrtc-ingress wrtchelmrepodevwestus2/webrtc-
service --version=0.1.93 -n webrtc

Cutover

During cutover, it switches active color of deployment. This step should be
performed only after you confirm that the newly installed/upgraded deployment
is alive and functional. You must specify the current INACTIVE color of
deployment in the deployment.color option - deployment that was just
deployed/upgraded and tested. Run the following command to specify the
cutover:

helm upgrade --install -f {Webrtc Values files} --set-string deployment.type=cutover --set-

string deployment.color={INACTIVE COLOR} webrtc-ingress {HelmRepoPath }/webrtc-service --
version={WebRTC Charts Version}

Example:

helm upgrade --install -f ./k8s/values.yaml --set-string deployment.type=cutover --set-string
deployment.color=blue webrtc-ingress wrtchelmrepodevwestus2/webrtc-service --version=0.1.93
-n webrtc

WebRTC Private Edition Guide

You need to use PersistentVolume and PersistentVolumeClaim instead of HostPath logs
of Gateway pods and CoTurn Pods.

Validate the deployment

Follow the given steps to validate the deployment.

1. Verify PVCs are created and bound
kubectl get pvc

Sample output:

NAME STATUS VOLUME CAPACITY ACCESS
MODES STORAGECLASS AGE

webrtc-coturn-log-pvc Bound webrtc-coturn-log-volume 5Gi

RWX genesys-webrtc 110s

webrtc-gateway-log-pvc Bound webrtc-gateway-log-volume 5Gi

RWX genesys-webrtc 110s

2. Validate CoTurn and Gateway services
kubectl get svc

Sample output:

NAME TYPE CLUSTER-IP EXTERNAL-IP

PORT(S) AGE

webrtc-coturn-service-blue LoadBalancer 10.202.51.156 192.168.30.208
443:31457/TCP 67m

webrtc-gateway-service-blue ClusterIP 10.202.47.170 80/TCP, 8080/
TCP 67m

3. Query pods in the WebRTC namespace to confirm that pod is created, and in running status

kubectl get pods

Sample output:

NAME READY STATUS RESTARTS AGE
webrtc-coturn-blue-b5db74c96-mh9jv 1/1 Running 0@ 4m20s
webrtc-gateway-blue-d7ff45677-vbdg9 1/1 Running 0 86s

4. Validate Ingress configuration
kubectl get ingress

Sample output:

NAME CLASS

HOSTS

ADDRESS PORTS AGE

webrtc-ingress-int webrtc.apps.vce-c0.eps.genesys.com,webrtc-test.apps.vce-

WebRTC Private Edition Guide

cO.eps.genesys.com 80 68s
5. Validate Ingress Edge route configuration
kubectl get route

Sample output:

NAME HOST/PORT PATH
SERVICES PORT TERMINATION WILDCARD
webrtc-gateway-service-blue webrtc.apps.qrtph6ga.westus2.aroapp.io
webrtc-gateway-service-blue web edge None

webrtc-ingress-int-cvdtt webrtc.apps.qrtph6ga.westus2.aroapp.io /
webrtc-gateway-service-blue web None

webrtc-ingress-int-trcvh webrtc.apps.qrtph6ga.westus2.aroapp.io /blue
webrtc-gateway-service-blue web None

webrtc-ingress-int-wf6x9 webrtc-test.apps.qrtph6ga.westus2.aroapp.io /blue
webrtc-gateway-service-blue web None

6. Query Ingress for made available WebRTC Web API
kubectl get ingress
Copy the WebRTC API from the Ingress output:

Sample output:

NAME CLASS

HOSTS

ADDRESS PORTS AGE

webrtc-ingress-int webrtc.apps.vce-c0.eps.genesys.com,webrtc-test.apps.vce-
cO.eps.genesys.com 80 3h26m

Curl WebRTC "ping" API:

curl -s webrtc.apps.vce-c0.eps.genesys.com/ping
{"state":"up","version":"9.0.000.89","path":"blue"}

WebRTC Private Edition Guide

	WebRTC Private Edition Guide

