
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

WebChatService

Widgets API Reference

8/2/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Contents

• 1 Overview
• 1.1 Usage
• 1.2 Namespace
• 1.3 Customization
• 1.4 Limitations

• 2 Configuration
• 2.1 Example
• 2.2 Options

• 3 Localization
• 4 API commands

• 4.1 configure
• 4.2 startChat
• 4.3 endChat
• 4.4 sendMessage
• 4.5 sendCustomNotice
• 4.6 sendTyping
• 4.7 sendFilteredMessage
• 4.8 addPrefilter
• 4.9 updateUserData
• 4.10 poll
• 4.11 startPoll
• 4.12 stopPoll
• 4.13 resetPollExceptions
• 4.14 restore
• 4.15 getTranscript
• 4.16 getAgents
• 4.17 getStats
• 4.18 sendFile
• 4.19 downloadFile
• 4.20 getSessionData
• 4.21 fetchHistory

Widgets API Reference 2



• 4.22 registerTypingPreviewInput
• 4.23 registerPreProcessor
• 4.24 verifySession

• 5 API events

Widgets API Reference 3



• Developer

Learn how to use Genesys chat services.

Related documentation:
•

Overview

WebChatService exposes high-level API access to Genesys chat services, so you can monitor and
modify a chat session on the front end, or develop your own custom WebChat widgets. Compared to
developing a custom chat UI and using the chat REST API, WebChatService dramatically simplifies
integration—improving the reliability, feature set, and compatibility of every widget on the bus.

Usage
WebChatService and the matching WebChat widget work together right out of the box and they share
the same configuration object. Using WebChat uses WebChatService.

You can also use WebChatService as a high-level API using bus commands and events to build your
own WebChat widget or other UI features based on WebChatService events.

Namespace
The WebChat Service plugin has the following namespaces tied to each of the following types:

Type Namespace
Configuration webchat
CXBus—API commands & API events WebChatService

Customization
WebChatService has many configuration options but no customization options. It is a plug-and-play
plugin and works as is.

Limitations
Multiple instances of the same chat session

After starting a chat session, that session can be opened in any number of new tabs on the same site.
Each tab runs an independent instance of WebChat connected to the same chat session. Currently,
Instances are not synchronized with each other due to Nexus limitation.

Widgets API Reference 4



Configuration

WebChat and WebChatService share the _genesys.widgets.webchat configuration namespace.
WebChat contains the UI options and WebChatService contains the connection options.

Important
Starting with version 9.0.008.04, WebChatService allows you to choose between the
types of chat services available in Genesys via the transport section in configuration
options.

Example
// When using v2 API

window._genesys.widgets.webchat = {

apikey: 'n3eNkgxxxxxxxxxxxx8VA',
dataURL: 'https://api.genesyscloud.com/gms-chat/2/chat',
enableCustomHeader: true,

userData: {},
emojis: true,
actionsMenu: true,

autoInvite: {

enabled: false,
timeToInviteSeconds: 10,
inviteTimeoutSeconds: 30

},

chatButton: {

enabled: true,
template: '

CHAT NOW
',

effect: 'fade',
openDelay: 1000,
effectDuration: 300,
hideDuringInvite: true

}
};

// When using v3 API

window._genesys.widgets.webchat = {

emojis: true,
userData: {},
transport: {

type: 'pureengage-v3-rest',
dataURL: https:///nexus/v3/chat/sessions,
endpoint: 'xxxxxxxxx',

Widgets API Reference 5



headers: {
'x-api-key': 'xxxxxxxx'

},
async: {

enabled: true,

getSessionData: function(sessionData, Cookie, CookieOptions) {

// Note: You don't have to use cookies. You can, instead,
store in a secured location like a database.

Cookie.set('customer-defined-session-cookie',
JSON.stringify(sessionData), CookieOptions);

},

setSessionData: function(Open, Cookie, CookieOptions) {

// Retrieve from your secured location.
return Cookie.get('customer-defined-session-cookie');

}
},

chatButton: {

enabled: true,
template: '

CHAT NOW
',

effect: 'fade',
openDelay: 1000,
effectDuration: 300,
hideDuringInvite: true

}
};

Options
Version 2 API

Name Type Description Default Required Introduced/
Updated

apikey string

Apigee Proxy
secure token.

Important
This option is
only supported
in GMS REST
mode.

n/a Yes, if using
Apigee Proxy

endpoint string
Manually select
the endpoint
on which to
initiate chat.

n/a n/a

dataURL string (URL)
URL for GMS
REST chat
service. If
cometD.enabled

n/a Always

Widgets API Reference 6



Name Type Description Default Required Introduced/
Updated

is set to true,
this property
will be ignored.

enableCustomHeaderboolean

Enables the
use of the
custom
authorization
header defined
in
_genesys.widgets.main.header
static config.
Attaches the
custom
authorization
header to all
WebChatService
request.

false No 9.0.002.06

userData object

Arbitrary
attached data
to include
when initiating
a chat.

{} n/a

ajaxTimeout number
Number of
milliseconds to
wait before
AJAX timeout.

3000 n/a

xhrFields object

Allows you to
set the
properties for
the AJAX
xhrFields
object (for
example,
{withCredentials:
false}).

Important
This option is
only supported
in GMS REST
mode.

{withCredentials:
false} n/a

pollExceptionLimitnumber

Number of
successive poll
exceptions
(chat server
offline) before
WebChatService
publishes
'chatServerWentOffline'.

5 n/a

restoreTimeout number
Number of
milliseconds
before restore

60000

Widgets API Reference 7



Name Type Description Default Required Introduced/
Updated

timeout.
Prevents the
chat session
from restoring
after a certain
time away
from the
session (for
example, user
navigated to a
different site
during chat
and never
ended the
session).

Version 3 API

Name Type Description Default Required Introduced/
Updated

transport object

Object
containing the
transport
service
configuration
options.

n/a

Yes, when
using new
transport
services
available with
WebChat.

9.0.008.04

transport.type string

Select the type
of transport
service that
needs to work
with WebChat
UI plugin. For
Pure Engage
v3 REST API,
the value is
'pureengage-
v3-rest'.

n/a
Yes, when
using Pure
Engage v3
REST API.

9.0.008.04

transport.dataURLstring (URL)

URL for Pure
Engage v3
REST API chat
service. Please
contact your
local Genesys
customer
representative
to obtain a
valid dataURL.

n/a Always 9.0.008.04

transport.endpointstring
The endpoint
for Genesys
Multicloud CX
v3 API.

n/a Yes 9.0.008.04

transport.headersobject Object n/a Yes 9.0.008.04

Widgets API Reference 8



Name Type Description Default Required Introduced/
Updated

containing key
value pairs of
any custom
headers.

transport.headers[x-
api-key] string

The API key
provided from
Genesys.
Please contact
your local
Genesys
customer
representative
to obtain a
valid API key.

n/a Yes 9.0.008.04

transport.async object

Object
containing
Async mode
configuration
options.

Important
To properly
restore a chat
session that has
ended
previously,
you'll need to
navigate back
to the page and
open the
WebChat
Widget. This
way, the chat
session is
restored in the
background and
is ready.
Presently, this is
a current
limitation in
Async WebChat.

{} No 9.0.008.04

transport.async.enabledboolean

Enable
Asynchronous
Chat where a
chat session
can be active
indefinitely.
When you
close WebChat
without ending
the chat
session, the
session will
simply go
dormant. When
you open

false
Yes, when
Async WebChat
mode is
enabled

9.0.008.04

Widgets API Reference 9



Name Type Description Default Required Introduced/
Updated

WebChat
again, the
session will
restore and
continue
chatting where
left off.

transport.async.getSessionDatafunction

A function that
you can define
to retrieve
updated
session data
from the
WebChatService
plugin. This
function is
called back
when starting a
new Async
chat session
for the first
time, or when
the
sessionData
changes over
the course of
an active chat
session. This
function takes
the following
arguments:
sessionData
(current active
session data),
Cookie
(Widgets
Internal cookie
reference), and
CookieOptions
(a parameter
that is needed
when using
Widgets
Cookie). The
purpose of this
function is to
provide you
with the active
session data so
that it can be
stored
somewhere
safe and
secure. Later

none
Yes, when
Async WebChat
mode is
enabled

9.0.008.04

Widgets API Reference 10



Name Type Description Default Required Introduced/
Updated

this needs to
be provided in
the below
setSessionData
function to
restore the
chat session.
Refer to the
example for
usage.

transport.async.setSessionDatafunction

A function that
you can define
to return the
session data to
the
WebChatService
plugin. During
initialization,
the
WebChatService
plugin will call
this function to
check if any
session data is
returned. If
found,
WebChatService
tries to restore
the chat
session using
this session
data and open
the WebChat
Widget.
WebChatService
will also pass
the following
arguments into
this function:
Open
(WebChat
current open
state value),
Cookie
(Widgets
Internal cookie
reference), and
CookieOptions
(a parameter
that isneeded
when using
Widgets
Cookie). Refer
to the example

none
Yes, when
Async WebChat
mode is
enabled

9.0.008.04

Widgets API Reference 11



Name Type Description Default Required Introduced/
Updated

for usage.

transport.async.deleteSessionDatafunction

A function that
you can define
to delete the
session data
from your
secret storage,
it will be called
by
WebChatService
plugin when
Async chat
session is lost
or cannot find
anymore due
to unknown
reasons. This
function will
enable you
write the script
for deleting the
session data
from your
secret storage,
in this way
WebChat will
try to start a
new chat
normally rather
than trying to
restore a lost
chat session.
WebChatService
will also pass
the following
arguments into
this function -
errorData (lost
session and
error details),
Cookie
(Widgets
Internal cookie
reference) and
CookieOptions
(a parameter
that will be
needed when
using Widgets
Cookie).

none
Yes, when
Async WebChat
mode is
enabled

9.0.015.12

userData object
Arbitrary
attached data
to include
when initiating

{} n/a

Widgets API Reference 12



Name Type Description Default Required Introduced/
Updated

a chat.

ajaxTimeout number
Number of
milliseconds to
wait before
AJAX timeout.

3000 n/a

Localization

WebChatService doesn't have any localization options.

API commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('WebChatService.getAgents');

Important
Starting with version 9.0.008.04, WebChatService allows you to choose between the
types of chat API services available in Genesys via the transport section configuration
options. For more information, see the Options table in configuration options.

configure
Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling
configure again after startup may result in unpredictable behavior.

Widgets API Reference 13



startChat
Initiates a new chat session with the chat server via GES or with the service configured under the
transport section.

Important
The options data must be under the “form” object when using the
"WebChatService.startChat" command in v3 API.

Example
// When using v2 API

oMyPlugin.command('WebChatService.startChat', {

nickname: 'Jonny',
firstname: 'Johnathan',
lastname: 'Smith',
email: 'jon.smith@mail.com',
subject: 'product questions',
userData: {}

}).done(function(e){

// WebChatService started a chat successfully

}).fail(function(e){

// WebChatService failed to start chat
});

// When using v3 API

oMyPlugin.command('WebChatService.startChat', {

form:{
nickname: 'Jonny',
firstname: 'Johnathan',
lastname: 'Smith',
email: 'jon.smith@mail.com',
subject: 'product questions',

},
userData: {}

}).done(function(e){

// WebChatService started a chat successfully

}).fail(function(e){

// WebChatService failed to start chat
});

Widgets API Reference 14



Options

Option Type Description

nickname string Chat Entry Form Data:
'nickname'.

firstname string Chat Entry Form Data:
'firstname'.

lastname string Chat Entry Form Data:
'lastname'.

email string Chat Entry Form Data: 'email'.
subject string Chat Entry Form Data: 'subject'.

userData object

Arbitrary data to attach to the
chat session (AKA attachedData).
Properties defined here will be
merged with default userData set
in the configuration object.

Resolutions

Status When Returns
resolved Server confirms session started (AJAX Response Object)

rejected A chat session is already active 'There is already an active chat
session'

rejected AJAX exception occurs (AJAX Response Object)
rejected Server exception occurs (AJAX Response Object)

rejected userData is invalid 'malformed data object provided
in userData property'

endChat
Ends the chat session with the chat server via GES or with the service configured under transport
section.

Example
oMyPlugin.command('WebChatService.endChat').done(function(e){

// WebChatService ended a chat successfully

}).fail(function(e){

// WebChatService failed to end chat
});

Resolutions

Status When Returns

resolved Active session is ended
successfully (AJAX Response Object)

Widgets API Reference 15



Status When Returns

rejected No chat session is currently
active 'There is no active chat session'

sendMessage
Sends a message from the client to the chat session.

Example
oMyPlugin.command('WebChatService.sendMessage', {message: 'hi'}).done(function(e){

// WebChatService sent a message successfully

}).fail(function(e){

// WebChatService failed to send a message
});

Options

Option Type Description
message string The message you want to send

Resolutions

Status When Returns
resolved Message is successfully sent (AJAX Response Object)
rejected No message text provided 'No message text provided'

rejected No chat session is currently
active 'There is no active chat session'

rejected AJAX exception occurs (AJAX Response Object)

sendCustomNotice
Sends a custom notice from the client to the chat server. This request is used to deliver any custom
notification between a custom client application and a custom agent desktop. Neither Genesys
Widgets, nor Workspace, uses this out of the box.

Example
oMyPlugin.command('WebChatService.sendCustomNotice', {message: 'bye'}).done(function(e){

// WebChatService sent a custom message successfully

}).fail(function(e){

// WebChatService failed to send a custom message
});

Widgets API Reference 16



Options

Option Type Description

message string A message you want to send
along with the custom notice

Resolutions

Status When Returns Introduced/Updated

resolved Message is successfully
sent (AJAX Response Object)

rejected AJAX exception occurs (AJAX Response Object)

rejected
The server doesn't
support receiving
custom notices

This transport doesn't
support
sendCustomNotice
command.

9.0.008.04

sendTyping
Sends a "Customer typing" notification to the chat session. A visual indication will be shown to the
agent.

Example
oMyPlugin.command('WebChatService.sendTyping').done(function(e){

// WebChatService sent typing successfully

}).fail(function(e){

// WebChatService failed to send typing
});

Options

Option Type Description

Message String The message you want to send
along with the typing notification

Resolutions

Status When Returns
resolved AJAX request is successful (AJAX Response Object)
rejected AJAX exception occurs (AJAX Response Object)

rejected No chat session is currently
active 'There is no active chat session'

Widgets API Reference 17



sendFilteredMessage
Sends a message along with a regular expression to match the message and hide it from the client.
Useful for sending codes and tokens through the WebChat interface to the Agent Desktop.

Important
Filters are now automatically stored and recalled on chat restore for the duration of
the session.

Example
oMyPlugin.command('WebChatService.sendFilteredMessage', {

message: 'filtered message',
regex: /[a-zA-Z]/

}).done(function(e){

// WebChatService sent filtered message successfully

}).fail(function(e){

// WebChatService failed to send filtered message
});

Options

Option Type Description

message string
Message you want to send but
don't want to appear in the
transcript

regex RegExp Regular expression to match the
message

Resolutions

Status When Returns
resolved There is an active session n/a

rejected No chat session is currently
active 'No active chat session'

addPrefilter
Adds a new pre-filter regular expression to the pre-filter list. Any messages matched using the pre-
filters will not be shown in the transcript

Widgets API Reference 18



Important
Filters are now automatically stored and recalled on chat restore for the duration of
the session.

Example
oMyPlugin.command('WebChatService.addPrefilter', {filters: /[a-zA-Z]/}).done(function(e){

// WebChatService added filter successfully
// e == Object of registered prefilters

}).fail(function(e){

// WebChatService failed to add filter
});

Options

Option Type Description

filters RegExp or Array of RegExp Regular Expression(s) to add to
the prefilter list

Resolutions

Status When Returns
resolved Valid filters are provided Array of all registered prefilters.

rejected Invalid or missing filters provided
'Missing or invalid filters
provided. Please provide a
regular expression or an array of
regular expressions.'

updateUserData
Updates the userData properties associated with the chat session. If this command is called before a
chat session starts, it will update the internal userData object and will be sent when a chat session
starts. If this command is called after a chat session starts, a request to the server will be made to
update the userData on the server associated with the chat session.

Example
oMyPlugin.command('WebChatService.updateUserData', {firstname: 'Joe'}).done(function(e){

// WebChatService updated user data successfully

}).fail(function(e){

// WebChatService failed to update user data
});

Widgets API Reference 19



Options

Option Type Description

n/a object
userData object you want to send
to the server for this active
session

Resolutions

Status When Returns Introduced/Updated

resolved
Session is active and
userData is successfully
sent

(AJAX Response Object)

rejected Session is active and
AJAX exception occurs (AJAX Response Object)

resolved

Session is not active
and internal userData
object is merged with
new userData properties
provided

The internal userData
object that will be sent
to the server

rejected
Session is active and
the server doesn't
support updating
userData

This transport doesn't
support updating
userData during an
active chat session.

9.0.008.04

poll
Internal use only. Starts polling for new messages.

Example
oMyPlugin.command('WebChatService.poll').done(function(e){

// WebChatService started polling successfully

}).fail(function(e){

// WebChatService failed to start polling
});

Resolutions

Status When Returns Introduced/Updated

resolved There is an active
session n/a

rejected WebChatService isn't
calling this command

'Access Denied to
private command. Only
WebChatService is
allowed to invoke this
command.'

rejected No chat session is 'previous poll has not

Widgets API Reference 20



Status When Returns Introduced/Updated
currently active finished.'

rejected The server doesn't
support polling

'This transport doesn't
support polling.' 9.0.008.04

startPoll
Starts automatic polling for new messages.

Example
oMyPlugin.command('WebChatService.startPoll').done(function(e){

// WebChatService started polling successfully

}).fail(function(e){

// WebChatService failed to start polling
});

Resolutions

Status When Returns Introduced / Updated

resolved There is an active
session n/a

rejected No chat session is
currently active No active chat session

rejected The server doesn't
support polling

This transport doesn't
support polling 9.0.008.04

stopPoll
Stops automatic polling for new messages.

Example
oMyPlugin.command('WebChatService.stopPoll').done(function(e){

// WebChatService stopped polling successfully

}).fail(function(e){

// WebChatService failed to stop polling
});

Resolutions

Status When Returns Introduced / Updated

resolved There is an active
session n/a

rejected No chat session is No active chat session

Widgets API Reference 21



Status When Returns Introduced / Updated
currently active

rejected The server doesn't
support polling

This transport doesn't
support polling 9.0.008.04

resetPollExceptions
Resets the poll exception count to 0. pollExceptionLimit is set in the configuration.

Example
oMyPlugin.command('WebChatService.resetPollExceptions').done(function(e){

// WebChatService reset polling successfully

}).fail(function(e){

// WebChatService failed to reset polling
});

Resolutions

Status When Returns Introduced / Updated
resolved Always n/a

rejected The server doesn't
support polling

This transport doesn't
support
resetPollExceptions
command.

9.0.008.04

restore
Internal use only. You should not invoke this manually unless you are using Async mode.

Example
oMyPlugin.command('WebChatService.restore').done(function(e){

// WebChatService restored successfully

}).fail(function(e){

// WebChatService failed to restore
});

Options

Option Type Description Accepted Values Introduced /
Updated

sessionData string
The session data
that is needed to
restore the
WebChat in Async

(JWT string token) 9.0.008.04

Widgets API Reference 22



Option Type Description Accepted Values Introduced /
Updated

mode. It is a JWT
token string value.
Applicable only
when using
WebChat with
Genesys
Multicloud CX v3
API. For more
information, see
the “Genesys
Multicloud CX v3”
tab in the
“Options” table in
configuration
options.

Resolutions

Status When Returns Introduced / Updated
resolved Session has been found n/a
rejected Session cannot be found n/a

rejected Restoring chat session is
in progress

Already restoring.
Ignoring request. 9.0.002.06

rejected Chat session is already
active

Chat session is already
active, ignoring restore
command.

9.0.002.06

rejected Trying restore chat
session manually

Access Denied to
private command. Only
WebChatService is
allowed to invoke this
command in Non-Async
mode.

9.0.002.06

getTranscript
Fetches an array of all messages in the chat session.

Important
For more information on the fields included in JSON response, see Digital Channels
Chat V2 Response Format.

Example
oMyPlugin.command('WebChatService.getTranscript').done(function(e){

// WebChatService got transcript successfully

Widgets API Reference 23



// e == Object with an array of messages

}).fail(function(e){

// WebChatService failed to get transcript
});

Resolutions

Status When Returns
resolved Always Object with an array of messages

getAgents
Return a list of agents currently participating in the chat. Includes agent metadata.

Example
oMyPlugin.command('WebChatService.getAgents').done(function(e){

// WebChatService got agents successfully
// e == Object with agents information in chat

}).fail(function(e){

// WebChatService failed to get agents
});

Resolutions

Status When Returns

resolved Always

(Object List) {name: (String),
connected: (Boolean), supervisor:
(Boolean), connectedTime: (int
time),disconnectedTime: (int
time)}

getStats
Returns stats on chat session including start time, end time, duration, and list of agents.

Example
oMyPlugin.command('WebChatService.getStats').done(function(e){

// WebChatService got stats successfully
// e == Object with chat session stats

}).fail(function(e){

// WebChatService failed to get stats
});

Widgets API Reference 24



Resolutions

Status When Returns

resolved Always
{agents: (Object), startTime: (int
time), endTime: (int time),
duration: (int time)}

sendFile
[Introduced: 9.0.008.04]

Sends the file from the client machine to the agent.

Example
oMyPlugin.command('WebChatService.sendFile', {files: $('').attr('type', 'file') /* Only works
on UI, can not dynamically change */ }).done(function(e){

// WebChatService sent file successfully

}).fail(function(e){

// WebChatService failed to send file
});

Options

Option Type Description

files File A reference to a file input
element (for example )

Resolutions

Status When Returns

resolved The file sent is a valid type and
size (AJAX Response Object)

rejected The file sent is an invalid type (AJAX Response Object)

rejected The number of uploads is
exceeded (AJAX Response Object)

rejected The file size exceeds the limit (AJAX Response Object)

rejected The file size is too large or an
unknown error occurs (AJAX Response Object)

rejected The server doesn't support file
uploads

This transport doesn't support
file uploads

Widgets API Reference 25



downloadFile
Downloads the file to the client machine. Example
oMyPlugin.command('WebChatService.downloadFile', {fileId: '1', fileName:
'myfile.txt'}).done(function(e){

// WebChatService sent file successfully

}).fail(function(e){

// WebChatService failed to send file
});

Options

Option Type Description

field string This is the id of the file to be
downloaded from the session

Resolutions

Status When Returns

resolved The file is downloaded
successfully n/a

getSessionData
[Introduced: 9.0.002.06]

Retrieves the active session data at any time.

Example
oMyPlugin.command('WebChatService.getSessionData')

Resolutions

Status When Returns Introduced / Updated

resolved

Always, when using
Chat via GMS API. For
more information, see
the 'GMS' tab in the
'Options' table in
configuration options.

{secureKey: (string),
sessionID: (number/
string), alias: (number/
string), userId: (number/
string)}

resolved

Always, when using
Chat via Genesys
Multicloud CX v3 API.
For more information,
see the 'Genesys
Multicloud CX v3' tab in
the 'Options' table in

{participantId: (string),
sessionId: {string),
token: (string),
transportId: (string)}

9.0.008.04

Widgets API Reference 26



Status When Returns Introduced / Updated
configuration options.

rejected Never undefined

fetchHistory
[Introduced: 9.0.008.04]

This applies only in Asynchronous mode to fetch older chat messages. It does not fetch all of the
messages at once; rather a certain number of messages are fetched every time this command is
called. Response data will be available in the messageReceived event. This internal command
determines the last received message index and, based on this information, fetches older messages
whenever it is called.

Example
oMyPlugin.command('WebChatService.fetchHistory')

Resolutions

Status When Returns
resolved Old messages are retrieved (AJAX Response Object)
rejected Request fails (AJAX Response Object)

rejected Asynchronous mode is not
enabled

Fetching history messages
applies only to Asynchronous
chat

rejected All messages are received No more messages to fetch

registerTypingPreviewInput
Selects an HTML input to watch for key events. Used to trigger startTyping and stopTyping
automatically.

Example
oMyPlugin.command('WebChatService.registerTypingPreviewInput', {input: $('input')
}).done(function(e){

// WebChatService registered input area successfully

}).fail(function(e){

// WebChatService failed to register typing preview
});

Options

Option Type Description

input HTML Reference An HTML reference to a text or
textarea input

Widgets API Reference 27



Resolutions

Status When Returns

resolved Valid HTML input reference is
provided n/a

rejected Invalid or missing HTML input
reference

'Invalid value provided for the
'input' property. An HTML
element reference to a textarea
or text input is required.'

registerPreProcessor
Registers a function that receives the message object, allowing you to manipulate the values before
it is rendered in the transcript.

Example
oMyPlugin.command('WebChatService.registerPreProcessor', {preprocessor: function(message){

message.text = message.text + ' some preprocessing text';
return message;

} }).done(function(e){
// WebChatService registered preprocessor function
// e == function that was registered

}).fail(function(e){
// WebChatService failed to register function

});

Options

Option Type Description

preprocessor function The preprocessor function you
want to register.

Resolutions

Status When Returns

resolved A valid preprocessor function is
provided and is registered

The registered preprocessor
function.

rejected An invalid preprocessor function
is provided

No preprocessor function
provided. Type provided was ''.

verifySession
Checks for existing WebChat session before triggering a proactive invite.

oMyPlugin.command('WebChatService.verifySession').done(function(e){
if(e.sessionActive) {

// dont show chat invite
} else if(!e.sessionActive) {

if(oMyPlugin.data('WebChat.open') == false){

Widgets API Reference 28



// show chat invite
} else {

// dont trigger chat invite
}

}
}).fail(function(e){

// verifySession not supported for the transport
});

Resolutions

Status When Returns

resolved A session exists or not A boolean sessionActive, which
holds the session state

rejected The verifySession command is
not supported for this transport

This transport doesn't support
the verifySession command

API events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('WebChatService.ready', function(e){});

Name Description Data Introduced/updated

ready
WebChatService is
initialized and ready to
accept commands.

n/a

restored

Chat session has been
restored after page
navigation or refresh. In
Asynchronous mode,
this event includes data
indicating whether a
chat session has been
restored in Async mode
or not.

{async: (boolean)} 9.0.002.06

restoreTimeout
Chat session restoration
attempted was denied
after user navigated

n/a

Widgets API Reference 29



Name Description Data Introduced/updated
away from originating
website for longer than
the time limit: default
60 seconds.

restoreFailed
Could not restore chat
session after page
navigation or refresh.

n/a

restoredOffline

Chat session was
restored normally but
chat server is offline.
This means no
messages can come
through. When chat
server is comes back
online,
'chatServerBackOnline'
is published.

n/a

messageReceived

A new message has
been received from the
server. Includes text
messages, status
messages, notices, and
other message types.

{originalMessages:
(object), messages:
(array of objects),
restoring: (boolean),
sessionData: (object)}

9.0.002.06

error
An error occurred
between the client and
the server.

(AJAX Response)

started Chat session has
successfully started.

(AJAX Response
containing session data)

ended Chat session has
successfully ended. n/a

agentTypingStarted Agents has started
typing a new message. (AJAX Response)

agentTypingStopped Agent has stopped
typing. (AJAX Response)

pollingStarted Chat server automatic
polling has started. n/a

pollingStopped Chat server automatic
polling has stopped. n/a

clientConnected
Indicates the user has
been connected to the
chat session.

{message: (object),
agents: (object),
numAgentsConnected:
(number)}

clientDisconnected
Indicates the user has
been disconnected form
the chat session.

{message: (object),
agents: (object),
numAgentsConnected:
(number)}

agentConnected Indicates an agent has
connected to the chat.

{message: (object),
agents: (object),
numAgentsConnected:

Widgets API Reference 30



Name Description Data Introduced/updated
(number)}

agentDisconnected
Indicates an agent has
disconnected from the
chat.

{message: (object),
agents: (object),
numAgentsConnected:
(number)}

supervisorConnected
Indicates a supervisor
has connected to the
chat.

{message: (object),
agents: (object),
numAgentsConnected:
(number)}

supervisorDisconnected
Indicates a supervisor
has disconnected from
the chat.

{message: (object),
agents: (object),
numAgentsConnected:
(number)}

botConnected

Indicates a bot has
connected to the chat.

Important
This event is applicable
only when using v2 API.

{message: (object),
agents: (object),
numAgentsConnected:
(number)}

9.0.014.13

botDisconnected

Indicates a bot has
disconnected from the
chat.

Important
This event is applicable
only when using v2 API.

{message: (object),
agents: (object),
numAgentsConnected:
(number)}

9.0.014.13

clientTypingStarted
The user has started
typing. Sends an event
to the agent.

n/a

clientTypingStopped

After a user stops
typing, a countdown
begins. When the
countdown completes,
the typing notification
will clear for the agent.

n/a

disconnected
Cannot reach servers.
No connection. Either
the user is offline or the
server is offline.

n/a

reconnected
Connection restored.
This event is only
published after
'disconnected'.

n/a

chatServerWentOffline

Chat server has gone
offline but chat session
has not ended. New
messages are
temporarily unavailable.
This event is published
only after the

n/a

Widgets API Reference 31



Name Description Data Introduced/updated
configuration option
'pollExceptionLimit' has
been exceeded. Default
limit is 5 poll
exceptions.
'restoredOffline' is an
alternate to this event
that is used only when
the chat server is down
while trying to restore
your chat session. The
reason for having two
events is to allow for
separate handling of
both scenarios.

Important
This event is applicable
only when using v2 API.

chatServerBackOnline

Chat server had come
back online after going
offline. This will only be
published after
'chatServerWentOffline'.

Important
This event is applicable
only when using v2 API.

n/a

connectionPending

If there is a connection
problem and
WebChatService is
trying to reconnect, this
event will be published.
Published before
'chatServerWentOffline'.

Important
This event is applicable
only when using v2 API.

n/a

connectionRestored

Is published when the
connection has be
reestablished. Publishes
at the same time as
'chatServerBackOnline'.

n/a

Widgets API Reference 32


	Widgets API Reference

