3 GENESYS

This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Widgets API Reference

WebChat

2/16/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

e 1 Overview
e 1.1 Usage
* 1.2 Customization
* 1.3 Namespace
* 1.4 Mobile support

e 1.5 Screenshots

* 2 Configuration
e 2.1 Example
e 2.2 Options

* 3 Localization
* 3.1 Special values for localization
* 3.2 Error handling
* 3.3 Usage
* 3.4 Inactivity messages
» 3.5 Default il8n JSON

* 4 API commands

* 4.1 configure

* 4.2 open

* 4.3 close

* 4.4 minimize

* 4.5 endChat

* 4.6 invite

* 4.7 relnvite

* 4.8 injectMessage

* 4.9 showChatButton
4.10 hideChatButton

* 4.11 showOverlay
* 4.12 hideOverlay
* 5 APl events
* 6 Metadata

Widgets APl Reference

* 6.1 Interaction Lifecycle
* 6.2 Lifecycle scenarios
* 6.3 Metadata
e 7 Customizable chat registration form
* 7.1 Default example
e 7.2 Properties
* 7.3 Labels
* 7.4 Wrappers
» 7.5 Validation
* 7.6 Form submit
¢ 8 Customizable emoji menu
» 8.1 Introduction
» 8.2 Differences between v1 and v2
* 8.3 Configuring the emoji menu
» 8.4 Localization

¢ 9 Terminate Chat session on contact side

Widgets APl Reference

e Developer
Learn how to enable live chats between customers and agents.

Related documentation:

Link to video

Overview

Widgets API Reference

https://player.vimeo.com/video/545672854?title=0&byline=0&portrait=0

& Live Chat — X

S

Knowledge Center

Hello and welcome! A Live agent will
be with you shortly. In the meantime,
can | assist you with any questions
you may have? Please type a
question into the input field below.
1211 PM

“Agent will be with you shortly..."
12:17 PM

John Smith
all

1212 PM

Type your message here

©@ s00

Widgets API Reference

/File:WebChat-Main-new.PNG
/File:WebChat-Main-new.PNG

The WebChat Widget allows a customer to start a live chat with a customer service agent. The Ul
appears within the page and follows the customer as they traverse your website. Other features
include minimize/maximize, auto-reconnect, and a built-in invite feature.

Usage
You can launch WebChat manually by using the following methods:

* Call the WebChat.open command
¢ Configure ChannelSelector to show WebChat as a channel
¢ Enable the built-in launcher button for WebChat that appears on the right side of the screen

¢ Create your own custom button or link to open WebChat (using the WebChat.open command)

Customization

You can customize and localize all of the static text shown in the WebChat Widget by adding entries
to your configuration and localization options.

WebChat supports themes. You can create and register your own themes for Genesys Widgets.

Namespace

The WebChat plugin has the following namespaces tied to each of the following types:

Type Namespace
Configuration webchat
i1l8n—Localization webchat
CXBus—API commands & APl events WebChat
CSS .cx-webchat

Mobile support

WebChat supports both desktop and mobile devices. Like all Genesys Widgets, there are two main
modes: Desktop & Mobile. Desktop is employed for monitors, laptops, and tablets. Mobile is
employed for smartphones. When a smartphone is detected, WebChat switches to special full-screen
templates that are optimized for both portrait and landscape orientations.

Switching between desktop and mobile mode is done automatically by default. You may configure
Genesys Widgets to switch between Desktop and Mobile mode manually if necessary.

Screenshots

Dark theme

Widgets API Reference

arpa
A there
1340

Light theme

i Thene

* 1134 AR

Firet s | | [
= =3
= N
Erra
= Fugecs

byt

Widgets API Reference

/File:WebChat_Form_Desktop_Dark.png
/File:WebChat_Form_Desktop_Dark.png
/File:WebChat_Form_Portrait_Dark.png
/File:WebChat_Form_Portrait_Dark.png
/File:WebChat_Form_Landscape_Dark.png
/File:WebChat_Form_Landscape_Dark.png
/File:Widgets_WebChat_Typing_Indicator_Dark_0721.png
/File:Widgets_WebChat_Typing_Indicator_Dark_0721.png
/File:WebChat_Transcript_Desktop_Dark-without-cobrowse.PNG
/File:WebChat_Transcript_Desktop_Dark-without-cobrowse.PNG
/File:WebChat_Transcript_Portrait_Dark-without-cobrowse.png
/File:WebChat_Transcript_Portrait_Dark-without-cobrowse.png
/File:WebChat_Transcript_Landscape_Dark_without-cobrowse.png
/File:WebChat_Transcript_Landscape_Dark_without-cobrowse.png
/File:WebChat_Form_Desktop_Light.png
/File:WebChat_Form_Desktop_Light.png
/File:WebChat_Form_Portrait_light.png
/File:WebChat_Form_Portrait_light.png
/File:WebChat_Form_Landscape_light.png
/File:WebChat_Form_Landscape_light.png
/File:Widgets_WebChat_Typing_Indicator_0721.png
/File:Widgets_WebChat_Typing_Indicator_0721.png

B s
P T 8 A Ty
W e L B T LA
oy Saprr” Plem frw sty ey oy e el
s

Y

s
Vo 1m0 e Co 8 10 Wy
ke

Jang Doe
Hi
1237 P

Type your message hene

e & s

Important

The dark theme is active by default. You may also change colors/themes for widgets
by following the instructions on the Customize appearance page.

Configuration

Link to video

WebChat and WebChatService share the _genesys.widgets.webchat configuration namespace.
WebChat has Ul options while WebChatService has connection options.

Example

window. genesys.widgets.webchat = {

apikey: 'n3eNkgLLgLKXREBMYjGm6lygOHHOK8VA',

dataURL: 'https://api.genesyscloud.com/gms-chat/2/chat’,
userData: {},

emojis: true,

uploadsEnabled: false,

confirmFormCloseEnabled: true,

actionsMenu: true,

maxMessagelLength: 140,

autoInvite: {

enabled: false,

Widgets APl Reference

/File:WebChat_Transcript_Desktop_light-without-cobrowse.PNG
/File:WebChat_Transcript_Desktop_light-without-cobrowse.PNG
/File:WebChat_Transcript_Portrait_Light_without_cobrowse.png
/File:WebChat_Transcript_Portrait_Light_without_cobrowse.png
/File:WebChat_Transcript_Landscape_Light_without_cobrowse.png
/File:WebChat_Transcript_Landscape_Light_without_cobrowse.png
https://player.vimeo.com/video/441169402?title=0&byline=0&portrait=0

timeToInviteSeconds: 10,
inviteTimeoutSeconds: 30

}I

chatButton: {

enabled: true,

template:

effect: 'fade',
openDelay: 1000,
effectDuration:

300,

hideDuringInvite: true

}I

minimizeOnMobileRestore:

false,

arialdleAlertIntervals:[50,25,10],

ariaCharRemainingIntervals:[75, 25, 10]

I
Options
Name Type
emojis boolean
form object

Description Default
Enable/disable
Emoji menu
inside chat
message input.
Emojis are
supported
using unicode
characters and
the list
includes ©
U+263A
(smile), &
U+1F44D
(thumbs up)
and ® U+2639
(sad).

A JSON object
containing a
custom
registration
form definition.
The JSON
definition
placed here
becomes the
default
registration
form layout for
WebChat. See
Customizable
Chat

false

A basic
registration

internally by
default

form is defined

Required

n/a

n/a

Introduced/
Updated

Widgets API Reference

Name Type

uploadsEnabled boolean

confirmFormCloseBoabdad

timeFormat number/string

actionsMenu boolean

maxMessagelengtiumber

charCountEnabledboolean

autolnvite.enabledoolean

Description

Registration
Form.

Show/Hide the
Send File
button. The
button will be
shown if the
value is set to
true.

Enable or
disable
displaying a
confirmation
message
before closing
WebChat if
information
has been
entered into
the registration
form.

This sets the
time format for
the
timestamps in
this widget. It
can be 12 or
24.

Enable/disable
actions menu
next to chat
message input.

Set a character
limit that the
user can input
into the
message area
during a chat.
When max is
reached, user
cannot type
any more.

Show/Hide the
number of
characters
remaining in
the input
message area
while the user
is typing.
Enable/disable

Default Required

false n/a

true n/a

12 false

true n/a

500 n/a

false n/a

false n/a

Introduced/
Updated

Widgets API Reference

10

Name Type

autolnvite.timeTolnuiteSeconds

autolnvite.inviteTimeobeSeconds

chatButton.enablebloolean

chatButton.templating

chatButton.effect string

chatButton.openDalayber

Description Default Required
auto-invite

feature.

Automatically

invites user to

chat after user

idles on page

for preset time.

When running
Widgets in lazy
load mode, this
option requires
that you pre-
load the
WebChat plugin.

Number of
seconds of idle
time before
inviting
customer to
chat.

Number of
seconds to
wait, after
showing invite,
before closing
chat invite.

Enable/disable
chat button on
screen.

5 n/a

30 n/a

When running false n/a
Widgets in lazy

load mode, this

option requires

that you pre-

load the

WebChat plugin.

Custom HTML
string template n/a
for chat button.

Type of
animation
effect when
revealing chat
button. 'slide’
or 'fade'.

fade n/a

Number of
milliseconds
before
displaying chat

1000 n/a

Introduced/
Updated

Widgets API Reference

11

Name Type

chatButton.effect Dunatien

chatButton.hideD Wwouddavite

arialdleAlertintervalsay/boolean

ariaCharRemainingimtarbalslean

Description

button on
screen.

Length of
animation
effect in
milliseconds.

When the auto-
invite feature is
activated,
hides the chat
button. When
invite is
dismissed,
reveals the
chat button
again.

An array
containing the
intervals as a
percentage at
which the
screen reader
will announce
the remaining
idle time. By
default, it is
enabled with
the following
time intervals,
and it is
customizable
according to
the user's
needs.
Configuring a
value of 'false’
will let the
screen reader
call out idle
time for every
change.

An array
containing the
intervals as a
percentage at
which the
screen reader
will announce
the remaining
characters
when the user
inputs text into
the message

Default

300

true

[100, 75, 50,
25, 10]

[50, 25, 10]

Required

n/a

n/a

n/a

n/a

Introduced/
Updated

9.0.016.11

9.0.016.11

Widgets API Reference

12

Introduced/

Name Type Description Default Required Updated

area. By
default, it is
enabled with
the following
intervals, and it
is customizable
according to
the user needs.
Configuring a
value of 'false'
will let the
screen reader
call out
remaining
characters for
every change.

Localization

You can define string key names and values to match the system messages that are received from
the chat server. If a customer system message is received as SYS001 in the message body, Webchat
checks to determine if any keys match in the language pack, and then replaces the message body
accordingly. SYS001 is an example format. There are no format restrictions on custom message
keys. The purpose of this feature is to allow localization for the User Interface and Server to be kept
in the same file.

Special values for localization

You can inject the special value. When used, the agent's name is rendered in its place at runtime.

Error handling

Customers can define their own error messages in the Errors section found in the above Webchat
Localization. If no error messages are defined, default error messages are used.

For information on how to set up localization, refer to Localize widgets and services.

Usage

You must use the webchat namespace for defining localization strings for the WebChat plugin in your
i18n JSON file.

The following example shows how to define new strings for the en (English) language. You can use

Widgets API Reference 13

any language codes you wish; there is no standard format. When selecting the active language in

your configuration, you must match one of the language codes defined in your i18n JSON file. Please

note that you must only define a language code once in your i18n JSON file. Inside each language
object you should define new strings for each widget.

Inactivity messages

If Chat Server is configured to end the chat session after a certain idle time, it may send several
warning messages to the client to inform them and prompt them to act. Chat Server can be
configured to show a first warning, a second warning, and a final notice when it ends the chat

session. By default, WebChat will display the warning message text as it is received from the server.

If you wish to localize these methods on the client side instead, follow these steps:
The first warning can be localized by setting the string 'ldleMessagel".
The second warning can be localized by setting the string 'ldleMessage?2'.

The final notice can be localized by setting the string 'ldleMessageClose'.

Tip
If Chat Server ever allows more than two idle warning messages, you can localize

them by incrementing the integer value in the string name (e.g. 'ldleMessage3’,
'IdleMessage4’, and so on).

Default i18n JSON

{
"en": {
"webchat": {
"ChatButton": "Chat",
"ChatStarted": "Chat Started",
"ChatEnded": "Chat Ended",
"AgentNameDefault": "Agent",
"AgentConnected": " Connected",
"AgentDisconnected": " Disconnected",
"BotNameDefault": "Bot",
"BotConnected": " Connected",
"BotDisconnected": " Disconnected",
"SupervisorNameDefault": "Supervisor",
"SupervisorConnected": " Connected",
"SupervisorDisconnected": " Disconnected",
"AgentTyping": "...",
"AriaAgentTyping": "Agent is typing",
"AgentUnavailable": "Sorry. There are no agents available. Please try
later.",
"ChatTitle": "Live Chat",
"ChatEnd": "X",
"ChatClose": "X",
"ChatMinimize": "Min",
"ChatFormFirstName": "First Name",
"ChatFormLastName": "Last Name",
"ChatFormNickname": "Nickname",

"ChatFormEmail": "Email",

Widgets API Reference

14

"ChatFormSubject": "Subject",

"ChatFormPlaceholderFirstName": "Required",
"ChatFormPlaceholderLastName": "Required",
"ChatFormPlaceholderNickname": "Optional",

"ChatFormPlaceholderEmail": "Optional",
"ChatFormPlaceholderSubject": "Optional",
"ChatFormSubmit": "Start Chat",

"AriaChatFormSubmit": "Start Chat",

"ChatFormCancel": "Cancel",

"AriaChatFormCancel": "Cancel",

"ChatFormClose": "Close",

"ChatInputPlaceholder": "Type your message here",
"ChatInputSend": "Send",

"AriaChatInputSend": "Send",

"ChatEndQuestion": "Are you sure you want to end this chat session?",
"ChatEndCancel": "Cancel",

"ChatEndConfirm": "End chat",

"AriaChatEndCancel": "Cancel",

"AriaChatEndConfirm": "End chat",

"ConfirmCloseWindow": "Are you sure you want to close chat?",
"ConfirmCloseCancel": "Cancel",

"ConfirmCloseConfirm": "Close",

"AriaConfirmCloseCancel": "Cancel",
"AriaConfirmCloseConfirm": "Close",

"ActionsDownload": "Download transcript",

"ActionsEmail": "Email transcript",

"ActionsPrint": "Print transcript",

"ActionsSendFile": "Attach Files",
"AriaActionsSendFileTitle": "Opens a file upload dialog",

"ActionsEmoji": "Send Emoji",

"ActionsVideo": "Invite to Video Chat",

"ActionsTransfer": "Transfer",

"ActionsInvite": "Invite",

"InstructionsTransfer": "Open this link on another device to transfer
your chat session",

"InstructionsInvite": "Share this link with another person to add

them to this chat session",
"InviteTitle": "Need help?",
"InviteBody": "Let us know if we can help out.",
"InviteReject": "No thanks",
"InviteAccept": "Start chat",
"AriaInviteAccept": "Start chat",
"AriaInviteReject": "No thanks",
"ChatError": "There was a problem starting the chat session. Please
retry.",
"ChatErrorButton": "OK",
"AriaChatErrorButton": "OK",
"ChatErrorPrimaryButton": "Yes",
"ChatErrorDefaultButton": "No",
"AriaChatErrorPrimaryButton": "Yes",
"AriaChatErrorDefaultButton": "No",
"DownloadButton": "Download",
"AriaDownloadButton": "Download",
"FileSent": "has sent:",
"FileTransferRetry": "Retry",
"AriaFileTransferRetry": "Retry",

"FileTransferError": "OK",

"AriaFileTransferError": "OK",

"FileTransferCancel": "Cancel",

"AriaFileTransferCancel": "Cancel",

"RestoreTimeoutTitle": "Chat ended",

"RestoreTimeoutBody": "Your previous chat session has timed out.

Would you like to start a new one?",

Widgets APl Reference

"RestoreTimeoutReject": "No thanks",

"RestoreTimeoutAccept": "Start chat",
"AriaRestoreTimeoutAccept": "Start chat",
"AriaRestoreTimeoutReject": "No thanks",

"EndConfirmBody": "Would you really like to end your chat session?",
"EndConfirmAccept": "End chat",
"EndConfirmReject": "Cancel",
"AriaEndConfirmAccept": "End chat",
"AriaEndConfirmReject": "Cancel",
"SurveyOfferQuestion": "Would you like to participate in a survey?",
"ShowSurveyAccept": "Yes",
"ShowSurveyReject": "No",
"AriaShowSurveyAccept": "Yes",
"AriaShowSurveyReject": "No",
"UnreadMessagesTitle": "unread",
"AriaYouSaid": "You said",
"AriaSaid": "said",
"AriaSystemSaid": "System said",
"AriaWindowLabel": "Live Chat Window",
"AriaMinimize": "Live Chat Minimize",
"AriaMaximize": "Live Chat Maximize",
"AriaClose": "Live Chat Close",
"AriaEmojiStatusOpen": "Emoji picker dialog is opened",
"AriaEmojiStatusClose": "Emoji picker dialog is closed",
"AriaEmoji": "emoji",
"AriaCharRemaining": "Characters remaining",
"AriaMessageInput": "Message box",
"AsyncChatEnd": "End Chat",
"AsyncChatClose": "Close Window",
"AriaAsyncChatEnd": "End Chat",
"AriaAsyncChatClose": "Close Window",
"DayLabels": [

||Sun|| ,

"Mon" ,

"Tue" ,

"Wed",

"Thur" ,

"Fri" ,

IISa.tII
]I
"MonthLabels": [

IIJanII

n Febll

IIMarII

IIAprII

=
Q
<_

w0

D
o

prt

=
5
<

]I
"todayLabel": "Today",

"Errors": {
"102": "First name is required.",
"103": "Last name is required.",
"161": "Please enter your name.",

"201": "The file could not be sent.

The maximum number of attached files would be exceeded ().

Widgets APl Reference

"202": "The file could not be sent.

Upload limit and/or maximum number of attachments would be exceeded ().

"203": "The file could not be sent.

File type is not allowed.

"204": "We're sorry but your message is too long. Please
write a shorter message.",

"240": "We're sorry but we cannot start a new chat at this
time. Please try again later.",

"364": "Invalid email address.",

"401": "We're sorry but we are not able to authorize the chat
session. Would you like to start a new chat?",

"404": "We're sorry but we cannot find your previous chat
session. Would you like to start a new chat?",

"500": "We're sorry, an unexpected error occurred with the
service. Would you like to close and start a new Chat?",

"503": "We're sorry, the service is currently unavailable or
busy. Would you like to close and start a new Chat again?",

"ChatUnavailable": "We're sorry but we cannot start a new
chat at this time. Please try again later.",

"CriticalFault": "Your chat session has ended unexpectedly
due to an unknown issue. We apologize for the inconvenience.",

"StartFailed": "There was an issue starting your chat

session. Please verify your connection and that you submitted all required information
properly, then try again.",

"MessageFailed": "Your message was not received successfully.
Please try again.",

"RestoreFailed": "We're sorry but we were unable to restore
your chat session due to an unknown error.",

"TransferFailed": "Unable to transfer chat at this time.
Please try again later.",

"FileTransferSizeError": "The file could not be sent.
File size is larger than the allowed size ().

"InviteFailed": "Unable to generate invite at this time.
Please try again later.",

"ChatServerWentOffline": "Messages are currently taking
longer than normal to get through. We're sorry for the delay.",

"Restored0ffline": "Messages are currently taking longer than
normal to get through. We're sorry for the delay.",

"Disconnected": "

Connection lost

"Reconnected": "
Connection restored

"FileSendFailed": "The file could not be sent.

There was an unexpected disconnection. Try again?

"Generic": "
An unexpected error occurred.

Widgets APl Reference

17

"pureengage-v3-rest-INVALID FILE TYPE": "Invalid file type.
Only Images are allowed.",

"pureengage-v3-rest-LIMIT FILE SIZE": "File size is larger
than the allowed size.",

"pureengage-v3-rest-LIMIT FILE COUNT": "The maximum number of
attached files exceeded the limit.",

"pureengage-v3-rest-INVALID CONTACT CENTER": "Invalid x-api-
key transport configuration.",

"pureengage-v3-rest-INVALID ENDPOINT": "Invalid endpoint
transport configuration.",

"pureengage-v3-rest-INVALID NICKNAME": "First Name is
required.",

"pureengage-v3-rest-AUTHENTICATION REQUIRED": "We're sorry
but we are not able to authorize the chat session.",

"purecloud-v2-sockets-400": "Sorry, something went wrong.
Please verify your connection and that you submitted all required information properly, then
try again.",

"purecloud-v2-sockets-500": "We're are sorry, an unexpected
error occurred with the service.",

"purecloud-v2-sockets-503": "We're sorry, the service is
currently unavailable."

}

}

APl commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Important

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('WebChat.open');

configure

Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling configure
again after startup may result in unpredictable behavior.

Widgets API Reference 18

open
Opens the WebChat UlI.

Example

oMyPlugin.command('WebChat.open', {

userData: {},
form: {

autoSubmit: false,

firstname: 'John',

lastname: 'Smith',

email: 'John@mail.com',
subject: 'Customer Satisfaction

}
formJSON: {...}
markdown: false

}) .done(function(e){
// WebChat opened successfully
}).fail(function(e){

// WebChat isn't open or no active chat session

1)
Options

Option Type Description

Object containing form data to
form object prefill in the chat entry form and
optionally auto-submit the form.

Automatically submit the form.

form.autoSubmit boolean Useful for bypassing the entry
form step.
form.firstname string \{alue for the first name entry
field.
form.lastname string \(alue for the last name entry
field.
form.email string Value for the email entry field.
form.subject string Value for the subject entry field.
An object containing a custom
. registration form definition. See
e clyEE Customizable chat registration
form.
Object containing arbitrary data
. that gets sent to the server.
userData object Overrides userData set in the
webchat configuration object.
async boolean Starts a new chat either in

Widgets API Reference

Option Type
markdown boolean
id string
Resolutions
Status When
resolved WebChat is successfully opened
rejected WebChat is already open
close

Closes the WebChat UlI.

Example
oMyPlugin.command('WebChat.close').done(function(e){

// WebChat closed successfully
}).fail(function(e){

// WebChat is already closed or no active chat session

3
Resolutions
Status When
resolved WebChat is successfully closed
rejected WebChat is already closed
minimize

Minimizes or un-minimizes the WebChat Ul.

Description

asynchronous or normal mode
based on the boolean value. Note
that unless async static
configuration is defined, a chat in
normal mode will start
automatically.

The markdown feature for chat
messages.

A Unique identifier of a chat
session that helps to identify the
instance of that session and its
associated events. A random
value is automatically generated
and assigned when no value is
passed explicitly.

Returns
n/a
'already opened'

Returns
n/a
'already closed'

Widgets API Reference

20

Example

oMyPlugin.command('WebChat.minimize"').done(function(e){
// WebChat minimized successfully

}).fail(function(e){

// WebChat ignores command

1)
Options
Option Type Description
Rather than toggling the current
L minimized state you can specify
Wiazes SN the minified state directly: true =
minimized, false = uniminimized.
Resolutions
Status When Returns
resolved Always n/a
rejected Never 'Invalid configuration'
endChat

Starts the end chat procedure. User may be prompted to confirm.

Example
oMyPlugin.command('WebChat.endChat').done(function(e){

// WebChat ended a chat successfully
}).fail(function(e){

// WebChat has no active chat session

1}
Resolutions
Status When Returns
-~ There is an active chat session to n/a
end
rejected There is no active chat session to thelre is no active chat session to
end end
invite

Shows an invitation to chat using the Toaster popup element. The text shown in the invitation can be
edited in the localization file.

Widgets API Reference 21

Example

oMyPlugin.command('WebChat.invite').done(function(e){
// WebChat invited successfully

}).fail(function(e){

// WebChat is already open and will be ignored

3
Resolutions
Status When Returns
- WebChat is closed and the toast e

element is created successfully

WebChat is already open
rejected (prevents inviting a user that is
already in a chat)

'‘Chat is already open. Ignoring
invite command.’

relnvite

When an active chat session cannot be restored, this invitation offers to start a new chat for the user.
The text shown in the invitation can be edited in the localization file.

Example

oMyPlugin.command('WebChat.reInvite').done(function(e){
// WebChat reinvited successfully

}).fail(function(e){

// WebChat is already open and will be ignored

1)
Resolutions
Status When Returns
WebChat is closed, the config
item
resolved 'webchat.inviteOnRestoreTimeout' n/a

is set, and the toast element is
created successfully

WebChat is already open
rejected (prevents inviting a user that is
already in a chat)

‘Chat is already open. Ignoring
invite command.'

injectMessage

Injects a custom message into the chat transcript. Useful for extending WebChat functionality with
other Genesys products.

Widgets API Reference 22

Example

oMyPlugin.command('WebChat.injectMessage', {

type: 'text',

name: 'person',
text: 'hello',
custom: false,

bubble:{

fill:

radius:

time:
name:

direction:
avatar:{

word
1

}

}) .done(function(e){

'right',

"email'’

// WebChat injected a message successfully
// e.data == The message HTML reference (jQuery wrapped set)

}).fail(function(e){

// WebChat isn't open or no active chat

3
Options

Option

type

name

text

custom

bubble.fill

bubble.radius

Type

string

string

string

boolean

string of valid CSS color value

string of valid CSS border radius
value

Description

Switch the rendering type of the
injected message between text
and html.

Specify a name label for the
message to identify what service
or widget has injected the
message.

The content of the message.
Either plain text or HTML.

If set to true, the default
message template will not be
used, allowing you to inject a
highly customized HTML block
unconstrained by the normal
message template.

The content of the message.
Either plain text or HTML.

The border radius you'd like for
the bubble.

Widgets API Reference

23

Option

bubble.time
bubble.name

bubble.direction

bubble.avatar.custom

bubble.avatar.icon

Resolutions

Status

resolved

rejected

showChatButton

Type

boolean
boolean

string

string or HTML reference

class name

When

WebChat is open and there is an
active chat session

WebChat is not open and/or there
was no active chat session

Description

If you'd like to show the
timestamp for the bubble.

If you'd like to show the name for
the bubble.

Which direction you want the
message bubble to come from.

Change the content of the html
that would be the avatar for the
chat bubble.

Generated common library
provided for icon name.

Returns

An HTML reference (jQuery
wrapped set) to the new injected
message.

'No chat session to inject into'

Displays the standalone chat button using either the default template and CSS, or customer-defined

ones.

Example

oMyPlugin.command('WebChat.showChatButton', {

openDelay: 1000,

duration: 1500

}) .done(function(e){

// WebChat shows chat button successfully

}).fail(function(e){

// WebChat button is already visible, side bar is active and overrides the chat
button, or chat button is disabled in configuration

3
Options
Option
openDelay

duration

Type
number

number

Description

Duration in milliseconds to delay
showing the chat button on the
page.

Duration in milliseconds for the

Widgets API Reference

24

Option

Resolutions

Status

resolved

rejected

rejected

hideChatButton

Hides the standalone chat button.

Example

Type

When

The chat button is enabled in the
configuration, is currently not
visible, and the SideBar plugin is
not initialized

The chat button is not enabled in
the configuration, or it's already
visible, or the SideBar plugin is
initialized

The SideBar plugin is active the
standalone chat button will be
disabled automatically

Description

show and hide animation.

Returns

n/a

'‘Chat button is already visible.
Ignoring command.'

'SideBar is active and overrides
the default chat button'

oMyPlugin.command('WebChat.hideChatButton', {duration: 1500}).done(function(e){

// WebChat hid chat button successfully

}).fail(function(e){

// WebChat button is already hidden

3
Options
Option
duration
Resolutions
Status

resolved

rejected

showOverlay

Type

number

When

The chat button is currently
visible

The chat button is already hidden

Description

Duration in milliseconds for the
show and hide animation.

Returns
n/a

‘Chat button is already hidden.
Ignoring command.'

Opens a slide-down overlay over WebChat's content. You can fill this overlay with content such as

Widgets API Reference

disclaimers, articles, and other information.

Example

oMyPlugin.command('WebChat.showOverlay', {

html: '
anmple text
' hideFooter: false
}) .done(function(e){
// WebChat successfully shows overlay
}).fail(function(e){

// WebChat isn't open

3
Options
Option Type
html string or HTML reference
hideFooter boolean
Resolutions
Status When
WebChat is open and the overlay
resolved opens
rejected WebChat is not currently open
hideOverlay

Hides the slide-down overlay.

Example
oMyPlugin.command('WebChat.hideOverlay').done(function(e){

// WebChat hid overlay successfully

}).fail(function(e){

Description

The HTML content you want to
display in the overlay.

Normally the overlay appears
between the titlebar and footer
bar. Set this to true to have the
overlay overlap the footer to gain
a bit more vertical space. This
should only be used in special
cases. For general use, don't set
this value.

Returns

WebChat is not currently open.
Ignoring command.

Widgets API Reference

26

// WebChat isn't

1}
Resolutions

Status

resolved

rejected

APl events

open

When

WebChat is open and the overlay
closes

WebChat is not currently open

Returns

WebChat is not currently open.

Ignoring command.

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('WebChat.ready', function(e){});

Name

ready
opened

started

submitted

rejected

completed

cancelled

closed

minimized

Description

WebChat is initialized and ready
to accept commands

The WebChat widget has
appeared on screen

The WebChat has successfully
started.

The user has submitted the form.

When the chat session fails to
start. Typically due to form
validation or network errors.

The Chat session ended after
agent is successfully connected
to WebChat.

The Chat session ended before
agent is connected to WebChat.

The WebChat widget has been
removed from the screen

The WebChat widget has been

Data

n/a

n/a

Metadata

Metadata

Metadata

Metadata

Metadata

Metadata

n/a

Widgets API Reference

27

Name

unminimized

messageAdded

Metadata

Interaction Lifecycle

Description
changed to a minimized state

The WebChat widget has been
restored from a minimized state
to the standard view

When a message is added to the
transcript, this event will fire

Data

n/a

Returns an object containing two
properties: 'data’' and 'html'.
'data’ contains the JSON data for
the message, while 'html’
contains a reference to the
visible message inside the chat
transcript.

Every WebChat interaction has a sequence of events we call the Interaction Lifecycle. This is a
sequence of events that tracks progress and choices from the beginning of an interaction (opening

WebChat), to the end (closing WebChat), and every step in between.

The following events are part of the Interaction Lifecycle:

ready
opened
started
cancelled
submitted
rejected
completed
closed

Lifecycle scenarios

An Interaction Lifecycle can vary based on each user's intent and experience with WebChat. Here are
several sequences of events in the lifecycle that correspond to different scenarios.

The user opened WebChat but changed their mind and closed it without starting a chat session:

ready -> opened -> cancelled -> closed

The user started a chat session but ended it before an agent connected. Perhaps it was taking too

long to reach someone:

ready -> opened -> started -> cancelled -> closed

The user started a chat, but the chat fails to start:

ready -> opened -> started -> submitted -> rejected

The user started a chat, met with an agent, and the session ended normally:

Widgets API Reference

ready -> opened -> started -> submitted -> completed -> closed

Tip

For a list of all WebChat events, see API events.

Metadata

Each event in the Interaction Lifecycle includes the following block of metadata. By default, all values
are set to false. As the user progresses through the lifecycle of a WebChat interaction, these values

will be updated.

The metadata block contains boolean state flags, counters, timestamps, and elapsed times. These
values can be used to track and identify trends or issues with chat interactions. During run-time, the
metadata can help you offer a smart and dynamic experience to your users.

Reference

Name

proactive

prefilled

autoSubmitted

filesUploaded

numAgents

userMessages
agentMessages

systemMessages

errors

form

opened

Type

boolean

boolean

boolean

integer

integer

integer
integer

integer

array/boolean

object

integer (timestamp)

Description

Indicates this chat session was
started proactively.

Indicates the registration form
was prefilled with info
automatically.

Indicates the registration form
was submitted automatically,
usually after being prefilled.

Current number of files uploaded
during chat session.

Current number of agents that
have connected to the chat
session.

Current number of messages
sent by user.

Current number of messages
sent by agents.

Current number of system
messages received.

An array of error codes
encountered during chat session.
If no errors, this value will be
false.

An object containing the form
parameters when the form is
submitted.

Timestamp indicating when
WebChat was opened.

Widgets API Reference

29

Name

started

cancelled

rejected

completed

closed

agentReached

supervisorReached

elapsed

waitingForAgent

Customizable chat registration form

Type

integer (timestamp)

integer (timestamp)

integer (timestamp)

integer (timestamp)

integer (timestamp)

integer (timestamp)

integer (timestamp)

integer (milliseconds)

integer (milliseconds)

string

Description

Timestamp indicating when chat
session started.

Timestamp indicating when the
chat session was cancelled.
Cancelled refers to when a user
ends a chat session before an
agent connects.

Timestamp indicating when the
chat session was rejected.
Rejected refers to when a chat
session fails to start.

Timestamp indicating when the
chat session ended normally.
Completed refers to when a user
or agent ends a chat after an
agent connected.

Timestamp indicating when
WebChat was closed.

Timestamp indicating when the
first agent was reached, if any.

Timestamp indicating when the
first agent supervisor was
reached, if any.

Total elapsed time in milliseconds
from when the user started the
chat session to when the chat
session ended.

Total time in milleseconds waiting
for an agent from when the user
started the chat session to when
an agent connected to the
session.

A Unique identifier of a chat
session that helps to identify the
instance of that session and its
associated events.

WebChat allows you to customize the registration form shown to users prior to starting a session. The
following form inputs are currently supported:

* Text

* Select

e Hidden

* Checkbox

Widgets API Reference

30

¢ Textarea

Customization is done through a JSON object structure that defines the layout, input type, label, and

attributes for each input. You can set the default registration form definition in the
_genesys.widgets.webchat.form configuration option. Alternately, you can pass a new
registration form definition through the WebChat.open command:
_genesys.widgets.bus.command("WebChat.open", {formJSON: oRegFormDef});

Inputs are rendered as stacked rows with one input and one optional label per row.

Default example

The following example is the default JSON object used to render WebChat’s registration form. This is a

very simple definition that does not use many properties.

{

wrapper: "

", inputs: [{ id: "cx_webchat_form_firstname", name: "firstname", maxlength:
"100", placeholder: "@i18n:webchat.ChatFormPlaceholderFirstName", label:
"@il8n:webchat.ChatFormFirstName" }, { id: "cx_webchat form_lastname",
name: "lastname", maxlength: "100", placeholder:
"@il8n:webchat.ChatFormPlaceholderLastName", label:

"@i18n:webchat.ChatFormLastName" }, { id: "cx_webchat_form_email", name:

"email”, maxlength: "100", placeholder:
"@i18n:webchat.ChatFormPlaceholderEmail", label:
"@il8n:webchat.ChatFormEmail" }, { id: "cx_webchat form_subject", name:
"subject", maxlength: "100", placeholder:
"@i1l8n:webchat.ChatFormPlaceholderSubject", label:
"@il8n:webchat.ChatFormSubject" }] }

This JSON definition generates the following output:

Widgets API Reference

31

& Live Chat

First Name

Last Name

Required

Required

Email Optional

Subject

Cancel

Properties

Optional

Each input definition can contain any number of properties. These are categorized in two groups:
"Special properties", which are custom properties used internally to handle rendering logic, and
"HTML attributes" which are properties that are applied directly as HTML attributes on the input

element.
Special properties

Property

type

label

string

string

Type

"text"

Default

Description

Sets the type of input to
render. Possible values
are currently "text",
"hidden", "select",
"checkbox", and
"textarea".

Set the text for the
label. If no value
provided, no label will
be shown. You may use
localization query
strings to enable
custom localization (for

Widgets API Reference

32

/File:WebChat_CustomForm_001.png
/File:WebChat_CustomForm_001.png

Property

wrapper

validate

validateWhileTyping

options

Type

HTML string

function

boolean

array

false

Default

Description

example, label:
"@il8n:namespace.StringName").
Localization query

strings allow you to use

strings from any widget
namespace or to create

your own namespace in

the localization file

(i18n.json) and use

strings from there (for

example, label:
"@i18n:myCustomNamespace.myCustc
For more information,

see the Labels section.

Each input exists in its
own row in the form. By
default this is a table-
row with the label in the
left cell and the input in
the right cell. You can
redefine this wrapper
and layout by specifying
a new HTML row
structure. See the
Wrappers section for
more info.

The default wrapper for
an inputis "

Define a validation
function for the input
that executes when the
input loses focus (blur)
or changes value. Your
function must return
true or false. True to
indicate it passed, false
to indicate it failed. If
your validation fails, the
form will not submit and
the invalid input will be
highlighted in red. See
the Validation section
for more details and
examples.

Execute validation on
keypress in addition to
blur and change. This
ignores non-character
keys like shift, ctrl, and
alt.

When ‘type’ is set to
‘select’, you can
populate the select by

Widgets API Reference

33

Property Type Default Description

adding options to this
array. Each option is an
object (for example,
{text: ‘Option 1’, value:
‘1'} for a selectable
option, and {text:
"Group 1", group: true}
for an option group).

HTML attributes

With the exception of special properties, all properties will be added as HTML attributes on the input
element. You can use standard HTML attributes or make your own.

Example

{
id: "cx webchat form firstname",
name: "firstname",
maxlength: "100",
placeholder: "@il8n:webchat.ChatFormPlaceholderFirstName",
label: "@il8n:webchat.ChatFormFirstName"

}

In this example, id, name, maxlength, and placeholder are all standard HTML attributes for the text
input element. Whatever values are set here will be applied to the input as HTML attributes.

The default input type is "text", so type does not need to be defined if you intend to
make a text input.

HTML output
|

Disabling autocomplete

Since the custom form feature supports adding any HTML attributes to your inputs, you can control
standard HTML features like disabling autocomplete. To disable autocomplete, add autocomplete:
"off" to your input definition.

Example

{
id: "cx webchat form firstname",
name: "firstname",
maxlength: "100",
placeholder: "@il8n:webchat.ChatFormPlaceholderFirstName",
label: "@il8n:webchat.ChatFormFirstName",
autocomplete: "off"

Widgets API Reference 34

Labels

A label tag will be generated for your input if you specify label text and if your custom input wrapper
includes a ‘{label}’ designation. If you have added an ID attribute for your input, the label will
automatically be linked to your input so that clicking on the label selects the input or, for checkboxes,
toggles it.

Labels can be defined as static strings or localization queries.

Wrappers

Wrappers are HTML string templates that define a layout. There are two kinds of wrappers, Form
Wrappers and Input Wrappers:

Form wrapper

You can specify the parent wrapper for the overall form in the top-level "wrapper"
property. In the example below, we specify this value as “

This is the default wrapper for the WebChat form:
{

wrapper:
", [* form wrapper */ inputs: [] }
Input wrapper

Each input is rendered as a table row inside the Form Wrapper. You can change this by defining a new
wrapper template for your input row. Inside your template you can specify where you want the input
and label to be by adding the identifiers "{label}" and "{input}" to your wrapper value. See the
example below:

{
id: "cx webchat form firstname",
name: "firstname",
maxlength: "100",
placeholder: "@il8n:webchat.ChatFormPlaceholderFirstName",
label: "@il8n:webchat.ChatFormFirstName",
wrapper: "{label}{input}" /* input row wrapper */

}

The {label} identifier is optional. Omitting it will allow the input to fill the row. If you decide to keep
the label, you can move it to any location within the wrapper, such as putting the label on the right,
or stacking the label on top of the input. You can control the layout of each row independently,
depending on your needs.

You are not restricted to using a table for your form. You can change the form
wrapper to "
"and then change the individual input wrappers from a table-row to your own

Widgets API Reference 35

specification. Be aware though that when you move away from the default table
wrappers, you are responsible for styling and aligning your layout. Only the
default table-row wrapper is supported by default Themes and CSS.

Validation

You can apply a validation function to each input that lets you check the value after a change has
been made and/or the user has moved to a different input (on change and on blur). You can enable
validation on key press by setting validateWhileTyping to true in your input definition.

Here is how to define a validation function:

{
id: "cx webchat form firstname",
name: "firstname",
maxlength: "100",
placeholder: "@il8n:webchat.ChatFormPlaceholderFirstName",
label: "@il8n:webchat.ChatFormFirstName",

validateWhileTyping: true, // default is false
validate: function(event, form, input, label, $, CXBus, Common){
return true; // or false
}

You must return true or false to indicate that validation has passed or failed, respectively. If you
return false, the WebChat form will not submit, and the input will be highlighted in red. This is
achieved by adding the CSS class "cx-error" to the input. The image below displays the the field
where a user input validation error has occurred, with the field highlighted in red.

) Live Chat

FirstName Required

Validation function arguments

Argument Type Description
event JavaScript event object The input event reference object

Widgets API Reference 36

/File:Validation_failure.png
/File:Validation_failure.png

Argument

form
input

label

CXBus

Common

Form submit

Type

HTML reference
HTML reference

HTML reference

jquery instance

CXBus instance

Function Library

Description

related to the form input field.
This event data can be helpful to
perform actions like active
validation on an input field while
the user is typing.

A jquery reference to the form
wrapper element.

A jquery reference to the input
element being validated.

A jquery reference to the label
for the input being validated.

Widget's internal jquery instance.
Use this to help you write your
validation logic, if needed.

Widget’'s internal CXBus
reference. Use this to call
commands on the bus, if needed.

Widget’s internal Common library
of functions and utilities. Use if
needed.

Custom input field form values are submitted to the server as key value pairs
under the userData section of the form submit request, where input field names
will be the property keys. During the submit, this data is merged along with the

userData defined in the WebChat.open command.

Depending on the API used (PureEnagage V2 API or Genesys Cloud CX) the payload
structure in the request can vary for each, but the section below explains how the
form data is submitted by the WebChat Ul plugin when using custom forms.

Below is the internal form data object defined in the WebChat plugin by default.
Since firstname, lastname, nickname, email, and subject are reserved keywords,
users are not allowed to have custom fields with the same name.

{

firstname: ,
lastname: '',
nickname: "'
email: '',
subject: '',

userData: {}

Widgets API Reference

37

Once the Chat is started, the customer messages display either the nickname or the
firstname specified during registration as the Name.

Example

The example below shows how the custom form data given in the WebChat form fields have been
mapped as a form data object.

The form fields with reserved keywords like firstname, lastname, and email will be sent as top level
and the rest of the fields will be sent under userData to the WebChatService plugin.

Once the form data object is sent to the WebChatService plugin, it will parse and send in the payload
request.

{

"wrapper":"

", "inputs":[{ "id":"cx_webchat_form_firstname", "name":"firstname”",
"type":"text", "maxlength":"100",
"placeholder":"@il8n:webchat.ChatFormPlaceholderFirstName",
"label":"@il8n:webchat.ChatFormFirstName", "value":"John" }, {
"id":"cx_webchat _form_lastname", "name":"lastname", "type":"text",
"maxlength":"100",
"placeholder":"@il18n:webchat.ChatFormPlaceholderLastName",
"label":"@il8n:webchat.ChatFormLastName", "value":"Smith" }, {
"id":"cx_webchat_form_email”, "name":"email", "type":"text", "maxlength":"100",
"placeholder":"@il8n:webchat.ChatFormPlaceholderEmail", "“label":"Email",
"value":"john.smith@company.com" }, { "id":"cx_webchat_form_phonenumber",
"name":"phonenumber"”, "type":"text", "maxlength":"100", "placeholder":"Phone
Number", "label"™:"Phone Number", "value":"9256328346" }, {

"id":"cx_webchat form_enquirytype", "name":"enquirytype", "type":"select",
"label":"Enquiry Type", "options":[{ "text":"Account", "group":true }, {
"text":"Sales", "value":"Sales", "selected":true }, { "text":"Credit Card",
"value":"credit card" }, { "text":"General", "group":true }, { "text":"Warranty",
"value":"warranty" }, { "text":"Return policy", "value":"returns" } 1} 1}

Widgets API Reference 38

& Live Chat

First Name John

Last Name Smith

Email john.smith@company.com

Phone Number 9256328346

Enquiry Type Sales

firstname: 'John',
lastname: 'Smith',
email: 'john.smith@company.com',
userData: {
phonenumber: '9256328346"',
enquirytype: 'Sales' //value selected from the dropdown

Customizable emoji menu

Introduction

WebChat offers a v2 emoji menu that lets you choose which emaojis to include in the emoji menu.

Widgets API Reference

39

/File:WebChat_CustomForm_Dark_v1.png
/File:WebChat_CustomForm_Dark_v1.png

W1 Emoji Menu V2 Emoji Menu

0000 @6
Qe O
ooaLBLa

2 & @2 & s

Differences between v1 and v2

* v1 shows as a tooltip-style overlay; v2 shows as a new block between the transcript and the message
input.

¢ vl closes when you select an emoji or click outside the menu; v2 lets you choose multiple emojis and
only closes if you click the emoji menu button again.

¢ v1 has three fixed emojis to choose from; v2 can show hundreds of customizable emojis in a grid layout.

¢ v1 menu appears in mobile mode; v2 menu is not available in mobile mode (when v2 is configured, no
emoji menu button is present in mobile mode).

¢ v1 menu has default emojis; v2 menu does not have default emojis. It must be explicitly configured with
a list of emaojis.

Configuring the emoji menu

Click the emoji menu icon at the bottom-left corner of the WebChat Ul to open the v2 emoji menu.
The transcript will be resized to fit the emoji menu, which can vary in height depending on the
number of emojis configured.

* When 1-8 emojis are configured, the menu has one row, and no scrollbar appears.

¢ When 9-16 emojis are configured, the menu has two rows, and no scrollbar appears.

* When 17-24 emojis are configured, the menu has three rows, and no scrollbar appears.

¢ When 25 or more emojis are configured, the menu has three rows, and a scrollbar appears.

Widgets API Reference 40

/File:WebChat-Emoji-menu.png
/File:WebChat-Emoji-menu.png

Configure the v2 emoji menu by passing a string containing emoji into the
WebChat configuration or through localization.

If you define an emoji list in the WebChat configuration, it will override any emoji lists
defined in localization files.

You configure the emoji list by specifying a string of emoji characters, like
OO ", WebChat will parse this string and arrange them in the emoji menu.

// Configure a flat list of emoji characters
_genesys.widgets.webchat.emojilList =
TOOVODODODODODODODOODODODOOODODOOOOOOOOOOY
SODODOOVOODODODODODODOODODODODODODOODCOMKDOOOOOOD";

Add emoji display names

You can also add names to emojis so that their names will appear when you hover over them. To add
a name to an emoji, simply add a colon after the question mark symbol, and then type the name.
Separate each name with a semicolon.

The format is ;¢&:name;

You can only add one name to an emoji. The following sample shows the format
for configuring several emojis.

// Configure an emoji list with emoji names

_genesys.widgets.webchat.emojiList = "<&:Star-Struck;®:Zany Face;®:Face With Hand Over
Mouth;®:Shushing Face;®:Face With Raised Eyebrow;<®:Bitcoin;<®:Face Vomiting;
:Exploding Head;®:Face With Monocle;®:Face With Symbols on Mouth;<®:0range Heart;
:Love-You Gesture;<®:Palms Up Together;<®:Brain;®:Child;®:Person;®:Man: Beard;

:0lder Person;®:Woman With Headscarf;®:Breast-Feeding;<®:Mage;<®:Fairy;<®:Vampire;
:Merperson; ®:ELlf;®:Genie;®:Zombie;®:Person in Steamy Room;<®:Person Climbing;

:Person in Lotus Position;®:Zebra;®:Giraffe;®:Hedgehog;®:Sauropod;<®:T-Rex;®:Cricket;
:Coconut;®:Broccoli;®:Pretzel;®:Cut of Meat;®&:Australia Day;®®:Bastille

QOO

Widgets API Reference 41

/File:Emoji-screenshot-dark-themed.PNG
/File:Emoji-screenshot-dark-themed.PNG

Day;®:Birthday;®:Black Friday;®<®:Canada Day;®<®:Carnival;<®:Chinese New Year;<®:Christmas;
&&®:Cinco de Mayo;<®:Diwali;®<®:Dragon Boat Festival;<®:Easter;®:Emoji Movie;<®:Fall/Autumn;
&:Father’s Day;®:Festivus;<®:Graduation;®:Guy Fawkes;<®:Halloween;<® :Hanukkah;
&:Hearts;®:Holi;®®:Independence Day;<®:Mother’s Day;®:New Year’'s Eve;®:0lympics;
&&®:Pride;®:Queen’s Birthday;CG:Ramadan;<®:Spring;+:St Patrick’s Day;#*:Summer;
&:SuperBowl;®:Thanksgiving;®:Valentine'’s Day;<®:Wedding / Marriage;®:Winter;®:Winter

Olympics;®:World Cup;<®:World Emoji Day;";

Partially named lists

You don't have to add names for every emoji. You can add titles to only a select
few.

// Configure an emoji list with only a few emoji names

_genesys.widgets.webchat.emojiList = "®QOOOOOOOOROY ;& :Palms Up Together;

SOODOODOVDOVDODODOVODOODOOOOOOOOOOY; & Black Friday;
QOOOOODOOOOVODODODOOODOOOOOOOOCOWKOOOY ;& :Snowman; & ",

Localization

Emojis can be localized so that each language has a preferred set of emojis and
emoji titles.

If you define an emoji list in the WebChat configuration, it will override any emoji lists
defined in localization files.

The key name for defining an emoji list is "EmojiList". Emoji lists are defined in a
localization file using the same syntax as the WebChat configuration.

{
llenll: {
"webchat": {
"EmojilList": "<&:Star-Struck;<®:Zany Face;®:Face With Hand Over Mouth;<®:Shushing
Face;"

}

}

Terminate Chat session on contact side

To prevent a contact from sending another chat message using the Widget after the chat session is
terminated in Designer, you must add a customization to the widget to notify it to close.

First, set up a text message informing the contact that the chat is terminated by using a Play
Message Block.

Widgets API Reference 42

Properties - Play Message

This block is used to play audio mess ages These messages can be TTS (Text to Speech), Audio Files (previously uploaded in Audio Vs
, Resources page, of variables played as TTS. 4
1) Prompts [l Message Settings
Prompts

[# Disable barge-in €@

[# Always play prompt and disable buffering @

+ Add Prompt
Type Var? Value Play as Actions
T8 b | Thanks for contacting us. Goodbye! | text hd P |

Next, set up the Widget Register Handler for WebChatService.messageReceived (or look for the
messageAdded event) to get notifications about messages received, then send the endChat
command when the text message is received. For information about Genesys Widgets events and
commands, refer to Genesys Widget APl Events and Genesys Widget API Commands.

Finally, add the following customized script:

window. genesys.widgets.onReady = function(CXBus){
var oWH = CXBus.registerPlugin("WebChatHandler");
oWH.subscribe("WebChatService.messageReceived", function (e) {

if(e.data) {

/**

* Extract the sample data (can be the Playback message configured in Designer)
* and look for a specific condition to end the chat

*/

const {messages} e.data || {};
let sPlayMessage (messages) ? messages.find(message => message.type ==
'Message' && message.text == 'play message') : "";

if(sPlayMessage) {
oWH. command ("WebChatService.endChat");
/**
* Check for the chat session data stored in localStorage and clear it
*/

(window.localStorage.getItem("WebChatSessionData")) ?
window.localStorage.removeltem("WebChatSessionData") : "";

Widgets API Reference 43

/File:WidgetsWebChat_PlayMessageBlock2_042022.png
/File:WidgetsWebChat_PlayMessageBlock2_042022.png

	Widgets API Reference

