
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Widgets Bus API overview

Widgets API Reference

7/27/2024

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

• 1 Overview
• 1.1 Global access
• 1.2 Genesys Widgets onReady callback
• 1.3 Extensions

• 2 CXBus Reference
• 2.1 CXBus.command
• 2.2 CXBus.configure
• 2.3 CXBus.loadFile
• 2.4 CXBus.loadPlugin
• 2.5 CXBus.registerPlugin

• 3 CXBus Plugin Interface Reference
• 3.1 oMyNewPlugin.registerCommand
• 3.2 oMyNewPlugin.registerEvents
• 3.3 oMyNewPlugin.subscribe
• 3.4 oMyNewPlugin.publish
• 3.5 oMyNewPlugin.republish
• 3.6 oMyNewPlugin.publishDirect
• 3.7 oMyNewPlugin.command
• 3.8 oMyNewPlugin.before
• 3.9 oMyNewPlugin.registry
• 3.10 oMyNewPlugin.subscribers
• 3.11 oMyNewPlugin.namespace
• 3.12 oMyNewPlugin.ready

Widgets API Reference 2

• Developer

Learn about the bus that all widgets components are built on.

Related documentation:
•

Overview

Genesys Widgets is built on top of the CXBus messaging bus. CXBus uses the publish-subscribe
model to facilitate communication between the Widgets components, all of which are plugins that
can both publish events on the bus and subscribe to the events they are interested in.

With the help of the Widgets-Core plugins, CXBus makes it possible to combine the logic
implemented by user interface plugins, service plugins, and utility plugins into cohesive products that
can provide chat sessions, schedule callbacks, and so on.

Publications and subscriptions are loosely bound so that you can publish and subscribe to any event
without that event explicitly being available. This allows for plugins to lazy load into the bus or
provide conditional logic in your plugins so they can wait for other plugins to be available.

CXBus events and commands are executed asynchronously using deferred methods and promises.
This allows for better performance and standardized Pass/Fail handling for all commands. Command
promises are not resolved until the command is finished, including any nested asynchronous
commands that command may invoke. This gives you assurance that the command completed
successfully and the timing of your follow-up action will occur at the right time. As for permissions,
CXBus provides metadata in every command call including which plugin called the command and at
what time. This allows for plugins to selectively allow/deny invocation of commands.

You can use three methods to access the Bus:

• Global access
• Genesys Widgets onReady callback
• Extensions

Global access
QuickBus

window._genesys.widgets.bus
For quick access to call commands on the bus, you can access the QuickBus instance after Genesys
Widgets loads. QuickBus is a CXBus plugin that is exposed globally for your convenience. Typical use
cases for using QuickBus are for debugging or calling a command when a link or button is clicked.
Instead of creating your own plugin, you can use QuickBus to add the click handler inline in your

Widgets API Reference 3

HTML.
Example:

Open WebChat

Global CXBus

CXBus is available as a global instance named "CXBus" (or window.CXBus). Unlike QuickBus, this is
not a plugin but CXBus itself.
CXBus has been updated to include a "command" method that allows you to execute a command
directly from the CXBus instance.
Example:

CXBus.command("WebChat.open");

You can use this, like QuickBus, for debugging or setting up click events.

Genesys Widgets onReady callback
Genesys Widgets provides an "onReady" callback function that you can define in your configuration.
This will be triggered after Genesys Widgets initializes. QuickBus is provided as an argument in this
function, but you may also access CXBus globally in your function.

window._genesys.widgets.onReady = function(QuickBus){

// Use the QuickBus plugin provided here to interface with the bus
// QuickBus is analogous to window._genesys.widgets.bus

};

Extensions
You can define your own plugins/widgets that interface with Genesys Widgets. For more information,
please see Genesys Widgets extensions.

CXBus Reference

The CXBus instance is exposed globally (window.CXBus) and has several methods available:

• CXBus.command
• CXBus.configure
• CXBus.loadFile
• CXBus.loadPlugin
• CXBus.registerPlugin

CXBus.command
Calls a command on the bus under the namespace "CXBus". Use this to quickly and easily call

Widgets API Reference 4

commands without needing to generate a unique plugin interface object first.

Example
CXBus.command("WebChat.open", {});

Arguments

Name Type Description

Command name string The name of the command you
wish to execute.

Command options object

Optional: You may pass an object
containing properties that the
command will accept. Refer to
the documentation on each
command to see what options
are available.

Returns

Always returns a promise. You can define done(), fail(), or always() callbacks for every command.

CXBus.configure
Allows you to change configuration options for CXBus.

Example
CXBus.configure({debug: true, pluginsPath: "/js/widgets/plugins/"});

Arguments

Name Type Description

Configuration options object
An object containing properties,
similar to command options. In
this object you can change
configuration options for CXBus.

Configuration options

Name Type Description

debug boolean
Enable or disable CXBus logging
in the javascript console. Set to
true to enable; set to false to
disable. Default value is false.

pluginsPath string

The location of the Genesys
Widgets "plugins" folder.
Example: "/js/widgets/plugins/" The
default value here is "". This configuration
option is used for lazy loading plugin files.

Widgets API Reference 5

Name Type Description

Be sure to configure this option when
using Genesys Widgets in lazy loading
mode.

pluginMap object

Used to change the target JS file
for each plugin or to add a new
plugin.
Example:

{sendmessage:
"https://www.yoursite.com/
plugins/custom-
sendmessage.js"}

CXBus will automatically lazy load plugins
defined in this object when something
tries to call a command on that plugin.

For instance, if SendMessage.open is
called and SendMessage isn't loaded,
CXBus will fetch it from the default
"plugins/" folder. If you want to load a
different SendMessage widget, you can
override the default URL of the JS file
associated with "sendmessage".

You can also prevent a plugin from
loading by mapping it to false.

Example:

{sendmessage: false}

Important

• Any number of plugins
can be included in this
object.

• Only works when using
the lazy-loading method
of initializing Widgets.

• Not intended to be used
to load different versions
of Genesys Widgets
plugins.

• Intended to be used
along with the proper
pluginsPath
configuration. Do not use
pluginMap method
separately.

Returns

This method returns nothing.

Widgets API Reference 6

CXBus.loadFile
Loads any javascript file.

Example
CXBus.loadFile("/js/widgets/plugins/webchat.min.js");

Arguments

Name Type Description

File path string Loads a javascript file based on
the file path specified.

Returns

Always returns a promise. You can define done(), fail(), or always() callbacks. When the file loads
successfully, done() will be triggered. When the file fails to load, fail() will be triggered.

CXBus.loadPlugin
Loads a plugin file from the configured "plugins" folder.

Example
CXBus.loadPlugin("webchat");

Arguments

Name Type Description

Plugin name string

Loads a plugin from the "plugins"
folder by name (configured by
the "pluginsPath" option). Plugin
names match their CXBus
namespaces but are lowercase.
Example: To load WebChat, use
"webchat".
You can refer to the files inside
the "plugins" folder as well. The
first part of the file name will be
the name you use with this
function.
Example: Use "webchat" to load
"webchat.min.js".

Returns

Always returns a promise. You can define done(), fail(), or always() callbacks. When the plugin loads
successfully, done() will be triggered. When the plugin fails to load, fail() will be triggered.

Widgets API Reference 7

CXBus.registerPlugin
Registers a new plugin namespace on the bus and returns a plugin interface object. You will use the
plugin interface object to publish, subscribe, call commands, and perform other CXBus functions.

Example
var oMyNewPlugin = CXBus.registerPlugin("MyNewPlugin");

Arguments

Name Type Description

CXBus plugin namespace string The namespace you want to
reserve for your plugin.

Returns

If the namespace is not already taken, it will return a CXBus plugin interface object configured with
the selected namespace. If the namespace is already taken, it will return false.

CXBus Plugin Interface Reference

When you register a plugin using CXBus.registerPlugin(), it returns a CXBus Plugin Interface Object.
This object contains many methods that allow you to interact with other plugins on the bus.

Let's start with the assumption that we've created the below plugin interface:

var oMyNewPlugin = CXBus.registerPlugin("MyNewPlugin");

oMyNewPlugin.registerCommand
Allows you to register a new command on the bus for other plugins to use.

Example
oMyNewPlugin.registerCommand("test", function(e){

console.log("'MyNewPlugin.test' command was called", e)

e.deferred.resolve();
});

Arguments

Name Type Description

Command name string
The name you want for this
command. When other plugins
call your command, they must
specify the namespace as well.

Widgets API Reference 8

Name Type Description
Example: "test" is called on the
bus as "MyNewPlugin.test".

Command function function

The command function that is
executed when the command is
called. This function is provided
an Event Object that contains
metadata and any options
passed in.

Event object

Name Type Description

time number (integer time) The time the command was
called.

commander string

The name of the plugin that
called your command. Example:
If your plugin called a command,
the value would be
"MyNewPlugin".
You can use this information to
create plugin-specific logic in
your command.

command string

The name of this command.
Example: "MyNewPlugin.test".
This can be useful if you are
using the same function for
multiple commands and need to
identify which command was
called.

deferred deferred promise object

When a command is called, a
promise is generated. You must
resolve this promise in your
command without exception.
Either execute
e.deferred.resolve() or
e.deferred.reject().
You may pass values back
through these methods. If you
pass a value back inside reject()
it will be printed in the console as
an error log automatically.

data object

This is the object containing
command options passed in
when the command was called. If
no options were passed, this will
default to an empty object.

Returns

Returns true.

Widgets API Reference 9

oMyNewPlugin.registerEvents
Registering events is a formality that allows CXBus to keep a registry of all possible events. You don't
need to register events before publishing them, but it's a best practice to always register events.

Example
oMyNewPlugin.registerEvents(["ready", "testEvent"]);

Arguments

Name Type Description
Event name array array An array of event names.

Returns

Returns true if at least one value event was included in the array. Returns false if no events are
included in the array or no array is passed in.

oMyNewPlugin.subscribe
Subscribes your plugin to an event on the bus with a callback function. When the event is published,
the callback function is executed. You can subscribe to any event, even if the event does not exist.
This allows for binding events that may come in the future.

Example
oMyNewPlugin.subscribe("WebChat.opened", function(e){

// e = Event Object. Contains metadata and attached data
//
// Example Event Object data:
//
// e.time == 1532017560154
// e.event == "WebChat.opened"
// e.publisher == "WebChat"

});

Arguments

Name Type Description

Event name string
The name of the event you want
to subscribe to. Must include the
plugin's namespace.

Callback function function

A function to execute when the
event is published. An Event
Object is passed into this
function that gives you access to
metadata and attached data.

Widgets API Reference 10

Event object

Name Type Description

time number (integer time) The time the event was
published.

event string
The name of the event, including
namespace. That can be useful if
you are using the same function
to handle multiple events.

publisher string The namespace of the plugin
that published the event.

Returns

Returns the name of the event back to you if the subscription was successful. Returns false if you did
not specify an event and/or a callback function.

oMyNewPlugin.publish
Publishes an event on the bus under your plugin's namespace.

Example
// Publishes the event "MyNewPlugin.testEvent" with attached data {test: "123"}
oMyNewPlugin.publish("testEvent", {test: "123"});

Arguments

Name Type Description

Event name string
The name of the event you want
to publish. Do not include the
plugin namespace.

Attached data object An object of arbitrary properties
you can attach to your event.

Returns

Always returns true.

oMyNewPlugin.republish
A special method of publishing intended for one-off events like "ready". In some cases, an event will
fire only once. If a plugin is loaded at a later time that needs to subscribe to this event, it will never
get it because it will never be published again. To solve this problem, the "republish" method will
automatically republish an event to new subscribers as soon as they subscribe to it.

In Genesys Widgets, every plugin publishes a "ready" event. This event is published using "republish"
so that any plugin loaded and/or initialized after can still receive the event.

It is important that you only use "republish" for events that publish once. Using republish multiple

Widgets API Reference 11

times for the same event can cause unwanted behavior.

Genesys Widgets plugins all publish a "ready" event. This is not related to the CXBus plugin interface
object's "ready()" method. Calling oMyNewPlugin.ready() will not publish any events.

Example
oMyNewPlugin.republish("ready", {...});

Arguments

Name Type Description

Event name string
The name of the event you want
to have republished. Do not
include the plugin namespace.

Attached data object An object of arbitrary properties
you can attach to your event.

Returns

Always returns true.

oMyNewPlugin.publishDirect
A slight variation on "publish", this method will only publish an event on the bus if it has subscribers.
The intention of this method is to avoid spamming the logs with events that no plugins are listening
to. In particular, if you have an event that publishes frequently or on an interval, "publishDirect" may
be used to minimize its impact on logs in the console.

Example
oMyNewPlugin.publishDirect("poll", {...});

Arguments

Name Type Description

Event name string
The name of the event you want
to have republished. Do not
include the plugin namespace.

Attached data object An object of arbitrary properties
you can attach to your event.

Returns

Always returns true.

oMyNewPlugin.command
Have your plugin call a command on the bus.

Widgets API Reference 12

Example
oMyNewPlugin.command("WebChat.open", {...}).done(function(e){

// If command succeeds
// e == any returned data

}).fail(function(e){

// If command fails
// e == any returned data

}).always(function(){

// Always executed
});

Arguments

Name Type Description

Command name string Name of the command you wish
to call.

Command options string

Optional: An object containing
properties the command will use
in its execution. Refer to plugin
references for a list of options
available for each command.

Returns

Always returns a promise. You can define done(), fail(), or always() callbacks for every command.

oMyNewPlugin.before
Allows you to interrupt a registered command on the bus with your own "before" function. You may
modify the command options before they're passed to the command, you may trigger some action
before the command is executed, or you can cancel the command before it executes.

You may specify more than one "before" function for a command. If you do, they will be executed in a
chain where the output of the previous function becomes the input for the next function. You cannot
remove "before" functions once they have been added.

Example
oMyNewPlugin.before("WebChat.open", function(oData){

// oData == the options passed into the command call
// e.g. if this command is called: oMyPlugin.command("WebChat.open", {form: {firstname:

"Mike"
// then oData will == {form: {firstname: "Mike"
// You must return oData back, or an empty object {} for execution to continue.
// If you return false|undefined|null or don't return anything, execution of the command

will be stopped
return oData;

});

Widgets API Reference 13

Arguments

Name Type Description

Command name string
Name of the function you want to
interrupt with your "before"
function.

"before" function function

A function that accepts command
options (oData in above
example). If you want the
command to continue executing,
you must return the oData
object. If you want to cancel the
command, return false or
undefined or don't return
anything. You may modify the
contents of oData before it is
sent to the command. This allows
you to override command options
or add on dynamic options
depending on external
conditions.

Returns

Returns true when you pass a properly formatted command name (e.g.
"PluginName.commandName"). Returns false when you pass an improperly formatted command
name.

oMyNewPlugin.registry
Returns the CXBus Registry lookup table.

Example
oMyNewPlugin.registry();

Arguments

No arguments.

Returns

Returns the internal CXBus registry that tracks all plugins, their commands, and their events.
Registry Structure Example:

{
"Plugin1": {

commands: ["command1", "command2"],
events: ["event1", "event2"]

},

"Plugin2": {

Widgets API Reference 14

commands: ["command1", "command2"],
events: ["event1", "event2"]

}
}

oMyNewPlugin.subscribers
Returns a list of events and their subscribers.

Example
oMyNewPlugin.subscribers();

Arguments

No arguments.

Returns

Returns an object identifying a list of events being subscribed to, and a list of plugin names
subscribed to each event.

Example of WebChatService's subscribers:

// Format {"eventname": ["subscriber1", "subscriber2"]}

{
"WebChatService.agentConnected":["WebChat"],
"WebChatService.agentDisconnected":["WebChat"],
"WebChatService.ready":[],
"WebChatService.started":["WebChat"],
"WebChatService.restored":["WebChat"],
"WebChatService.clientDisconnected":[],
"WebChatService.clientConnected":[],
"WebChatService.messageReceived":["WebChat"],
"WebChatService.error":["WebChat"],
"WebChatService.restoreTimeout":["WebChat"],
"WebChatService.restoreFailed":["WebChat"],
"WebChatService.ended":["WebChat"],
"WebChatService.agentTypingStarted":["WebChat"],
"WebChatService.agentTypingStopped":["WebChat"],
"WebChatService.restoredOffline":["WebChat"],
"WebChatService.chatServerWentOffline":["WebChat"],
"WebChatService.chatServerBackOnline":["WebChat"],
"WebChatService.disconnected":["WebChat"],
"WebChatService.reconnected":["WebChat"]

}

oMyNewPlugin.namespace
Returns your plugin's namespace.

Example
oMyNewPlugin.namespace();

Widgets API Reference 15

Arguments

No arguments.

Returns

Returns your plugin's namespace. If your plugin's namespace is "MyNewPlugin", it will return
"MyNewPlugin".

oMyNewPlugin.ready
Marks your plugin as ready to have its commands called. This method is required to be called for all
plugins. You should call this method after all your commands are registered, initialization code is
finished, and configuration has completed. Failure to call this method will result in your commands
being unexecutable.

Example
oMyNewPlugin.ready();

Arguments

No arguments.

Returns

Returns nothing.

Widgets API Reference 16

	Widgets API Reference

