
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Callback

Widgets API Reference

11/30/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

• 1 Overview
• 1.1 Usage
• 1.2 Dependency
• 1.3 Customization
• 1.4 Namespace
• 1.5 Mobile support
• 1.6 Screenshots

• 2 Configuration
• 2.1 Example
• 2.2 Options

• 3 Localization
• 3.1 Usage
• 3.2 Example i18n JSON

• 4 API commands
• 4.1 open
• 4.2 close
• 4.3 minimize
• 4.4 showOverlay
• 4.5 hideOverlay
• 4.6 configure

• 5 API events
• 6 Metadata

• 6.1 Interaction Lifecycle
• 6.2 Lifecycle scenarios
• 6.3 Metadata

• 7 Customizable Callback registration form
• 7.1 Default example
• 7.2 Properties
• 7.3 Labels
• 7.4 Wrappers

Widgets API Reference 2

• 7.5 Validation
• 7.6 Form submit
• 7.7 Form pre-fill

Widgets API Reference 3

• Developer

Learn how to use the Callback Widget to fetch user details.

Related documentation:
•

Link to video

Overview

Important
This documentation relies on Genesys Callback APIs available to Engage Cloud
customers. The only supported version is v3 as exposed by Engagement API.

The Callback Widget provides a form to fetch user details such as name, phone number, and
email—and whether the customer would like an immediate callback or would prefer to receive a call
at another time of their choosing. Callback then submits this information to Customer Service. The
times that Callback displays are based on agent availability, meaning the user can select a time that
works for everyone.

Widgets API Reference 4

https://player.vimeo.com/video/539841733?title=0&byline=0&portrait=0

Usage
Use the following methods to launch Callback manually:

• Call the Callback.open command
• Configure ChannelSelector so that Receive a Call appears as a channel
• Configure Calendar to show a Date-Time picker for selecting a preferred time

Dependency
The Callback Widget requires the Calendar plugin.

Customization
You can customize and localize all of the text shown in the Callback Widget by adding entries into
your configuration and localization options.

Callback supports themes. You can create and register your own themes for Genesys Widgets.

Widgets API Reference 5

/File:Callback_MainScreen.jpg
/File:Callback_MainScreen.jpg

Namespace
The Callback plugin has the following namespaces tied up with each of the following types:

Type Namespace
Configuration callback
i18n—Localization callback
CXBus— API commands & API events Callback
CSS .cx-callback

Mobile support
Callback supports both desktop and mobile devices. Like all Genesys Widgets, there are two main
modes: Desktop & Mobile. Desktop is employed for monitors, laptops, and tablets. Mobile is
employed for smartphones. When a smartphone is detected, Callback switches to special full-screen
templates that are optimized for both portrait and landscape orientations.

Switching between desktop and mobile mode is done automatically by default. You may configure
Genesys Widgets to switch between Desktop and Mobile mode manually if necessary.

Screenshots
Dark theme

Light theme

Widgets API Reference 6

/File:Callback_MobileMode_Potrait.jpg
/File:Callback_MobileMode_Potrait.jpg
/File:Callback_ChooseTime.jpg
/File:Callback_ChooseTime.jpg
/File:Callback_Calendar_Desktop.jpg
/File:Callback_Calendar_Desktop.jpg
/File:Callback_Mobile_DarkMode_Landscape.jpg
/File:Callback_Mobile_DarkMode_Landscape.jpg
/File:Callback_DateChoosen_LightMode.jpg
/File:Callback_DateChoosen_LightMode.jpg
/File:Callback_LightPotrait_Mobile.jpg
/File:Callback_LightPotrait_Mobile.jpg
/File:Callback_CountryCodes_LightMode.jpg
/File:Callback_CountryCodes_LightMode.jpg
/File:Callback_Done_Light_28022020.jpg
/File:Callback_Done_Light_28022020.jpg

Configuration

Callback and CallbackService share the _genesys.widgets.callback configuration namespace.
Callback has UI options while CallbackService has connection options.

Example
window._genesys.widgets.callback = {

apikey: 'n3eNkgXXXXXXXXOXXXXXXXXA',
dataURL: 'http://host:port/genesys/1/service/callback/samples',
userData: {},
countryCodes: true,
immediateCallback: true,
scheduledCallback: true,
ewt: {

display: true,
queue: 'chat_ewt_test',
threshold: 2000,
immediateCallback: {

thresholdMin: 1000,
thresholdMax: 3000

}
}

};

Options
Name Type Description Default Required

countryCodes boolean
Enable/disable
display of country
codes for phone
number.

true n/a

immediateCallback boolean
Enable/disable the
immediate (As
Soon As Possible)
callback option.

true n/a

scheduledCallback boolean
Enable/disable the
scheduling (Pick
date & time)
callback option.

true n/a

form object

An object
containing a
custom
registration form
definition. The
definition placed
here becomes the
default registration
form layout for
Callback. See
Customizable
Callback

A basic
registration form is
defined internally
by default

n/a

Widgets API Reference 7

Name Type Description Default Required
Registration Form.

ewt.display boolean
To display
Estimated Wait
Time (EWT)
details.

true n/a

ewt.queue string
EWT service
channel virtual
queue.

none
Always required if
Estimated Waiting
Time has to be
displayed.

ewt.threshold number

If EWT is less than
this threshold
value (seconds),
wait time will not
be shown.

30 n/a

ewt.refreshInterval number
EWT is updated for
every time interval
(seconds) defined
here.

10 n/a

ewt.immediateCallback.thresholdMinnumber

If EWT is less than
this minimum
threshold value
(seconds), then 'As
Soon As Possible'
option (Immediate
Callback) will be
disabled. This
value should be
configured less
than or equal to
above
ewt.threshold
value.

none n/a

ewt.immediateCallback.thresholdMaxnumber

If EWT is more
than this
maximum
threshold value
(seconds), then 'As
Soon As Possible'
option (Immediate
Callback) will be
disabled.

none n/a

Localization

Important
For information on how to set up localization, please refer to Localize widgets and

Widgets API Reference 8

services.

Usage
Use the callback namespace when defining localization strings for the Callback plugin in your i18n
JSON file.

The following example shows how to define new strings for the en (English) language. You can use
any language codes you wish; there is no standard format. When selecting the active language in
your configuration, you must match one of the language codes defined in your i18n JSON file. Please
note that you must only define a language code once in your i18n JSON file. Inside each language
object you should define new strings for each widget.

Example i18n JSON
{

"en": {
"callback": {

"CallbackTitle": "Receive a Call",
"CancelButtonText": "Cancel",
"AriaCancelButtonText": "Cancel",
"ConfirmButtonText": "Confirm",
"AriaConfirmButtonText": "Confirm",
"CallbackPlaceholderRequired": "Required",
"CallbackPlaceholderOptional": "Optional",
"CallbackFirstName": "First Name",
"CallbackLastName": "Last Name",
"CallbackPhoneNumber": "Phone",
"CallbackQuestion": "When should we call you?",
"CallbackDayLabels": [

"Sunday",
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday"

],
"CallbackMonthLabels": [

"Jan",
"Feb",
"Mar",
"Apr",
"May",
"Jun",
"Jul",
"Aug",
"Sep",
"Oct",
"Nov",
"Dec"

],
"CallbackConfirmDescription": "You're booked in!",
"CallbackNumberDescription": "We will call you at the number

provided:",
"CallbackNotes": "Notes",

Widgets API Reference 9

"CallbackDone": "Close",
"AriaCallbackDone": "Close",
"CallbackOk": "Okay",
"AriaCallbackOk": "Okay",
"CallbackCloseConfirm": "Are you sure you want to cancel arranging

this callback?",
"CallbackNoButtonText": "No",
"AriaCallbackNoButtonText": "No",
"CallbackYesButtonText": "Yes",
"AriaCallbackYesButtonText": "Yes",
"CallbackWaitTime": "Wait Time",
"CallbackWaitTimeText": "min wait",
"CallbackOptionASAP": "As soon as possible",
"CallbackOptionPickDateTime": "Pick date & time",
"AriaCallbackOptionPickDateTime": "Opens a date picker",
"CallbackPlaceholderCalendar": "Select Date & Time",
"AriaMinimize": "Callback Minimize",
"AriaWindowLabel": "Callback Window",
"AriaMaximize": "Callback Maximize",
"AriaClose": "Callback Close",
"AriaCalendarClosedStatus": "Calendar is closed",
"Errors": {

"501": "Invalid parameters cannot be accepted, please check
the supporting server API documentation for valid parameters.",

"503": "Missing apikey, please ensure it is configured
properly.",

"1103": "Missing apikey, please ensure it is configured
properly.",

"7030": "Please enter a valid phone number.",
"7036": "Callback to this number is not possible. Please

retry with another phone number.",
"7037": "Callback to this number is not allowed. Please retry

with another phone number.",
"7040": "Please configure a valid service name.",
"7041": "Too many requests at this time.",
"7042": "Office closed. Please try scheduling within the

office hours.",
"unknownError": "Something went wrong, we apologize for the

inconvenience. Please check your connection settings and try again.",
"phoneNumberRequired": "Phone number is required."

}
}

}
}

API commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

Widgets API Reference 10

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Callback.open');

open
Opens the Callback UI.

Example
oMyPlugin.command('Callback.open', {

form: {

autoSubmit: false,
firstname: 'John',
lastname: 'Smith',
subject: 'Customer Satisfaction',
desiredTime: 'now',
phonenumber: '8881110000'

},
formJSON: {...}

}).done(function(e){

// Callback opened successfully

}).fail(function(e){

// Callback failed to open
});

Options

Option Type Description

form object
Object containing form data to
prefill in the callback form and
optionally auto-submit the form.

form.autoSubmit boolean Automatically submit the
callback form.

form.firstname string Value for the first name entry
field.

form.lastname string Value for the last name entry
field.

form.subject string Value for the notes entry field.

form.desiredTime string

This value is shared by the
immediate or scheduled callback
drop down option in the form (in
other words, As Soon As Possible
or Pick date & time). A string
value 'now' pre-selects the 'As
Soon As Possible' option. A string
value with Date Time or Date
Object, is passed into this drop
down option and pre-selected.

Widgets API Reference 11

Option Type Description
During form submission, it is
converted into UTC string format
and sent to the server as the
desired callback time.

form.phonenumber string

Value for the phone entry field.
Should be a valid telephone
number, when used with a prefix
'+' auto selects the country flag
near the phone input field.

formJSON object
An object containing a custom
registration form definition. See
Customizable Callback
Registration Form.

userData object

Arbitrary data that is to be
attached with callback schedule.
Properties defined here will be
merged with default userData set
in the configuration object.

Resolutions

Status When Returns

resolved Callback form is successfully
opened n/a

rejected Callback form is already open 'already opened'

close
Closes the Callback UI.

Example
oMyPlugin.command('Callback.close');

Resolutions

Status When Returns

resolved Callback form is successfully
closed n/a

rejected Callback form is already closed 'already closed'

rejected
User has entered some details on
the form and trying to close it
without confirming cancellation

'User must confirm close'

Widgets API Reference 12

minimize
Minimizes or un-minimizes the Callback UI.

Example
oMyPlugin.command('Callback.minimize');

Options

Option Type Description

minimized boolean

Rather than toggling the current
minimized state you can specify
the minimized state directly: true
= minimized, false =
unminimized.

Resolutions

Status When Returns
resolved Always n/a
rejected Never n/a

showOverlay
Displays a slide-down overlay over the Callback's content. You can fill this overlay with disclaimers,
articles and other information.

Example
oMyPlugin.command('Callback.showOverlay', {

html: '
Example text
'

});

Options

Option Type Description

html string or HTML reference The HTML content you want to
display in the overlay.

hideFooter boolean Normally the overlay appears

Widgets API Reference 13

Option Type Description
between the titlebar and footer
bar. Set this to true to have the
overlay overlap the footer to gain
a bit more vertical space. This
should only be used in special
cases. For general use, don't set
this value.

Resolutions

Status When Returns

resolved Callback is open and the overlay
opens n/a

rejected Callback is not currently open Callback is not currently open.
Ignoring command.

hideOverlay
Hides the slide-down overlay.

Example
oMyPlugin.command('Callback.hideOverlay');

Resolutions

Status When Returns

resolved Callback is open and the overlay
closes n/a

rejected Callback is not currently open Callback is not currently open.
Ignoring command.

configure
Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling configure
again after startup may result in unpredictable behavior.

API events

Widgets API Reference 14

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('Callback.ready', function(e){});

Name Description Data

opened The Callback widget has
appeared on screen. Metadata

ready Callback is initialized and ready
to accept commands. n/a

started
When the user has started filling
out the Callback widget form or
auto pre-filled it.

Metadata

submitted When the user has submitted the
form. Metadata

completed When the Callback widget form is
submitted successfully. Metadata

cancelled
When the user has abandoned
the interaction by closing the
Callback widget before
scheduling a callback.

Metadata

closed The Callback widget has been
removed from the screen. Metadata

Metadata

Interaction Lifecycle
Every Callback interaction has a sequence of events we describe as the Interaction Lifecycle. This is a
sequence of events that tracks progress and choices from the beginning of an interaction (opening
Callback), to the end (closing Callback), and every step in between.

The following events are part of the Interaction Lifecycle:

ready
opened
started
submitted

Widgets API Reference 15

cancelled
completed
closed

Lifecycle scenarios
An Interaction Lifecycle can vary, based on each user's intent and experience with Callback. Here are
several sequences of events in the lifecycle that correspond to different scenarios.

The user opened Callback but changed their mind and closed it without entering any information:

ready -> opened -> cancelled -> closed

The user started filling out the form but closed Callback without submitting the callback request:

ready -> opened -> started -> cancelled -> closed

The user started filling out the form and submitted it successfully:

ready -> opened -> started -> submitted -> completed -> closed

Tip
For a list of all Callback events, see API events.

Metadata
Each event in the Interaction Lifecycle includes the following block of metadata. By default, all values
are set to false. As the user progresses through the lifecycle of a Callback interaction, these values
will be updated.

The metadata block contains boolean state flags, counters, timestamps, and elapsed times. These
values can be used to track and identify trends or issues with callback interactions. During run-time,
the metadata can help you offer a smart and dynamic experience to your users.

Reference

Name Type Description

proactive boolean Indicates Callback was offered
and accepted proactively.

prefilled boolean Indicates the form was prefilled
with info automatically.

autoSubmitted boolean
Indicates the form was submitted
automatically, usually after being
prefilled.

errors array/boolean
An array of error codes
encountered after submitting the
form. If no errors, this value will
be false.

Widgets API Reference 16

Name Type Description

form object
An object containing the form
parameters when the form is
submitted.

opened integer (timestamp) Timestamp indicating when
Callback was opened.

started integer (timestamp)
Timestamp indicating when the
user started entering information
into the form.

cancelled integer (timestamp)

Timestamp indicating when the
callback request is cancelled.
Cancelled refers to when a user
abandoned the interaction by
closing Callback before
scheduling a callback.

completed integer (timestamp)
Timestamp indicating when the
callback request was sent
successfully.

closed integer (timestamp) Timestamp indicating when
Callback was closed.

elapsed integer (milliseconds)

Total elapsed time in milliseconds
from when the user started
entering information to when the
user cancelled or completed the
interaction.

Customizable Callback registration form

Callback allows you to customize the registration form shown to users prior to starting a session. The
following form inputs are currently supported:

• Text
• Select
• Hidden
• Checkbox
• Textarea

Customization is done through an object definition that defines the layout, input type, label, and
attributes for each input. You can set the default registration form definition in the
_genesys.widgets.callback.form configuration option. Alternately, you can pass a new registration
form definition through the Callback.open command:

_genesys.widgets.bus.command("Callback.open", {formJSON: oRegFormDef});

Inputs are rendered as stacked rows with one input and one optional label per row.

Widgets API Reference 17

Default example
The following example is the default object used to render Callback's registration form. This is a very
simple definition that does not use many properties.

Important
The Phone Number field with name phonenumber is required for all Callback custom
forms. This field value is required by Genesys Callback API to schedule a Callback.

{
wrapper: "

", inputs: [{ id: "cx_form_callback_firstname", name: "firstname", maxlength:
"100", placeholder: "@i18n:callback.CallbackPlaceholderOptional", label:
"@i18n:callback.CallbackFirstName" }, { id: "cx_form_callback_lastname", name:
"lastname", maxlength: "100", placeholder:
"@i18n:callback.CallbackPlaceholderOptional", label:
"@i18n:callback.CallbackLastName" }, { id: "cx_form_callback_phone_number",
name: "phonenumber", maxlength: "14", placeholder:
"@i18n:callback.CallbackPlaceholderRequired", label:
"@i18n:callback.CallbackPhoneNumber", onkeypress: function(event) { // To
allow only number inputs return (event.charCode >= 48 && event.charCode
Using this definition will result in this output:

Error creating thumbnail: Unable to save thumbnail to destination

Important
Form fields with id cx_form_schedule_options and cx_form_schedule_time are not
customizable.

Properties
Each input definition can contain any number of properties. These are categorized in two groups:
Special Properties, which are custom properties used internally to handle rendering logic, and HTML
Attributes which are properties that are applied directly as HTML attributes on the input element.

Special properties

Property Type Default Description

type string "text" Sets the type of input to
render. Possible values

Widgets API Reference 18

Property Type Default Description
are currently text,
hidden, select,
checkbox, and
textarea.

label string

Set the text for the
label. If no value
provided, no label will
be shown. You may use
localization query
strings to enable
custom localization (for
example, label:
"@i18n:namespace.StringName").
Localization query
strings allow you to use
strings from any widget
namespace or to create
your own namespace in
the localization file
(i18n.json) and use
strings from there (for
example, label:
"@i18n:myCustomNamespace.myCustomString001").
For more information,
see the Labels section.

wrapper HTML string “
”

Each input exists in its
own row in the form. By
default this is a table-
row with the label in the
left cell and the input in
the right cell. You can
redefine this wrapper
and layout by specifying
a new HTML row
structure. See the
Wrappers section for
more info.
The default wrapper for
an input is "

validate function

Define a validation
function for the input
that executes when the
input loses focus (blur)
or changes value. Your
function must return
true or false. True to
indicate it passed, false
to indicate it failed. If
your validation fails, the
form will not submit and
the invalid input will be
highlighted in red. See
the Validation section
for more details and

Widgets API Reference 19

Property Type Default Description
examples.

validateWhileTyping boolean false

Execute validation on
keypress in addition to
blur and change. This
ignores non-character
keys like shift, ctrl, and
alt.

options array []

When ‘type’ is set to
‘select’, you can
populate the select by
adding options to this
array. Each option is an
object (for example,
{name: ‘Option 1’,
value: ‘1’} for a
selectable option, and
{name: "Group 1",
group: true} for an
option group).

HTML attributes

With the exception of special properties, all properties will be added as HTML attributes on the input
element. You can use standard HTML attributes or make your own.

Example

{
id: "cx_callback_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:callback.CallbackPlaceholderOptional",
label: "@i18n:callback.CallbackFirstName"

}

In this example, id, name, maxlength, and placeholder are all standard HTML attributes for the text
input element. Whatever values are set here will be applied to the input as HTML attributes.

Note: the default input type is "text", so type does not need to be defined if you intend to make a
text input.

HTML output

Labels
A label tag will be generated for your input if you specify label text and if your custom input wrapper
includes a ‘{label}’ designation. If you have added an ID attribute for your input, the label will
automatically be linked to your input so that clicking on the label selects the input or, for check
boxes, toggles it.

Labels can be defined as static strings or localization queries.

Widgets API Reference 20

Wrappers
Wrappers are HTML string templates that define a layout. There are two kinds of wrappers, form
wrappers and input wrappers:

Form wrapper

You can specify the parent wrapper for the overall form in the top-level "wrapper" property. In the
example below, we specify this value as " ". This is the default wrapper for the Callback form.

{
wrapper: "

", /* form wrapper */ inputs: [] }
Input wrapper

Each input is rendered as a table row inside the form wrapper. You can change this by defining a new
wrapper template for your input row. Inside your template you can specify where you want the input
and label to be by adding the identifiers "{label}" and "{input}" to your wrapper value. See the
example below:

{
id: "cx_callback_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:callback.CallbackPlaceholderOptional",
label: "@i18n:callback.CallbackFirstName"
wrapper: "{label}{input}" /* input row wrapper */

}

The {label} identifier is optional. Omitting it will allow the input to fill the row. If you decide to keep
the label, you can move it to any location within the wrapper, such as putting the label on the right,
or stacking the label on top of the input. You can control the layout of each row independently,
depending on your needs.

You are not restricted to using a table for your form. You can change the form wrapper to "

" and then change the individual input wrappers from a table-row to your own
specification. Be aware though that when you move away from the default table
wrappers, you are responsible for styling and aligning your layout. Only the
default table-row wrapper is supported by default Themes and CSS.

Validation
You can apply a validation function to each input that lets you check the value after a change has
been made and/or the user has moved to a different input (on change and on blur). You can enable
validation on key press by setting validateWhileTyping to true in your input definition.

Here is how a validation function is defined:

{
id: "cx_callback_form_firstname",
name: "firstname",

Widgets API Reference 21

maxlength: "100",
placeholder: "@i18n:callback.CallbackPlaceholderOptional",
label: "@i18n:callback.CallbackFirstName"

validateWhileTyping: true, // default is false

validate: function(event, form, input, label, $, CXBus, Common){

if(input && input.val()) { // to validate some input exits in the
firstname input field (required field)

return true; // validation passed

}else{

return false; // no input exists, validation failed
}

}
}

You can perform any validation you like in the validate function but it must return true or false to
indicate that validation has passed or failed, respectively. If you return false, the Callback form will
not submit, and the input will be highlighted in red. This is achieved by adding the CSS class "cx-
error" to the input.

Validation function arguments

Argument Type Description

event JavaScript event object

The input event reference object
related to the form input field.
This event data can be helpful to
perform actions like active
validation on an input field while
the user is typing.

form HTML reference A jquery reference to the form
wrapper element.

input HTML reference A jquery reference to the input
element being validated.

label HTML reference A jquery reference to the label
for the input being validated.

$ jquery instance
Widget’s internal jquery instance.
Use this to help you write your
validation logic, if needed.

CXBus CXBus instance
Widget’s internal CXBus
reference. Use this to call
commands on the bus, if needed.

Common Function Library
Widget’s internal Common library
of functions and utilities. Use if
needed.

Form submit
Custom input field form values are submitted to the server as key value pairs in the form submit
request, where the input field names are the property keys and the input field values are the property

Widgets API Reference 22

values.

Form pre-fill
You can pre-fill the custom form using the Callback.open command by passing the form (form data)
and formJSON (custom registration form), provided the form input names in the formJSON must
match with the property names in the form data.

The following example will open the Callback form with the phone number already entered in the
Phone input field.

_genesys.widgets.bus.command("Callback.open", {

formJSON: {
wrapper: "

", inputs: [{ id: "cx_form_phone_number", name: "phonenumber", maxlength:
"12", placeholder: "@i18n:callback.CallbackPlaceholderPhoneNumber", label:
"@i18n:callback.CallbackPhoneNumber" }] }, form: { phonenumber:
9453222222 } });

Widgets API Reference 23

	Widgets API Reference

