3 GENESYS

This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Widgets API Reference

Callback

1/9/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

e 1 Overview
e 1.1 Usage
* 1.2 Dependency
» 1.3 Customization
* 1.4 Namespace
* 1.5 Mobile support
* 1.6 Screenshots
¢ 2 Configuration
e 2.1 Example
* 2.2 Options
* 3 Localization
* 3.1 Usage
e 3.2 Example il8n JSON
* 4 APl commands
* 4.1 open
* 4.2 close
* 4.3 minimize
* 4.4 showOverlay
4.5 hideOverlay

* 4.6 configure

* 5 APl events

* 6 Metadata
* 6.1 Interaction Lifecycle
* 6.2 Lifecycle scenarios
* 6.3 Metadata

e 7 Customizable Callback registration form
e 7.1 Default example
e 7.2 Properties
* 7.3 Labels
e 7.4 Wrappers

Widgets APl Reference

e 7.5 Validation
e 7.6 Form submit

* 7.7 Form pre-fill

Widgets APl Reference

e Developer
Learn how to use the Callback Widget to fetch user details.

Related documentation:

Link to video

Overview

This documentation relies on Genesys Callback APIs available to Engage Cloud
customers. The only supported version is v3 as exposed by Engagement API.

The Callback Widget provides a form to fetch user details such as name, phone number, and
email—and whether the customer would like an immediate callback or would prefer to receive a call
at another time of their choosing. Callback then submits this information to Customer Service. The
times that Callback displays are based on agent availability, meaning the user can select a time that
works for everyone.

Widgets API Reference

https://player.vimeo.com/video/539841733?title=0&byline=0&portrait=0

First Mame | Optional

Last Name Optional

Phone »+1

Optional

When should we call you? 0 min wait

As zo0on as possible v

Cancel

Usage

Use the following methods to launch Callback manually:

e Call the Callback.open command
¢ Configure ChannelSelector so that Receive a Call appears as a channel

e Configure Calendar to show a Date-Time picker for selecting a preferred time

Dependency

The Callback Widget requires the Calendar plugin.

Customization

You can customize and localize all of the text shown in the Callback Widget by adding entries into
your configuration and localization options.

Callback supports themes. You can create and register your own themes for Genesys Widgets.

Widgets API Reference

/File:Callback_MainScreen.jpg
/File:Callback_MainScreen.jpg

Namespace

The Callback plugin has the following namespaces tied up with each of the following types:

Type Namespace
Configuration callback
il8n—Localization callback
CXBus— APl commands & APl events Callback
CSS .cx-callback

Mobile support

Callback supports both desktop and mobile devices. Like all Genesys Widgets, there are two main
modes: Desktop & Mobile. Desktop is employed for monitors, laptops, and tablets. Mobile is
employed for smartphones. When a smartphone is detected, Callback switches to special full-screen
templates that are optimized for both portrait and landscape orientations.

Switching between desktop and mobile mode is done automatically by default. You may configure
Genesys Widgets to switch between Desktop and Mobile mode manually if necessary.

Screenshots

Dark theme

Youi'=e booked inf

SIS H

Widgets API Reference

/File:Callback_MobileMode_Potrait.jpg
/File:Callback_MobileMode_Potrait.jpg
/File:Callback_ChooseTime.jpg
/File:Callback_ChooseTime.jpg
/File:Callback_Calendar_Desktop.jpg
/File:Callback_Calendar_Desktop.jpg
/File:Callback_Mobile_DarkMode_Landscape.jpg
/File:Callback_Mobile_DarkMode_Landscape.jpg
/File:Callback_DateChoosen_LightMode.jpg
/File:Callback_DateChoosen_LightMode.jpg
/File:Callback_LightPotrait_Mobile.jpg
/File:Callback_LightPotrait_Mobile.jpg
/File:Callback_CountryCodes_LightMode.jpg
/File:Callback_CountryCodes_LightMode.jpg
/File:Callback_Done_Light_28022020.jpg
/File:Callback_Done_Light_28022020.jpg

Configuration

Callback and CallbackService share the _genesys.widgets.callback configuration namespace.
Callback has Ul options while CallbackService has connection options.

Example

window. genesys.widgets.callback = {

apikey: 'n3eNKgXXXXXXXXOXXXXXXXXA',

dataURL: 'http://host:port/genesys/1/service/callback/samples’,

userData: {},
countryCodes: true,
immediateCallback: true,
scheduledCallback: true,

ewt: {
display: true,
queue: 'chat ewt test',
threshold: 2000,
immediateCallback: {
thresholdMin: 1000,
thresholdMax: 3000
}
}
I
Options
Name Type Description
Enable/disable
countryCodes boolean display off country

codes for phone
number.

Enable/disable the
immediate (As
Soon As Possible)
callback option.

Enable/disable the
scheduling (Pick
date & time)
callback option.

immediateCallback boolean

scheduledCallback boolean

An object
containing a
custom
registration form
definition. The
definition placed
here becomes the
default registration
form layout for
Callback. See
Customizable
Callback

form object

Default

true

true

true

A basic
registration form is
defined internally
by default

n/a

n/a

n/a

n/a

Required

Widgets API Reference

Name Type
ewt.display boolean
ewt.queue string

ewt.threshold number

ewt.refreshinterval number

ewt.immediateCallbaakuthiesholdMin

ewt.immediateCallbaakuthiesholdMax

Localization

Description
Registration Form.

To display
Estimated Wait
Time (EWT)
details.

EWT service
channel virtual
queue.

If EWT is less than
this threshold
value (seconds),
wait time will not
be shown.

EWT is updated for
every time interval
(seconds) defined
here.

If EWT is less than
this minimum
threshold value
(seconds), then 'As
Soon As Possible'
option (Immediate
Callback) will be
disabled. This
value should be
configured less
than or equal to
above
ewt.threshold
value.

If EWT is more
than this
maximum
threshold value
(seconds), then 'As
Soon As Possible'
option (Immediate
Callback) will be
disabled.

Default

true

none

=

0

none

none

Required

n/a

Always required if
Estimated Waiting
Time has to be
displayed.

n/a

n/a

n/a

n/a

For information on how to set up localization, please refer to Localize widgets and

Widgets API Reference

services.

Usage

Use the callback namespace when defining localization strings for the Callback plugin in your il8n
JSON file.

The following example shows how to define new strings for the en (English) language. You can use
any language codes you wish; there is no standard format. When selecting the active language in
your configuration, you must match one of the language codes defined in your i18n JSON file. Please
note that you must only define a language code once in your i18n JSON file. Inside each language
object you should define new strings for each widget.

Example i18n JSON

{
nenn: _{
"callback": {

"CallbackTitle": "Receive a Call",
"CancelButtonText": "Cancel",
"AriaCancelButtonText": "Cancel",
"ConfirmButtonText": "Confirm",
"AriaConfirmButtonText": "Confirm",
"CallbackPlaceholderRequired": "Required",
"CallbackPlaceholderOptional": "Optional",
"CallbackFirstName": "First Name",
"CallbackLastName": "Last Name",
"CallbackPhoneNumber": "Phone",
"CallbackQuestion": "When should we call you?",
"CallbackDayLabels": [

"Sunday",

"Monday",

"Tuesday",

"Wednesday",

"Thursday",

"Friday",

"Saturday"
]l
"CallbackMonthLabels": [

"Jan",

"Feb",

"Mar",

"Apr",

"May",

"Jun",

"Jul",

"Aug”,

"Sep",

"Oct",

"Nov",

"Dec"
]I
"CallbackConfirmDescription": "You're booked in!",
"CallbackNumberDescription": "We will call you at the number

provided:",

"CallbackNotes": "Notes",

Widgets API Reference

"CallbackDone": "Close",

"AriaCallbackDone": "Close",

"CallbackOk": "Okay",

"AriaCallbackOk": "Okay",

"CallbackCloseConfirm": "Are you sure you want to cancel arranging
this callback?",

"CallbackNoButtonText": "No",

"AriaCallbackNoButtonText": "No",

"CallbackYesButtonText": "Yes",

"AriaCallbackYesButtonText": "Yes",

"CallbackWaitTime": "Wait Time",

"CallbackWaitTimeText": "min wait",

"CallbackOptionASAP": "As soon as possible",

"CallbackOptionPickDateTime": "Pick date & time",

"AriaCallbackOptionPickDateTime": "Opens a date picker",

"CallbackPlaceholderCalendar": "Select Date & Time",

"AriaMinimize": "Callback Minimize",
"AriaWindowLabel": "Callback Window",
"AriaMaximize": "Callback Maximize",
"AriaClose": "Callback Close",
"AriaCalendarClosedStatus": "Calendar is closed",
"Errors": {
"501": "Invalid parameters cannot be accepted, please check
the supporting server API documentation for valid parameters.",
"503": "Missing apikey, please ensure it is configured
properly.",
"1103": "Missing apikey, please ensure it is configured
properly.",
"7030": "Please enter a valid phone number.",

"7036": "Callback to this number is not possible. Please
retry with another phone number.",
"7037": "Callback to this number is not allowed. Please retry
with another phone number.",

"7040": "Please configure a valid service name.",

"7041": "Too many requests at this time.",

"7042": "Office closed. Please try scheduling within the
office hours.",

"unknownError": "Something went wrong, we apologize for the
inconvenience. Please check your connection settings and try again.",
"phoneNumberRequired": "Phone number is required."

}

APl commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Important

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

Widgets API Reference

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Callback.open');

open
Opens the Callback Ul.

Example

oMyPlugin.command('Callback.open', {
form: {
autoSubmit: false,

firstname: 'John',
lastname: 'Smith',

subject: 'Customer Satisfaction',

desiredTime: 'now',
phonenumber: '8881110000'

FornISon: (..}
}) .done(function(e){

// Callback opened successfully
}).fail(function(e){

// Callback failed to open

3
Options
Option

form object
form.autoSubmit boolean
form.firstname string
form.lastname string
form.subject string
form.desiredTime string

Type

Description

Object containing form data to
prefill in the callback form and
optionally auto-submit the form.

Automatically submit the
callback form.

Value for the first name entry
field.

Value for the last name entry
field.

Value for the notes entry field.

This value is shared by the
immediate or scheduled callback
drop down option in the form (in
other words, As Soon As Possible
or Pick date & time). A string
value 'now' pre-selects the 'As
Soon As Possible' option. A string
value with Date Time or Date
Object, is passed into this drop
down option and pre-selected.

Widgets API Reference

11

Option

form.phonenumber

form)SON

userData

Resolutions

Status
resolved

rejected

close

Closes the Callback UI.

Example

Type
string
object
object

When

Callback form is successfully
opened

Callback form is already open

oMyPlugin.command('Callback.close');

Resolutions

Status
resolved

rejected

rejected

When

Callback form is successfully
closed

Callback form is already closed

User has entered some details on
the form and trying to close it
without confirming cancellation

Description

During form submission, it is
converted into UTC string format
and sent to the server as the
desired callback time.

Value for the phone entry field.
Should be a valid telephone
number, when used with a prefix
'+' auto selects the country flag
near the phone input field.

An object containing a custom
registration form definition. See
Customizable Callback
Registration Form.

Arbitrary data that is to be
attached with callback schedule.
Properties defined here will be
merged with default userData set
in the configuration object.

Returns
n/a

'already opened'

Returns
n/a

'already closed'

'User must confirm close'

Widgets API Reference

12

minimize

Minimizes or un-minimizes the Callback Ul.

Example

oMyPlugin.command('Callback.minimize");

Options
Option
minimized
Resolutions
Status
resolved
rejected

showOverlay

Type
boolean

When
Always
Never

Description

Rather than toggling the current
minimized state you can specify
the minimized state directly: true
= minimized, false =
unminimized.

Returns
n/a
n/a

Displays a slide-down overlay over the Callback's content. You can fill this overlay with disclaimers,

articles and other information.

Example

oMyPlugin.command('Callback.showOverlay', {

html: '
Example text

3
Options
Option
html

hideFooter

Type

string or HTML reference

boolean

Description

The HTML content you want to
display in the overlay.

Normally the overlay appears

Widgets API Reference

13

Option Type
Resolutions
Status When
Callback is open and the overlay
resolved opens
rejected Callback is not currently open
hideOverlay

Hides the slide-down overlay.

Example

oMyPlugin.command('Callback.hideOverlay');

Resolutions
Status When
Callback is open and the overlay
resolved closes
rejected Callback is not currently open
configure

Description

between the titlebar and footer
bar. Set this to true to have the
overlay overlap the footer to gain
a bit more vertical space. This
should only be used in special
cases. For general use, don't set
this value.

Returns
n/a

Callback is not currently open.
Ignoring command.

Returns
n/a

Callback is not currently open.
Ignoring command.

Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling configure

again after startup may result in unpredictable behavior.

APl events

Widgets API Reference

14

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own

site, do not use the global bus object to register your custom plugins. Instead, see

Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('Callback.ready', function(e){});

Name

opened

ready
started

submitted

completed

cancelled

closed

Metadata

Interaction Lifecycle

Description

The Callback widget has
appeared on screen.

Callback is initialized and ready
to accept commands.

When the user has started filling
out the Callback widget form or
auto pre-filled it.

When the user has submitted the
form.

When the Callback widget form is
submitted successfully.

When the user has abandoned
the interaction by closing the
Callback widget before
scheduling a callback.

The Callback widget has been
removed from the screen.

Metadata

n/a

Metadata

Metadata

Metadata

Metadata

Metadata

Data

Every Callback interaction has a sequence of events we describe as the Interaction Lifecycle. This is a

sequence of events that tracks progress and choices from the beginning of an interaction (opening
Callback), to the end (closing Callback), and every step in between.

The following events are part of the Interaction Lifecycle:

ready
opened
started
submitted

Widgets API Reference

15

cancelled
completed
closed

Lifecycle scenarios

An Interaction Lifecycle can vary, based on each user's intent and experience with Callback. Here are
several sequences of events in the lifecycle that correspond to different scenarios.

The user opened Callback but changed their mind and closed it without entering any information:
ready -> opened -> cancelled -> closed

The user started filling out the form but closed Callback without submitting the callback request:
ready -> opened -> started -> cancelled -> closed

The user started filling out the form and submitted it successfully:

ready -> opened -> started -> submitted -> completed -> closed

Tip

For a list of all Callback events, see APl events.

Metadata

Each event in the Interaction Lifecycle includes the following block of metadata. By default, all values
are set to false. As the user progresses through the lifecycle of a Callback interaction, these values
will be updated.

The metadata block contains boolean state flags, counters, timestamps, and elapsed times. These
values can be used to track and identify trends or issues with callback interactions. During run-time,
the metadata can help you offer a smart and dynamic experience to your users.

Reference
Name Type Description

proactive boolean Indicates Callback was offered

and accepted proactively.
. Indicates the form was prefilled

prefilled boolean with info automatically.
Indicates the form was submitted

autoSubmitted boolean automatically, usually after being
prefilled.
An array of error codes
encountered after submitting the

errors array/boolean

form. If no errors, this value will
be false.

Widgets API Reference 16

Name Type Description

An object containing the form

form object parameters when the form is
submitted.
opened integer (timestamp) Timestamp indicating when

Callback was opened.

Timestamp indicating when the
started integer (timestamp) user started entering information
into the form.

Timestamp indicating when the
callback request is cancelled.
Cancelled refers to when a user
abandoned the interaction by
closing Callback before
scheduling a callback.

cancelled integer (timestamp)

Timestamp indicating when the
completed integer (timestamp) callback request was sent
successfully.

Timestamp indicating when

closed integer (timestamp) Callback was closed.

Total elapsed time in milliseconds
from when the user started

elapsed integer (milliseconds) entering information to when the
user cancelled or completed the
interaction.

Customizable Callback registration form

Callback allows you to customize the registration form shown to users prior to starting a session. The
following form inputs are currently supported:

* Text

e Select

* Hidden

* Checkbox

¢ Textarea

Customization is done through an object definition that defines the layout, input type, label, and
attributes for each input. You can set the default registration form definition in the
_genesys.widgets.callback.form configuration option. Alternately, you can pass a new registration
form definition through the Callback.open command:

_genesys.widgets.bus.command("Callback.open", {formJSON: oRegFormDef});

Inputs are rendered as stacked rows with one input and one optional label per row.

Widgets API Reference 17

Default example

The following example is the default object used to render Callback's registration form. This is a very
simple definition that does not use many properties.

The Phone Number field with name phonenumber is required for all Callback custom
forms. This field value is required by Genesys Callback API to schedule a Callback.

wrapper: "

", inputs: [{ id: "cx_form_callback_firstname", name: "firstname", maxlength:
"100", placeholder: "@il8n:callback.CallbackPlaceholderOptional”, label:
"@il8n:callback.CallbackFirstName" }, { id: "cx_form_callback lastname", name:
"lastname", maxlength: "100", placeholder:
"@il8n:callback.CallbackPlaceholderOptional”, label:
"@il8n:callback.CallbackLastName" }, { id: "cx_form_callback_phone _number",
name: "phonenumber"”, maxlength: "14", placeholder:
"@il8n:callback.CallbackPlaceholderRequired", label:
"@il8n:callback.CallbackPhoneNumber", onkeypress: function(event) { // To
allow only number inputs return (event.charCode >= 48 && event.charCode

Using this definition will result in this output:

Widgets API Reference 18

P "
J

¥ Receive a Call

P

First Name ‘ Optional

Last Name | Optional
Phone *+1

Optional

When should we call you? 0 min wait

As soon as possible

Cancel

Form fields with id ex_form_schedule_options and cx_form_schedule_time are not
customizable.

Properties

Each input definition can contain any number of properties. These are categorized in two groups:
Special Properties, which are custom properties used internally to handle rendering logic, and HTML
Attributes which are properties that are applied directly as HTML attributes on the input element.

Widgets API Reference 19

/File:Callback_MainScreen_28022020.jpg
/File:Callback_MainScreen_28022020.jpg

Special properties

Property

type

label

wrapper

validate

Type

string

string

HTML string

function

"text"

Description

Sets the type of input to
render. Possible values
are currently text,
hidden, select,
checkbox, and
textarea.

Set the text for the
label. If no value
provided, no label will
be shown. You may use
localization query
strings to enable
custom localization (for
example, label:
"@il8n:namespace.StringName").
Localization query
strings allow you to use
strings from any widget
namespace or to create
your own namespace in
the localization file
(i18n.json) and use
strings from there (for
example, label:
"@i1l8n:myCustomNamespace.myCustc
For more information,
see the Labels section.

Each input exists in its
own row in the form. By
default this is a table-
row with the label in the
left cell and the input in
the right cell. You can
redefine this wrapper
and layout by specifying
a new HTML row
structure. See the
Wrappers section for
more info.

The default wrapper for
an input is "

Define a validation
function for the input
that executes when the
input loses focus (blur)
or changes value. Your
function must return
true or false. True to
indicate it passed, false
to indicate it failed. If
your validation fails, the
form will not submit and

Widgets API Reference

20

Property

validateWhileTyping

options

HTML attributes

boolean

array

Type

false

Default

Description

the invalid input will be
highlighted in red. See
the Validation section
for more details and
examples.

Execute validation on
keypress in addition to
blur and change. This
ignores non-character
keys like shift, ctrl, and
alt.

When ‘type’ is set to
‘select’, you can
populate the select by
adding options to this
array. Each option is an
object (for example,
{name: ‘Option 1’,
value: ‘1'} for a
selectable option, and
{name: "Group 1",
group: true} for an
option group).

With the exception of special properties, all properties will be added as HTML attributes on the input
element. You can use standard HTML attributes or make your own.

Example

{

id: "cx _callback form firstname",
name: "firstname",
maxlength: "100",

placeholder: "@il8n:callback.CallbackPlaceholderOptional",

label: "@il8n:callback.CallbackFirstName"

}

In this example, id, name, maxlength, and placeholder are all standard HTML attributes for the text
input element. Whatever values are set here will be applied to the input as HTML attributes.

Note: the default input type is "text", so type does not need to be defined if you intend to make a

text input.
HTML output
|

Labels

A label tag will be generated for your input if you specify label text and if your custom input wrapper
includes a ‘{label}’ designation. If you have added an ID attribute for your input, the label will

Widgets API Reference

21

automatically be linked to your input so that clicking on the label selects the input or, for check
boxes, toggles it.

Labels can be defined as static strings or localization queries.

Wrappers

Wrappers are HTML string templates that define a layout. There are two kinds of wrappers, form
wrappers and input wrappers:

Form wrapper

You can specify the parent wrapper for the overall form in the top-level "wrapper" property. In the
example below, we specify this value as " ". This is the default wrapper for the Callback form.

{

wrapper:

Input wrapper

Each input is rendered as a table row inside the form wrapper. You can change this by defining a new
wrapper template for your input row. Inside your template you can specify where you want the input
and label to be by adding the identifiers "{label}" and "{input}" to your wrapper value. See the
example below:

{
id: "cx callback form firstname",
name: "firstname",
maxlength: "100",
placeholder: "@il8n:callback.CallbackPlaceholderOptional",
label: "@il8n:callback.CallbackFirstName"
wrapper: "{label}{input}" /* input row wrapper */
h

The {label} identifier is optional. Omitting it will allow the input to fill the row. If you decide to keep
the label, you can move it to any location within the wrapper, such as putting the label on the right,
or stacking the label on top of the input. You can control the layout of each row independently,
depending on your needs.

You are not restricted to using a table for your form. You can change the form wrapper to "

" and then change the individual input wrappers from a table-row to your own
specification. Be aware though that when you move away from the default table
wrappers, you are responsible for styling and aligning your layout. Only the
default table-row wrapper is supported by default Themes and CSS.

Validation
You can apply a validation function to each input that lets you check the value after a change has

been made and/or the user has moved to a different input (on change and on blur). You can enable
validation on key press by setting validateWhileTyping to true in your input definition.

Widgets API Reference 22

Here is how a validation function is defined:

{
id: "cx callback form firstname",
name: "firstname",
maxlength: "100",
placeholder: "@il8n:callback.CallbackPlaceholderOptional",
label: "@il8n:callback.CallbackFirstName"

validateWhileTyping: true, // default is false
validate: function(event, form, input, label, $, CXBus, Common){

if(input && input.val()) { // to validate some input exits in the
firstname input field (required field)

return true; // validation passed
}else{
return false; // no input exists, validation failed

}

You can perform any validation you like in the validate function but it must return true or false to
indicate that validation has passed or failed, respectively. If you return false, the Callback form will
not submit, and the input will be highlighted in red. This is achieved by adding the CSS class "cx-
error" to the input.

Validation function arguments

Argument Type Description

The input event reference object
related to the form input field.
This event data can be helpful to

SR JavaScript event abject perform actions like active
validation on an input field while
the user is typing.

A jquery reference to the form
form HTML reference wrapper element.

. A jquery reference to the input

rfpttis AL FEE T element being validated.

label HTML reference A jquery reference to the label

for the input being validated.

Widget’'s internal jquery instance.
$ jquery instance Use this to help you write your
validation logic, if needed.

Widget’s internal CXBus
CXBus CXBus instance reference. Use this to call
commands on the bus, if needed.

Widget’s internal Common library
Common Function Library of functions and utilities. Use if
needed.

Widgets API Reference 23

Form submit

Custom input field form values are submitted to the server as key value pairs in the form submit
request, where the input field names are the property keys and the input field values are the property
values.

Form pre-fill

You can pre-fill the custom form using the Callback.open command by passing the form (form data)
and formJSON (custom registration form), provided the form input names in the formJSON must
match with the property names in the form data.

The following example will open the Callback form with the phone number already entered in the
Phone input field.

_genesys.widgets.bus.command("Callback.open", {

formJSON: {
wrapper: "

", inputs: [{ id: "cx_form_phone_number", name: "phonenumber", maxlength:
"12", placeholder: "@il8n:callback.CallbackPlaceholderPhoneNumber", label:
"@il8n:callback.CallbackPhoneNumber" }] }, form: { phonenumber:
9453222222 } });

Widgets API Reference 24

	Widgets API Reference

