
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

CallUs

Widgets API Reference

8/11/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Contents

• 1 Overview
• 1.1 Usage
• 1.2 Customization
• 1.3 Namespace
• 1.4 Mobile support
• 1.5 Screenshots

• 2 Configuration
• 2.1 Example
• 2.2 Options

• 3 Localization
• 3.1 Usage
• 3.2 Example i18n JSON

• 4 API commands
• 4.1 open
• 4.2 close
• 4.3 configure

• 5 API events

Widgets API Reference 2



• Developer

Learn how to display an overlay screen showing one or more phone numbers for customer service,
as well as the hours that this service is available.

Related documentation:
•

Link to video

Overview

The CallUs Widget provides an overlay screen showing one or more phone numbers for customer
service, as well as the hours that this service is available. The arrangement of numbers in this layout
starts with a main phone number, which can be followed by alternative or additional phone numbers.
Each number can be named, and there is no limit to the number of phone numbers you can include.
If the list of numbers doesn't fit in the widget, the user can scroll down to see the rest.

Usage
Launch CallUs manually by using the following methods:

Widgets API Reference 3

https://player.vimeo.com/video/548087059?title=0&byline=0&portrait=0
/File:CallUs_Dark_Desktop.png
/File:CallUs_Dark_Desktop.png


• Call the CallUs.open command
• Configure ChannelSelector to show CallUs as a channel
• Create your own custom button or link to open CallUs (using the "CallUs.open" command)

Important
By default a user has no way of launching the CallUs Widget. You must choose a
suitable method for launching this widget.

Customization
You can customize and localize all of the text, titles, names, and numbers shown in the CallUs Widget
by adding entries into your configuration and localization options. There are no formatting
requirements. Text will appear as you entered it.

Important
If you do not configure the CallUs Widget it will appear as an empty overlay. You must
configure this Widget before using it.

CallUs supports themes. You can create and register your own themes for Genesys Widgets.

Namespace
The CallUs plugin has the following namespaces tied up with each of the following types:

Type Namespace
Configuration callus
i18n—Localization callus
CXBus—API commands & API events CallUs
CSS .cx-call-us

Mobile support
CallUs supports both desktop and mobile devices. Like all Genesys Widgets, there are two main
modes: Desktop & Mobile. Desktop is employed for monitors, laptops, and tablets. Mobile is
employed for smartphones. When a smartphone is detected, CallUs switches to special full-screen
templates that are optimized for both portrait and landscape orientations.

Switching between desktop and mobile mode is done automatically by default. You may configure
Genesys Widgets to switch between Desktop and Mobile mode manually if necessary.

Widgets API Reference 4



Screenshots
Dark theme

Light theme

Configuration

CallUs uses the _genesys.widgets.callus configuration property. You must specify all of the
numbers and labels that appear in the CallUs UI.

Example
window._genesys.widgets.callus = callus: {

contacts: [

{
displayName: 'Payments',
i18n: 'Number001',
number: '1 202 555 0162'

},
{

displayName: 'Local',
i18n: 'Number002',
number: '202 555 0134'

},
{

Widgets API Reference 5

/File:CallUs_Dark_Desktop.png
/File:CallUs_Dark_Desktop.png
/File:CallUs_Dark_Mobile_Portrait.png
/File:CallUs_Dark_Mobile_Portrait.png
/File:CallUs_Dark_Mobile_Landscape.png
/File:CallUs_Dark_Mobile_Landscape.png
/File:CallUs_Light_Desktop.png
/File:CallUs_Light_Desktop.png
/File:CallUs_Light_Mobile_Portrait.png
/File:CallUs_Light_Mobile_Portrait.png
/File:CallUs_Light_Mobile_Landscape.png
/File:CallUs_Light_Mobile_Landscape.png


displayName: 'International',
i18n: 'Number003',
number: '0647 555 0131'

}
],

hours: [

'8am - 8pm Mon - Fri',
'10am - 6pm Sat - Sun'

]
};

Options
Name Type Description Default Required

contacts array

An array of objects
that represent
phone numbers
and their labels.
The first number in
this list will display
as the larger, main
number. Phone
labels can be set
directly using the
'displayName'
property or you
can use String
Names from your
localization file by
setting the String
Name in the 'i18n'
property. 'i18n'
overrides
'displayName'.

Example
{

"displayName":
"Payments",

"i18n":
"Number001",

"number": "1
202 555 0162"
}

[] true

hours array

Array of strings to
show stacked in
the business hours
section. Strings
here are freeform.
See screenshots
for ideas.

[]

Widgets API Reference 6



Localization

Important
For information on how to set up localization, please refer to Localize widgets and
services.

Usage
Use the callus namespace when defining localization strings for the CallUs plugin in your i18n JSON
file.

The following example shows how to define new strings for the en (English) language. You can use
any language codes you wish; there is no standard format. When selecting the active language in
your configuration, you must match one of the language codes defined in your i18n JSON file. Please
note that you must only define a language code once in your i18n JSON file. Inside each language
object you should define new strings for each widget.

Example i18n JSON
{

"en": {
"callus": {

"CallUsTitle": "Call Us",
"SubTitle": "You can reach us at any of the following NUMBERS...",
"CancelButtonText": "Cancel",
"AriaWindowLabel": "Call Us Window",
"AriaCallUsClose": "Call Us Close",
"AriaBusinessHours": "Business Hours",
"AriaCallUsPhoneApp": "Opens the phone application",
"AriaCancelButtonText": "Cancel"

}
}

}

API commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

Widgets API Reference 7



var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('CallUs.open');

open
Opens the CallUs UI.

Example
oMyPlugin.command('CallUs.open').done(function(e){

// CallUs opened successfully

}).fail(function(e){

// CallUs failed to open
});

Resolutions

Status When Returns
resolved CallUs is successfully opened n/a
rejected CallUs is already open 'Already opened'

close
Closes the CallUs UI.

Example
oMyPlugin.command('CallUs.close').done(function(e){

// CallUs closed successfully

}).fail(function(e){

// CallUs failed to close
});

Resolutions

Status When Returns
resolved CallUs successfully closed n/a
rejected CallUs is already closed 'Already closed'

Widgets API Reference 8



configure
Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling configure
again after startup may result in unpredictable behavior.

Example
oMyPlugin.command('CallUs.configure', {

contacts: [
{

displayName: 'Payments',
i18n: 'Number001',
number: '1 888 436 3797'

}
],
hours: ['8am - 8pm Mon - Fri']

}).done(function(e){

// CallUs configred successfully

}).fail(function(e){

// CallUs failed to configure
});

Options

Option Type Description

contacts Array

An array of objects that represent
phone numbers and their labels.
The first number in this list will
display as the larger, main
number.

hours Array
Array of strings to show stacked
in the business hours section.
Strings here are freeform.

Resolutions

Status When Returns
resolved CallUs configuration is provided n/a
rejected No configuration is provided 'Invalid Configuration'

API events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.

Widgets API Reference 9



Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('CallUs.ready', function(e){});

Name Description Data

ready CallUs is initialized and ready to
accept commands

opened CallUs UI has been opened
closed CallUs UI has been closed

Widgets API Reference 10


	Widgets API Reference

