3 GENESYS

This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Widgets API Reference

2/16/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents

Widgets bus (CXBus)
Widgets Bus APl overview
Widgets-Core
App
Common
Overlay
Toaster
WindowManager
Service plugins
CallbackService
StatsService
WebChatService
Ul plugins
Calendar
Callback
CallUs
ChannelSelector
Console
SideBar
WebChat
Bridge plugins
Engage
Extensions
Genesys Widgets extensions
Videos
Genesys Widgets videos

21
40
64
70
75

80
89
98

129
140
163
172
186
192
204

246

262

266

Contents

¢ 1 Widgets bus (CXBus)
e 2 Widgets-Core

* 3 Service plugins

¢ 4 Ul plugins

e 5 Bridge plugins

* 6 Extensions

e 7 Videos

Widgets APl Reference

The Widgets APl Reference covers all of the commands and events for each widget, and covers how
to configure and localize each one.

Related documentation:

The APIs are divided into the following categories, as discussed in the article on How Widgets Works.
There is also an article that explains how to get started with Genesys Widgets.

Widgets bus (CXBus)

e Widget Bus API Overview
Widgets-Core

* App

e Common
e Qverlay
» Toaster

¢ WindowManager

Service plugins

e CallbackService
e StatsService

e WebChatService

Ul plugins

e Calendar

* Callback

* CallUs

e ChannelSelector
* Console

* SideBar

* WebChat

Widgets API Reference

Bridge plugins
* Engage
Extensions

¢ Genesys Widgets Extensions

Videos

¢ Genesys Widgets supplemental videos

Widgets API Reference

Widgets Bus API overview

Widgets Bus APl overview

Contents

e 1 Overview
* 1.1 Global access
e 1.2 Genesys Widgets onReady callback
» 1.3 Extensions
* 2 CXBus Reference
* 2.1 CXBus.command
* 2.2 CXBus.configure
* 2.3 CXBus.loadFile
* 2.4 CXBus.loadPlugin
e 2.5 CXBus.registerPlugin

¢ 3 CXBus Plugin Interface Reference
* 3.1 oMyNewPlugin.registerCommand
* 3.2 oMyNewPlugin.registerEvents
* 3.3 oMyNewPlugin.subscribe
* 3.4 oMyNewPlugin.publish
* 3.5 oMyNewPlugin.republish
e 3.6 oMyNewPlugin.publishDirect
* 3.7 oMyNewPlugin.command
* 3.8 oMyNewPlugin.before
¢ 3.9 oMyNewPlugin.registry

3.10 oMyNewPIlugin.subscribers

3.11 oMyNewPlugin.namespace

3.12 oMyNewPIlugin.ready

Widgets APl Reference

Widgets Bus APl overview

e Developer
Learn about the bus that all widgets components are built on.

Related documentation:

Overview

Genesys Widgets is built on top of the CXBus messaging bus. CXBus uses the publish-subscribe
model to facilitate communication between the Widgets components, all of which are plugins that
can both publish events on the bus and subscribe to the events they are interested in.

With the help of the Widgets-Core plugins, CXBus makes it possible to combine the logic
implemented by user interface plugins, service plugins, and utility plugins into cohesive products that
can provide chat sessions, schedule callbacks, and so on.

Publications and subscriptions are loosely bound so that you can publish and subscribe to any event
without that event explicitly being available. This allows for plugins to lazy load into the bus or
provide conditional logic in your plugins so they can wait for other plugins to be available.

CXBus events and commands are executed asynchronously using deferred methods and promises.
This allows for better performance and standardized Pass/Fail handling for all commands. Command
promises are not resolved until the command is finished, including any nested asynchronous
commands that command may invoke. This gives you assurance that the command completed
successfully and the timing of your follow-up action will occur at the right time. As for permissions,
CXBus provides metadata in every command call including which plugin called the command and at
what time. This allows for plugins to selectively allow/deny invocation of commands.

You can use three methods to access the Bus:

¢ Global access
¢ Genesys Widgets onReady callback

¢ Extensions

Global access
QuickBus

window. genesys.widgets.bus

For quick access to call commands on the bus, you can access the QuickBus instance after Genesys
Widgets loads. QuickBus is a CXBus plugin that is exposed globally for your convenience. Typical use
cases for using QuickBus are for debugging or calling a command when a link or button is clicked.
Instead of creating your own plugin, you can use QuickBus to add the click handler inline in your

Widgets API Reference 7

Widgets Bus APl overview

HTML.
Example:

Open WebChat
Global CXBus

CXBus is available as a global instance named "CXBus" (or window.CXBus). Unlike QuickBus, this is
not a plugin but CXBus itself.

CXBus has been updated to include a "command" method that allows you to execute a command
directly from the CXBus instance.

Example:

CXBus.command ("WebChat.open");

You can use this, like QuickBus, for debugging or setting up click events.

Genesys Widgets onReady callback

Genesys Widgets provides an "onReady" callback function that you can define in your configuration.
This will be triggered after Genesys Widgets initializes. QuickBus is provided as an argument in this
function, but you may also access CXBus globally in your function.

window. genesys.widgets.onReady = function(QuickBus){

// Use the QuickBus plugin provided here to interface with the bus
// QuickBus is analogous to window. genesys.widgets.bus

};

Extensions

You can define your own plugins/widgets that interface with Genesys Widgets. For more information,
please see Genesys Widgets extensions.

CXBus Reference

The CXBus instance is exposed globally (window.CXBus) and has several methods available:

e CXBus.command

e CXBus.configure

* CXBus.loadFile

e CXBus.loadPlugin

¢ CXBus.registerPlugin

CXBus.command

Calls a command on the bus under the namespace "CXBus". Use this to quickly and easily call

Widgets API Reference

Widgets Bus APl overview

commands without needing to generate a unique plugin interface object first.

Example

CXBus.command ("WebChat.open", {});

Arguments
Name Type Description
Command name string msehnt%rgiguttze COMTEIE YOl
Optional: You may pass an object
containing properties that the
. . command will accept. Refer to
Command options object the documentation on each
command to see what options
are available.
Returns

Always returns a promise. You can define done(), fail(), or always() callbacks for every command.

CXBus.configure

Allows you to change configuration options for CXBus.

Example

CXBus.configure({debug: true, pluginsPath: "/js/widgets/plugins/"});

Arguments
Name Type Description
An object containing properties,
Configuration options object similar to command options. In

this object you can change
configuration options for CXBus.

Configuration options

Name Type Description

Enable or disable CXBus logging
in the javascript console. Set to

debug boolean true to enable; set to false to
disable. Default value is false.
The location of the Genesys
Widgets "plugins" folder.

pluginsPath string Example: "/js/widgets/plugins/" The

default value here is "". This configuration
option is used for lazy loading plugin files.

Widgets API Reference

Widgets Bus APl overview

Name

pluginMap

Returns

This method returns nothing.

object

Type

Description

Be sure to configure this option when
using Genesys Widgets in lazy loading
mode.

Used to change the target JS file
for each plugin or to add a new

plugin.

Example:

{sendmessage:
"https://www.yoursite.com/
plugins/custom-
sendmessage.js"}

CXBus will automatically lazy load plugins
defined in this object when something
tries to call a command on that plugin.

For instance, if SendMessage.open is
called and SendMessage isn't loaded,
CXBus will fetch it from the default
"plugins/" folder. If you want to load a
different SendMessage widget, you can
override the default URL of the JS file
associated with "sendmessage".

You can also prevent a plugin from
loading by mapping it to false.

Example:

{sendmessage: false}

* Any number of plugins
can be included in this
object.

e Only works when using
the lazy-loading method
of initializing Widgets.

e Not intended to be used
to load different versions
of Genesys Widgets
plugins.

* Intended to be used
along with the proper
pluginsPath
configuration. Do not use
pluginMap method
separately.

Widgets API Reference

10

Widgets Bus APl overview

CXBus.loadFile

Loads any javascript file.

Example

CXBus.loadFile("/js/widgets/plugins/webchat.min.js");

Arguments
Name Type Description
G R
Returns

Always returns a promise. You can define done(), fail(), or always() callbacks. When the file loads
successfully, done() will be triggered. When the file fails to load, fail() will be triggered.

CXBus.loadPlugin

Loads a plugin file from the configured "plugins" folder.

Example
CXBus.loadPlugin("webchat");
Arguments

Name Type Description

Loads a plugin from the "plugins"
folder by name (configured by
the "pluginsPath" option). Plugin
names match their CXBus
namespaces but are lowercase.
Example: To load WebChat, use
"webchat".

You can refer to the files inside
the "plugins" folder as well. The
first part of the file name will be
the name you use with this
function.

Example: Use "webchat" to load
"webchat.min.js".

Plugin name string

Returns

Always returns a promise. You can define done(), fail(), or always() callbacks. When the plugin loads
successfully, done() will be triggered. When the plugin fails to load, fail() will be triggered.

Widgets API Reference 11

Widgets Bus APl overview

CXBus.registerPlugin

Registers a new plugin namespace on the bus and returns a plugin interface object. You will use the
plugin interface object to publish, subscribe, call commands, and perform other CXBus functions.

Example

var oMyNewPlugin = CXBus.registerPlugin("MyNewPlugin");

Arguments
Name Type Description
. . The namespace you want to
CXBus plugin namespace string reserve forg/ouril)lugin.
Returns

If the namespace is not already taken, it will return a CXBus plugin interface object configured with
the selected namespace. If the namespace is already taken, it will return false.

CXBus Plugin Interface Reference

When you register a plugin using CXBus.registerPlugin(), it returns a CXBus Plugin Interface Object.
This object contains many methods that allow you to interact with other plugins on the bus.

Let's start with the assumption that we've created the below plugin interface:

var oMyNewPlugin = CXBus.registerPlugin("MyNewPlugin");

oMyNewPlugin.registerCommand

Allows you to register a new command on the bus for other plugins to use.

Example
oMyNewPlugin.registerCommand("test", function(e){
console.log(" 'MyNewPlugin.test' command was called", e)

e.deferred.resolve();

1)
Arguments
Name Type Description
The name you want for this
. command. When other plugins
Command name string

call your command, they must
specify the namespace as well.

Widgets API Reference

12

Widgets Bus APl overview

Name

Command function

Event object

Name

time

commander

command

deferred

data

Returns

Returns true.

Type

function

Type

number (integer time)

string

string

deferred promise object

object

Description

Example: "test" is called on the
bus as "MyNewPlugin.test".

The command function that is
executed when the command is
called. This function is provided
an Event Object that contains
metadata and any options
passed in.

Description

The time the command was
called.

The name of the plugin that
called your command. Example:
If your plugin called a command,
the value would be
"MyNewPlugin".

You can use this information to
create plugin-specific logic in
your command.

The name of this command.
Example: "MyNewPlugin.test".
This can be useful if you are
using the same function for
multiple commands and need to
identify which command was
called.

When a command is called, a
promise is generated. You must
resolve this promise in your
command without exception.
Either execute
e.deferred.resolve() or
e.deferred.reject().

You may pass values back
through these methods. If you
pass a value back inside reject()
it will be printed in the console as
an error log automatically.

This is the object containing
command options passed in
when the command was called. If
no options were passed, this will
default to an empty object.

Widgets API Reference

13

Widgets Bus APl overview

oMyNewPlugin.registerEvents

Registering events is a formality that allows CXBus to keep a registry of all possible events. You don't
need to register events before publishing them, but it's a best practice to always register events.

Example
oMyNewPlugin.registerEvents(["ready", "testEvent"]);
Arguments
Name Type Description
Event name array array An array of event names.
Returns

Returns true if at least one value event was included in the array. Returns false if no events are
included in the array or no array is passed in.

oMyNewPlugin.subscribe
Subscribes your plugin to an event on the bus with a callback function. When the event is published,

the callback function is executed. You can subscribe to any event, even if the event does not exist.
This allows for binding events that may come in the future.

Example

oMyNewPlugin.subscribe("WebChat.opened", function(e){

// e = Event Object. Contains metadata and attached data

//
// Example Event Object data:
//
// e.time == 1532017560154
// e.event == "WebChat.opened"
// e.publisher == "WebChat"
3
Arguments

Name Type Description

The name of the event you want
Event name string to subscribe to. Must include the
plugin's namespace.

A function to execute when the
event is published. An Event
Callback function function Object is passed into this
function that gives you access to
metadata and attached data.

Widgets API Reference 14

Widgets Bus APl overview

Event object

Name Type Description

time number (integer time) The ’.cime the event was
published.
The name of the event, including

event strin namespace. That can be useful if

9 you are using the same function
to handle multiple events.
. . The namespace of the plugin
BLlofEner string that published the event.
Returns

Returns the name of the event back to you if the subscription was successful. Returns false if you did
not specify an event and/or a callback function.
oMyNewPlugin.publish

Publishes an event on the bus under your plugin's namespace.

Example

// Publishes the event "MyNewPlugin.testEvent" with attached data {test: "123"}
oMyNewPlugin.publish("testEvent", {test: "123"});

Arguments

Name Type Description

The name of the event you want
Event name string to publish. Do not include the
plugin namespace.

An object of arbitrary properties

Attached data object you can attach to your event.

Returns

Always returns true.

oMyNewPlugin.republish

A special method of publishing intended for one-off events like "ready". In some cases, an event will
fire only once. If a plugin is loaded at a later time that needs to subscribe to this event, it will never
get it because it will never be published again. To solve this problem, the "republish" method will
automatically republish an event to new subscribers as soon as they subscribe to it.

In Genesys Widgets, every plugin publishes a "ready" event. This event is published using "republish"
so that any plugin loaded and/or initialized after can still receive the event.

It is important that you only use "republish" for events that publish once. Using republish multiple

Widgets API Reference 15

Widgets Bus APl overview

times for the same event can cause unwanted behavior.

Genesys Widgets plugins all publish a "ready" event. This is not related to the CXBus plugin interface
object's "ready()" method. Calling oMyNewPlugin.ready() will not publish any events.

Example

oMyNewPlugin.republish("ready", {...});
Arguments

Name Type Description

The name of the event you want
Event name string to have republished. Do not
include the plugin namespace.

An object of arbitrary properties

Attached data object you can attach to your event.

Returns

Always returns true.

oMyNewPlugin.publishDirect
A slight variation on "publish", this method will only publish an event on the bus if it has subscribers.
The intention of this method is to avoid spamming the logs with events that no plugins are listening

to. In particular, if you have an event that publishes frequently or on an interval, "publishDirect" may
be used to minimize its impact on logs in the console.

Example
oMyNewPlugin.publishDirect("poll", {...});
Arguments

Name Type Description

The name of the event you want
Event name string to have republished. Do not
include the plugin namespace.

An object of arbitrary properties

Attached data object you can attach to your event.

Returns

Always returns true.

oMyNewPlugin.command

Have your plugin call a command on the bus.

Widgets API Reference 16

Widgets Bus APl overview

Example

oMyNewPlugin.command("WebChat.open", {...}).done(function(e){

// If command succeeds
// e == any returned data

}).fail(function(e){

// If command fails
// e == any returned data

}) .always(function(){

// Always executed

3
Arguments
Name Type Description
. Name of the command you wish
Command name string

to call.

Optional: An object containing
properties the command will use
Command options string in its execution. Refer to plugin
references for a list of options
available for each command.

Returns

Always returns a promise. You can define done(), fail(), or always() callbacks for every command.

oMyNewPlugin.before

Allows you to interrupt a registered command on the bus with your own "before" function. You may
modify the command options before they're passed to the command, you may trigger some action
before the command is executed, or you can cancel the command before it executes.

You may specify more than one "before" function for a command. If you do, they will be executed in a

chain where the output of the previous function becomes the input for the next function. You cannot
remove "before" functions once they have been added.

Example

oMyNewPlugin.before("WebChat.open", function(oData){

// oData == the options passed into the command call
// e.g. if this command is called: oMyPlugin.command("WebChat.open", {form: {firstname:
"Mike"

// then oData will == {form: {firstname: "Mike"

// You must return oData back, or an empty object {} for execution to continue.

// If you return false|undefined|null or don't return anything, execution of the command
will be stopped

return oData;

1)

Widgets API Reference 17

Widgets Bus APl overview

Arguments
Name Type Description
Name of the function you want to
Command name string interrupt with your "before"

function.

A function that accepts command
options (oData in above
example). If you want the
command to continue executing,
you must return the oData
object. If you want to cancel the
command, return false or

"before" function function undefined or don't return
anything. You may modify the
contents of oData before it is
sent to the command. This allows
you to override command options
or add on dynamic options
depending on external
conditions.

Returns

Returns true when you pass a properly formatted command name (e.g.
"PluginName.commandName"). Returns false when you pass an improperly formatted command
name.

oMyNewPlugin.registry

Returns the CXBus Registry lookup table.

Example

oMyNewPlugin.registry();
Arguments

No arguments.

Returns

Returns the internal CXBus registry that tracks all plugins, their commands, and their events.
Registry Structure Example:

{
"Pluginl": {
commands: ["commandl", "command2"],
events: ["eventl", "event2"]
}I
"Plugin2": {

Widgets API Reference 18

Widgets Bus APl overview

commands: ["commandl", "command2"],
events: ["eventl", "event2"]

oMyNewPlugin.subscribers

Returns a list of events and their subscribers.
Example

oMyNewPlugin.subscribers();

Arguments

No arguments.

Returns

Returns an object identifying a list of events being subscribed to, and a list of plugin names
subscribed to each event.

Example of WebChatService's subscribers:

// Format {"eventname": ["subscriberl", "subscriber2"]}

{
"WebChatService.agentConnected":["WebChat"],
"WebChatService.agentDisconnected":["WebChat"],
"WebChatService.ready":[1],
"WebChatService.started":["WebChat"],
"WebChatService.restored":["WebChat"],
"WebChatService.clientDisconnected":[],
"WebChatService.clientConnected":[],
"WebChatService.messageReceived":["WebChat"],
"WebChatService.error":["WebChat"],
"WebChatService.restoreTimeout":["WebChat"],
"WebChatService.restoreFailed":["WebChat"],
"WebChatService.ended":["WebChat"],
"WebChatService.agentTypingStarted":["WebChat"],
"WebChatService.agentTypingStopped":["WebChat"],
"WebChatService.restoredOffline":["WebChat"],
"WebChatService.chatServerWentOffline":["WebChat"],
"WebChatService.chatServerBackOnline": ["WebChat"],
"WebChatService.disconnected":["WebChat"],
"WebChatService.reconnected":["WebChat"]

oMyNewPlugin.namespace

Returns your plugin's namespace.

Example

oMyNewPlugin.namespace();

Widgets API Reference

Widgets Bus APl overview

Arguments
No arguments.
Returns

Returns your plugin's namespace. If your plugin's namespace is "MyNewPlugin", it will return
"MyNewPlugin".

oMyNewPlugin.ready
Marks your plugin as ready to have its commands called. This method is required to be called for all
plugins. You should call this method after all your commands are registered, initialization code is

finished, and configuration has completed. Failure to call this method will result in your commands
being unexecutable.

Example
oMyNewPlugin. ready();
Arguments

No arguments.
Returns

Returns nothing.

Widgets API Reference 20

App

APP

Contents

e 1 Overview

e 1.1 Usage

* 1.2 Customization

* 1.3 Mobile support
e 2 Configuration

* 2.1 Description

e 2.2 Example

e 2.3 Options

e 3 Localization

4 APl commands
* 4.1 setTheme
e 4.2 getTheme
* 4.3 reTheme
* 4.4 themeDemo
* 4.5 setLanguage
* 4.6 closeAll
* 4.7 updateAJAXHeader
* 4.8 removeAJAXHeader
* 4.9 registerExtension
* 4.10 registerAutoLoad
* 4.11 deregisterAutoLoad

* 5 APl Events

Widgets APl Reference

21

App

e Developer
Learn how to control your widgets.

Related documentation:

Overview

App is the main controller for Genesys Widgets and has no Ul. It controls all startup routines, global
configurations, and extensions, and it executes the onReady event and distributes changes to theme,
language, mobile mode, and other application-wide effects.

Usage

App's main interface is its configuration. You set all global defaults using the

window._genesys.widgets.main property. App also has a few commands you can use to change
the language and theme.

Customization

App itself cannot be customized, but its configuration options affect all widgets.

Mobile support

App has built-in mobile detection and can automatically notify all widgets to switch to mobile mode.
You can also control this manually.

Configuration

Description

App uses the configuration property _genesys.widgets.main. App controls the Genesys Widgets
product as a whole, handling themes, languages, and mobile devices.

Example

window. genesys.widgets = {

main: {
theme: 'dark',

Widgets API Reference 22

App

'cx-theme-1light',

themes:

'cx-theme-dark',
light:

'cx-theme-blue',
'cx-theme-red'

+

lang: 'en',

i18n: 'il8n.json',

mobileMode: 'auto',

mobileModeBreakpoint: 600,

debug: true,

downloadGoogleFont: true,

googleFontUrl:

header: {'Authorization':
cookieOptions: {

}
}I

onReady: function(){

sameSite:

secure: true,
domain:

I/I’

'Strict’

"https://apps.mypurecloud.com/webfonts/roboto.css"',
'value'},

‘genesys.com',

// Do something on Widgets ready

}
}
Options
Name Type

main.themes object

Description

An object list
containing
the CSS
classname
for each
theme. The
property
names are
used to
select the
theme in the
theme
property, for
example
{dark: cx-
theme-dark,
light: cx-
theme-
light, red:
cx-theme-
red, blue:
cx-theme-
blue}.
Where dark
and light

Introduced/

Default Required Updated

{dark: 'cx-
theme-dark’,

light: 'cx- n/a
theme-

light'}

Widgets API Reference

23

App

Name

main.theme

Type

string

Description Default Required
are the built-
in themes
provided in
Genesys
Widgets,
and red and
blue are
example
custom
theme
names you
may create
on your own.

It is not
necessary to
define the
dark and
light theme
as shown in
this example.
It is included
to help show
how the
formatting
works.
Whatever
you put in
this object
will be
merged with
the default
themes
object
internally.

Selects the
theme to
apply to
Genesys
Widgets
from the
Themes
object. Uses
the property
name of the
theme, for dark n/a
example
using the
example
from themes
above,
possible
values for
this could be
dark, light,
red, blue.

Introduced/
Updated

Widgets API Reference

24

App

Name

main.lang

main.il8n

main.header

Type

string

URL string or
JSON

object

array

Description

Select the
language to
use from the
i18n
language
pack.
Language
codes are
selected by
the
customer.
Any
language
code format
can be used
as long as
this property
matches one
of the
language
codes in
your i18n
language
pack. For
more
information
about
localization,
see
localization.

Either a path
to a remote
i18n.json
language
pack file or
an inline
JSON
language
pack
definition.
For more
information
about
language
packs, see
localization.

en

An object
containing a
key value
pair for the
authorization
header.

n/a

Note: For none

Default

Required Updated

n/a

Default
English
language
strings are
built into
each widget
and are
displayed by
default.
Defining this
i18n
language
pack
overrides
the built-in
strings.

n/a

n/a 9.0.002.06

When lazy

Introduced/

Widgets API Reference

25

App

Name Type

main.preload

Description

use with lazy
loading only.
A list of
plugins you
want pre-
loaded at
startup. You
may want
certain
plugins,
such as
SideBar, to
be shown on
screen as
soon as
possible; to
do so, you
may add
'sidebar’ to
this preload
plugins
array so it
will be
loaded after
Widgets
starts up.
The names
you add to
the list must
match the
first part of
the plugin
filename you
wish to load.
Example:
sidebar will
load

sidebar.min.js

from the
plugins/
folder. All
filenames
are
lowercase.

This preload
array is
intended for
use when
running
widgets in
lazy loading
mode. You
may also use
this to pre-

Default

Required

loading
Widgets

Introduced/
Updated

Widgets API Reference

26

App

Name Type

main.mobiIeMoé’gr?rl]Zan/

umber/

main.timeForm% ring

main.mobileModeBrbakpoint

main.debug boolean

main.customStydashgetID

main.download®ootgeRont

Description

load your
own custom-
made
plugins.

Mobile Mode
setting.

true = Force
Mobile Mode on
all devices.
false =
Disable Mobile
Mode
completely.
auto = Genesys
Widgets
automatically
switches
between mobile
and desktop
,odes using the

Default

auto

mobileModeBreakpoint

property and
UserAgent
detection.

This sets the
time format
for the
timestamps.
It can be 12
or 24.

The
breakpoint
width in
pixels where
Genesys
Widgets will
switch to
Mobile
Mode.
Breakpoint
checked at
startup only.

Enable
debug
logging from
the bus to
appear in
the browser
console.

The HTML ID
of a

By default,
Genesys

12

600

false

n/a

true

Required

n/a

n/a

n/a

n/a

n/a

n/a

Introduced/
Updated

Widgets API Reference

27

App

Name Type

main.googleFondtihg

main.deploymestiihg

main.cookieOptadject

Description Default Required

Widgets
downloads
and uses the
Google font
Roboto. To
disable this
download,
set value
false.

The string
used to refer
the URL
where the
Google fonts
are hosted
in Genesys
Hosted
Repository.
You can
configure
one of the
Genesys

Introduced/
Updated

Hosted https://apps.mypurecloud.com/

URLs roboto.css
specified

here

Genesys

Web Fonts.

This Option is
only
applicable
when the
downloadGoog
option is set
to true.

The string
used to
customize
cookie
names so
that multiple n/a n/a
Widgets
deployments
canrunin
the same
domain.

An object

containing

cookie {sameSite:'Strict/3
attributes

that applies

9.0.018.00

9.0.006.02

9.0.017.01

Widgets API Reference

28

App

Name Type

Description Default Required
globally to

all Widgets.

The

following

cookie

attributes

are

supported:

1. secure -
Either
true or
false,
indicating
if the
cookie
transmission
requires
a secure
protocol
(https).

2. domain -
A string
indicating
a valid
domain
where
the
cookie
should
be
visible.

3. path-A
string
indicating
the path
where
the
cookie is
visible.

4. expires -
Specifies
the
number
of days,
either
from
time of
creation
or from a
date
instance,

Introduced/
Updated

Widgets API Reference

29

App

Name Type

Description

5.

Default Required

until the
cookie is
to be
removed.
domain
and path
can be
used to
make
cookies
compatible
with
environments
that use

a non
FQDN
URL,

such as
an
intranet
hostname.
However,
the
domain
should
only be
manually
set in
production
if the
automated
values

are
causing
problems.
Otherwise,
rely on
the
automated
domain
and

path.

sameSite
- This
maps to
the
cookie
SameSite
attribute
allowing
the
cookie to

Introduced/
Updated

Widgets API Reference

30

App

Introduced/

Name Type Description Default Required Updated

be
restricted
to a first-
party or
same-
site
context.
It can
take any
of the
supported
values
that
SameSite
attribute
takes.

The
values
are
automatically
set by
Widgets
to
support
Cross-
sub-
domain
cookies.
Modifying
these
options
overrides
the
automated
values
and
might
break
Cross-
sub-
domain
cookie
support if
not
properly
set. For
usage,
please
refer to
the above
example

A callback

onReady function function that

none n/a

Widgets API Reference

App

Introduced/

Name Type Description Default Required Updated

is invoked
when the
Widgets are
ready and
initialized
with the
configuration
provided.

Localization

No localization options.

APl commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('App.themeDemo');

setTheme

Sets the theme for Genesys Widgets from the list of registered themes. Default themes are light and
dark. You can register as many new themes as you need.

Example

oMyPlugin.command('App.setTheme', {theme: 'light'}).done(function(e){
// App set theme successfully
}).fail(function(e){

// App failed to set theme
1)

Widgets API Reference 32

App

Options

Option

theme

Resolutions

Status
resolved

rejected

getTheme

Type

string

When

Theme exists and is successfully
changed

Theme does not exist

Get the CSS classname for the currently selected theme.

Example

oMyPlugin.command('App.getTheme').done(function(e){

// App got theme successfully
// e == (CSS classname for current theme

}).fail(function(e){

// App failed to get theme

1)

Resolutions

Status
resolved

rejected

reTheme

When

Always

Never

Description

Name of the theme you want to
use. This name is specified in
window._genesys.main.themes.
Default themes are light and

dark.

Returns

The name of the theme that was
chosen, for example light.

'Invalid theme specified'.

Returns

CSS classname for the currently
selected theme, for example, cx-
theme-light.

n/a

Accepts an HTML reference (either string or jQuery wrapped set) and applies the proper CSS theme
classname to that HTML and returns it back. When widgets receive the theme event from App, they
pass in their Ul containers into App.reTheme to have the old theme classname stripped and the new

Widgets API Reference

33

App

classname applied.

Example

oMyPlugin.command('App.reTheme', {html: '
Test Theme
'}) .done(function(e){

// App set theme successfully
}).fail(function(e){

// App failed to set theme

1)
Options
Option Type Description
sring o JQuery Wrapped set AL S0 of JQuery Wrappec
Resolutions
Status When Returns
resolved Sgcl;llal_t;provided and theme is ;Ehclli:?-iterziat was passed-in and
rejected No HTML is provided :;?ng_.ML provided by [plugin
themeDemo

Start an automated demo of each theme. All registered themes will be applied with a default delay
between themes of 2 seconds. You can override this delay. This command is useful for comparing
themes or testing themes with official or custom widgets.

Example

oMyPlugin.command('App.themeDemo', {delay: 1000}).done(function(e){
// App demo successfully started
}).fail(function(e){

// App failed to start demo

3
Options
Option Type Description
delay number Number of milliseconds between

theme changes. Default value is

Widgets API Reference 34

App

Option

Resolutions

Status
resolved

rejected

setLanguage

Changes the language

Example

oMyPlugin.command('App.setlLanguage', {lang:

Type

When
Always
Never

// App set language successfully started

}).fail(function(e){

// App failed to set language

1)

Options
Option

lang

Resolutions

Status
resolved
rejected

rejected

closeAll

Publishes the 'App.closeAll' event that requests all widgets to close.

Example

Type

string

When
Language successfully changed
No language code is provided

No matching language code is
specified in your language pack

oMyPlugin.command('App.closeAll"').done(function(e){

Description
2000 milliseconds.

Returns
n/a
n/a

'eng'}) .done(function(e){

Description

Change the language of Genesys
Widgets. Switches all strings in
Widgets to selected language.

Returns
n/a
No language code provided

No matching language code
found in language pack

Widgets API Reference

35

App

// App closed all successfully
}).fail(function(e){

// App failed to close all

1)
Resolutions
Status When
resolved Always
rejected Never
updateAJAXHeader

Introduced: 9.0.002.06

Updates the Authorization header.

Example

_genesys.widgets.bus.command('App.updateAJAXHeader', {header:

{'Authorization': 'value'}
1)
Resolutions
Status When
resolved Header is updated
rejected Never
removeAJAXHeader

Introduced: 9.0.002.06

Removes the set Authorization header.

Example
_genesys.widgets.bus.command('App.removeAJAXHeader');
Resolutions

Status When

resolved Always

Returns
n/a
n/a
Returns
n/a

No request header found

Returns

n/a

Widgets API Reference

36

App

registerExtension
Introduced: 9.0.002.06

Allows you to register and initialize new extensions at runtime instead of predefining extensions
before Genesys Widgets starts up.

Options

Option Type Description

Your extension function. Receives
undefined function the following arguments: $
(jQuery), CXBus, Common

Resolutions
Status When Returns
resolved Valid 'extension' object provided n/a
rejected Invalid 'extension' option n/a

provided

registerAutoLoad

(For use with lazy loading only) Allows you to register a plugin into the preload plugins array so that it
can be pre-loaded at the startup rather than lazy loading later. This can be useful when there is an
active session maintained by your Widget and you would like to show it immediately at startup during
page refresh or navigating across pages.

Note: This command is intended for use when running widgets in lazy loading mode.
You may also use this to register and pre-load your own custom-made plugins.

Options
Option Type Description
The name of the plugin that
name string needs to be registered for auto
loading.
Resolutions
Status When Returns
resolved A plugin is added into the o
preload list
rejected Never n/a

deregisterAutoLoad

(For use with lazy loading only) Allows you to de-register a plugin from the preload plugins array so
that it will not be pre-loaded at startup. This can be useful when there is no more active session

Widgets API Reference 37

App

maintained by your Widget and you don't want to show it on the screen immediately at startup.

Note: This command is intended for use when running widgets in lazy loading mode.
You may also use this to de-register your own custom-made plugins.

Options
Option Type Description
The name of the plugin that
name string needs to be de-registered from
auto loading.
Resolutions
Status When Returns
A plugin is removed from the
el preload list e
rejected Never n/a
APl Events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.

Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('App.ready', function(e){});

Name Description Data

CallUs is initialized and ready to

ready accept commands.

Published when the language for
i18n Genesys Widgets is changed oris '(language code)'
being set for the first time.

Published when the theme for {theme: '(theme CSS

e Genesys Widgets is changed oris classname)'}

Widgets API Reference

38

App

Name

timeFormat

Description
being set for the first time.

Published when the time format
for Genesys Widgets is changed
or is being set for the first time.

Data

{timeFormat: iTimeFormat}

Widgets API Reference

39

Common

cCommon

Contents

¢ 1 Common.Generate.Container({options})
* 1.1 Example
* 1.2 Arguments
¢ 2 Common.Generate.Buttons({options})
* 2.1 Example
* 2.2 Arguments
* 3 Common.Generate.lcon(name)
e 3.1 Example
* 3.2 Arguments
¢ 4 Common.Generate.Scrollbar(element, {options})
* 4.1 Example
* 4.2 Arguments
* 5 Common.config(object)
* 5.1 Example
* 5.2 Arguments
¢ 6 Common.checkPath(object, path)
* 6.1 Example
* 6.2 Arguments
¢ 7 Common.createPath(object, path, value)
e 7.1 Example
* 7.2 Arguments
¢ 8 Common.linkify(string, options)
* 8.1 Example
* 8.2 Arguments
¢ 9 Common.log(mixed, type)
* 9.1 Example
* 9.2 Arguments

Widgets APl Reference 40

Common

¢ 10 Common.sanitizeHTML(string)
¢ 10.1 Example
* 10.2 Arguments
¢ 11 Common.updateTemplatel1l8n(element, object)
e 11.1 Example
* 11.2 Arguments
¢ 12 Common.debuglcons
* 12.1 Example
¢ 13 Common.debug
* 13.1 Example
* 13.2 Arguments
* 14 Common.error
* 14.1 Example
* 14.2 Arguments
¢ 15 Common.populateAllPlaceholders
* 15.1 Example
* 15.2 Arguments
¢ 16 Common.populateLanguageStrings
e 16.1 Example
* 16.2 Arguments
e 17 Common.populatelcons
* 17.1 Example
e 17.2 Arguments
e 18 Common.inserticon
e 18.1 Example
* 18.2 Arguments
e 19 Common.injectScript
e 19.1 Example
e 19.2 Arguments
¢ 20 Common.mobileScreenScale
e 20.1 Example
* 20.2 Arguments

e 21 Common.showlLoading

Widgets APl Reference

41

Common

e 21.1 Example
e 21.2 Arguments

e 22 Common.hidelLoading
* 22.1 Example
* 22.2 Arguments

e 23 Common.showWaiting
* 23.1 Example
* 23.2 Arguments

¢ 24 Common.hideWaiting
* 24.1 Example
* 24.2 Arguments

e 25 Common.watch
* 25.1 Example
* 25.2 Arguments

e 26 Common.addDialog
* 26.1 Example
* 26.2 Arguments

¢ 27 Common.showDialog
* 27.1 Example
* 27.2 Arguments

e 28 Common.hideDialog
e 28.1 Example
* 28.2 Arguments

¢ 29 Common.hideDialogs
e 29.1 Example
* 29.2 Arguments

* 30 Common.showAlert
* 30.1 Example
* 30.2 Arguments

¢ 31 Common.bytesToSize
* 31.1 Example
* 31.2 Arguments

e 32 Common.getFormattedTime

Widgets APl Reference

42

Common

* 32.1 Example
* 32.2 Arguments

Widgets APl Reference

43

Common

e Developer

Learn how to access Widgets utility functions and dynamically generate the common HTML
containers used throughout Genesys Widgets.

Related documentation:

Common is a utility object available for import into Plugins/Widgets and Extensions. It is also
accessible directly from the path window._genesys.widgets.common.

Common provides utility functions and dynamically generates common HTML Containers used
throughout Genesys Widgets.

For all examples below, assume that genesys.widgets.common has been stored in a local variable
named 'Common’.

var Common = genesys.widgets.common;

Common.Generate.Container({options})

Dynamically generates a new HTML Container in matching the style of Genesys Widgets with the
selected components you request in your options object. Returns the generated container HTML as a
jQuery wrapped set.

Example

'Generate an Overlay Container'

var ndContainer = Common.Generate.Container({
type: ‘'overlay',
title: 'My Overlay',body: 'Some HTML here as a string or jQuery wrapped set',
icon: 'call-outgoing',

controls: 'close',
buttons: false

'Generate a Toast Container'

var ndContainer = Common.Generate.Container({

type: 'generic',
title: 'My Toast',body: 'Some HTML here as a string or jQuery wrapped set',
icon: 'chat',

Widgets API Reference 44

Common

controls: ,
buttons: {

type:'binary’,

primary:
secondary

Arguments

Argument

options

options.type

options.title

options.body

options.icon

options.controls

options.buttons

options.buttons.type

options.buttons.primary

options.buttons.secondary

0K
:'cancel’

Type

object

string

string

string or jQuery wrapped set

string

string

object

string

string

string

Description

An object containing options to
apply to the generated container.

'generic' or 'overlay'. Overlay
containers have special CSS
properties for appearing inside
the Overlay widget. Default is
‘generic'.

Title to apply to the container's
titlebar area.

The HTML body you want the
container to wrap.

CSS Classname of icon to use.

Select from a set of window
control buttons to show at the
top right. 'close' = Show only the
close button. 'minimize' = Show
only the minimize button. ‘all' =
Show both close and minimize
buttons.

Options for displaying action
buttons at the bottom of the
container, such as OK and Cancel
buttons.

Currently 'binary' is the only
supported button set at this time.
Additional sets and
arrangements will be available in
a later release. Please pass
'‘binary' as the type here if you
wish to show typical 'accept' and
'dismiss' buttons.

Display name on the primary
button. (for example 'OK', 'Yes',
'Accept’, 'Continue’, etc.)

Display name on the secondary
button. (for example 'Cancel’,
'‘No', 'Dismiss', 'Reject’, etc.)

Widgets API Reference

45

Common

Common.Generate Buttons({options})

Dynamically generates a new HTML Binary Button set in matching the style of Genesys Widgets with
the selected options in your options object. Returns the buttons as a jQuery wrapped set.

Example
'Generate Binary Buttons'

var ndButtons = Common.Generate.Buttons({

type: 'binary',
primary: 'OK',
secondary: 'Cancel'

Arguments

Argument Type Description

Options for generating buttons,

ERAEE object such as OK and Cancel buttons.

Currently 'binary' is the only
supported button set at this time.
Additional sets and
arrangements will be available in
a later release. Please pass
'binary' as the type here if you
wish to show typical 'accept' and
'dismiss' buttons.

options.type string

Display name on the primary
options.primary string button. (for example 'OK', 'Yes',
'Accept’, 'Continue’, etc.)

Display name on the secondary
options.secondary string button. (for example 'Cancel’,
'No', 'Dismiss', 'Reject’, etc.)

Common.Generate.lcon(name)

Dynamically generates an icon from the included icon set. Icons are in SVG format.

Example

'Generate Chat Icon'

Widgets API Reference 46

Common

var ndChatIcon = Common.Generate.Icon('chat');

'Insert Chat Icon'

$('#your icon container').append(Common.Generate.Icon('chat'));

Arguments

Argument Type Description

Select the icon you want to
name string generate by name. See the icon
reference page for icon names.

Common.Generate.Scrollbar(element, {options})

Dynamically generates a widget scrollbar for selected DOM element.

Example
'Generate Scrollbar for a container'

var scrollContainer = Common.Generate.Scrollbar($('#your container'))

Arguments

Argument Type Description

Select the element to which you

element DOM element or jQuery selector would like to apply scrollbar.

This is an iScroll component. So,
options object all the options that iScroll
supports can be passed here.

Common.config(object)

Configure some debug options for Common at runtime.

Widgets API Reference

47

Common

Example

'‘Enable full debug logging'

Common.config({debug: true, debugTimestamps: true});

Arguments

Argument

object

object

Type Description

Supported options are 'debug’
and 'debugTimestamps'. Setting
debug to true will enable debug
messages created by
Common.log(). Setting
debugTimestamps to true will
add timestamps to the front of
each debug message created by
Common.log(). Default value for
both is false.

Common.checkPath(object, path)

Check for the existence of a sub-property of an object at any depth. Returns the value of that
property if found otherwise it returns undefined. Useful for checking configuration object paths
without having to check each sub-property level individually.

Example

'‘Check for window._genesys.main'

var oMainConfig = false;

if(oMainConfig = Common.checkPath(window,
//... Utilize oMainConfig

}
Arguments
Argument
object
path

object

string

' genesys.main')){

Type Description

An Object you want checked for
particular sub property at any
depth.

The object path in dot notation

a

Widgets API Reference

48

Common

Argument Type Description
you wish to search for.

Common.createPath(object, path, value)

Related to checkPath, createPath lets you specify a target object and path string but lets you create
the path and set a value for it. This saves you the pain of defining each node in the path individually.
All nodes in your path will be created as objects. Your final node, the property you are trying to
create, will be whatever value you assign it.

Example
'Create window. genesys.main'

var oMainConfig = false;

if(oMainConfig = Common.createPath(window, ' genesys.main', {debug:true})){
//... Utilize oMainConfig
}
Arguments
Argument Type Description
. . An object you want to add your
object object new path to.
. The object path in dot notation
path string you wish to create.
The value you want to assign to
value any the final node (property) in your

path.

Common. linkify(string, options)

Search for and convert URLs within a string into HTML links. Returns transformed string.

Example
‘Check for window._genesys.main'

var sString = 'Please visit www.genesys.com';
sString = Common.linkify(sString, {target: 'self'});

Widgets API Reference 49

Common

// sString == 'Please visit www.genesys.com
Arguments
Argument Type Description
. . Any string you want to check for
S, string URLs and have them converted.
. . A list of options to apply to the
options object linkify operation.
Choose the HTML TARGET
attribute to apply to the
. . generated links. Default is
options.target string

' blank'. Set this option to 'self'
to apply the target '_self' to the
generated links.

Common.log(mixed, type)

Log something to the browser's console. When using Common.log, _genesys.main.debug must be set
to true to see your logs. This allows you to add debug logging to your code without worrying about
unwanted debug messages in production. If timestamps are enabled, they will be prefixed to all
messages printed through Common.log.

Example
'Check the contents of window. _genesys.main'

var Common = genesys.widgets.common;
Common.log(window. genesys.main);

if(!window. genesys.main){

Common.log('window. genesys.main is not defined', ‘'error');
}
Arguments
Argument Type Description
. Any value or message you'd like
mixed Any to log.
You can specify the log type,
type string such as 'log', 'debug' and 'error'.

Default type is 'log'. Note, if your
browser doesn't support the

Widgets API Reference 50

/u01/app/apache/html/extensions/PrincePDF/pdf/www.genesys.com

Common

Argument Type Description

'debug' or 'error' log type, use
'log' instead.

Common.sanitizeHTML(string)

Search for and escape characters within a string. Returns transformed string. Useful for escaping
HTML.

Example
'‘Check for window._genesys.main'

var sString = 'Please visit www.genesys.com';
sString = Common.sanitizeHTML(sString);

// sString == 'Please visit www.genesys.com

Arguments

Argument Type Description

Any string you want to be

string string transformed.

Common.updatelemplatell8n(element, object)

Searches through an element's contents for i18n string elements to update with new strings. Used
when updating the language in real-time. Works by searching for elements with the CSS classname
'il8n' and reading the custom attribute 'data-message' to match the string name in the language
object. See example below.

Example
'Check for window._genesys.main'

var ndContainer = $(

")

Common.updateTemplateIl8n(ndContainer, {CustomButton00l: 'Accept'});

Widgets API Reference 51

/u01/app/apache/html/extensions/PrincePDF/pdf/www.genesys.com

Common

// ndContainer ==
Accept

Arguments

Argument Type Description

Element you want to search

ST JONER TR TDRT S5 within to replace i18n strings.

The list of languages strings you
want to update your Ul with. This
object comes from the App.il8n
event or you can define your own
custom object inline or using
object Object of i18n Strings some other system. Object
format is a simple name:value
pair format. the 'data-message’
attribute on your HTML element
must match one of these
property names to be updated.

Common.debuglcons

Returns the list of all the Icons with their names that Widgets support.

Example
'Fetch and Display list of icons present in Widgets'

Common.debugIcons()

Common.debug

Adds debug logs in to the browser's console. When using Common.debug, _genesys.main.debug
must be set to true to see your logs. This allows you to add debug logging to your code without
worrying about unwanted debug messages in production. If timestamps are enabled, they will be
prefixed to all messages printed through Common.debug.

Example

'Check the File upload limits in WebChatService'

Widgets API Reference 52

Common

Common.debug(data server returned file limits);

Arguments
Argument Type Description
Any value or message you'd like
. to add debug log. Note: This is
mixed Any

only supported if your browser
supports debug log type.

common.error

Adds error logs in to the browser's console. When using Common.error, _genesys.main.debug must
be set to true to see your logs. This allows you to add error logging to your code without worrying
about unwanted error messages in production.

Example

'Logging error messages'

Common.error('A widget plugin did not receive the following config:"');

Arguments
Argument Type Description
Any value or message you'd like
. to add error log. Note: This is
mixed Any

only supported if your browser
supports error log type.

Common.populateAllPlaceholders

Adds place holder content to the input elements in a form with the given text strings.

Example
'Show placeholders strings in a form'

Common.populateAllPlaceholders($('#your form'), {strings})

Widgets API Reference

Common

Arguments
Argument Type
Form Selector jQuery DOM selector for a form
Key/Value pairs object

Common.populateLanguageStrings

Description

Form containing input elements.
Note: Input elements should
contain i18n class name and data
attribute 'data-message-type'
with value 'placeholder' for the
place holder details to appear.

Placeholder messages that needs
to be displayed. This is an object
with key-value pairs where, key
should be equal to the 'data-
message' attribute value of an
input element and value can be
any text that you would like to
display.

Adds the preferred language place holder text to the given input elements in a form.

Example
‘Show placeholders strings in a form'

Common.populatelLanguageStrings($('#your form'), {strings})

Arguments
Argument Type
Form Selector jQuery DOM selector for a form
Key/Value pairs object

Description

Form containing input elements.
Note: Input elements should
contain i18n class name and data
attribute 'data-message-type'
with value 'placeholder’ for the
place holder details to appear.

Placeholder messages that needs
to be displayed. This is an object
with key-value pairs where, key
should be equal to the 'data-
message' attribute value of an
input element and value can be

Widgets API Reference

54

Common

Argument Type Description

any text that you would like to
display.

Common.populatelcons

Show all the Icons on a Widget.

Example
'Populate all Widget Icons'

Common.populateIcons($('#your continer'));

Arguments
Argument Type Description
Specify the Widget container for
element jQuery DOM selector which all the Icons have to be
displayed.
Common.inserticon
Adds an icon before the selected element.
Example
'Insert a check mark icon to an element you desire.'
Common.insertIcon($('#your element'), 'alert-checkmark', 'alert')
Arguments
Argument Type Description
. An html element to which Icon is
element jQuery DOM selector to be displayed.
icon name string Name of the Icon that you would

Widgets API Reference 55

Common

Argument Type Description

like to display. Note: Refer to
Common.debuglcons method to
find out all the icons names that
widgets supports.

Name for the icon to be read by

icon Aria Name string screen readers

Common.injectScript

Injects javascript code dynamically into widgets with the help of a script tag.

Example
‘Inject your Widget WebChat extension plugin.'

Common.injectScript('path/to/LoadWebChat.ext.js")

Arguments
Argument Type Description
Script file name string path to JavaScript file JEESETEE TS REfE BET MEEs

to be injected into widgets.

Common.mobileScreenScale

Re-sizes and fits Widget to any mobile screen.

Example

'Fit your widget to any mobile screen.'

var mobileScaledWidget = Common.mobileScreenScale($('#your widget'));

Widgets API Reference

56

Common

Arguments

Argument Type

element jQuery DOM Selector

Common.showlLoading

Show loading spinner Icon.

Example

'Show loading spinner during an Ajax request’

Common.showLoading ($('#your container'))

Arguments
Argument Type

element jQuery DOM Selector

Common.hideLoading

Remove loading spinner Icon.

Example
'Remove loading spinner after the Ajax request’

Common.hideLoading($('#your container'))

Description

Your main Widget wrapper
container selector that contains
the entire Widget with 'cx-
titlebar', 'cx-body"', 'cx-footer’,
'cx-button-container' and 'cx-
message-container' classes in it.

Description
An html container where loading

spinner should appear. This adds

a class name 'cx-loading'.

Widgets API Reference

57

Common

Arguments

Argument Type

element jQuery DOM Selector
Common.showWaiting
Show waiting Icon.

Example

'Show waiting Icon when uploading a file.'

Common.showWaiting($('#your container'), 'waiting'))
Arguments
Argument Type
element jQuery DOM Selector
Aria Label string

Common.hideWaiting

Remove waiting Icon.

Example
'Remove waiting Icon after file upload is done.'

Common.hideWaiting($('#your container'))

Description

An html container which contains
the loading spinner.

Description

An html container where waiting
symbol should appear. This adds
a class name 'cx-waiting'.

The value of the aria-label
attribute for the loading screen
icon. The default value is
‘waiting’

Widgets API Reference

58

Common

Arguments

Argument Type Description

An html container which contains

element jQuery DOM Selector the waiting symbol.

Common.watch

Repeat your function execution for every 'x' milliseconds (default 1 second) up to a maximum
number of times (default - infinite) or till your function returns true.

Example

'Make Request Notifications till none are pending.'
Common.watch(function(iteration, maxIterations){

if(bRequestNotificationsPending) {
// ..POST Request

return !'bRequestNotificationsPending;

}, 3000, 30)
Arguments
Argument Type Description
The function that you would like
function name function to execute. It should return true/
false.
.- Execute the function for every 'x'
frequency milliseconds milliseconds until it returns true.
limit number The maximum number of times

function is executed.

Common.addDialog

Create your own dialog box and append it in to the Widget.

Example

'Add a dialog box on your preferred container div

Widgets API Reference 59

Common

Common.addDialog($('#your container'), $('#your dialog box'), 'my warning')
Arguments
Argument Type Description
. The parent container that holds
element jQuery selector the dialog box.
The actual dialog box that you
would like to display. This should
element jQuery selector contain the data-dialog attribute
with the value equal to the dialog
box name.
name string Dialog box name.

Common.showDialog

Show the dialog box that you prefer, using the dialog box name created with Common.addDialog().

Example

'Show the dialog box created using Common.addDialog()'

Common.showDialog($('#your container'), 'your dialog box name');
Arguments
Argument Type
element jQuery Selector
name string

Common.hideDialog

Hide the dialog box that you showed using Common.showDialog().

Description

The parent container which has
the Dialog box appended in to it.

The actual dialog box name.

Widgets API Reference

60

Common

Example

'Hide dialog box'

Common.hideDialog($('#your container'), ‘'your dialog box name);
Arguments
Argument Type Description
. The parent container which is
element jQuery Selector showing the dialog box.
name string The actual dialog box name.

Common.hideDialogs

Hide all the dialog boxes. Dialog box name is not needed here.

Example
'Hide all dialog boxes.'

Common.hideDialogs($('#your container'));

Arguments

Argument Type Description

The parent container which is

SlEmEn: jQuery Selector showing all the dialog boxes.

Common.showAlert

Show a native alert dialog box on the Widget you prefer with your own text message. By default, a
primary button is added to dismiss the alert dialog.

Example
Show an alert dialog box on the Widget you prefer. But default it adds the dismiss button.

Common.showAlert($('.cx-widget.cx-webchat'), {text: 'your alert message', buttonText: 'Ok'})

Widgets API Reference 61

Common

Arguments
Argument Type Description

The Widget plugin container that
should display the alert dialog.

element jQuery selector This should be the top level
container wrapper holding the
Widget.
The data options containing the

options object text to be shown on the Alert
dialog box.

options.text string E(l;(play text on the Alert dialog

options.buttonText string Display text on the primary

button. (for example 'OK")

Common.bytesToSize

Convert any number in bytes to Kilobytes, Megabytes, Gigabytes and Terabytes.

Example
'bytes to KB, MB, GB or TB.'

var fileSize = Common.bytesToSize(parseInt(fileSizeInBytes));

Arguments

Argument Type Description
bytes number Number in bytes size.

Common.getFormattedTime

Returns time in 12 hrs or 24 hrs format from the actual date timestamp. If no timestamp is provided,
it uses current time.

Example

‘convert date timestamp to return time in 12 hrs format'

Widgets API Reference 62

Common

var formattedTime = Common.getFormattedTime(timestamp,

Arguments
Argument Type
timestamp Date
format number

12);

Description

JavaScript Date timestamp
object.

Time format with value 12 or 24.

Widgets API Reference

63

Overlay

Overlay

Contents

e 1 Overview
e 1.1 Usage
* 1.2 Customization
* 1.3 Mobile Support
e 2 Configuration

¢ 3 Localization

4 APl commands
* 4.1 open

e 4.2 close

* 5 APl events

Widgets APl Reference

64

Overlay

e Developer

Learn how to use an overlay window control that widgets can inject their Ul into.

Related documentation:

Overview

The Overlay plugin provides an overlay window control that widgets can inject their Ul into, accepting
the HTML UI, placing it inside an overlay control, and displaying the Ul onscreen in a uniform overlay
window fashion. This prevents individual widgets from managing the overlay themselves. It also
means that each widget's Ul can be moved between different container types.

Overlay provides these benefits:

e Shows the Ul in the center of the window.

¢ Open and close transition animations.

* No overlapping overlays. Only one at a time. Automatically managed by the Overlay plugin.
e Auto-recenter as the browser window size is changed.

¢ Automatic application of mobile styles when running in mobile mode.

Usage

Overlay is easy to use; you simply open and close it. When you call Overlay.open, you pass in the
HTML content you want to show. If you call Overlay.open again while an overlay is already open, it will
automatically close the previous overlay before showing yours (unless the previous overlay has
reserved the overlay to prevent new overlays).

By default, the overlay has no visible styles or content. You must pass in the HTML you
want to show inside the Overlay area. Typically you should create an overlay-type
container using Common.Generate.Container, put your content inside that, then send
the whole thing into Overlay.open.

Customization

Overlay does not have customization options.

Widgets API Reference 65

Overlay

Mobile Support

Overlay automatically applies mobile CSS styles to its outer container to affect the content within the
overlay view. It is up to the content inside the overlay view to dynamically change when the Genesys
Widgets .cx-mobile CSS classname is applied to an outer container.

Configuration

Overlay does not have configuration options.

Localization

Overlay does not have localization options.

APl commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Overlay.close');

open

Opens the provided HTML in an Overlay View. When successful, it returns back the HTML and a
custom close event for you to subscribe to. This alerts you when your overlay instance has been
closed. You can also make your overlay immutable so that new overlay instances don't close yours.
Only your widget can close its overlay when immutable is set to true.

Widgets API Reference 66

Overlay

Example

oMyPlugin.command('Overlay.open', {

html: '
Template
' immutable: false,
group: false

}) .done(function(e){
// Overlay opens successfully
}).fail(function(e){

// Overlay failed to open

1)
Options
Option Type
html string
immutable boolean
group string
Resolutions
Status When
When overlay is successfully
resolved opened

Description

HTML String template for overlay
window.

When set to true, overlay cannot
be closed by other plugins.

The name of the overlay window
group you want to add a new
overlay view into.

Returns

{html: , events:

Widgets API Reference

67

Overlay

Status When Returns

, group: } rejected When no html
template is passed 'No HTML
content was provided. Overlay has
ignored your command.' rejected
When overlay is already opened
'‘Overlay view is currently
reserved.'

close

Closes the Overlay Ul. Publishes
the appropriate custom close
event for current overlay being
closed.

Example
Resolutions

Status When Returns

When
Overlay
resolved s n/a
successfully
closed.
Siln= 'Overla
Overlay JVEriay
rejected is View 1S
already
alneady closed'
closed.
When 'Overlay
. Overlay view is
e view is currently

immutable.reserved'

APl events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

Widgets API Reference 68

Overlay

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('Overlay.ready', function(e){});

Name Description

The Overlay plugin is initialized

and ready to accept commands e

ready

Data

Widgets API Reference

69

Toaster

Toaster

Contents

e 1 Overview
e 1.1 Usage
* 1.2 Namespace
* 1.3 Customization
* 1.4 Mobile support
* 2 Configuration
¢ 3 Localization
* 4 APl Commands
* 4.1 open

e 4.2 close

* 5 APl Events

Widgets APl Reference

70

Toaster

e Developer

Learn how to use a toast view control into which widgets can inject their Ul.

Related documentation:

Overview

The Toaster plugin provides a toast view control that widgets can inject their Ul into, accepting the
HTML Ul, placing it inside a toast view, and displaying the Ul on-screen at the lower-bottom-right.
When it opens, it slides up from the bottom. When it closes, it slides down until it is off-screen.

Toaster provides these benefits:

¢ Shows Ul as a slide-up toast view in the lower-bottom-right of the screen.
¢ Open and close transition animations.

* No overlapping toasts; only one at a time. Automatically managed by the Toaster plugin.

Usage

Toaster is easy to use - you simply open and close it. When you call Toaster.open, you pass in the
HTML content you want to show. If you call Toaster.open again while a toast is already open, it will

automatically close the previous toast before showing yours (unless the previous toast has reserved

the view to prevent new toasts).

Namespace

The Toaster plugin has the following namespaces tied to each of the following types.

Type Namespace
CXBus—API commands & APl events Toaster
CSS .cx-toaster

Customization

Toaster does not have customization options.

Mobile support

Toaster does not have mobile-specific styles at this time.

Widgets API Reference

71

Toaster

Configuration

Toaster does not have configuration options.

Localization

Toaster does not have localization options.

APl Commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.

Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Toaster.close');

open
Opens the Toaster Ul.

Example

oMyPlugin.command('Toaster.open', {

type: 'generic',

title: 'Toaster Title',
body: 'Toaster Body',
icon: 'chat',

controls: 'close’,
immutable: false,
buttons:{

type: 'binary',
primary: 'Accept’,
secondary: 'Decline’

Widgets API Reference

72

Toaster

}) .done(function(e){

// Toaster opened successfully

}).fail(function(e){

// Toaster failed to open properly

3
Options

Option

type

title

body

icon
controls
buttons

buttons.type
buttons.primary
buttons.secondary

immutable

Resolutions

Status
resolved

rejected

rejected

Type

string

string

string

string
string
object

string
string
string

boolean

When

Toaster is successfully opened

No Toaster type is specified

Toaster is already opened

Description

Specifies the type of body
content that can be provided to
Toaster window. Generic type
shows the default body content
and custom type overrides the
default html body content.

Heading title to display on the
Toaster window.

Holds text value for Generic
Toaster type and html string
template for Custom Toaster

type.
The CSS class name for an icon.

Show close and minimize
controls on Toaster window.

Define the type of buttons.
Shows two buttons on the Toaster

Text to be shown on primary
button.

Text to be shown on secondary
button.

When set to true, Toaster cannot
be closed by other plugins.

Returns
n/a

'No content was provided.
Toaster has ignored your
command'

"Toaster view is currently
reserved'

Widgets API Reference

73

Toaster

close

Closes the Toaster Ul.

Example
oMyPlugin.command('Toaster.close').done(function(e){

// Toaster closed successfully
}).fail(function(e){

// Toaster failed to close

1)
Resolutions
Status When
resolved Toaster is successfully closed
rejected Toaster is already closed
rejected Toaster view is immutable
APl Events

Returns
n/a
'"Toaster view is already closed'

'"Toaster view is currently
reserved'

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('Toaster.ready', function(e){});

Name Description
. The Toaster plugin is initialized
y and ready to accept commands
closed The Toaster plugin has been

removed from the screen

Data

n/a

n/a

Widgets API Reference

74

WindowManager

WindowManager

Contents

e 1 Overview
e 1.1 Usage
* 1.2 Customization
* 1.3 Screenshot

e 2 Configuration

* 3 Localization

4 APl Commands

* 4.1 registerDockView

* 4.2 registerSideButton

* 5 APl Events

Widgets APl Reference

75

WindowManager

e Developer

Learn how to use the WindowManager plugin, which provides a controller for several different types
of window group.

Related documentation:

Overview

The WindowManager plugin provides a controller for several different types of window group. HTML
Uls added to these WindowManager groups are arranged and managed in accordance with each
group's purpose.

One group type is Dock View, which appears as a toast-like Ul docked in the lower-bottom-right of the
screen. This group automatically stacks widgets horizontally. When one of the widgets closes, the
stack collapses toward the right. Widgets can register themselves into this WindowManager group
and let it do all the work.

Another group type is Side Button, with its launcher button on the right side of the screen. Like the
dock view, buttons are stacked, but in this case they are stacked vertically. As buttons are added and
removed from the group, the button stack collapses to fill in the gaps.

Usage

WindowManager has "register" commands for registering your Ul into different groups. They all
accept one argument, the HTML you want to be handled by WindowManager. You can use
'registerDockView' or 'registerSideButton' at this time. More window management groups will be
added in upcoming releases.

Customization

WindowManager does not have customization options.

Screenshot

Widgets API Reference 76

/File:Chat_widget.PNG
/File:Chat_widget.PNG

WindowManager

Configuration

WindowManager does not have configuration options.

Localization

WindowManager does not have localization options.

APl Commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('WindowManager.registerDockView', {html:
HTML

'}

registerDockView

Creates a docked view container to show a widget on the bottom right corner. Its position is adjusted
(stacked) to appear beside another widget if already present and is indexed with a tabindex.

Example

oMyPlugin.command('WindowManager.registerDockView', {html:
Template
'}) .done(function(e){

// WindowManager registered a dockView successfully
}).fail(function(e){

// WindowManager failed to register a dock view

3

Widgets API Reference 77

WindowManager

Options
Option Type Description
A Widget HTML string template
html string that needs to be shown in dock
view.
Resolutions
Status When Returns
The HTML template is
resolved successfully opened and n/a
registered in dock view.
rejected No HTML template is found. ‘No html content'

registerSideButton

Registers a button to show on the right side of the screen for a particular plugin. Its position is based
on the respective plugin order defined in the array configuration. Currently, this is not supported for
external plugins.

Example

oMyPlugin.command('WindowManager.registerSideButton', {template: '
Button Text
'}) .done(function(e){

// WindowManager registered a side button successfully
}).fail(function(e){

// WindowManager failed to register a side button

1)
Options
Option Type Description
template string ale)sLE?tr:nl.—'TML string template for
Resolutions
Status When Returns
resolved -rr:geisl-ti;rll'\glc_j.bmton is successfully n/a

Widgets API Reference 78

WindowManager

Status When Returns

. . 'No button template found to
rejected No HTML template is found. register’

APl Events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('WindowManager.ready', function(e){});

Name Description Data
WindowManager is initialized and
rEEY ready to accept commands. e
WindowManager publishes this
changed event when there is any change {registry: (object)}

in the position of widgets on the
screen.

Widgets API Reference 79

CallbackService

CallbackService

Contents

e 1 Overview

e 1.1 Usage

* 1.2 Namespace

* 1.3 Customization
e 2 Configuration

» 2.1 Description

e 2.2 Example

* 2.3 Options
¢ 3 Localization

4 APl Commands

* 4.1 configure
* 4.2 schedule
* 4.3 availability

5 API Events

Widgets APl Reference

80

CallbackService

e Developer

Learn how to use CallbackService to schedule a callback with customer service.

Related documentation:

Overview

CallbackService exposes high-level APl access to Genesys Callback services, allowing you to use our
Callback Widget to schedule a callback with customer service—or to develop your own custom
Callback Widget. CallbackService dramatically simplifies integration, improving the reliability, feature
set, and compatibility of every widget on the bus.

Usage

Callback Service and the matching Callback widget work together, and they share a configuration
object. Using Callback uses CallbackService.

You can also use Callback Service as a high-level APl using bus commands and events to build your
own Callback widget.

Namespace

The CallbackService plugin has the following namespaces tied to each of the following types:

Type Namespace
Configuration Sendmessage
CXBus—API commands & APl events CallbackService

Customization

CallbackService does not have customization options. It is a Plug and Play plugin and works as is.

Configuration

Widgets API Reference 81

CallbackService

Description

Callback and CallbackService share the _genesys.widgets.callback configuration namespace.

Callback contains the Ul options and CallbackService contains the connection options.

Example

window. genesys.widgets.callback = {

apikey: 'n3eNkgXXXXXXXXOXXXXXXXXA',
apiVersion: 'v3',

serviceName: 'service',

dataURL: 'http://host:port/callbacks’,
userData: {},

countryCodes: true

}i
Options

Name Type Description

If apiVersion is
v3, this holds
the x-api-key
value.

URL to the API

endpoint for
Callback.

apikey string

The base URL
for your API
. endpoints is:
dataURL URL String
https://gapi-.genesysc
engagement/v3

You will receive
the information
from Genesys at
the same time
that you receive
your API key.

Version of
Callback API.

apiVersion string This value

determines the
version of
Callback API.

Name of the
Callback virtual
queue.

serviceName string

userData object Arbitrary

Accepted

n/a

n/a

|V3|

n/a

n/a

Values

Default

n/a

n/a

|V1|

n/a

{}

Required

Yes, if using
Apigee Proxy

Always

Yes, if using
Callback v3
dataURL

Yes, if using
Callback v3
dataURL

Widgets API Reference

82

CallbackService

Accepted

Values Default Required

Name Type Description
attached data
to include
while
scheduling a
callback.

Number of
milliseconds to
wait before
AJAX timeout.

ajaxTimeout number n/a 3000

Localization

CallbackService does not have localization options.

APl Commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');
oMyPlugin.command('CallbackService.schedule', {

userData: {},
firstname: 'Bob',
lastname: 'Jones’,
email: 'b.jones@mail.com',
subject: 'product questions',
desiredTime: '2017-04-04T00:24:17.804Z"',
phonenumber: '4151110000'
3

configure

Internal use only. The main App plugin shares configuration settings with widgets using each widget's
configure command. The configure command can only be called at startup. Calling configure again
after startup may result in unpredictable behavior.

Widgets API Reference 83

CallbackService

schedule

Schedule a callback service with the callback schedule API.

Example

oMyPlugin.command('CallbackService.schedule', {

userData: {},

serviceName: 'service'
firstname: 'Bob',
lastname: 'Jones’,
email: 'b.jones@mail.com',

subject: 'product questions',
desiredTime: '2017-03-03T00:24:17.804Z',

phonenumber: '4151110000'

1)
Options
Option

firsthame
lasthame
phonenumber
subject

email

desiredtime

userData

serviceName

Resolutions

Status

resolved

Type

string
string
string
string

string

string

object

string

When

Server confirms callback is
scheduled

// service name from callback API v3 version,

Description

Receive a Call entry Form Data:
'firstname’.

Receive a Call entry Form Data:
'lastname’.

Receive a Call entry Form Data:
'‘phonenumber'.

Receive a Call entry Form Data:
'notes’.

Receive a Call entry Form Data:
'email'.

The preferred desired time user
would like to get the callback
scheduled. Time should be in UTC
format.

Arbitrary data that is to be
attached with callback schedule.
Properties defined here will be
merged with default userData set
in the configuration object.

Service Name of Callback API to
be passed if the apiVersion is v3.

Returns

200 OK AJAX Response -
Schedule Callback

Widgets API Reference

84

CallbackService

Status When
rejected
rejected AJAX exception occurs
rejected Server exception occurs
. No form data is found to
s schedule callback
availability

Selected time slot is not available

Returns

For Callback API v3, refer
to 'Responses' in Schedule
Callback V3

400 Bad Request AJAX Error
Response

For Callback API v3, refer
to 'Responses' in Schedule
Callback V3

429 Too Many Requests AJAX
Error Response

For Callback API v3, refer
to 'Responses' in Schedule
Callback V3

500 Internal Server Error
Response

For Callback API v3, refer
to 'Responses' in Schedule
Callback V3

'No data found to schedule
callback’

Get the list of available callback time slots using the callback service.

Example

oMyPlugin.command('CallbackService.availability', {

serviceName: 'service' // service name from callback API v3 version,

startDate:

'2017-04-03T00:24:17.804Z",

numberOfDays: '5"',
maxTimeSlots: 20

}) .done(function(e){

// CallbackService successfully showing availability

}).fail(function(e){

// CallbackService failed to show availability

1)

Widgets API Reference

85

CallbackService

Options
Option
startDate
endDate
numberOfDays

maxTimeSlots

serviceName

Resolutions

Status

resolved

rejected

rejected

rejected

Type
string
string
string
number
string
When

Server confirms the list of
available callback time slots

Time slots are not available for
selected period

AJAX exception occurs

Server exception occurs

Description

The start date is specified in ISO
8601 format, using UTC as the
timezone (yyyy-MM-
ddTHH:mMmm:ss.SSS7Z).

The end date is specified in ISO
8601 format, using UTC as
timezone (yyyy-MM-
ddTHH:mm:ss.S55Z). If neither
endDate nor numberOfDays is
specified, the end date is
assumed to be the same as the
start date.

Used as an alternative to the end
date. If neither endDate nor
numberOfDays is specified, the
end date is assumed to be the
same as the start date.

The maximum number of time
slots to be included in the
response.

Service Name of Callback API to
be passed if the apiVersion is v3.

Returns

200 OK AJAX Response - Query
Callback Availability

For Callback API v3, refer
to 'Responses' in
Availability Callback V3

400 Bad Request AJAX Response

For Callback API v3, refer
to 'Responses' in
Availability Callback V3

400 Bad Request AJAX Response

For Callback API v3, refer
to 'Responses' in
Availability Callback V3

500 Internal Server Error
Response

Widgets API Reference

86

CallbackService

Status

rejected

APl Events

When

No query data is found

Returns

For Callback API v3, refer
to 'Responses' in
Availability Callback V3

'No query parameters passed for

callback availability service'

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('CallbackService.ready', function(e){});

Name

ready

scheduled

scheduleError

availableSlots

availabilityError

Description

CallbackService is initialized and
ready to accept commands.

Callback is scheduled
successfully.

An error occurred between the
client and the server during a
callback schedule.

Callback available slots fetched
successfully.

An error occurred between the

Data
n/a

200 OK AJAX Response -
Schedule Callback

For Callback API v3, refer
to 'Responses' in Schedule
Callback V3

The JSON data returned by
Callback server.

For Callback API v3, refer
to 'Responses' in Schedule
Callback V3

200 OK AJAX Response - Query
Callback Availability

For Callback API v3, refer

to 'Responses' in
Availability Callback V3

The JSON data returned by

Widgets API Reference

87

CallbackService

Name

Description

client and the server while
fetching the available timeslots.

Data
Callback server.
For Callback API v3, refer

to 'Responses' in
Availability Callback V3

Widgets API Reference

88

StatsService

StatsService

Contents

e 1 Overview
e 1.1 Usage
* 1.2 Namespace
* 1.3 Customization
e 2 Configuration
* 2.1 Description
e 2.2 Example
e 2.3 Options
¢ 3 Localization
* 4 APl commands
* 4.1 configure
* 4.2 getStats
* 5 APl events
* 6 Estimated wait time
* 6.1 API versions

¢ 6.2 Where to look for EWT data

Widgets APl Reference

89

StatsService

e Developer

Learn how to fetch estimated wait time (EWT) details for a channel.

Related documentation:

Overview

StatsService exposes high-level APl access to Genesys statistics services, allowing you to fetch
estimated wait time (EWT) details for each channel, such as WebChat or Callback, and display these
details across the channels.

Usage

StatsService and the Channel Selector widget work together right out of the box to display EWT
details across all channels. Using the Channel Selector widget uses StatsService.

You can also use StatsService as a high-level APl with bus commands and events and integrate in
your own widget.

Namespace

The StatsService plugin has the following namespaces, tied to each of the following types:

Type Namespace
Configuration stats
CXBus—API commands & API events StatsService

Customization

StatsService doesn't have any customization options. It is a plug-and-play plugin and works as is.

Configuration

Description

StatsService shares the _genesys.widgets.stats configuration namespace and has connection
settings to fetch EWT details from each channel.

Widgets API Reference 90

StatsService

Example

window. genesys.widgets.stats =
ajaxTimeout: 3000,
ewt: {
dataURL: 'http://10.0.0.121:7777/genesys/1/service/ewt-for-vq',
apikey: 'n3exxxxxXREBMYjGxxxx8VA',
apiVersion: 'vl',
mode: 'urs2'}

};

Options

Accepted

Name Type Description Default Required Values

Number of
milliseconds

ajaxTimeout number : 3000 N/A N/A
to wait before AJAX

timeout

Apigee Proxy
secure token.

If

apiVersion

is v3, this N/A
holds the x-

api-key

value.

Yes, if using
Apigee Proxy N/A
or v3 API.

ewt.apikey string

URL to the API
endpoint for
estimated wait
time (EWT)

Version of EWT
API.

ewt.dataURL URL String N/A Always N/A

Note: This
value
determines
the version
of EWT API
in GMS/v3.
Thi'f ls(:BMS Yes, if using
vl' -
ewt.apiVersion string EWT v1 vl EVI\C-SF EENT v2or ‘vl 'v2', 'v3'
'v2' - GMS

EWT v2 dataURL
'v3' - EWT v3

Only GET
request type
with virtual
queue name
as query
parameters

Widgets API Reference 91

StatsService

Name Type Description Default Required A::,;?E:zd
are
supported.
Will vary based I,
on the above urs -, urs
. . or 'stat
EWT mode apiVersion as for 'v1'
parameter for ~ shown below.
GMS/v3 API. . . ‘ewtl, 'ewt2'
ewt.mode string _ . rurs2* for N/A or 'ewt3'
This value will vary vl For ty2h
based on the 'ewt2' for
above apiVersion. oL ‘model’ . 'mode2"
‘mode2' for o 'modé3'
3! for 'v3'

Localization

StatsService doesn't have any localization options.

APl commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('StatsService.getStats');

configure

This is for internal use only. The main App plugin shares configuration settings to widgets using each
widget’s configure command. The configure command can only be called once at startup. Calling
configure again after startup may result in unpredictable behavior.

Widgets API Reference 92

StatsService

Example

oMyPlugin.command('StatsService.configure', {
ewt:{
apikey: '12345°',
dataURL: 'http://localhost:8080/foo/bar'
;jaxTimeout: 10000
}) .done(function(e){
// StatsService configured successfully

}).fail(function(e){

// StatsService failed to configure

1)
Options
Option Type
ewt.apikey string
ewt.dataURL URL String
ajaxTimeout number
Resolutions
Status When
resolved Configuration options are
provided and set.
rejected No cpnﬁguratlon options are
provided.
getStats

Ask the Genesys Stat server to fetch EWT details.

Example

oMyPlugin.command('StatsService.getStats', {

group: 'EWT',
vgName: 'chat ewt test eservices',
mode: 'urs2’

Description

API access token. Please contact

your Genesys representative to
obtain your API access token.

URL of GES server.

Number of milliseconds to wait

before AJAX timeout.

Returns

n/a

'Invalid configuration'

Widgets API Reference

93

StatsService

}) .done(function(e){

// StatsService got stats successfully

}).fail(function(e){

// StatsService failed to get stats

1)

Options

Option

group

vgname

mode

Resolutions

Status
resolved

rejected

rejected

APl events

Type
string
string/array
string

When

Server returns EWT data.
Server fail request fails.

No EWT dataURL provided.

Description

Mention specific group name you
would like to request, such as
EWT, etc.

Specify a single virtual queue
name as a string or a list of
virtual queue names as an array.
EWT will be fetched only for
these virtual queues specified
here. If nothing is specified, EWT
will be fetched for all the
available virtual queues.

Specify EWT mode. This will vary
based on apiVersion. Refer to
mode configuration option for
possible values.

Returns
(AJAX Response Object)

'EWT request failed due to
unknown reason'

‘Invalid EWT configuration’

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see

Widgets API Reference

94

StatsService

Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('StatsService.ready', function(e){});

Name Description Data

StatsService is initialized and
ready to accept commands.

updated Latest Stats data is available. EWT AJAX Response data

An error occurred between the
client and the server for EWT.

ready n/a

error.ewt {(AJAX data Response)}

Estimated wait time

Estimated wait time (EWT) is displayed in the ChannelSelector and Callback widgets. These widgets
use the getStats command to fetch EWT data from the GMS or GES server. These servers support
multiple API versions and this document will explain how to configure the StatsService plugin to use
the version that you need.

Use the ewt.apiVersion configuration option to specify the API version. Each version value
corresponds to a particular APl of GMS/GES. For all possible version values and their mapping, refer to
the Description section of the ewt.apiVersion configuration option.

Sample configuration:

_genesys.widgets.stats.ewt.apiVersion =

API versions
vl

If ewt.apiVersion is configured to v1 (this is also the default value), the ewt.dataURL configured must
be a valid GMS 8.5.1 EWT API url. If not, an incorrect EWT value might be displayed.

Depending on this API version, the ewt.mode configuration option can hold a set of predefined
possible values for this version. They are 'urs’, 'urs2' and 'stat', where 'urs2' is the default value if not
specified.

Default example

_genesys.widgets.stats = {
ewt: {
apiVersion: "v1"
dataURL: http://somedomain/genesys/1/service/ewt-for-vq
mode: "urs2"

Widgets API Reference 95

StatsService

For the above configuration, the StatsService plugin will construct the relevant dataURL as shown
below.

http://somedomain/genesys/1/service/ewt-for-vq?name=vql&aqt=urs2

'vql' is added to the URL via the vqName option passed into the getStats command.
v2

If ewt.apiVersion is configured to v2, the ewt.dataURL configured must be a valid GMS 8.5.2 EWT API
url. If not, incorrect EWT may be displayed. For this apiVersion, the possible values for ewt.mode are
'ewtl’, 'ewt2' and 'ewt3'. 'ewt2' is the default value.

Example

_genesys.widgets.stats = {
ewt: {
apiVersion: "v2"
dataURL: http://somedomain/genesys/2/ewt
mode: "ewt2"

}

For the above configuration, the StatsService plugin will construct the relevant dataURL as shown
below.

http://somedomain/genesys/2/ewt/ewt2?vqg=vql,vq2

'vgql' and 'vg2' are added to the URL via the vqName option passed into the getStats command.
v3

If ewt.apiVersion is set to v3, the ewt.dataURL configured must be a valid GES EWT API url. If not,
incorrect EWT may be displayed. For this apiVersion, the possible values for ewt.mode are 'model’,
'mode2' and 'mode3’, where 'mode2' will be the default value if not specified.

Example

_genesys.widgets.stats = {
ewt: {
apiVersion: "v3"
dataURL: http://somedomain/engagement/v3/estimated-wait-time
mode: "mode2"

}

For the above configuration, the StatsService plugin will construct the relevant dataURL as shown
below.

http://somedomain/engagement/v3/estimated-wait-time?virtual-queues=vql,vq2&mode=mode2

'vgql' and 'vg2' are added to the URL via the vqName option passed into the getStats command.

Where to look for EWT data

When the getStats command is called, it fetches the EWT data from either GMS/GES server based on

Widgets API Reference 96

StatsService

the configuration. This response data is included in the updated event in a standard format as shown
below. In this data format, the ewt section will contain the virtual queue name and the estimated
wait time as a key value pair. The response section contains the original raw data from the server
and may vary between each server API.

{
ewt: {

"VQ GMS Callback Out": 9.999 // consolidated standardized EWT data for each
virtual queue.
"VQ GMS Callback": 5.12

}I
response: { // Original raw data from GMS.
"VQ GMS Callback Out": {
"time": 1506021728,
"wt": 0,
"calls": 0,
"wcalls": 0,
"pos": 1,
"wpos": 1,
"aqt": 9.999,
"ewt": 9.999,
"hit": 0
}I
"VQ GMS Callback": {
}
}

Widgets API Reference 97

WebChatService

WebChatService

Contents

e 1 Overview
e 1.1 Usage
* 1.2 Namespace
* 1.3 Customization
* 1.4 Limitations
* 2 Configuration
e 2.1 Example
* 2.2 Options

¢ 3 Localization

4 APl commands
* 4.1 configure
* 4.2 startChat

4.3 endChat

* 4.4 sendMessage

4.5 sendCustomNotice

* 4.6 sendTyping

e 4.7 sendFilteredMessage
* 4.8 addPrefilter

4.9 updateUserData
e 4.10 poll

4.11 startPoll

4.12 stopPoll

e 4.13 resetPollExceptions

4.14 restore

* 4.15 getTranscript
4.16 getAgents

* 4.17 getStats

* 4.18 sendFile

Widgets APl Reference

98

WebChatService

4.19 downloadFile
* 4.20 getSessionData
4.21 fetchHistory

* 4.22 registerTypingPreviewInput
* 4.23 registerPreProcessor

* 4.24 verifySession

* 5 APl events

Widgets APl Reference

99

WebChatService

e Developer
Learn how to use Genesys chat services.

Related documentation:

Overview

WebChatService exposes high-level APl access to Genesys chat services, so you can monitor and
modify a chat session on the front end, or develop your own custom WebChat widgets. Compared to
developing a custom chat Ul and using the chat REST API, WebChatService dramatically simplifies
integration—improving the reliability, feature set, and compatibility of every widget on the bus.
Usage

WebChatService and the matching WebChat widget work together right out of the box and they share
the same configuration object. Using WebChat uses WebChatService.

You can also use WebChatService as a high-level APl using bus commands and events to build your
own WebChat widget or other Ul features based on WebChatService events.
Namespace

The WebChat Service plugin has the following namespaces tied to each of the following types:

Type Namespace
Configuration webchat
CXBus—API commands & API events WebChatService

Customization

WebChatService has many configuration options but no customization options. It is a plug-and-play
plugin and works as is.

Limitations

Multiple instances of the same chat session

After starting a chat session, that session can be opened in any number of new tabs on the same site.

Each tab runs an independent instance of WebChat connected to the same chat session. Currently,
Instances are not synchronized with each other due to Nexus limitation.

Widgets API Reference 100

WebChatService

Configuration

WebChat and WebChatService share the _genesys.widgets.webchat configuration namespace.

WebChat contains the Ul options and WebChatService contains the connection options.

Important

Starting with version 9.0.008.04, WebChatService allows you to choose between the
types of chat services available in Genesys via the transport section in configuration
options.

Example

// When using v2 API
window. genesys.widgets.webchat = {
apikey: 'n3eNKgxxxxXxXXXXXXxx8VA',
dataURL: 'https://api.genesyscloud.com/gms-chat/2/chat’,
enableCustomHeader: true,
userData: {},
emojis: true,
actionsMenu: true,
autoInvite: {
enabled: false,

timeToInviteSeconds: 10,
inviteTimeoutSeconds: 30

}I
chatButton: {

enabled: true,

template: '

CHAT NOw
effect: 'fade',
openDelay: 1000,
effectDuration: 300,
hideDuringInvite: true

}
I

// When using v3 API
window. genesys.widgets.webchat = {

emojis: true,
userData: {},
transport: {

type: 'pureengage-v3-rest',
dataURL: https:///nexus/v3/chat/sessions,
endpoint: 'XXXXXXXXX',

Widgets API Reference

101

WebChatService

headers: {
'X-api-key': 'XXXXXXXX'
}I

async: {

enabled: true,

getSessionData: function(sessionData, Cookie, CookieOptions) {

// Note: You don't have to use cookies. You can, instead,

store in a secured location like a database.

Cookie.set('customer-defined-session-cookie',

JSON.stringify(sessionData), CookieOptions);
}I

setSessionData: function(Open, Cookie, CookieOptions) {

// Retrieve from your secured location.

return Cookie.get('customer-defined-session-cookie');

+
chatButton: {

enabled: true,

template: '
CHAT NOw
' effect: 'fade',
openDelay: 1000,
effectDuration: 300,
hideDuringInvite: true
}
I
Options
Version 2 API
A . Introduced/
Name Type Description Default Required Updated
Apigee Proxy
secure token.
. . Yes, if using
apikey string This option is e Apigee Proxy
only supported
in GMS REST
mode.
Manually select
. . the endpoint
endpoint string on which to n/a n/a
initiate chat.
URL for GMS
. REST chat
dataURL string (URL) service. If n/a Always
cometD.enabled
Widgets API Reference 102

WebChatService

Name Type

enableCustomHealdeolean

userData object

ajaxTimeout number

xhrFields object

pollExceptionLimitnumber

restoreTimeout number

Description Default Required

is set to true,
this property
will be ignored.

Enables the

use of the

custom

authorization

header defined

in
_genesys.widgets.main.header
static config. fae
Attaches the

custom

authorization

header to all
WebChatService
request.

No

Arbitrary

attached data

to include {} n/a
when initiating

a chat.

Number of
milliseconds to
wait before
AJAX timeout.

Allows you to
set the
properties for
the AJAX
xhrFields
object (for
({a)v(vai‘trﬂglree'dentials: {withCredentials:

false}). false}

3000 n/a

n/a

This option is
only supported
in GMS REST
mode.

Number of

successive poll
exceptions

(chat server

offline) before
WebChatService
publishes
'chatServerWentOffline'.

Number of
milliseconds 60000
before restore

n/a

Introduced/

Updated

9.0.002.06

Widgets API Reference

103

WebChatService

Name

Version 3 API

Name

transport

transport.type

transport.dataURLstring (URL)

Type

Type

object

string

transport.endpointtring

transport.headersobject

Description

timeout.
Prevents the
chat session
from restoring
after a certain
time away
from the
session (for
example, user
navigated to a
different site
during chat
and never
ended the
session).

Description

Object
containing the
transport
service
configuration
options.

n/a

Select the type
of transport
service that
needs to work
with WebChat
Ul plugin. For n/a
Pure Engage
v3 REST API,
the value is
'pureengage-
v3-rest'.

URL for Pure
Engage v3
REST API chat
service. Please
contact your
local Genesys
customer
representative
to obtain a
valid dataURL.

The endpoint
for Genesys
Multicloud CX
v3 API.

Object n/a

n/a

n/a

Required

Required

Yes, when
using new
transport
services
available with
WebChat.

Yes, when
using Pure
Engage v3
REST API.

Always

Yes

Yes

Introduced/
Updated

Introduced/
Updated

9.0.008.04

9.0.008.04

9.0.008.04

9.0.008.04

9.0.008.04

Widgets API Reference

104

WebChatService

Introduced/

Name Type Description Default Required Updated

containing key
value pairs of
any custom
headers.

The API key
provided from
Genesys.
Please contact
itarpc';\i|:1|z£‘);)]rt.headers@&ing éc;relsf)ycsal n/a Yes 9.0.008.04
customer
representative
to obtain a
valid API key.

Object
containing
Async mode
configuration
options.

To properly
restore a chat
session that has
ended
previously,

. you'll need to
transport.async object CsleR e bk {} No 9.0.008.04

to the page and
open the
WebChat
Widget. This
way, the chat
session is
restored in the
background and
is ready.
Presently, this is
a current
limitation in
Async WebChat.

Enable
Asynchronous
Chat where a
chat session
can be active
indefinitely.
When you

transport.async.erzdnézhn close WebChat false
without ending
the chat
session, the
session will
simply go
dormant. When
you open

Yes, when
Async WebChat
mode is
enabled

9.0.008.04

Widgets API Reference 105

WebChatService

Name Type

transport.async.gdtSedsoonData

Description Default Required
WebChat

again, the

session will

restore and

continue

chatting where

left off.

A function that
you can define
to retrieve
updated
session data
from the
WebChatService
plugin. This
function is
called back
when starting a
new Async
chat session
for the first
time, or when
the
sessionData
changes over
the course of
an active chat
session. This
function takes
the following
arguments:
sessionData
(current active
session data),
Cookie
(Widgets
Internal cookie
reference), and
CookieOptions
(a parameter
that is needed
when using
Widgets
Cookie). The
purpose of this
function is to
provide you
with the active
session data so
that it can be
stored
somewhere
safe and
secure. Later

Yes, when

non .
one mode is

enabled

Async WebChat

Introduced/

Updated

9.0.008.04

Widgets API Reference

106

WebChatService

Name

transport.async.setifessmnData

Description

this needs to

be provided in
the below
setSessionData
function to
restore the

chat session.
Refer to the
example for
usage.

A function that
you can define
to return the
session data to
the
WebChatService
plugin. During
initialization,
the
WebChatService
plugin will call
this function to
check if any
session data is
returned. If
found,
WebChatService
tries to restore
the chat
session using
this session
data and open
the WebChat
Widget.
WebChatService
will also pass
the following
arguments into
this function:
Open
(WebChat
current open
state value),
Cookie
(Widgets
Internal cookie
reference), and
CookieOptions
(a parameter
that isneeded
when using
Widgets
Cookie). Refer
to the example

none

Default

Required

Yes, when
Async WebChat
mode is
enabled

Introduced/

Updated

9.0.008.04

Widgets API Reference

107

WebChatService

Name

transport.async.ddleteSessionData

userData object

Description Default

for usage.

A function that
you can define
to delete the
session data
from your
secret storage,
it will be called
by
WebChatService
plugin when
Async chat
session is lost
or cannot find
anymore due
to unknown
reasons. This
function will
enable you
write the script
for deleting the
session data
from your
secret storage,
in this way
WebChat will none
try to start a
new chat
normally rather
than trying to
restore a lost
chat session.
WebChatService
will also pass
the following
arguments into
this function -
errorData (lost
session and
error details),
Cookie
(Widgets
Internal cookie
reference) and
CookieOptions
(a parameter
that will be
needed when
using Widgets
Cookie).

Arbitrary
attached data
to include
when initiating

{}

Required

Yes, when
Async WebChat
mode is
enabled

n/a

Introduced/
Updated

9.0.015.12

Widgets API Reference

108

WebChatService

Name Type Description Default Required Inlijl")oddal:::zd/
a chat.
Number of
ajaxTimeout number vrv;liltissec%r:ﬁceis e 3000 n/a
AJAX timeout.
Localization

WebChatService doesn't have any localization options.

APl commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('WebChatService.getAgents');

Starting with version 9.0.008.04, WebChatService allows you to choose between the
types of chat API services available in Genesys via the transport section configuration
options. For more information, see the Options table in configuration options.

configure

Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling
configure again after startup may result in unpredictable behavior.

Widgets API Reference 109

WebChatService

startChat

Initiates a new chat session with the chat server via GES or with the service configured under the

transport section.

Important

The options data must be under the “form” object when using the

"WebChatService.startChat" command in v3 API.

Example

// When using v2 API
oMyPlugin.command('WebChatService.startChat', {

nickname: 'Jonny',

firstname: 'Johnathan',
lastname: 'Smith',

email: 'jon.smith@mail.com',
subject: 'product questions',
userData: {}

}) .done(function(e){
// WebChatService started a chat successfully
}).fail(function(e){

// WebChatService failed to start chat
1)

// When using v3 API
oMyPlugin.command('WebChatService.startChat', {

form: {
nickname: 'Jonny',
firstname: 'Johnathan',
lastname: 'Smith',
email: 'jon.smith@mail.com',
subject: 'product questions',
}I

userData: {}
}) .done(function(e){
// WebChatService started a chat successfully
}).fail(function(e){

// WebChatService failed to start chat
3

Widgets API Reference

110

WebChatService

Options
Option
nickname

firstname

lasthame

email

subject

userData

Resolutions

Status
resolved

rejected

rejected
rejected

rejected

endChat

Type

string
string

string

string

string

object

When
Server confirms session started

A chat session is already active

AJAX exception occurs
Server exception occurs

userData is invalid

Description

Chat Entry Form Data:
'nickname’.

Chat Entry Form Data:
'firstname’.

Chat Entry Form Data:
'lastname’.

Chat Entry Form Data: 'email'.
Chat Entry Form Data: 'subject'.

Arbitrary data to attach to the
chat session (AKA attachedData).
Properties defined here will be
merged with default userData set
in the configuration object.

Returns
(AJAX Response Object)

'There is already an active chat
session'

(AJAX Response Object)
(AJAX Response Object)

'malformed data object provided
in userData property'

Ends the chat session with the chat server via GES or with the service configured under transport

section.

Example

oMyPlugin.command('WebChatService.endChat').done(function(e){

// WebChatService ended a chat successfully

}).fail(function(e){

// WebChatService failed to end chat

1)
Resolutions

Status

resolved

When

Active session is ended
successfully

Returns

(AJAX Response Object)

Widgets API Reference

111

WebChatService

Status When Returns

No chat session is currently

. 'There is no active chat session'
active

rejected

sendMessage

Sends a message from the client to the chat session.

Example

oMyPlugin.command('WebChatService.sendMessage', {message: 'hi'}).done(function(e){
// WebChatService sent a message successfully

}).fail(function(e){

// WebChatService failed to send a message

1)
Options
Option Type Description
message string The message you want to send
Resolutions
Status When Returns
resolved Message is successfully sent (AJAX Response Object)
rejected No message text provided 'No message text provided'
rejected e _chat session is currently 'There is no active chat session'
active
rejected AJAX exception occurs (AJAX Response Object)

sendCustomNotice

Sends a custom notice from the client to the chat server. This request is used to deliver any custom
notification between a custom client application and a custom agent desktop. Neither Genesys
Widgets, nor Workspace, uses this out of the box.

Example

oMyPlugin.command('WebChatService.sendCustomNotice', {message: 'bye'}).done(function(e){
// WebChatService sent a custom message successfully

}).fail(function(e){

// WebChatService failed to send a custom message
1)

Widgets API Reference 112

WebChatService

Options
Option Type Description
EGERE il A message you want to send
9 9 along with the custom notice
Resolutions
Status When Returns Introduced/Updated
resolved zlleenstsage is successfully (AJAX Response Object)
rejected AJAX exception occurs (AJAX Response Object)
The server doesn't 'SI'S;)spgrftnsport doesn't
rejected support receiving . 9.0.008.04
custom notices sendCustomNotice
command.

sendTyping

Sends a "Customer typing" notification to the chat session. A visual indication will be shown to the
agent.

Example
oMyPlugin.command('WebChatService.sendTyping').done(function(e){

// WebChatService sent typing successfully
}).fail(function(e){

// WebChatService failed to send typing

3
Options
Option Type Description
Message String along with he typing notiication
Resolutions
Status When Returns
resolved AJAX request is successful (AJAX Response Object)
rejected AJAX exception occurs (AJAX Response Object)
rejected L SRl SESEE S SUEy 'There is no active chat session'

active

Widgets API Reference 113

WebChatService

sendFilteredMessage

Sends a message along with a regular expression to match the message and hide it from the client.
Useful for sending codes and tokens through the WebChat interface to the Agent Desktop.

Filters are now automatically stored and recalled on chat restore for the duration of
the session.

Example

oMyPlugin.command('WebChatService.sendFilteredMessage', {

message: 'filtered message',
regex: /[a-zA-Z]/

}) .done(function(e){
// WebChatService sent filtered message successfully
}).fail(function(e){

// WebChatService failed to send filtered message

)
Options
Option Type Description
Message you want to send but
message string don't want to appear in the
transcript
regex RegEX Regular expression to match the
9 9EXp message
Resolutions
Status When Returns
resolved There is an active session n/a
rejected No chat session is currently 'No active chat session'

active

addPrefilter

Adds a new pre-filter regular expression to the pre-filter list. Any messages matched using the pre-
filters will not be shown in the transcript

Widgets API Reference 114

WebChatService

Filters are now automatically stored and recalled on chat restore for the duration of
the session.

Example

oMyPlugin.command('WebChatService.addPrefilter', {filters: /[a-zA-Z]/}).done(function(e){

// WebChatService added filter successfully
// e == 0bject of registered prefilters

}).fail(function(e){

// WebChatService failed to add filter

1)
Options
Option Type Description
. Regular Expression(s) to add to
filters RegExp or Array of RegExp the prefilter list
Resolutions
Status When Returns
resolved Valid filters are provided Array of all registered prefilters.
'Missing or invalid filters
. . -) . provided. Please provide a
rejected Invalid or missing filters provided regular expression or an array of
regular expressions.'
updateUserData

Updates the userData properties associated with the chat session. If this command is called before a
chat session starts, it will update the internal userData object and will be sent when a chat session
starts. If this command is called after a chat session starts, a request to the server will be made to
update the userData on the server associated with the chat session.

Example

oMyPlugin.command('WebChatService.updateUserData', {firstname: 'Joe'}).done(function(e){
// WebChatService updated user data successfully
}).fail(function(e){

// WebChatService failed to update user data
3

Widgets API Reference 115

WebChatService

Options
Option Type Description
userData object you want to send
n/a object to the server for this active
session
Resolutions
Status When Returns Introduced/Updated
Session is active and
resolved userData is successfully (AJAX Response Object)
sent
. Session is active and .
rejected AJAX exception occurs (AJAX Response Object)
Session is not active
and internal userData The internal userData
resolved object is merged with object that will be sent
new userData properties to the server
provided
Session is active and This transport doesn't
. the server doesn't support updating
rejected support updating userData during an 9.0.008.04
userData active chat session.
poll
Internal use only. Starts polling for new messages.
Example
oMyPlugin.command('WebChatService.poll').done(function(e){
// WebChatService started polling successfully
}).fail(function(e){
// WebChatService failed to start polling
3
Resolutions
Status When Returns Introduced/Updated
There is an active
resolved session n/a
'‘Access Denied to
S private command. Only
rejected \c/\zﬁl?rg:hiﬁisse?gr%errgrr:é WebChatService is
9 allowed to invoke this
command.'
rejected No chat session is ‘previous poll has not

Widgets API Reference 116

WebChatService

Status When Returns
currently active finished.'
. The server doesn't 'This transport doesn't
rejected support polling support polling."'
startPoll

Starts automatic polling for new messages.

Example
oMyPlugin.command('WebChatService.startPoll').done(function(e){
// WebChatService started polling successfully

}).fail(function(e){

// WebChatService failed to start polling

1)
Resolutions
Status When Returns
There is an active
resolved session n/a
rejected No chat sess!on is No active chat session
currently active
reiected The server doesn't This transport doesn't
) support polling support polling
stopPoll

Stops automatic polling for new messages.

Example

oMyPlugin.command('WebChatService.stopPoll').done(function(e){
// WebChatService stopped polling successfully

}).fail(function(e){

// WebChatService failed to stop polling

3
Resolutions
Status When Returns
resolved There is an active e
session
rejected No chat session is No active chat session

Introduced/Updated

9.0.008.04

Introduced / Updated

9.0.008.04

Introduced / Updated

Widgets API Reference

117

WebChatService

Status When Returns Introduced / Updated
currently active
. The server doesn't This transport doesn't
reenid support polling support polling L

resetPollExceptions

Resets the poll exception count to 0. pollExceptionLimit is set in the configuration.

Example

oMyPlugin.command('WebChatService.resetPollExceptions').done(function(e){
// WebChatService reset polling successfully

}).fail(function(e){

// WebChatService failed to reset polling

1)
Resolutions
Status When Returns Introduced / Updated
resolved Always n/a
This transport doesn't
. The server doesn't support
rejected support polling resetPollExceptions 9.0.008.04
command.
restore

Internal use only. You should not invoke this manually unless you are using Async mode.

Example
oMyPlugin.command('WebChatService.restore').done(function(e){

// WebChatService restored successfully
}).fail(function(e){

// WebChatService failed to restore

1)
Options
. i Introduced /
Option Type Description Accepted Values Updated
The session data
sessionData string IEE LS eselee 1 (JWT string token) 9.0.008.04

restore the
WebChat in Async

Widgets API Reference 118

WebChatService

Option

Resolutions

Status
resolved

rejected
rejected

rejected

rejected

getTranscript

Type

Description Accepted Values
mode. It is a JWT
token string value.
Applicable only
when using
WebChat with
Genesys
Multicloud CX v3
API. For more
information, see
the “Genesys
Multicloud CX v3”
tab in the
“Options” table in

Introduced /
Updated

configuration

options.

When
Session has been found
Session cannot be found
Bestoring chat session is
in progress

Chat session is already
active

Trying restore chat
session manually

Returns
n/a
n/a

Already restoring.
Ignoring request.

Chat session is already
active, ignoring restore
command.

Access Denied to
private command. Only
WebChatService is
allowed to invoke this
command in Non-Async
mode.

Fetches an array of all messages in the chat session.

Introduced / Updated

9.0.002.06

9.0.002.06

9.0.002.06

For more information on the fields included in JSON response, see Digital Channels
Chat V2 Response Format.

Example

oMyPlugin.command('WebChatService.getTranscript').done(function(e){

// WebChatService got transcript successfully

Widgets API Reference

119

WebChatService

// e == Object with an array of messages
}).fail(function(e){

// WebChatService failed to get transcript

1)
Resolutions
Status When Returns
resolved Always Object with an array of messages
getAgents

Return a list of agents currently participating in the chat. Includes agent metadata.

Example

oMyPlugin.command('WebChatService.getAgents').done(function(e){

// WebChatService got agents successfully
// e == Object with agents information in chat

}).fail(function(e){

// WebChatService failed to get agents

3
Resolutions
Status When Returns
(Object List) {name: (String),
connected: (Boolean), supervisor:
resolved Always (Boolean), connectedTime: (int

time),disconnectedTime: (int
time)}

getStats

Returns stats on chat session including start time, end time, duration, and list of agents.

Example

oMyPlugin.command('WebChatService.getStats').done(function(e){

// WebChatService got stats successfully
// e == 0Object with chat session stats

}).fail(function(e){

// WebChatService failed to get stats
)

Widgets API Reference 120

WebChatService

Resolutions

Status When Returns

{agents: (Object), startTime: (int
resolved Always time), endTime: (int time),
duration: (int time)}

sendFile

[Introduced: 9.0.008.04]

Sends the file from the client machine to the agent.

Example

oMyPlugin.command('WebChatService.sendFile', {files: $('').attr('type', 'file') /* Only works
on UI, can not dynamically change */ }).done(function(e){

// WebChatService sent file successfully
}).fail(function(e){

// WebChatService failed to send file

1)
Options
Option Type Description
files File A reference to a file input
element (for example)
Resolutions
Status When Returns
resolved ;22 file sent is a valid type and (AJAX Response Object)
rejected The file sent is an invalid type (AJAX Response Object)

. The number of uploads is .
rejected exceeded (AJAX Response Object)
rejected The file size exceeds the limit (AJAX Response Object)

. The file size is too large or an]
rejected unknown error occurs (AJAX Response Object)
reiected The server doesn't support file This transport doesn't support

y uploads file uploads

Widgets API Reference 121

WebChatService

downloadFile

Downloads the file to the client machine. Example

oMyPlugin.command('WebChatService.downloadFile', {fileId: '1l', fileName:
'myfile.txt'}).done(function(e){

// WebChatService sent file successfully

}).fail(function(e){

// WebChatService failed to send file

3
Options
Option
field
Resolutions
Status
resolved

getSessionData

[Introduced: 9.0.002.06]

Retrieves the active session data at any time.

Example

oMyPlugin.command('WebChatService.getSessionData')

Resolutions

Status

resolved

resolved

Type Description
strin This is the id of the file to be
9 downloaded from the session
When Returns
The file is downloaded
n/a
successfully
When Returns Introduced / Updated

Always, when using
Chat via GMS API. For
more information, see
the 'GMS' tab in the
'Options' table in
configuration options.

{secureKey: (string),
sessionlD: (number/
string), alias: (number/
string), userld: (number/
string) }

Always, when using
Chat via Genesys
Multicloud CX v3 API.
For more information,
see the 'Genesys
Multicloud CX v3' tab in
the 'Options' table in

{participantld: (string),
sessionld: {string),
token: (string),
transportld: (string)}

9.0.008.04

Widgets API Reference

122

WebChatService

Status When Returns Introduced / Updated
configuration options.
rejected Never undefined

fetchHistory

[Introduced: 9.0.008.04]

This applies only in Asynchronous mode to fetch older chat messages. It does not fetch all of the
messages at once; rather a certain number of messages are fetched every time this command is
called. Response data will be available in the messageReceived event. This internal command

determines the last received message index and, based on this information, fetches older messages
whenever it is called.

Example

oMyPlugin.command('WebChatService. fetchHistory")

Resolutions
Status When Returns

resolved Old messages are retrieved (AJAX Response Object)
rejected Request fails (AJAX Response Object)

. Fetching history messages
rejected Aeirdnliemollis fees s e applies only to Asynchronous

enabled
chat

rejected All messages are received No more messages to fetch

registerTypingPreviewlnput

Selects an HTML input to watch for key events. Used to trigger startTyping and stopTyping
automatically.

Example

oMyPlugin.command ('WebChatService.registerTypingPreviewInput', {input: $('input')
}) .done(function(e){

// WebChatService registered input area successfully
}).fail(function(e){

// WebChatService failed to register typing preview

1)
Options

Option Type Description

An HTML reference to a text or

input HTML Reference textarea input

Widgets API Reference 123

WebChatService

Resolutions
Status When Returns
resolved Valid HTML input reference is e
provided
'Invalid value provided for the
reiected Invalid or missing HTML input 'input' property. An HTML
) reference element reference to a textarea

or text input is required.’

registerPreProcessor

Registers a function that receives the message object, allowing you to manipulate the values before
it is rendered in the transcript.

Example

oMyPlugin.command('WebChatService.registerPreProcessor', {preprocessor: function(message){
message.text = message.text + ' some preprocessing text';
return message;

} }).done(function(e){

// WebChatService registered preprocessor function
// e == function that was registered

}).fail(function(e){
// WebChatService failed to register function

1)
Options
Option Type Description
. The preprocessor function you
preprocessor function want to register.
Resolutions
Status When Returns
resolved A valid preprocessor function is The registered preprocessor
provided and is registered function.
rejected An invalid preprocessor function No preprocessor function

is provided provided. Type provided was .

verifySession

Checks for existing WebChat session before triggering a proactive invite.

oMyPlugin.command('WebChatService.verifySession').done(function(e){
if(e.sessionActive) {
// dont show chat invite
} else if(!e.sessionActive) {
if(oMyPlugin.data('WebChat.open') == false){

Widgets API Reference 124

WebChatService

// show chat invite
} else {
// dont trigger chat invite

}
}).fail(function(e){
// verifySession not supported for the transport

1)
Resolutions
Status When Returns
resolved A session exists or not Aboolean sesglonAct/ve, WhICH
holds the session state
reiected The verifySession command is This transport doesn't support
! not supported for this transport the verifySession command

APl events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('WebChatService.ready', function(e){});

Name Description Data Introduced/updated

WebChatService is
ready initialized and ready to n/a
accept commands.

Chat session has been
restored after page
navigation or refresh. In
Asynchronous mode,
restored this event includes data {async: (boolean)} 9.0.002.06
indicating whether a
chat session has been
restored in Async mode
or not.

Chat session restoration
restoreTimeout attempted was denied n/a
after user navigated

Widgets API Reference 125

WebChatService

Name Description Data Introduced/updated
away from originating
website for longer than
the time limit: default
60 seconds.
Could not restore chat
restoreFailed session after page n/a
navigation or refresh.
Chat session was
restored normally but
chat server is offline.
This means no
. messages can come
restoredOffline through. When chat n/a
server is comes back
online,
'‘chatServerBackOnline'
is published.
A new message has .)
been received from the ({gg!gér;)alhrc}eessssaageess.'
. server. Includes text ! » Messages:
messageReceived messages. status (array of objects), 9.0.002.06
ges, . restoring: (boolean),
messages, notices, and ionData: (obi
other message types. sessionData: (object)}
An error occurred
error between the client and (AJAX Response)
the server.
started Chat session has (AJAX Response
successfully started. containing session data)
Chat session has
e successfully ended. e
. Agents has started
agentTypingStarted typing a new message. (AJAX Response)
agentTypingStopped ggp?rr:; has stopped (AJAX Response)
. Chat server automatic
pollingStarted polling has started. n/a
: Chat server automatic
pollingStopped polling has stopped. THE
Indicates the user has gmeists:%gi).(::tj)ed)'
clientConnected been connected to the 9 A ' b JC ! ted:
chat session. numAgentsConnected:
(number)}
Indicates the user has zgrlistss?%oet:)'(:cbtj)ed)'
clientDisconnected been disconnected form g A ’ JC ! d:
I I — numAgentsConnected:
(number)}
. {message: (object),
agentConnected Ic%(;lriztc?czsrt]oa’?h?enct:r?:ts agents: (object),
) numAgentsConnected:
Widgets API Reference 126

WebChatService

Name Description Data Introduced/updated
(number)}
Indicates an agent has grlistssé%gg.(gg)ecn'
agentDisconnected disconnected from the 9 A ’ JC ! d:
- numAgentsConnected:
’ (number)}
Indicates a supervisor ggneistsj%ggj(:cbtj)ed)'
supervisorConnected rcwﬁ;tconnected to the numAgentsConnected:
' (number)}
Indicates a supervisor ;rr:eenstssz_ag(;gé)_(eog)ect),
supervisorDisconnected has disconnected from 9 A ’ b JC ! ted:
the chat. numAgentsConnected:
(number)}
Indicates a bot has
connected to the chat. {message: (object),
agents: (object),
botConnected numAgentsConnected: 9.0.014.13
This event is applicable (number)}
only when using v2 API.
Indicates a bot has
disconnected from the .
chat. {message: (object),
. agents: (object),
botDisconnected numAgentsConnected: 9.0.014.13
This event is applicable (number)}
only when using v2 API.
The user has started
clientTypingStarted typing. Sends an event n/a
to the agent.
After a user stops
typing, a countdown
. . begins. When the
clientTypingStopped countdown completes, THE
the typing notification
will clear for the agent.
Cannot reach servers.
. No connection. Either
disconnected the user is offline or the n/a
server is offline.
Connection restored.
reconnected U EEr? 5 @l n/a
published after
'disconnected'.
Chat server has gone
offline but chat session
has not ended. New
chatServerWentOffline messages are n/a
temporarily unavailable.
This event is published
only after the
Widgets API Reference 127

WebChatService

Name

chatServerBackOnline

connectionPending

connectionRestored

Description Data

configuration option
'pollExceptionLimit' has
been exceeded. Default
limit is 5 poll
exceptions.
'restoredOffline' is an
alternate to this event
that is used only when
the chat server is down
while trying to restore
your chat session. The
reason for having two
events is to allow for
separate handling of
both scenarios.

This event is applicable
only when using v2 API.

Chat server had come

back online after going
offline. This will only be
published after
‘chatServerWentOffline'. /3

This event is applicable
only when using v2 API.

If there is a connection
problem and

WebChatService is

trying to reconnect, this
event will be published.
Published before n/a
'chatServerWentOffline'.

This event is applicable
only when using v2 API.

Is published when the
connection has be
reestablished. Publishes n/a
at the same time as
'chatServerBackOnline'.

Introduced/updated

Widgets API Reference

128

Calendar

Calendar

Contents

e 1 Overview
e 1.1 Usage
* 1.2 Customization
* 1.3 Namespace
* 1.4 Mobile support
* 1.5 Screenshots
¢ 2 Configuration
* 2.1 Description
* 2.2 Example
» 2.3 Options
e 3 Localization
* 3.1 Usage
* 3.2 Example i18n JSON
* 4 APl commands
* 4.1 configure
* 4.2 generate
* 4.3 showAvailability

e 4.4 reset

* 5 APl events

Widgets APl Reference 129

Calendar

e Developer
Learn how to display a calendar, so your customers can choose when they want to be contacted.

Related documentation:

Overview

The Calendar Ul plugin displays time slots for a selected day. The number of days to display—and the
opening and closing times for a day—are configurable, as shown in the configuration section.

Widgets API Reference 130

Calendar

R¥ Receive a Call

07:55 PM 08:00 PM

08:05 PM 08:10 PM

08:15 PM 08:20 PM

08:25 PM 08:30 PM

08:35 PM 08:40 PM

08:45 PM 08:50 PM

08:55 PM 09:00 PM

Usage

By default, the Calendar widget needs a Ul container to display itself properly. For
information about how to create and display a calendar, see the API events section.

e Enable or disable certain sections of a day using calendarHours.section.enable

¢ Define your own business hours for each section of a day using calendarHours.section.openTime and
calendarHours.section.closeTime

¢ Use showAvailability to enable only those time slots for which a customer service agent is available and

Widgets API Reference 131

/File:Calendar_MainScreen_04032020.jpg
/File:Calendar_MainScreen_04032020.jpg

Calendar

disable the rest.

¢ Define your own time interval between each time slot.
How does the Calendar widget render time slots in local time zones?

1. The Calendar widget uses the command showAvailability which calls
CallbackService.availability with the start date. This start date is then converted into the ISO
8601 format, using UTC as the timezone by toIS0String(), internally.

2. The Callback service fetches the available time slots from the server.

3. The Calendar gets the available time slots from CallbackService.availableSlots in the ISO 8601
format, using UTC as the timezone.

4. Each and Every Time Slot is converted according to the user's local time zone internally through Date()
and toTimeString() methods in the Calendar Plugin.

Customization

All the texts displayed by the Calendar Widget are fully localizable.

Namespace

The Calendar plugin has the following namespaces tied to each of the following types:

Type Namespace
Configuration calendar
i18n - Localization calendar
CXBus—API commands & APl events Calendar
CSS .cx-calendar

Mobile support

Calendar supports both desktop and mobile devices. Like all Genesys Widgets, there are two main
modes: Desktop and Mobile. Desktop is used for monitors, portable computers, and tablets, while
Mobile is used for mobile devices. When a mobile device is detected, Calendar switches to special
full-screen templates that are optimized for both portrait and landscape orientations.

Switching between Desktop and Mobile mode is done automatically by default. You can also configure
Genesys Widgets to switch between Desktop and Mobile mode manually.

Screenshots

Dark theme

Widgets API Reference 132

Calendar

Light theme

Configuration

Description

Calendar shares the _genesys.widgets.calendar configuration namespace. It also has Ul options.

Example

window. genesys.widgets.calendar = {
showAvailability: true,
numberOfDays: 5,
hideUnavailableTimeSlots: false
calendarHours: {

interval: 10,
allDay: {

openTime: '09:00',
closeTime: '23:59'

Widgets API Reference 133

/File:Calendar_Mobile_Potrait_DarkMode_04032020.jpg
/File:Calendar_Mobile_Potrait_DarkMode_04032020.jpg
/File:Calendar_Mobile_Landscape_DarkMode_04032020.jpg
/File:Calendar_Mobile_Landscape_DarkMode_04032020.jpg
/File:Calendar_Mobile_Potrait_LightMode_04032020.jpg
/File:Calendar_Mobile_Potrait_LightMode_04032020.jpg
/File:Calendar_Mobile_Landscape_LightMode_04032020.jpg
/File:Calendar_Mobile_Landscape_LightMode_04032020.jpg

Calendar

Options

Name Type

showAvailability boolean
numberOfDays number
timeFormat number/string

hideUnavailableTimeStoslean
number

calendarHours.interval

calendarHours.allDay.openTimenber

calendarHours.allDay.close imenber

Localization

Description

Enable or disable
calendar to update
the time slots
based on the
callback
availability. The
unavailable time
slots are grayed
out.

The number of
days to display on
calendar starting
today.

This sets the time
format for the
timestamps in this
widget. It can be
12 or 24.

Show hide the
unavailable
callback time slots.

The time interval
between each
consecutive time
slot displayed on
calendar.

Opening time in
'HH:MM' 24 Hr
format.

Closing time in
'HH:MM' 24 Hr
format.

Default

true

u

false

15

17:00

23:59

n/a

n/a

n/a

n/a

n/a

n/a

n/a

Required

For information on how to set up localization, refer to Localize widgets and services.

Usage

You must use the calendar namespace when you're defining localization strings for the Calendar

plugin in your i18n JSON file.

Widgets API Reference

Calendar

The following example shows how to define new strings for the en (English) language. You can use
any language codes you wish, as there isn't a standard format. When selecting the active language in
your configuration, you must match one of the language codes defined in your i18n JSON file. Note
that you must only define a language code once in your i18n JSON file. Inside each language object
you must define new strings for each widget.

Example i18n JSON

{

en": {

"calendar": {

APl commands

"CalendarDaylLabels": [

"Sunday",

"Monday",

"Tuesday",

"Wednesday",

"Thursday",

"Friday",

"Saturday"
]I
"CalendarMonthLabels": [

"Jan",

"Feb",

"Mar",

"Apr",

"May",

"Jun",

“Jul",

"Aug",

"Sept",

"Oct",

IINOVII ,

IIDeCII
]I
"CalendarLabelToday": "Today",
"CalendarLabelTomorrow": "Tomorrow",
"CalendarTitle": "Schedule a Call",
"CalendarOkButtonText": "Okay",
"CalendarError": "Unable to fetch availability details.",
"CalendarClose": "Cancel",
"AriaWindowTitle": "Calendar Window",
"AriaCalendarClose": "Cancel",
"AriaYouHaveChosen": "You have chosen",

"AriaNoTimeSlotsFound": "No time slots found for selected date"

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Widgets API Reference

135

Calendar

The global bus object is a debugging tool. When implementing Widgets on your own
site, you must not use the global bus object to register your custom plugins. For more
information about extending Genesys Widgets, see Genesys Widgets Extensions.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Calendar.reset');

configure

Internal use only. The main App plugin shares widget configuration settings using each widget’s
configure command. The configure command can only be called once, at startup. If you call
configure after startup, the results are unpredictable.

generate

Builds and generates the calendar. Subscribe to the generate events to get the generated calendar
and display it where you would like to.

Example

oMyPlugin.command('Calendar.generate', {date: 'Mon Mar 20 2017 19:51:47 GMT-0700
(PDT) '}) .done(function(e){

// Calendar generated successfully
}).fail(function(e){

// Calendar failed to generate

3
Options
Option Type Description
date Date string/object To pre-select the date and time

on calendar.

Widgets API Reference 136

Calendar

Resolutions

Status

resolved

rejected

showAvailability

When

When the calendar is
successfully generated

When Invalid date is passed to
calendar

Returns

n/a

'Invalid data'

Update the calendar time slots with the callback availability. This enables only those time slots that
have the callback facility and disables the rest.

Example

oMyPlugin.command('Calendar.showAvailability', {date:

// Calendar showed availability successfully

}).fail(function(e){

// Calendar failed to show availability

1)

Options

Option

date

Resolutions

Status
resolved

rejected

Type

Date string/object

When

When time slots are successfully
updated

When no date value is found to

'03/22/17'}) .done(function(e){

Description

Update the available time slots in
the Calendar plugin for the
selected Date. Note that, after
calling this command, the
internal showAvailability value
is set to true for this session and
the Calendar only shows the
available time slots when
switching between other dates.

Returns
n/a

'No date found to check

Widgets API Reference

137

Calendar

Status When
check the availability
rejected When invalid date value is found
reset

Resets the calendar with no pre-selected values.

Example

oMyPlugin.command('Calendar.reset').done(function(e){
// Calendar reset successfully
}).fail(function(e){

// Calendar failed to reset

3
Resolutions
Status When
When calendar is successfully
resolved reset
APl events

Returns
availability"
'Invalid date'
Returns
n/a

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, you must not use the global bus object to register your custom plugins. Instead,
see Genesys Widgets Extensions for more information about extending Genesys

Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

Widgets API Reference

138

Calendar

oMyPlugin.subscribe('Calendar.ready', function(e){});

Name Description Data
ready Calendar is initialized and ready e
to accept commands.
Calendar Ul has been generated.
generated Use this event to get the { ndCalendar: }

calendar Ul and display where
you would like to.

Date and time selected on { dayString: , dateString: ,

sl DR e calendar. timeString: , date: }

Widgets API Reference 139

Callback

Callback

Contents

e 1 Overview
e 1.1 Usage
e 1.2 Dependency
* 1.3 Customization
* 1.4 Namespace
e 1.5 Mobile support
* 1.6 Screenshots
e 2 Configuration
* 2.1 Example
* 2.2 Options
e 3 Localization
* 3.1 Usage
* 3.2 Example i18n JSON
* 4 APl commands
* 4.1 open
* 4.2 close
* 4.3 minimize
* 4.4 showOverlay
e 4.5 hideOverlay
* 4.6 configure
* 5 APl events
* 6 Metadata
* 6.1 Interaction Lifecycle
* 6.2 Lifecycle scenarios
* 6.3 Metadata
e 7 Customizable Callback registration form
* 7.1 Default example

» 7.2 Properties

Widgets APl Reference

140

Callback

» 7.3 Labels

e 7.4 Wrappers

* 7.5 Validation

* 7.6 Form submit

* 7.7 Form pre-fill

Widgets APl Reference 141

Callback

e Developer
Learn how to use the Callback Widget to fetch user details.

Related documentation:

Link to video

Overview

This documentation relies on Genesys Callback APIs available to Engage Cloud
customers. The only supported version is v3 as exposed by Engagement API.

The Callback Widget provides a form to fetch user details such as name, phone number, and
email—and whether the customer would like an immediate callback or would prefer to receive a call
at another time of their choosing. Callback then submits this information to Customer Service. The
times that Callback displays are based on agent availability, meaning the user can select a time that
works for everyone.

Widgets API Reference 142

https://player.vimeo.com/video/539841733?title=0&byline=0&portrait=0

Callback

First Mame | Optional

Last Name Optional

Phone »+1

Optional

When should we call you? 0 min wait

As zo0on as possible v

Cancel

Usage
Use the following methods to launch Callback manually:

e Call the Callback.open command
¢ Configure ChannelSelector so that Receive a Call appears as a channel

e Configure Calendar to show a Date-Time picker for selecting a preferred time

Dependency

The Callback Widget requires the Calendar plugin.

Customization

You can customize and localize all of the text shown in the Callback Widget by adding entries into
your configuration and localization options.

Callback supports themes. You can create and register your own themes for Genesys Widgets.

Widgets API Reference 143

/File:Callback_MainScreen.jpg
/File:Callback_MainScreen.jpg

Callback

Namespace

The Callback plugin has the following namespaces tied up with each of the following types:

Type Namespace
Configuration callback
il8n—Localization callback
CXBus— APl commands & APl events Callback
CSS .cx-callback

Mobile support

Callback supports both desktop and mobile devices. Like all Genesys Widgets, there are two main
modes: Desktop & Mobile. Desktop is employed for monitors, laptops, and tablets. Mobile is
employed for smartphones. When a smartphone is detected, Callback switches to special full-screen
templates that are optimized for both portrait and landscape orientations.

Switching between desktop and mobile mode is done automatically by default. You may configure
Genesys Widgets to switch between Desktop and Mobile mode manually if necessary.

Screenshots

Dark theme

Youi'=e booked inf

SIS H

Widgets API Reference 144

/File:Callback_MobileMode_Potrait.jpg
/File:Callback_MobileMode_Potrait.jpg
/File:Callback_ChooseTime.jpg
/File:Callback_ChooseTime.jpg
/File:Callback_Calendar_Desktop.jpg
/File:Callback_Calendar_Desktop.jpg
/File:Callback_Mobile_DarkMode_Landscape.jpg
/File:Callback_Mobile_DarkMode_Landscape.jpg
/File:Callback_DateChoosen_LightMode.jpg
/File:Callback_DateChoosen_LightMode.jpg
/File:Callback_LightPotrait_Mobile.jpg
/File:Callback_LightPotrait_Mobile.jpg
/File:Callback_CountryCodes_LightMode.jpg
/File:Callback_CountryCodes_LightMode.jpg
/File:Callback_Done_Light_28022020.jpg
/File:Callback_Done_Light_28022020.jpg

Callback

Configuration

Callback and CallbackService share the _genesys.widgets.callback configuration namespace.
Callback has Ul options while CallbackService has connection options.

Example

window. genesys.widgets.callback = {

apikey: 'n3eNKgXXXXXXXXOXXXXXXXXA',

dataURL: 'http://host:port/genesys/1/service/callback/samples’,

userData: {},
countryCodes: true,
immediateCallback: true,
scheduledCallback: true,

ewt: {
display: true,
queue: 'chat ewt test',
threshold: 2000,
immediateCallback: {
thresholdMin: 1000,
thresholdMax: 3000
}
}
I
Options
Name Type Description
Enable/disable
countryCodes boolean display off country

codes for phone
number.

Enable/disable the
immediate (As
Soon As Possible)
callback option.

Enable/disable the
scheduling (Pick
date & time)
callback option.

immediateCallback boolean

scheduledCallback boolean

An object
containing a
custom
registration form
definition. The
definition placed
here becomes the
default registration
form layout for
Callback. See
Customizable
Callback

form object

Default

true

true

true

A basic
registration form is
defined internally
by default

n/a

n/a

n/a

n/a

Required

Widgets API Reference

145

Callback

Name Type
ewt.display boolean
ewt.queue string

ewt.threshold number

ewt.refreshinterval number

ewt.immediateCallbaakuthiesholdMin

ewt.immediateCallbaakuthiesholdMax

Localization

Description
Registration Form.

To display
Estimated Wait
Time (EWT)
details.

EWT service
channel virtual
queue.

If EWT is less than
this threshold
value (seconds),
wait time will not
be shown.

EWT is updated for
every time interval
(seconds) defined
here.

If EWT is less than
this minimum
threshold value
(seconds), then 'As
Soon As Possible'
option (Immediate
Callback) will be
disabled. This
value should be
configured less
than or equal to
above
ewt.threshold
value.

If EWT is more
than this
maximum
threshold value
(seconds), then 'As
Soon As Possible'
option (Immediate
Callback) will be
disabled.

Default

true

none

=

0

none

none

Required

n/a

Always required if
Estimated Waiting
Time has to be
displayed.

n/a

n/a

n/a

n/a

For information on how to set up localization, please refer to Localize widgets and

Widgets API Reference

146

Callback

services.

Usage

Use the callback namespace when defining localization strings for the Callback plugin in your il8n
JSON file.

The following example shows how to define new strings for the en (English) language. You can use
any language codes you wish; there is no standard format. When selecting the active language in
your configuration, you must match one of the language codes defined in your i18n JSON file. Please
note that you must only define a language code once in your i18n JSON file. Inside each language
object you should define new strings for each widget.

Example i18n JSON

{
nenn: _{
"callback": {

"CallbackTitle": "Receive a Call",
"CancelButtonText": "Cancel",
"AriaCancelButtonText": "Cancel",
"ConfirmButtonText": "Confirm",
"AriaConfirmButtonText": "Confirm",
"CallbackPlaceholderRequired": "Required",
"CallbackPlaceholderOptional": "Optional",
"CallbackFirstName": "First Name",
"CallbackLastName": "Last Name",
"CallbackPhoneNumber": "Phone",
"CallbackQuestion": "When should we call you?",
"CallbackDayLabels": [

"Sunday",

"Monday",

"Tuesday",

"Wednesday",

"Thursday",

"Friday",

"Saturday"
]l
"CallbackMonthLabels": [

"Jan",

"Feb",

"Mar",

"Apr",

"May",

"Jun",

"Jul",

"Aug”,

"Sep",

"Oct",

"Nov",

"Dec"
]I
"CallbackConfirmDescription": "You're booked in!",
"CallbackNumberDescription": "We will call you at the number

provided:",

"CallbackNotes": "Notes",

Widgets API Reference 147

Callback

this callback?",

properly.",

properly.",

"CallbackDone": "Close",

"AriaCallbackDone": "Close",

"CallbackOk": "Okay",

"AriaCallbackOk": "Okay",

"CallbackCloseConfirm": "Are you sure you want to cancel arranging

"CallbackNoButtonText": "No",
"AriaCallbackNoButtonText": "No",
"CallbackYesButtonText": "Yes",
"AriaCallbackYesButtonText": "Yes",

"CallbackWaitTime": "Wait Time",

"CallbackWaitTimeText": "min wait",
"CallbackOptionASAP": "As soon as possible",
"CallbackOptionPickDateTime": "Pick date & time",
"AriaCallbackOptionPickDateTime": "Opens a date picker",
"CallbackPlaceholderCalendar": "Select Date & Time",

"AriaMinimize": "Callback Minimize",

"AriaWindowLabel": "Callback Window",

"AriaMaximize": "Callback Maximize",

"AriaClose": "Callback Close",

"AriaCalendarClosedStatus": "Calendar is closed",

"Errors": {
"501": "Invalid parameters cannot be accepted, please check

the supporting server API documentation for valid parameters.",

"503": "Missing apikey, please ensure it is configured
"1103": "Missing apikey, please ensure it is configured
"7030": "Please enter a valid phone number.",

retry with another phone number."

"7036": "Callback to this number is not possible. Please

"7037": "Callback to this number is not allowed. Please retry

with another phone number.",

office hours.",

"7040": "Please configure a valid service name.",
"7041": "Too many requests at this time.",
"7042": "Office closed. Please try scheduling within the

"unknownError": "Something went wrong, we apologize for the

inconvenience. Please check your connection settings and try again.",

APl commands

"phoneNumberRequired": "Phone number is required."

}

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Important

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

Widgets API Reference

148

Callback

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Callback.open');

open
Opens the Callback Ul.

Example

oMyPlugin.command('Callback.open', {
form: {
autoSubmit: false,

firstname: 'John',
lastname: 'Smith',

subject: 'Customer Satisfaction',

desiredTime: 'now',
phonenumber: '8881110000'

FornISon: (..}
}) .done(function(e){

// Callback opened successfully
}).fail(function(e){

// Callback failed to open

3
Options
Option

form object
form.autoSubmit boolean
form.firstname string
form.lastname string
form.subject string
form.desiredTime string

Type

Description

Object containing form data to
prefill in the callback form and
optionally auto-submit the form.

Automatically submit the
callback form.

Value for the first name entry
field.

Value for the last name entry
field.

Value for the notes entry field.

This value is shared by the
immediate or scheduled callback
drop down option in the form (in
other words, As Soon As Possible
or Pick date & time). A string
value 'now' pre-selects the 'As
Soon As Possible' option. A string
value with Date Time or Date
Object, is passed into this drop
down option and pre-selected.

Widgets API Reference

149

Callback

Option

form.phonenumber

form)SON

userData

Resolutions

Status
resolved

rejected

close

Closes the Callback UI.

Example

Type
string
object
object

When

Callback form is successfully
opened

Callback form is already open

oMyPlugin.command('Callback.close');

Resolutions

Status
resolved

rejected

rejected

When

Callback form is successfully
closed

Callback form is already closed

User has entered some details on
the form and trying to close it
without confirming cancellation

Description

During form submission, it is
converted into UTC string format
and sent to the server as the
desired callback time.

Value for the phone entry field.
Should be a valid telephone
number, when used with a prefix
'+' auto selects the country flag
near the phone input field.

An object containing a custom
registration form definition. See
Customizable Callback
Registration Form.

Arbitrary data that is to be
attached with callback schedule.
Properties defined here will be
merged with default userData set
in the configuration object.

Returns
n/a

'already opened'

Returns
n/a

'already closed'

'User must confirm close'

Widgets API Reference

150

Callback

minimize

Minimizes or un-minimizes the Callback Ul.

Example

oMyPlugin.command('Callback.minimize");

Options
Option
minimized
Resolutions
Status
resolved
rejected

showOverlay

Type
boolean

When
Always
Never

Description

Rather than toggling the current
minimized state you can specify
the minimized state directly: true
= minimized, false =
unminimized.

Returns
n/a
n/a

Displays a slide-down overlay over the Callback's content. You can fill this overlay with disclaimers,

articles and other information.

Example

oMyPlugin.command('Callback.showOverlay', {

html: '
Example text

3
Options
Option
html

hideFooter

Type

string or HTML reference

boolean

Description

The HTML content you want to
display in the overlay.

Normally the overlay appears

Widgets API Reference

151

Callback

Option Type Description

between the titlebar and footer
bar. Set this to true to have the
overlay overlap the footer to gain
a bit more vertical space. This
should only be used in special
cases. For general use, don't set

this value.
Resolutions
Status When Returns
Callback is open and the overlay
resolved opens n/a
. . Callback is not currently open.

rejected Callback is not currently open Ignoring command

hideOverlay

Hides the slide-down overlay.

Example

oMyPlugin.command('Callback.hideOverlay');

Resolutions
Status When Returns
Callback is open and the overlay
resolved closes n/a
. . Callback is not currently open.
rejected Callback is not currently open Ignoring command.
configure

Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling configure
again after startup may result in unpredictable behavior.

APl events

Widgets API Reference 152

Callback

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('Callback.ready', function(e){});

Name

opened

ready
started

submitted

completed

cancelled

closed

Metadata

Interaction Lifecycle

Description

The Callback widget has
appeared on screen.

Callback is initialized and ready
to accept commands.

When the user has started filling
out the Callback widget form or
auto pre-filled it.

When the user has submitted the
form.

When the Callback widget form is
submitted successfully.

When the user has abandoned
the interaction by closing the
Callback widget before
scheduling a callback.

The Callback widget has been
removed from the screen.

Metadata

n/a

Metadata

Metadata

Metadata

Metadata

Metadata

Data

Every Callback interaction has a sequence of events we describe as the Interaction Lifecycle. This is a
sequence of events that tracks progress and choices from the beginning of an interaction (opening

Callback), to the end (closing Callback), and every step in between.

The following events are part of the Interaction Lifecycle:

ready
opened
started
submitted

Widgets API Reference

153

Callback

cancelled
completed
closed

Lifecycle scenarios

An Interaction Lifecycle can vary, based on each user's intent and experience with Callback. Here are
several sequences of events in the lifecycle that correspond to different scenarios.

The user opened Callback but changed their mind and closed it without entering any information:
ready -> opened -> cancelled -> closed

The user started filling out the form but closed Callback without submitting the callback request:
ready -> opened -> started -> cancelled -> closed

The user started filling out the form and submitted it successfully:

ready -> opened -> started -> submitted -> completed -> closed

Tip

For a list of all Callback events, see APl events.

Metadata

Each event in the Interaction Lifecycle includes the following block of metadata. By default, all values
are set to false. As the user progresses through the lifecycle of a Callback interaction, these values
will be updated.

The metadata block contains boolean state flags, counters, timestamps, and elapsed times. These
values can be used to track and identify trends or issues with callback interactions. During run-time,
the metadata can help you offer a smart and dynamic experience to your users.

Reference
Name Type Description

proactive boolean Indicates Callback was offered

and accepted proactively.
. Indicates the form was prefilled

prefilled boolean with info automatically.
Indicates the form was submitted

autoSubmitted boolean automatically, usually after being
prefilled.
An array of error codes
encountered after submitting the

errors array/boolean

form. If no errors, this value will
be false.

Widgets API Reference 154

Callback

Name Type Description
An object containing the form
form object parameters when the form is
submitted.
opened integer (timestamp) Timestamp indicating when

Callback was opened.

Timestamp indicating when the
started integer (timestamp) user started entering information
into the form.

Timestamp indicating when the
callback request is cancelled.
Cancelled refers to when a user
abandoned the interaction by
closing Callback before
scheduling a callback.

cancelled integer (timestamp)

Timestamp indicating when the
completed integer (timestamp) callback request was sent
successfully.

Timestamp indicating when

closed integer (timestamp) Callback was closed.

Total elapsed time in milliseconds
from when the user started

elapsed integer (milliseconds) entering information to when the
user cancelled or completed the
interaction.

Customizable Callback registration form

Callback allows you to customize the registration form shown to users prior to starting a session. The
following form inputs are currently supported:

* Text

e Select

* Hidden

* Checkbox

¢ Textarea

Customization is done through an object definition that defines the layout, input type, label, and
attributes for each input. You can set the default registration form definition in the
_genesys.widgets.callback.form configuration option. Alternately, you can pass a new registration
form definition through the Callback.open command:

_genesys.widgets.bus.command("Callback.open", {formJSON: oRegFormDef});

Inputs are rendered as stacked rows with one input and one optional label per row.

Widgets API Reference 155

Callback

Default example

The following example is the default object used to render Callback's registration form. This is a very
simple definition that does not use many properties.

The Phone Number field with name phonenumber is required for all Callback custom
forms. This field value is required by Genesys Callback API to schedule a Callback.

wrapper: "

", inputs: [{ id: "cx_form_callback_firstname", name: "firstname", maxlength:
"100", placeholder: "@il8n:callback.CallbackPlaceholderOptional”, label:
"@il8n:callback.CallbackFirstName" }, { id: "cx_form_callback lastname", name:
"lastname", maxlength: "100", placeholder:
"@il8n:callback.CallbackPlaceholderOptional”, label:
"@il8n:callback.CallbackLastName" }, { id: "cx_form_callback_phone _number",
name: "phonenumber"”, maxlength: "14", placeholder:
"@il8n:callback.CallbackPlaceholderRequired", label:
"@il8n:callback.CallbackPhoneNumber", onkeypress: function(event) { // To
allow only number inputs return (event.charCode >= 48 && event.charCode

Using this definition will result in this output:

Widgets API Reference 156

Callback

P "
J

¥ Receive a Call

P

First Name ‘ Optional

Last Name | Optional

Phone *+1

Optional

When should we call you? 0 min wait

As soon as possible

Cancel

Form fields with id ex_form_schedule_options and cx_form_schedule_time are not
customizable.

Properties

Each input definition can contain any number of properties. These are categorized in two groups:
Special Properties, which are custom properties used internally to handle rendering logic, and HTML
Attributes which are properties that are applied directly as HTML attributes on the input element.

Widgets API Reference 157

/File:Callback_MainScreen_28022020.jpg
/File:Callback_MainScreen_28022020.jpg

Callback

Special properties

Property

type

label

wrapper

validate

Type

string

string

HTML string

function

"text"

Description

Sets the type of input to
render. Possible values
are currently text,
hidden, select,
checkbox, and
textarea.

Set the text for the
label. If no value
provided, no label will
be shown. You may use
localization query
strings to enable
custom localization (for
example, label:
"@il8n:namespace.StringName").
Localization query
strings allow you to use
strings from any widget
namespace or to create
your own namespace in
the localization file
(i18n.json) and use
strings from there (for
example, label:
"@i1l8n:myCustomNamespace.myCustc
For more information,
see the Labels section.

Each input exists in its
own row in the form. By
default this is a table-
row with the label in the
left cell and the input in
the right cell. You can
redefine this wrapper
and layout by specifying
a new HTML row
structure. See the
Wrappers section for
more info.

The default wrapper for
an input is "

Define a validation
function for the input
that executes when the
input loses focus (blur)
or changes value. Your
function must return
true or false. True to
indicate it passed, false
to indicate it failed. If
your validation fails, the
form will not submit and

Widgets API Reference

158

Callback

Property Type Default Description

the invalid input will be
highlighted in red. See
the Validation section
for more details and
examples.

Execute validation on
keypress in addition to
blur and change. This
ignores non-character
keys like shift, ctrl, and
alt.

When ‘type’ is set to
‘select’, you can
populate the select by
adding options to this
array. Each option is an
object (for example,
{name: ‘Option 1’,
value: ‘1'} for a
selectable option, and
{name: "Group 1",
group: true} for an
option group).

validateWhileTyping boolean false

options array [1

HTML attributes

With the exception of special properties, all properties will be added as HTML attributes on the input
element. You can use standard HTML attributes or make your own.

Example

{
id: "cx callback form firstname",
name: "firstname",
maxlength: "100",
placeholder: "@il8n:callback.CallbackPlaceholderOptional",
label: "@il8n:callback.CallbackFirstName"

}

In this example, id, name, maxlength, and placeholder are all standard HTML attributes for the text
input element. Whatever values are set here will be applied to the input as HTML attributes.

Note: the default input type is "text", so type does not need to be defined if you intend to make a
text input.

HTML output
|

Labels

A label tag will be generated for your input if you specify label text and if your custom input wrapper
includes a ‘{label}’ designation. If you have added an ID attribute for your input, the label will

Widgets API Reference 159

Callback

automatically be linked to your input so that clicking on the label selects the input or, for check
boxes, toggles it.

Labels can be defined as static strings or localization queries.

Wrappers

Wrappers are HTML string templates that define a layout. There are two kinds of wrappers, form
wrappers and input wrappers:

Form wrapper

You can specify the parent wrapper for the overall form in the top-level "wrapper" property. In the
example below, we specify this value as " ". This is the default wrapper for the Callback form.

{

wrapper:

Input wrapper

Each input is rendered as a table row inside the form wrapper. You can change this by defining a new
wrapper template for your input row. Inside your template you can specify where you want the input
and label to be by adding the identifiers "{label}" and "{input}" to your wrapper value. See the
example below:

{
id: "cx callback form firstname",
name: "firstname",
maxlength: "100",
placeholder: "@il8n:callback.CallbackPlaceholderOptional",
label: "@il8n:callback.CallbackFirstName"
wrapper: "{label}{input}" /* input row wrapper */

}

The {label} identifier is optional. Omitting it will allow the input to fill the row. If you decide to keep
the label, you can move it to any location within the wrapper, such as putting the label on the right,
or stacking the label on top of the input. You can control the layout of each row independently,
depending on your needs.

You are not restricted to using a table for your form. You can change the form wrapper to "

" and then change the individual input wrappers from a table-row to your own
specification. Be aware though that when you move away from the default table
wrappers, you are responsible for styling and aligning your layout. Only the
default table-row wrapper is supported by default Themes and CSS.

Validation
You can apply a validation function to each input that lets you check the value after a change has

been made and/or the user has moved to a different input (on change and on blur). You can enable
validation on key press by setting validateWhileTyping to true in your input definition.

Widgets API Reference 160

Callback

Here is how a validation function is defined:

{
id: "cx callback form firstname",
name: "firstname",
maxlength: "100",
placeholder: "@il8n:callback.CallbackPlaceholderOptional",
label: "@il8n:callback.CallbackFirstName"

validateWhileTyping: true, // default is false
validate: function(event, form, input, label, $, CXBus, Common){

if(input && input.val()) { // to validate some input exits in the
firstname input field (required field)

return true; // validation passed
}else{
return false; // no input exists, validation failed

}

You can perform any validation you like in the validate function but it must return true or false to
indicate that validation has passed or failed, respectively. If you return false, the Callback form will
not submit, and the input will be highlighted in red. This is achieved by adding the CSS class "cx-
error" to the input.

Validation function arguments

Argument Type Description

The input event reference object
related to the form input field.
This event data can be helpful to

SR JavaScript event abject perform actions like active
validation on an input field while
the user is typing.

A jquery reference to the form
form HTML reference wrapper element.

. A jquery reference to the input

rfpttis AL FEE T element being validated.

label HTML reference A jquery reference to the label

for the input being validated.

Widget’'s internal jquery instance.
$ jquery instance Use this to help you write your
validation logic, if needed.

Widget’s internal CXBus
CXBus CXBus instance reference. Use this to call
commands on the bus, if needed.

Widget’s internal Common library
Common Function Library of functions and utilities. Use if
needed.

Widgets API Reference 161

Callback

Form submit

Custom input field form values are submitted to the server as key value pairs in the form submit
request, where the input field names are the property keys and the input field values are the property
values.

Form pre-fill

You can pre-fill the custom form using the Callback.open command by passing the form (form data)
and formJSON (custom registration form), provided the form input names in the formJSON must
match with the property names in the form data.

The following example will open the Callback form with the phone number already entered in the
Phone input field.

_genesys.widgets.bus.command("Callback.open", {

formJSON: {
wrapper: "

", inputs: [{ id: "cx_form_phone_number", name: "phonenumber", maxlength:
"12", placeholder: "@il8n:callback.CallbackPlaceholderPhoneNumber", label:
"@il8n:callback.CallbackPhoneNumber" }] }, form: { phonenumber:
9453222222 } });

Widgets API Reference 162

CallUs

CallUs

Contents

e 1 Overview
e 1.1 Usage
* 1.2 Customization
* 1.3 Namespace
* 1.4 Mobile support
* 1.5 Screenshots
¢ 2 Configuration
* 2.1 Example
* 2.2 Options
* 3 Localization
* 3.1 Usage
* 3.2 Example i18n JSON

4 APl commands
* 4.1 open
e 4.2 close

e 4.3 configure

5 API events

Widgets APl Reference 163

CallUs

e Developer

Learn how to display an overlay screen showing one or more phone numbers for customer service,
as well as the hours that this service is available.

Related documentation:

Link to video

Overview

The CallUs Widget provides an overlay screen showing one or more phone numbers for customer
service, as well as the hours that this service is available. The arrangement of numbers in this layout
starts with a main phone number, which can be followed by alternative or additional phone numbers.
Each number can be named, and there is no limit to the number of phone numbers you can include.
If the list of numbers doesn't fit in the widget, the user can scroll down to see the rest.

You can reach us at any of the following numbers...

Payments 1888 436 3797

Local 202 5550134
International | 202 555 01 62

Usage

Launch CallUs manually by using the following methods:

Widgets API Reference 164

https://player.vimeo.com/video/548087059?title=0&byline=0&portrait=0
/File:CallUs_Dark_Desktop.png
/File:CallUs_Dark_Desktop.png

CallUs

e Call the CallUs.open command
¢ Configure ChannelSelector to show CallUs as a channel

* Create your own custom button or link to open CallUs (using the "CallUs.open" command)

By default a user has no way of launching the CallUs Widget. You must choose a
suitable method for launching this widget.

Customization

You can customize and localize all of the text, titles, names, and numbers shown in the CallUs Widget
by adding entries into your configuration and localization options. There are no formatting
requirements. Text will appear as you entered it.

If you do not configure the CallUs Widget it will appear as an empty overlay. You must
configure this Widget before using it.

CallUs supports themes. You can create and register your own themes for Genesys Widgets.

Namespace

The CallUs plugin has the following namespaces tied up with each of the following types:

Type Namespace
Configuration callus
il8n—Localization callus
CXBus—API commands & APl events CallUs
CSsS .cx-call-us

Mobile support

CallUs supports both desktop and mobile devices. Like all Genesys Widgets, there are two main
modes: Desktop & Mobile. Desktop is employed for monitors, laptops, and tablets. Mobile is
employed for smartphones. When a smartphone is detected, CallUs switches to special full-screen
templates that are optimized for both portrait and landscape orientations.

Switching between desktop and mobile mode is done automatically by default. You may configure
Genesys Widgets to switch between Desktop and Mobile mode manually if necessary.

Widgets API Reference 165

CallUs

Screenshots

Dark theme

Light theme

1 RAR 43h T7G7

1 BEH 436 37

Configuration

CallUs uses the _genesys.widgets.callus configuration property. You must specify all of the
numbers and labels that appear in the CallUs Ul.

Example

window. genesys.widgets.callus = callus: {

contacts: [

{
displayName: 'Payments’,
118n: 'Numbero0l’,
number: 'l 202 555 0162'
}I
{
displayName: 'Local',
118n: 'Number002',
number: '202 555 0134'
+
{

Widgets API Reference 166

/File:CallUs_Dark_Desktop.png
/File:CallUs_Dark_Desktop.png
/File:CallUs_Dark_Mobile_Portrait.png
/File:CallUs_Dark_Mobile_Portrait.png
/File:CallUs_Dark_Mobile_Landscape.png
/File:CallUs_Dark_Mobile_Landscape.png
/File:CallUs_Light_Desktop.png
/File:CallUs_Light_Desktop.png
/File:CallUs_Light_Mobile_Portrait.png
/File:CallUs_Light_Mobile_Portrait.png
/File:CallUs_Light_Mobile_Landscape.png
/File:CallUs_Light_Mobile_Landscape.png

CallUs

displayName:
"Numbero03',
'0647 555 0131'

i18n:

number:

‘8am - 8pm Mon -

‘l0am - 6pm Sat - Sun'

}
Options
Name
contacts array
hours array

Type

'"International’,

Description Default

An array of objects
that represent
phone numbers
and their labels.
The first number in
this list will display
as the larger, main
number. Phone
labels can be set
directly using the
'displayName'
property or you
can use String
Names from your
localization file by
setting the String
Name in the 'i18n"' []
property. 'i18n'
overrides
'displayName'.

Example

{

"displayName":

"Payments",
"i18n":

"Numberool",

"number": "1
202 555 0162"
}

Array of strings to
show stacked in

the business hours
section. Strings [1
here are freeform.

See screenshots

for ideas.

true

Required

Widgets API Reference

167

CallUs

Localization

For information on how to set up localization, please refer to Localize widgets and
services.

Usage

Use the callus namespace when defining localization strings for the CallUs plugin in your i18n JSON
file.

The following example shows how to define new strings for the en (English) language. You can use
any language codes you wish; there is no standard format. When selecting the active language in
your configuration, you must match one of the language codes defined in your i18n JSON file. Please
note that you must only define a language code once in your i18n JSON file. Inside each language
object you should define new strings for each widget.

Example i18n JSON

{
"en": {
"callus": {
"CallUsTitle": "Call Us",
"SubTitle": "You can reach us at any of the following NUMBERS...",
"CancelButtonText": "Cancel",
"AriaWindowLabel": "Call Us Window",
"AriaCallUsClose": "Call Us Close",
"AriaBusinessHours": "Business Hours",
"AriaCallUsPhoneApp": "Opens the phone application",
"AriaCancelButtonText": "Cancel"
}
}
}

APl commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

Widgets API Reference 168

CallUs

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('CallUs.open');

open
Opens the CallUs Ul.

Example

oMyPlugin.command('CallUs.open').done(function(e){
// CallUs opened successfully
}).fail(function(e){

// CallUs failed to open

3
Resolutions
Status When Returns
resolved CallUs is successfully opened n/a
rejected CallUs is already open 'Already opened'
close
Closes the CallUs UL.
Example
oMyPlugin.command('CallUs.close"').done(function(e){
// CallUs closed successfully
}).fail(function(e){
// CallUs failed to close
1)
Resolutions
Status When Returns
resolved CallUs successfully closed n/a
rejected CallUs is already closed 'Already closed'

Widgets API Reference

169

CallUs

configure
Internal use only. The main App plugin shares configuration settings to widgets using each widget’s

configure command. The configure command can only be called once at startup. Calling configure
again after startup may result in unpredictable behavior.

Example

oMyPlugin.command('CallUs.configure', {

contacts: [

{
displayName: 'Payments',
i18n: 'Number00l',
number: 'l 888 436 3797
}

]I
hours: ['8am - 8pm Mon - Fri']

}) .done(function(e){
// CallUs configred successfully
}).fail(function(e){

// CallUs failed to configure

1)
Options
Option Type Description
An array of objects that represent
phone numbers and their labels.
contacts Array The first number in this list will

display as the larger, main
number.

Array of strings to show stacked
hours Array in the business hours section.
Strings here are freeform.

Resolutions
Status When Returns
resolved CallUs configuration is provided n/a
rejected No configuration is provided ‘Invalid Configuration'
APl events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.

Widgets API Reference 170

CallUs

Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see

Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('CallUs.ready', function(e){});

Name Description Data
CallUs is initialized and ready to
ready accept commands
opened CallUs Ul has been opened
closed CallUs Ul has been closed

Widgets API Reference

171

ChannelSelector

ChannelSelector

Contents

e 1 Overview
e 1.1 Usage
* 1.2 Customization
* 1.3 Namespace
* 1.4 Mobile support
* 1.5 Screenshots
¢ 2 Configuration
e 3 Example
* 3.1 Options
* 4 Localization
* 4.1 Usage
* 4.2 Example i18n JSON

5 APl commands
* 5.1 close
* 5.2 open
e 5.3 configure
* 5.4 displayStats
» 5.5 disableStats
* 5.6 enableStats

¢ 6 APl events

Widgets APl Reference 172

ChannelSelector

e Developer

Learn how to provide your customers with a configurable list of channels as an entry point for
contacting customer service.

Related documentation:

Overview

The ChannelSelector Widget displays a configurable list of channels, as an entry point for customers
to contact customer service. In addition to showing multiple channels, ChannelSelector can be
configured to display the estimated wait time (EWT) for each channel. You can also use an EWT value
to configure channels to hide, or to show, that they disabled. Channels are not limited to Genesys
Widgets; you can add your own custom channels to launch applications or open new windows as

necessary.

How would you like to get in touch 7

Receive a Call Web Chat Call Us

a Available a Available o Available

Note the screenshots in the following section, and visit the configuration section for more
information.

Widgets API Reference 173

/File:Live_assistance_channels_pec.png
/File:Live_assistance_channels_pec.png

ChannelSelector

Usage

Use the following methods to launch ChannelSelector manually:

¢ Call the ChannelSelector.open command

¢ Create your own custom button or link to open ChannelSelector (using the "ChannelSelector.open"
command)

By default ChannelSelector has no channels configured. The Ul will appear empty if
not configured. See the configuration section for examples and information on how to
set up your own custom channels.

Customization

You can customize and localize all of the static text shown in the ChannelSelector Widget by adding
entries into your configuration and localization options.

ChannelSelector supports Themes. You can create and register your own themes for Genesys
Widgets.
Namespace

The Channel Selector plugin has the following namespaces tied to each of the following types:

Type Namespace
Configuration channelselector
il8n—Localization channelselector

CXBus—API commands & APl events ChannelSelector
CSS .cx-channel-selector

Mobile support

ChannelSelector supports both desktop and mobile devices. Like all Genesys Widgets, there are two
main modes: Desktop and Mobile. Desktop is employed for monitors, laptops, and tablets. Mobile is
employed for smartphones. When a smartphone is detected, ChannelSelector switches to special full-
screen templates that are optimized for both portrait and landscape orientations.

Switching between Desktop and Mobile modes is done automatically by default. You may configure
Genesys Widgets to switch between Desktop and Mobile modes manually if necessary.
Screenshots

Dark theme

Widgets API Reference 174

ChannelSelector

o
o B =
]
. -
[
e
i b o
L %, -
-------- B 2
L R ca i L -y
Eal
L -] -] - & L]
e v
P
. [g \
@ - o W s
W e b Cal
~ s = Famen s el

Widgets API Reference 175

/File:GEC_CS_MaxUnAvl_dark_MobileLandscape.png
/File:GEC_CS_MaxUnAvl_dark_MobileLandscape.png
/File:GEC_CS_MaxUnAvl_dark.png
/File:GEC_CS_MaxUnAvl_dark.png
/File:GEC_CS_Avl_dark_MobileLandscape.png
/File:GEC_CS_Avl_dark_MobileLandscape.png
/File:GEC_CS_Avl_dark.png
/File:GEC_CS_Avl_dark.png
/File:GEC_CS_MaxUnAvl_dark_MobilePortrait.png
/File:GEC_CS_MaxUnAvl_dark_MobilePortrait.png
/File:GEC_CS_Min_dark.png
/File:GEC_CS_Min_dark.png
/File:GEC_CS_Avl_dark_MobilePortrait.png
/File:GEC_CS_Avl_dark_MobilePortrait.png
/File:GEC_CS_Min_dark_MobileLandscape.png
/File:GEC_CS_Min_dark_MobileLandscape.png
/File:GEC_CS_Min_dark_MobilePortrait.png
/File:GEC_CS_Min_dark_MobilePortrait.png
/File:GEC_CS_Max_dark_MobileLandscape.png
/File:GEC_CS_Max_dark_MobileLandscape.png
/File:GEC_CS_Max_dark_MobilePortrait.png
/File:GEC_CS_Max_dark_MobilePortrait.png
/File:GEC_CS_Avl_light_MobilePortrait.png
/File:GEC_CS_Avl_light_MobilePortrait.png
/File:GEC_CS_Avl_light_MobileLandscape.png
/File:GEC_CS_Avl_light_MobileLandscape.png
/File:GEC_CS_Avl_light.png
/File:GEC_CS_Avl_light.png
/File:GEC_CS_Max_light_MobileLandscape.png
/File:GEC_CS_Max_light_MobileLandscape.png
/File:GEC_CS_MaxUnAvl_light_MobileLandscape.png
/File:GEC_CS_MaxUnAvl_light_MobileLandscape.png
/File:GEC_CS_Min_light.png
/File:GEC_CS_Min_light.png
/File:GEC_CS_Min_light_MobileLandscape.png
/File:GEC_CS_Min_light_MobileLandscape.png

ChannelSelector

Configuration

ChannelSelector shares the _genesys.widgets.channelselector configuration namespace.
ChannelSelector has Ul options to enable and disable channels, hide channels, add new channels,
and display estimated wait time (EWT) details. All the channels are displayed based on the array of
objects order defined in the channel's configuration. To hide a particular channel, simply remove the
corresponding array object.

EWT can only be configured for WebChat, Callback, ClickToCall, and CallUs channels. It
may not be applicable for other channels. If configured for the Send Message channel,
it will always be shown as available regardless of any EWT value.

Example

window. genesys.widgets.channelselector = {
ewtRefreshInterval: 10,
channels: [{

enable: true,

clickCommand: 'CallUs.open’,
displayName: 'Call Us',
i18n: 'CallusTitle',

icon: 'call-outgoing',

html: '',

ewt: {
display: true,
queue: 'callus ewt test eservices',
availabilityThresholdMin: 300,
availabilityThresholdMax: 480,
hideChannelWhenThresholdMax: false
}

}I

{

Widgets API Reference 176

/File:GEC_CS_MaxUnAvl_light.png
/File:GEC_CS_MaxUnAvl_light.png
/File:GEC_CS_Max_light_MobilePortrait.png
/File:GEC_CS_Max_light_MobilePortrait.png
/File:GEC_CS_MaxUnAvl_light_MobilePortrait.png
/File:GEC_CS_MaxUnAvl_light_MobilePortrait.png
/File:GEC_CS_Min_light_MobilePortrait.png
/File:GEC_CS_Min_light_MobilePortrait.png

ChannelSelector

Options

Name

ewtRefreshinterval

channels[].enable

channels[].clickCommsimithg

channels[].displayNanstring

channels[].i18n

enable: true,

clickCommand: 'WebChat.open',
displayName: 'Web Chat',
118n: 'ChatTitle',

icon: 'chat',

html: '',

ewt: {

display: true,

queue: 'chat ewt test eservices',
availabilityThresholdMin: 300,
availabilityThresholdMax: 480,
hideChannelWhenThresholdMax: false

}
}I
{
enable: true,
clickCommand: 'Callback.open',
displayName: 'Receive a Call',
i18n: 'CallbackTitle',
icon: 'call-incoming',
html: '"',
ewt: {
display: true,
queue: 'callback ewt test eservices',
availabilityThresholdMin: 300,
availabilityThresholdMax: 480,
hideChannelWhenThresholdMax: false
}
}I
Type Description Default
EWT is updated for
every time interval
LT (seconds) defined L
here.
Enable/disable a
boolean channel. true
The CXBus
command name
for opening a
particular Widget none
when this channel
is clicked.
A channel name to
display on
ChannelSelector none
Widget.
string 1) EIEE: none

localization of the

Required

n/a

n/a

Always

Always

n/a

Widgets API Reference

177

ChannelSelector

Name Type Description Default Required

channel display
name, this takes a
key parameter of
the
channelselector
section in the
language pack file.
Overrides above
displayName.

Select from one of
the Genesys
channels[].icon string Widgets icons by none Always
specifying icon css
class name.

Overrides and
replaces the icon
section of a
channel with the
html (image tag)
defined here.

To display EWT
details.

channels[].html string none n/a

channels[].ewt.displayoolean true n/a
EWT service

channels[].ewt.queuestring channel virtual none Always
queue.

If EWT is greater

than 0 minutes

and less than this

minimum

threshold value (in

minutes), then the

EWT is shown with
channels[].ewt.availabilitgberdskectaidis) a yellow warning 300 n/a

icon.

Comparison is made
after converting the
threshold value in

seconds to minutes.

If EWT is greater

than this minimum

threshold value (in

minutes) and less

than the maximum

threshold value (in
channels[].ewt.availailityberesecwitdaX minutes), then the 480 n/a

EWT is shown with

a red alert icon.

Comparison is made

Widgets API Reference 178

ChannelSelector

Name Type Description Default Required

after converting the
threshold value in
seconds to minutes.

Hides this channel

when EWT is
channels[].ewt.hideCHaouleBNhenThresholdiieeater than the true n/a

maximum

threshold value.

Localization

For information on how to set up localization, refer to Localize widgets and services.

Usage

Use the channelselector namespace when you define localization strings for the ChannelSelector
plugin in your i18n JSON file.

The following example shows how to define new strings for the en (English) language. You can use
any language codes you wish; there is no standard format. When selecting the active language in
your configuration, you must match one of the language codes defined in your i18n JSON file. You
must only define a language code once in your i18n JSON file. Inside each language object you must
define new strings for each Widget.

Example i18n JSON

{
"en": {
"channelselector": {
"Title": "Live Assistance",
"SubTitle": "How would you like to get in touch?",
"WaitTimeTitle": "Wait Time",
"AvailableTitle": "Available",
"AriaAvailableTitle": "Available",
"UnavailableTitle": "Unavailable",
"CallbackTitle": "Receive a Call",
"AriaClose": "Live Assistance Close",
"AriaWarning": "Warning",
"AriaAlert": "Alert",
"minute": "min",
"minutes": "mins",
"AriaWindowLabel": "Live Assistance Window"
h
}
}

Widgets API Reference 179

ChannelSelector

APl commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('ChannelSelector.open');

close

Closes the ChannelSelector Ul.

Example
oMyPlugin.command('ChannelSelector.close').done(function(e){

// ChannelSelector closed successfully
}).fail(function(e){

// ChannelSelector failed to close

1)
Resolutions
Status When Returns
resolved SlgzzgeISelector is successfully i
rejected ChannelSelector is already closed Already closed
open

Opens the ChannelSelector Ul.

Example

oMyPlugin.command('ChannelSelector.open').done(function(e){

// ChannelSelector opened successfully

Widgets API Reference 180

ChannelSelector

}).fail(function(e){

// ChannelSelector failed to open

3
Resolutions
Status When
e
rejected glf:gggslgsgenctor Widget is
configure

Modifies the ChannelSelector configuration.

Example

oMyPlugin.command('ChannelSelector.configure', {

channels: [

Returns

n/a

'Already open'

{
enabled: true,
clickCommand: 'CallUs.open',
readyEvent: 'CallUs.ready',
displayName: 'Call Us',
i18n: 'CallusTitle',
icon: 'call-outgoing',
html: '',
ewt:{
display: true,
queue: 'chat_ewt test eservices',
availabilityThresholdMin: 60,
availabilityThresholdMax:600
}
}

]

}) .done(function(e){

// ChannelSelector configured successfully

}).fail(function(e){

// ChannelSelector failed to configure

1)
Options
Option

ewtRefreshinterval

Type Description

EWT is updated for every time

number interval (seconds) is defined.

Widgets API Reference

181

ChannelSelector

Option

channels

channels[].enable

channels[].clickCommand

channels[].readyEvent

channels[].displayName

channels[].i18n

channels[].icon

channels[].html

channels[].ewt.display

channels[].ewt.queue

Type

array

boolean

string

string

string

string

string

string

boolean

string

channels[].ewt.availabilityThresholdMitmber (seconds)

channels[].ewt.availabilityThresholdMamber (seconds)

Description

Array containing each channel
configuration object. The order of
channels is displayed based on
the order defined here.

Enable/disable chat channel.

The CXBus command name for
opening a particular Widget
when this channel is clicked.

Subscribes to this ready event
published by a plugin and
enables the channel when that
plugin is ready.

A channel name to display in the
ChannelSelector Widget.

To support localization of channel
display name, this takes a key
parameter of the channelselector
section in the language pack file.
Overrides above displayName.

Select from one of the Genesys
Widgets icons by specifying icon
css class name.

Overrides and replaces the icon
section of a channel with the
html (image tag) defined here.

To display EWT details.

EWT service channel virtual
gueue name.

If EWT is greater than 0 minutes
and less than this minimum
threshold value (in minutes),
then the EWT is shown with a
yellow warning icon.

Note: Comparison is made
after converting the
threshold

value in seconds to minutes.

If EWT is greater than this
minimum threshold value (in
minutes) and less than the
maximum threshold value (in
minutes), then the EWT is shown
with a red alert icon.

Note: Comparison is made
after converting the
threshold

value in seconds to minutes.

Widgets API Reference

182

ChannelSelector

Option

Type

channels[].ewt.hideChannelWhenTh teshe&iMax

Resolutions

Status

resolved

rejected

displayStats

When

Configuration options are
provided and set

No configuration options are
provided

Description

Hides this channel when EWT is
greater than the maximum
threshold value.

Returns

n/a

'Invalid configuration'

Displays estimated wait time (EWT) and availability details for each channel.

Example

oMyPlugin.command('ChannelSelector.displayStats"').done(function(e){

// ChannelSelector displayed stats successfully

}).fail(function(e){

// ChannelSelector failed to display stats

1)

Resolutions

Status

resolved

rejected

rejected

disableStats

When
EWT is displayed successfully

StatsService fails to retrieve EWT
data

enableEwt config is disabled or
when required channel plugins
are not ready

Returns
n/a
'Unable to display EWT Stats in
ChannelSelector'

'Either EWT config is disabled or
plugins not yet ready"

Clears the Ul of any EWT. Disables EWT fetching for the defined time interval.

Widgets API Reference

183

ChannelSelector

Example

oMyPlugin.command('ChannelSelector.disableStats').done(function(e){
// ChannelSelector disabled stats successfully
}).fail(function(e){

// ChannelSelector failed to disable stats

1)
Resolutions
Status When Returns
ChannelSelector Widget is
reso e successfully opened e
reiected ChannelSelector Widget is not '‘ChannelSelector not opened to
J opened disable stats details'
rejected EWT is disabled for all channels 'Stats already disabled'

enableStats

Displays EWT and availability details in the Ul. Enables fetching EWT for the defined time interval.

Example
oMyPlugin.command('ChannelSelector.enableStats').done(function(e){

// ChannelSelector enabled stats successfully
}).fail(function(e){

// ChannelSelector failed to enable stats

1)
Resolutions
Status When Returns
resolved ChannelSelector Widget is e
successfully opened
rejected EWT details are already 'Stats already enabled'
displayed
reiected ChannelSelector Widget is not ‘ChannelSelector not opened to
) opened enable stats details'
APl events

Widgets API Reference 184

ChannelSelector

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('ChannelSelector.ready', function(e){});

Name Description Data

ChannelSelector plugin is
ready initialized and ready to accept n/a
commands

ChannelSelector Widget has

opened
P appeared on screen

n/a

ChannelSelector Widget has

closed
been removed from the screen

n/a

Widgets API Reference 185

Console

Console

Contents

e 1 Overview
* 1.1 Usage

* 2 Configuration
e 2.1 Description
* 2.2 Example
* 2.3 Options

* 3 Localization

e 4 Strings

¢ 5 APl commands
* 5.1 open
* 5.2 close
* 5.3 configure

¢ 6 APl events

Widgets APl Reference 186

Console

e Developer

Learn how to debug commands and events on the widget bus.

Related documentation:

Overview

Use the Console Widget to debug commands and events on the widget bus. You can use dynamically
populated lists to test, debug, or demo all commands. You can also create event watch lists that alert
you when an event has fired.

)
§
:
5

{ Hore": { “firstname” : "Fiest', "lastnama’
“frst last@geresys com’, “sublect” - “subje:

Evems Subscriber
I O

PFlugniame Evert
WeliThat closed
Weblhal.opered

Console provides an easy-to-use interface for debugging the widget bus that complements the
standard command-line methods. You can drag and drop the console anywhere on your screen, and
when you refresh the page or move to another one, Console reappears right where you left it. It is a
great tool for getting to know the widget bus, the API for each widget, and debugging issues.

Usage

Launch WebChat manually by using the following methods:

Widgets API Reference 187

/File:Console_Main.png
/File:Console_Main.png

Console

¢ Call the Console.open command

¢ Configure the settings to show Console when the browser window is opened.

e Create your own custom button or link to open Console (using the Console.open command)

Configuration

Description

Console option to open on initial loading.

Example

window. genesys.widgets.console = {open:

Options
Name Type
open boolean
Localization

true};

Description

Set to true for
console to open at
start.

false

Default

false

For information on how to set up localization, please refer to Localize widgets and

services.

sStrings

{
"ConsoleTitle": "CXBus Console",
"Commands": "Commands",
"Plugin": "Plugin",
"ConsoleErrorButton": "OK",
"Execute": "Execute",
"Event": "Event",
"SubscribeTo": "Subscribe to",
"Unsubscribe": "Unsubscribe",
"ReturnData": "Return Data",
"EventsSubscriber": "Events Subscriber",

Required

Widgets API Reference

188

Console

"Watch": "Watch",

"pluginNameEvent": "PluginName.Event",

"ClearAll": "Clear Al11",

"OptionsSample": "JSON Formatted Options {'option': value}"

APl commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.

Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Console.open');

open
Opens the Console Ul.

Example

oMyPlugin.command('Console.open').done(function(e){
// Console opened successfully
}).fail(function(e){

// Console failed to open

1)
Resolutions
Status When Returns
resolved Console is successfully opened n/a
rejected Console is already open 'Already opened'

Widgets API Reference

189

Console

close

Closes the Console Ul.

Example
oMyPlugin.command('Console.close').done(function(e){

// Console closed successfully
}).fail(function(e){

// Console failed to close

1)
Resolutions
Status When Returns
resolved Console successfully closed n/a
rejected Console is already closed 'Already closed'
configure

Modifies the Console configuration options. See the Console configuration page.

Example

oMyPlugin.command('Console.configure', {
open: false
}) .done(function(e){
// Console configured successfully
}).fail(function(e){

// Console failed to configure

1)
Options
Option Type Description
If setting is open: true, the
open . console will automatically be

open when Widgets is launched
and the console is ready.

Widgets API Reference 190

Console

Resolutions
Status When Returns
resolved Console configuration is provided n/a
rejected No configuration is provided 'Invalid Configuration'
APl events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');
oMyPlugin.subscribe('Console.ready', function(e){});

Name Description Data

Console is initialized and ready to

ready accept commands. e
The Console Widget has

opened appeared on screen. n/a

closed The Console Widget has been /A

removed from the screen.

Widgets API Reference 191

SideBar

SideBar

Contents

e 1 Overview
e 1.1 Usage
e 1.2 Dependency
* 1.3 Customization
* 1.4 Namespace
e 1.5 Mobile support
* 1.6 Screenshots

e 2 Configuration
* 2.1 Example
e 2.2 Options

¢ 3 Localization

* 3.1 Strings

4 APl commands
* 4.1 configure
* 5 APl events
* 5.1 Resolutions
* 5.2 open
* 5.3 close
* 5.4 expand

e 5.5 contract

Widgets APl Reference 192

SideBar

e Developer
Learn about the Sidebar widget, which customers use to launch other widgets with a single click.

Related documentation:

Overview

Use the Sidebar to launch other widgets with a single click. By default, Sidebar is displayed on the
right side of the screen, and you can configure any launchable widgets onto Sidebar, including your
custom extension widgets. The Sidebar Ul expands when you hover your cursor over it, and contracts
when you move the cursor away. Other features include configurable positioning and mobile support.
You can also add new configurations on the fly, which automatically re-renders the sidebar.

Widgets API Reference 193

/File:Cloud_Sidebar_DesktopLeftPositioned_10032020.png
/File:Cloud_Sidebar_DesktopLeftPositioned_10032020.png

SideBar

Live Chat

| Ive Assistance

Callback

Usage

Use the following methods to launch SideBar manually:

¢ Call the SideBar.open command

e Configure Sidebar to show and launch custom widgets.

Dependency

You must configure at least one customer-facing Ul widget in order to use the Sidebar Widget.

Customization

You can customize and localize all of the text shown in the Sidebar Widget by adding entries to your
configuration and localization options.

Sidebar supports themes. You can create and register your own themes for Genesys Widgets.

Namespace

The Sidebar plugin has the following namespaces tied up with each of the following types:

Type Namespace
Configuration sidebar
i18n—Localization sidebar
CXBus—API commands & APl events SideBar
CSS .cx-sidebar

Widgets API Reference 194

/File:Cloud_Sidebar_DesktopExpanded_DarkMode_.png
/File:Cloud_Sidebar_DesktopExpanded_DarkMode_.png

SideBar

Mobile support

Sidebar supports both desktop and mobile devices. In mobile mode, the sidebar launcher button is
displayed to the bottom of the screen. When triggered, it expands to the full screen of mobile and
shows all channels configured with scrollbar when necessary. Like all Genesys Widgets, there are two
main modes: Desktop & Mobile. Desktop is employed for monitors, laptops, and tablets. Mobile is
employed for smartphones. When a smartphone is detected, Sidebar switches to special full-screen
templates that are optimized for both portrait and landscape orientations.

Switching between desktop and mobile mode is done automatically by default. You may configure
Genesys Widgets to switch between Desktop and Mobile mode manually if necessary.

Screenshots

Dark theme

Light theme

Configuration

SideBar shares the _genesys.widgets.sidebar configuration namespace. SideBar has Ul options to
handle its position on the screen, disable expand feature sidebar, hide sidebar, and add new
channels on the fly. The display order of channels is based on the order defined in channels
configuration array.

Widgets API Reference 195

/File:Cloud_Sidebar_Desktop_DarkMode_10032020.png
/File:Cloud_Sidebar_Desktop_DarkMode_10032020.png
/File:Cloud_Sidebar_DesktopExpanded_DarkMode_10032020.png
/File:Cloud_Sidebar_DesktopExpanded_DarkMode_10032020.png
/File:M_Cloud_Sidebar_MobilePotrait_DarkMode_10032020.png
/File:M_Cloud_Sidebar_MobilePotrait_DarkMode_10032020.png
/File:M_Cloud_Sidebar_MobileLandscape_DarkMode_10032020.png
/File:M_Cloud_Sidebar_MobileLandscape_DarkMode_10032020.png
/File:Cloud_Sidebar_Desktop_LightMode_10032020.png
/File:Cloud_Sidebar_Desktop_LightMode_10032020.png
/File:Cloud_Sidebar_DesktopExpanded_LightMode_10032020_.png
/File:Cloud_Sidebar_DesktopExpanded_LightMode_10032020_.png
/File:Sidebar_MobileNeedHelpLight_28022020.jpg
/File:Sidebar_MobileNeedHelpLight_28022020.jpg
/File:M_Cloud_Sidebar_MobilePotrait_LightMode_10032020.png
/File:M_Cloud_Sidebar_MobilePotrait_LightMode_10032020.png
/File:M_Cloud_Sidebar_MobileLandscape_LightMode_10032020.png
/File:M_Cloud_Sidebar_MobileLandscape_LightMode_10032020.png

SideBar

Example

window. genesys.widgets.sidebar = {

showOnStartup: true,

position:

'left!,

expandOnHover: true,

channels: [{
name: 'ChannelSelector’',
clickCommand: 'ChannelSelector.open',
clickOptions: {},
//use your own static string or i118n query string for the below two
display properties
displayName: 'Live Assist',
displayTitle: 'Get live help',
icon: 'agent'
}I
{
name: 'WebChat'
}
1
}
Options
Name Type Description Default Required
Shows the sidebar
on the screen
showOnStartup boolean when Widgets is true false
launched.
Defines the
position of sidebar
position string on the screen. right false
Acceptable values
are left or right.
Enables the
expand (slide-out)
expandOnHover boolean or contract (slide- true false
in) behavior of
sidebar.
Name of the
channel. It can be
found in the
namespace
channels[index].namestring section n/a true

documentation of
each Widget. Used
to identify official
channels vs

Widgets API Reference 196

SideBar

Name Type Description Default Required

custom channels.
If a reserved name
is used here,
Sidebar will apply
default values for
that channel. A
plugin name
defined in the new
custom plugin can
also be given here.
To override the
default values or
when defining a
new custom
channel/plugin,
use the below
following
properties.

Change the default
command that is
triggered when
clicked.

channels[index].clickGtinmgand n/a false

Pass valid
command options
that are used in
above click
command
execution.

channels[index].clicktjiects n/a n/a

Subscribes to this
ready event
published by a
plugin.

Change the default
display name for
this channel with

. . your own static

channels[index].dispIea(usi;i‘\ira‘\(lgr@tr !18n string or to n/a false
uery string achieve

localization, use
i18n query string.
Syntax: @il18n:.

Change the default

tooltip content for

this channel with

your own static

string or to n/a false
achieve

localization, use

i18n query string.

Syntax: @il18n:.

Change the default
channels[index].icon string icon for this n/a false
channel. For the

channels[index].readydviemt n/a false

oril8n

channels[index].displaesfjlé@y string

Widgets API Reference 197

SideBar

Name Type Description Default Required

list of icon names
see Customize
icons in Customize
appearance.

Define a custom
onclick function,

channels[index].onClifknction this overrides n/a false
clickCommand and
clickOptions.
Localization

For your custom plugins, you can define string key names and values for Name and Title (tooltip) to
display on sidebar. The key format requires the plugin name, followed by "Title" or "Name". For
example, a plugin named "MyPlugin” will have keys called "MyPluginName" and "MyPluginTitle".

For information on how to set up localization, refer to Localize widgets and services.

Strings
{
"SidebarTitle": "Need help?",
"ChannelSelectorName": "Live Assistance",
"ChannelSelectorTitle": "Get assistance from one of our agents right away",

"CallUsName": "Call Us",

"CallUsTitle": "Call Us details",
"CallbackName": "Callback",
"CallbackTitle": "Receive a Call",
"WebChatName": "Live Chat",
"WebChatTitle": "Live Chat",
"AriaClose": "Close the menu Need help"

APl commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Widgets API Reference 198

SideBar

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('SideBar.open');

configure

Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. Sidebar widget has to be configured at least with one channel. The configure
command can also be called at runtime with new configuration, this will override the existing
configuration showing new channels on the screens.

Example

oMyPlugin.command('SideBar.configure', {

showOnStartup: false,

position: 'left',

expandOnHover: false,

channels: [

{

name: 'ChannelSelector’,
clickCommand: 'ChannelSelector.open',
clickOptions: {},

//use your own static string or i18n query string for the below two
display properties.
Example for i18n query string: '@il8n:sidebar.ChannelSelectorName' where 'sidebar' refers to
plugin namespace and
ChannelSelectorName' name refers to the property key containing the actual text.

displayName: '@il8n:sidebar.ChannelSelectorName',

displayTitle: 'Get assistance from one of our agents right away', //
Your own static string

readyEvent: 'ChannelSelector.ready',

icon: 'agent',

onClick: function($, CXBus, Common) {

_genesys.widgets.bus.command('MyPlugin.open');
}

]
}) .done(function(e){

// Sidebar configured successfully
}).fail(function(e){

// Sidebar failed to configure properly
3

Widgets API Reference 199

SideBar

Options
Option

showOnStartup
position

expandOnHover

channels

channels[index].name

channels[index].clickCommand

channels[index].clickOptions

channels[index].displayName

channels[index].displayTitle

channels[index].readyEvent

channels[index].icon

channels[index].onClick

Type

boolean
string

boolean

array

string

string

object

string or i18n query string

string or i18n query string

string

string

function

Description

Shows the sidebar on the screen
when Widgets is launched.

Defines the position of sidebar on
the screen.

Enables the expand or contract
behavior of sidebar.

Array containing each channel
configuration object. The order of
channels are displayed based on
the order defined here.

Name of the channel. It can be
found in the namespace section
documentation of each Widget.
Used to identify official channels
vs custom channels. If a reserved
name is used here, Sidebar will
apply default values for that
channel. To override the default
values or when defining a new
custom channel, use the below
following properties.

Change the default command
that is triggered when clicked.

Pass valid command options that
are used in above click command
execution.

Change the default display name
for this channel with your own
static string or to achieve
localization, use i18n query
string. Syntax: @i18n:..

Change the default tooltip
content for this channel with
your own static string or to
achieve localization, use i18n
query string. Syntax: @il18n:..

Subscribes to this ready event
published by a plugin.

Change the default Icon for this
channel. For the list of Icon
names see Customize icons in
Customize appearance.

Define a custom onclick function,
this overrides clickCommand and
clickOptions.

Widgets API Reference

200

SideBar

APl events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('SideBar.ready', function(e){ /* sample code */ });

Name Description Data

Sidebar is initialized and ready to

n/a
accept commands. /

ready
Sidebar widget has appeared on
screen. For desktop it is

opened displayed on the sides of the n/a
screen and in mobiles at the
bottom corner as a button.

Sidebar widget has been

cliesenl removed from the screen. i)
expanded Sldebar widget ha)s expanded, n/a
showing channel icon and name.
Sidebar widget has contracted
e L back, showing channel icons only. it
Resolutions
Status When Returns
When configuration options are
[esoiied provided and set THzl
) . . 'Invalid configuration. Please
rejected When no configuration options ensure at least one channel is
are provided . .
configured.
open

Opens the Sidebar Ul. In Desktop mode, it opens as an actual SideBar and shows the configured
channels where as in mobile it opens as a button at the bottom to start.

Widgets API Reference 201

SideBar

Example

oMyPlugin.command('SideBar.open');

Resolutions
Status When
resolved x\g;ir;;idebar is successfully
rejected When sidebar is already opened
close
Closes the Sidebar Ul.
Example
oMyPlugin.command('SideBar.close');
Resolutions
Status When
resolved XY:seendSidebar is successfully
rejected When sidebar is already closed
expand

Returns
n/a

'Already opened'

Returns
n/a

'already closed'

To show more details about the channels, Sidebar slides out from the sides of the screen on desktop

machines but expands to full screen in mobile devices.

Example

oMyPlugin.command('SideBar.expand');

Resolutions
Status When
T When sidebar is successfully
expanded
rejected When sidebar is already

expanded

Returns

n/a

'sidebar already expanded'

Widgets API Reference

202

SideBar

contract

Retracts the expanded version of Sidebar, showing only the channel buttons on desktop machines
and the sidebar launcher button on mobile devices.

Example

oMyPlugin.command('SideBar.contract');

Resolutions

Status

resolved

rejected

When

When sidebar is successfully
contracted

When sidebar is already
contracted

Returns

n/a

sidebar already contracted

Widgets API Reference

203

WebChat

WebChat

Contents

e 1 Overview
e 1.1 Usage
* 1.2 Customization
* 1.3 Namespace
* 1.4 Mobile support

e 1.5 Screenshots

¢ 2 Configuration
* 2.1 Example
» 2.2 Options

* 3 Localization
» 3.1 Special values for localization
e 3.2 Error handling
* 3.3 Usage
* 3.4 Inactivity messages

* 3.5 Default i18n JSON

* 4 APl commands

* 4.1 configure

* 4.2 open

* 4.3 close

* 4.4 minimize

* 4.5 endChat

* 4.6 invite

* 4.7 relnvite

* 4.8 injectMessage

* 4.9 showChatButton
4.10 hideChatButton

* 4.11 showOverlay
4.12 hideOverlay

Widgets APl Reference 204

WebChat

* 5 APl events
* 6 Metadata
* 6.1 Interaction Lifecycle
* 6.2 Lifecycle scenarios
* 6.3 Metadata
e 7 Customizable chat registration form
* 7.1 Default example
» 7.2 Properties
* 7.3 Labels
e 7.4 Wrappers
» 7.5 Validation
* 7.6 Form submit
¢ 8 Customizable emoji menu
* 8.1 Introduction
» 8.2 Differences between v1 and v2
¢ 8.3 Configuring the emoji menu

e 8.4 Localization

¢ 9 Terminate Chat session on contact side

Widgets APl Reference 205

WebChat

e Developer
Learn how to enable live chats between customers and agents.

Related documentation:

Link to video

Overview

Widgets API Reference 206

https://player.vimeo.com/video/545672854?title=0&byline=0&portrait=0

WebChat

& Live Chat — X

S !

Knowledge Center

Hello and welcome! A Live agent will
be with you shortly. In the meantime,
can | assist you with any questions
you may have? Please type a
question into the input field below.
1211 PM

“Agent will be with you shortly..."
12:17 PM

John Smith
all

1212 PM

Type your message here

©@ s00

Widgets API Reference

/File:WebChat-Main-new.PNG
/File:WebChat-Main-new.PNG

WebChat

The WebChat Widget allows a customer to start a live chat with a customer service agent. The Ul
appears within the page and follows the customer as they traverse your website. Other features
include minimize/maximize, auto-reconnect, and a built-in invite feature.

Usage
You can launch WebChat manually by using the following methods:

* Call the WebChat.open command
¢ Configure ChannelSelector to show WebChat as a channel
¢ Enable the built-in launcher button for WebChat that appears on the right side of the screen

¢ Create your own custom button or link to open WebChat (using the WebChat.open command)

Customization

You can customize and localize all of the static text shown in the WebChat Widget by adding entries
to your configuration and localization options.

WebChat supports themes. You can create and register your own themes for Genesys Widgets.

Namespace

The WebChat plugin has the following namespaces tied to each of the following types:

Type Namespace
Configuration webchat
i1l8n—Localization webchat
CXBus—API commands & APl events WebChat
CSS .cx-webchat

Mobile support

WebChat supports both desktop and mobile devices. Like all Genesys Widgets, there are two main
modes: Desktop & Mobile. Desktop is employed for monitors, laptops, and tablets. Mobile is
employed for smartphones. When a smartphone is detected, WebChat switches to special full-screen
templates that are optimized for both portrait and landscape orientations.

Switching between desktop and mobile mode is done automatically by default. You may configure
Genesys Widgets to switch between Desktop and Mobile mode manually if necessary.

Screenshots

Dark theme

Widgets API Reference 208

WebChat

arpa
B thare %
1340

Light theme

i Thene
* 3
134 a8
Firmt i | |
= =3
e N
Erra
g
add
= | = =

Widgets API Reference 209

/File:WebChat_Form_Desktop_Dark.png
/File:WebChat_Form_Desktop_Dark.png
/File:WebChat_Form_Portrait_Dark.png
/File:WebChat_Form_Portrait_Dark.png
/File:WebChat_Form_Landscape_Dark.png
/File:WebChat_Form_Landscape_Dark.png
/File:Widgets_WebChat_Typing_Indicator_Dark_0721.png
/File:Widgets_WebChat_Typing_Indicator_Dark_0721.png
/File:WebChat_Transcript_Desktop_Dark-without-cobrowse.PNG
/File:WebChat_Transcript_Desktop_Dark-without-cobrowse.PNG
/File:WebChat_Transcript_Portrait_Dark-without-cobrowse.png
/File:WebChat_Transcript_Portrait_Dark-without-cobrowse.png
/File:WebChat_Transcript_Landscape_Dark_without-cobrowse.png
/File:WebChat_Transcript_Landscape_Dark_without-cobrowse.png
/File:WebChat_Form_Desktop_Light.png
/File:WebChat_Form_Desktop_Light.png
/File:WebChat_Form_Portrait_light.png
/File:WebChat_Form_Portrait_light.png
/File:WebChat_Form_Landscape_light.png
/File:WebChat_Form_Landscape_light.png
/File:Widgets_WebChat_Typing_Indicator_0721.png
/File:Widgets_WebChat_Typing_Indicator_0721.png

WebChat

B s
P T 8 A Ty
W e L B T LA
oy Saprr” Plem frw sty ey oy e el
s

Y

s
Vo 1m0 e Co 8 10 Wy
ke

e Dos
Hi
1237 P s
] PP YOUr message here
S & s .;' 'g) -
Important
The dark theme is active by default. You may also change colors/themes for widgets
by following the instructions on the Customize appearance page.

Configuration

Link to video

WebChat and WebChatService share the _genesys.widgets.webchat configuration namespace.
WebChat has Ul options while WebChatService has connection options.

Example

window. genesys.widgets.webchat = {

apikey: 'n3eNkgLLgLKXREBMYjGm6lygOHHOK8VA',

dataURL: 'https://api.genesyscloud.com/gms-chat/2/chat’,
userData: {},

emojis: true,

uploadsEnabled: false,

confirmFormCloseEnabled: true,

actionsMenu: true,

maxMessagelLength: 140,

autoInvite: {

enabled: false,

Widgets APl Reference 210

/File:WebChat_Transcript_Desktop_light-without-cobrowse.PNG
/File:WebChat_Transcript_Desktop_light-without-cobrowse.PNG
/File:WebChat_Transcript_Portrait_Light_without_cobrowse.png
/File:WebChat_Transcript_Portrait_Light_without_cobrowse.png
/File:WebChat_Transcript_Landscape_Light_without_cobrowse.png
/File:WebChat_Transcript_Landscape_Light_without_cobrowse.png
https://player.vimeo.com/video/441169402?title=0&byline=0&portrait=0

WebChat

timeToInviteSeconds: 10,
inviteTimeoutSeconds: 30

}I

chatButton: {

enabled: true,

template:

effect: 'fade',
openDelay: 1000,
effectDuration:

300,

hideDuringInvite: true

}I

minimizeOnMobileRestore:

false,

arialdleAlertIntervals:[50,25,10],

ariaCharRemainingIntervals:[75, 25, 10]

I
Options

Name Type

emojis boolean

form object

Introduced/

Description Default Required Updated

Enable/disable
Emoji menu
inside chat
message input.
Emojis are
supported
using unicode
characters and
the list
includes ©
U+263A
(smile), &
U+1F44D
(thumbs up)
and ® U+2639
(sad).

A JSON object

containing a

custom

registration

form definition.

The JSON A basic
definition registration
placed here form is defined n/a
becomes the internally by
default default
registration

form layout for

WebChat. See

Customizable

Chat

false n/a

Widgets API Reference

211

WebChat

Name Type

uploadsEnabled boolean

confirmFormCloseBoabdad

timeFormat number/string

actionsMenu boolean

maxMessagelengtiumber

charCountEnabledboolean

autolnvite.enabledoolean

Description

Registration
Form.

Show/Hide the
Send File
button. The
button will be
shown if the
value is set to
true.

Enable or
disable
displaying a
confirmation
message
before closing
WebChat if
information
has been
entered into
the registration
form.

This sets the
time format for
the
timestamps in
this widget. It
can be 12 or
24.

Enable/disable
actions menu
next to chat
message input.

Set a character
limit that the
user can input
into the
message area
during a chat.
When max is
reached, user
cannot type
any more.

Show/Hide the
number of
characters
remaining in
the input
message area
while the user
is typing.
Enable/disable

Default Required

false n/a

true n/a

12 false

true n/a

500 n/a

false n/a

false n/a

Introduced/
Updated

Widgets API Reference

212

WebChat

Name Type

autolnvite.timeTolnuiteSeconds

autolnvite.inviteTimeobeSeconds

chatButton.enablebloolean

chatButton.templating

chatButton.effect string

chatButton.openDalayber

Description Default Required
auto-invite

feature.

Automatically

invites user to

chat after user

idles on page

for preset time.

When running
Widgets in lazy
load mode, this
option requires
that you pre-
load the
WebChat plugin.

Number of
seconds of idle
time before
inviting
customer to
chat.

Number of
seconds to
wait, after
showing invite,
before closing
chat invite.

Enable/disable
chat button on
screen.

5 n/a

30 n/a

When running false n/a
Widgets in lazy

load mode, this

option requires

that you pre-

load the

WebChat plugin.

Custom HTML
string template n/a
for chat button.

Type of
animation
effect when
revealing chat
button. 'slide’
or 'fade'.

fade n/a

Number of
milliseconds
before
displaying chat

1000 n/a

Introduced/
Updated

Widgets API Reference

213

WebChat

Name Type

chatButton.effect Dunatien

chatButton.hideD Wwouddavite

arialdleAlertintervalsay/boolean

ariaCharRemainingimtarbalslean

Description

button on
screen.

Length of
animation
effect in
milliseconds.

When the auto-
invite feature is
activated,
hides the chat
button. When
invite is
dismissed,
reveals the
chat button
again.

An array
containing the
intervals as a
percentage at
which the
screen reader
will announce
the remaining
idle time. By
default, it is
enabled with
the following
time intervals,
and it is
customizable
according to
the user's
needs.
Configuring a
value of 'false’
will let the
screen reader
call out idle
time for every
change.

An array
containing the
intervals as a
percentage at
which the
screen reader
will announce
the remaining
characters
when the user
inputs text into
the message

Default

300

true

[100, 75, 50,
25, 10]

[50, 25, 10]

Required

n/a

n/a

n/a

n/a

Introduced/
Updated

9.0.016.11

9.0.016.11

Widgets API Reference

214

WebChat

.. . Introduced/
Name Type Description Default Required Updated
area. By
default, it is

enabled with
the following
intervals, and it
is customizable
according to
the user needs.
Configuring a
value of 'false'
will let the
screen reader
call out
remaining
characters for
every change.

Localization

You can define string key names and values to match the system messages that are received from
the chat server. If a customer system message is received as SYS001 in the message body, Webchat
checks to determine if any keys match in the language pack, and then replaces the message body
accordingly. SYS001 is an example format. There are no format restrictions on custom message
keys. The purpose of this feature is to allow localization for the User Interface and Server to be kept
in the same file.

Special values for localization

You can inject the special value. When used, the agent's name is rendered in its place at runtime.

Error handling

Customers can define their own error messages in the Errors section found in the above Webchat
Localization. If no error messages are defined, default error messages are used.

For information on how to set up localization, refer to Localize widgets and services.

Usage

You must use the webchat namespace for defining localization strings for the WebChat plugin in your
i18n JSON file.

The following example shows how to define new strings for the en (English) language. You can use

Widgets API Reference 215

WebChat

any language codes you wish; there is no standard format. When selecting the active language in

your configuration, you must match one of the language codes defined in your i18n JSON file. Please

note that you must only define a language code once in your i18n JSON file. Inside each language

object you should define new strings for each widget.

Inactivity messages

If Chat Server is configured to end the chat session after a certain idle time, it may send several
warning messages to the client to inform them and prompt them to act. Chat Server can be
configured to show a first warning, a second warning, and a final notice when it ends the chat

session. By default, WebChat will display the warning message text as it is received from the server.

If you wish to localize these methods on the client side instead, follow these steps:

The first warning can be localized by setting the string 'ldleMessagel".

The second warning can be localized by setting the string 'ldleMessage?2'.

The final notice can be localized by setting the string 'ldleMessageClose'.

Tip

Default i18n JSON

{

later.",

If Chat Server ever allows more than two idle warning messages, you can localize
them by incrementing the integer value in the string name (e.g. 'ldleMessage3’,
'IdleMessage4’, and so on).

"webchat": {

"ChatButton": "Chat",
"ChatStarted": "Chat Started",
"ChatEnded": "Chat Ended",
"AgentNameDefault": "Agent",

"AgentConnected": " Connected",
"AgentDisconnected": " Disconnected",
"BotNameDefault": "Bot",

"BotConnected": " Connected",
"BotDisconnected": " Disconnected",
"SupervisorNameDefault": "Supervisor",
"SupervisorConnected": " Connected",
"SupervisorDisconnected": " Disconnected",
"AgentTyping": " "

"AriaAgentTyping":.”Agent is typing",

"AgentUnavailable": "Sorry. There are no agents available. Please try

"ChatTitle": "Live Chat",

"ChatEnd": "X",

"ChatClose": "X",

"ChatMinimize": "Min",
"ChatFormFirstName": "First Name",
"ChatFormLastName": "Last Name",
"ChatFormNickname": "Nickname",
"ChatFormEmail": "Email",

Widgets API Reference

216

WebChat

your chat session",

"ChatFormSubject": "Subject",

"ChatFormPlaceholderFirstName": "Required",
"ChatFormPlaceholderLastName": "Required",
"ChatFormPlaceholderNickname": "Optional",

"ChatFormPlaceholderEmail": "Optional",
"ChatFormPlaceholderSubject": "Optional",
"ChatFormSubmit": "Start Chat",

"AriaChatFormSubmit": "Start Chat",

"ChatFormCancel": "Cancel",

"AriaChatFormCancel": "Cancel",

"ChatFormClose": "Close",

"ChatInputPlaceholder": "Type your message here",
"ChatInputSend": "Send",

"AriaChatInputSend": "Send",

"ChatEndQuestion": "Are you sure you want to end this chat session?",
"ChatEndCancel": "Cancel",

"ChatEndConfirm": "End chat",

"AriaChatEndCancel": "Cancel",

"AriaChatEndConfirm": "End chat",

"ConfirmCloseWindow": "Are you sure you want to close chat?",
"ConfirmCloseCancel": "Cancel",

"ConfirmCloseConfirm": "Close",

"AriaConfirmCloseCancel": "Cancel",
"AriaConfirmCloseConfirm": "Close",

"ActionsDownload": "Download transcript",

"ActionsEmail": "Email transcript",

"ActionsPrint": "Print transcript",

"ActionsSendFile": "Attach Files",
"AriaActionsSendFileTitle": "Opens a file upload dialog",

"ActionsEmoji": "Send Emoji",

"ActionsVideo": "Invite to Video Chat",

"ActionsTransfer": "Transfer",

"ActionsInvite": "Invite",

"InstructionsTransfer": "Open this link on another device to transfer
"InstructionsInvite": "Share this link with another person to add

them to this chat session",

retry.",

"InviteTitle": "Need help?",

"InviteBody": "Let us know if we can help out.",

"InviteReject": "No thanks",

"InviteAccept": "Start chat",

"AriaInviteAccept": "Start chat",

"AriaInviteReject": "No thanks",

"ChatError": "There was a problem starting the chat session. Please

"ChatErrorButton": "OK",
"AriaChatErrorButton": "OK",
"ChatErrorPrimaryButton": "Yes",
"ChatErrorDefaultButton": "No",
"AriaChatErrorPrimaryButton": "Yes",
"AriaChatErrorDefaultButton": "No",
"DownloadButton": "Download",
"AriaDownloadButton": "Download",
"FileSent": "has sent:",
"FileTransferRetry": "Retry",
"AriaFileTransferRetry": "Retry",

"FileTransferError": "OK",

"AriaFileTransferError": "OK",

"FileTransferCancel": "Cancel",

"AriaFileTransferCancel": "Cancel",

"RestoreTimeoutTitle": "Chat ended",

"RestoreTimeoutBody": "Your previous chat session has timed out.

Would you like to start a new one?",

Widgets APl Reference

217

WebChat

"RestoreTimeoutReject": "No thanks",
"RestoreTimeoutAccept": "Start chat",
"AriaRestoreTimeoutAccept": "Start chat",
"AriaRestoreTimeoutReject": "No thanks",
"EndConfirmBody": "Would you really like to end your chat session?",
"EndConfirmAccept": "End chat",
"EndConfirmReject": "Cancel",
"AriaEndConfirmAccept": "End chat",
"AriaEndConfirmReject": "Cancel",
"SurveyOfferQuestion": "Would you like to participate in a survey?",
"ShowSurveyAccept": "Yes",
"ShowSurveyReject": "No",
"AriaShowSurveyAccept": "Yes",
"AriaShowSurveyReject": "No",
"UnreadMessagesTitle": "unread",
"AriaYouSaid": "You said",
"AriaSaid": "said",
"AriaSystemSaid": "System said",
"AriaWindowLabel": "Live Chat Window",
"AriaMinimize": "Live Chat Minimize",
"AriaMaximize": "Live Chat Maximize",
"AriaClose": "Live Chat Close",
"AriaEmojiStatusOpen": "Emoji picker dialog is opened",
"AriaEmojiStatusClose": "Emoji picker dialog is closed",
"AriaEmoji": "emoji",
"AriaCharRemaining": "Characters remaining",
"AriaMessageInput": "Message box",
"AsyncChatEnd": "End Chat",
"AsyncChatClose": "Close Window",
"AriaAsyncChatEnd": "End Chat",
"AriaAsyncChatClose": "Close Window",
"DayLabels": [

||Sun|| ,

"Mon" ,

"Tue" ,

"Wed",

"Thur" ,

"Fri" ,

IISa.tII
]I
"MonthLabels": [

IIJanII

n Febll

IIMarII

IIAprII

=
Q
<_

w0

D
o

prt

=
5
<

]I
"todayLabel": "Today",

"Errors": {
"102": "First name is required.",
"103": "Last name is required.",
"161": "Please enter your name.",

"201": "The file could not be sent.

The maximum number of attached files would be exceeded ().

Widgets APl Reference 218

WebChat

"202": "The file could not be sent.

Upload limit and/or maximum number of attachments would be exceeded ().

"203": "The file could not be sent.

File type is not allowed.

"204": "We're sorry but your message is too long. Please
write a shorter message.",

"240": "We're sorry but we cannot start a new chat at this
time. Please try again later.",

"364": "Invalid email address.",

"401": "We're sorry but we are not able to authorize the chat
session. Would you like to start a new chat?",

"404": "We're sorry but we cannot find your previous chat
session. Would you like to start a new chat?",

"500": "We're sorry, an unexpected error occurred with the
service. Would you like to close and start a new Chat?",

"503": "We're sorry, the service is currently unavailable or
busy. Would you like to close and start a new Chat again?",

"ChatUnavailable": "We're sorry but we cannot start a new
chat at this time. Please try again later.",

"CriticalFault": "Your chat session has ended unexpectedly
due to an unknown issue. We apologize for the inconvenience.",

"StartFailed": "There was an issue starting your chat

session. Please verify your connection and that you submitted all required information
properly, then try again.",

"MessageFailed": "Your message was not received successfully.
Please try again.",

"RestoreFailed": "We're sorry but we were unable to restore
your chat session due to an unknown error.",

"TransferFailed": "Unable to transfer chat at this time.
Please try again later.",

"FileTransferSizeError": "The file could not be sent.
File size is larger than the allowed size ().

"InviteFailed": "Unable to generate invite at this time.
Please try again later.",

"ChatServerWentOffline": "Messages are currently taking
longer than normal to get through. We're sorry for the delay.",

"Restored0ffline": "Messages are currently taking longer than
normal to get through. We're sorry for the delay.",

"Disconnected": "

Connection lost

"Reconnected": "
Connection restored

"FileSendFailed": "The file could not be sent.

There was an unexpected disconnection. Try again?

"Generic": "
An unexpected error occurred.

Widgets APl Reference

219

WebChat

"pureengage-v3-rest-INVALID FILE TYPE": "Invalid file type.
Only Images are allowed.",

"pureengage-v3-rest-LIMIT FILE SIZE": "File size is larger
than the allowed size.",

"pureengage-v3-rest-LIMIT FILE COUNT": "The maximum number of
attached files exceeded the limit.",

"pureengage-v3-rest-INVALID CONTACT CENTER": "Invalid x-api-
key transport configuration.",

"pureengage-v3-rest-INVALID ENDPOINT": "Invalid endpoint
transport configuration.",

"pureengage-v3-rest-INVALID NICKNAME": "First Name is
required.",

"pureengage-v3-rest-AUTHENTICATION REQUIRED": "We're sorry
but we are not able to authorize the chat session.",

"purecloud-v2-sockets-400": "Sorry, something went wrong.
Please verify your connection and that you submitted all required information properly, then
try again.",

"purecloud-v2-sockets-500": "We're are sorry, an unexpected
error occurred with the service.",

"purecloud-v2-sockets-503": "We're sorry, the service is
currently unavailable."

}

}

APl commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Important

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('WebChat.open');

configure

Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling configure
again after startup may result in unpredictable behavior.

Widgets API Reference 220

WebChat

open
Opens the WebChat UlI.

Example

oMyPlugin.command('WebChat.open', {

userData: {},
form: {

autoSubmit: false,

firstname: 'John',

lastname: 'Smith',

email: 'John@mail.com',
subject: 'Customer Satisfaction

}
formJSON: {...}
markdown: false

}) .done(function(e){
// WebChat opened successfully
}).fail(function(e){

// WebChat isn't open or no active chat session

1)
Options

Option Type Description

Object containing form data to
form object prefill in the chat entry form and
optionally auto-submit the form.

Automatically submit the form.

form.autoSubmit boolean Useful for bypassing the entry
form step.
form.firstname string \{alue for the first name entry
field.
form.lastname string \(alue for the last name entry
field.
form.email string Value for the email entry field.
form.subject string Value for the subject entry field.
An object containing a custom
. registration form definition. See
e clyEE Customizable chat registration
form.
Object containing arbitrary data
. that gets sent to the server.
userData object Overrides userData set in the
webchat configuration object.
async boolean Starts a new chat either in

Widgets API Reference 221

WebChat

Option Type
markdown boolean
id string
Resolutions
Status When
resolved WebChat is successfully opened
rejected WebChat is already open
close

Closes the WebChat UlI.

Example
oMyPlugin.command('WebChat.close').done(function(e){

// WebChat closed successfully
}).fail(function(e){

// WebChat is already closed or no active chat session

3
Resolutions
Status When
resolved WebChat is successfully closed
rejected WebChat is already closed
minimize

Minimizes or un-minimizes the WebChat Ul.

Description

asynchronous or normal mode
based on the boolean value. Note
that unless async static
configuration is defined, a chat in
normal mode will start
automatically.

The markdown feature for chat
messages.

A Unique identifier of a chat
session that helps to identify the
instance of that session and its
associated events. A random
value is automatically generated
and assigned when no value is
passed explicitly.

Returns
n/a
'already opened'

Returns
n/a
'already closed'

Widgets API Reference

222

WebChat

Example

oMyPlugin.command('WebChat.minimize"').done(function(e){
// WebChat minimized successfully

}).fail(function(e){

// WebChat ignores command

1)
Options
Option Type Description
Rather than toggling the current
L minimized state you can specify
Wiazes SN the minified state directly: true =
minimized, false = uniminimized.
Resolutions
Status When Returns
resolved Always n/a
rejected Never 'Invalid configuration'
endChat

Starts the end chat procedure. User may be prompted to confirm.

Example
oMyPlugin.command('WebChat.endChat').done(function(e){

// WebChat ended a chat successfully
}).fail(function(e){

// WebChat has no active chat session

1}
Resolutions
Status When Returns
-~ There is an active chat session to n/a
end
rejected There is no active chat session to thelre is no active chat session to
end end
invite

Shows an invitation to chat using the Toaster popup element. The text shown in the invitation can be
edited in the localization file.

Widgets API Reference 223

WebChat

Example

oMyPlugin.command('WebChat.invite').done(function(e){
// WebChat invited successfully

}).fail(function(e){

// WebChat is already open and will be ignored

3
Resolutions
Status When Returns
- WebChat is closed and the toast e

element is created successfully

WebChat is already open
rejected (prevents inviting a user that is
already in a chat)

'‘Chat is already open. Ignoring
invite command.’

relnvite

When an active chat session cannot be restored, this invitation offers to start a new chat for the user.
The text shown in the invitation can be edited in the localization file.

Example

oMyPlugin.command('WebChat.reInvite').done(function(e){
// WebChat reinvited successfully

}).fail(function(e){

// WebChat is already open and will be ignored

1)
Resolutions
Status When Returns
WebChat is closed, the config
item
resolved 'webchat.inviteOnRestoreTimeout' n/a

is set, and the toast element is
created successfully

WebChat is already open
rejected (prevents inviting a user that is
already in a chat)

‘Chat is already open. Ignoring
invite command.'

injectMessage

Injects a custom message into the chat transcript. Useful for extending WebChat functionality with
other Genesys products.

Widgets API Reference 224

WebChat

Example

oMyPlugin.command('WebChat.injectMessage', {

type: 'text',

name: 'person',
text: 'hello',
custom: false,

bubble:{

fill:

radius:

time:
name:

direction:
avatar:{

word
1

}

}) .done(function(e){

'right',

"email'’

// WebChat injected a message successfully
// e.data == The message HTML reference (jQuery wrapped set)

}).fail(function(e){

// WebChat isn't open or no active chat

3
Options

Option

type

name

text

custom

bubble.fill

bubble.radius

Type

string

string

string

boolean

string of valid CSS color value

string of valid CSS border radius
value

Description

Switch the rendering type of the
injected message between text
and html.

Specify a name label for the
message to identify what service
or widget has injected the
message.

The content of the message.
Either plain text or HTML.

If set to true, the default
message template will not be
used, allowing you to inject a
highly customized HTML block
unconstrained by the normal
message template.

The content of the message.
Either plain text or HTML.

The border radius you'd like for
the bubble.

Widgets API Reference

225

WebChat

Option Type Description
If you'd like to show the

bubble.time HIEIEl L timestamp for the bubble.
bubble.name boolean If you'd like to show the name for
the bubble.
. . . Which direction you want the
bubble.direction S message bubble to come from.
Change the content of the html
bubble.avatar.custom string or HTML reference that would be the avatar for the
chat bubble.
. Generated common library
bubble.avatar.icon class name provided for icon name.
Resolutions
Status When Returns
. . An HTML reference (jQuery
resolved CHEBCE [5 0pEm 22 Mz (5 A wrapped set) to the new injected

active chat session
message.

WebChat is not open and/or there

. : 'No chat ion to inject into'
was no active chat session 0 chat session to Injec °

rejected

showChatButton

Displays the standalone chat button using either the default template and CSS, or customer-defined
ones.

Example

oMyPlugin.command('WebChat.showChatButton', {

openDelay: 1000,
duration: 1500

}) .done(function(e){
// WebChat shows chat button successfully
}).fail(function(e){

// WebChat button is already visible, side bar is active and overrides the chat
button, or chat button is disabled in configuration

)
Options
Option Type Description
Duration in milliseconds to delay
openDelay number showing the chat button on the
page.
duration number Duration in milliseconds for the

Widgets API Reference 226

WebChat

Option
Resolutions
Status
resolved
rejected
rejected

hideChatButton

Hides the standalone chat button.

Example

Type

When

The chat button is enabled in the
configuration, is currently not
visible, and the SideBar plugin is
not initialized

The chat button is not enabled in
the configuration, or it's already
visible, or the SideBar plugin is
initialized

The SideBar plugin is active the
standalone chat button will be
disabled automatically

Description

show and hide animation.

Returns

n/a

'‘Chat button is already visible.
Ignoring command.'

'SideBar is active and overrides
the default chat button'

oMyPlugin.command('WebChat.hideChatButton', {duration: 1500}).done(function(e){

// WebChat hid chat button successfully

}).fail(function(e){

// WebChat button is already hidden

3
Options
Option
duration
Resolutions
Status

resolved

rejected

showOverlay

Type

number

When

The chat button is currently
visible

The chat button is already hidden

Description

Duration in milliseconds for the
show and hide animation.

Returns
n/a

‘Chat button is already hidden.
Ignoring command.'

Opens a slide-down overlay over WebChat's content. You can fill this overlay with content such as

Widgets API Reference

227

WebChat

disclaimers, articles, and other information.

Example

oMyPlugin.command('WebChat.showOverlay', {

html: '
anmple text
' hideFooter: false
}) .done(function(e){
// WebChat successfully shows overlay
}).fail(function(e){

// WebChat isn't open

3
Options
Option Type Description
. The HTML content you want to
html string or HTML reference display in the overlay.
Normally the overlay appears
between the titlebar and footer
bar. Set this to true to have the
. overlay overlap the footer to gain
hideFooter boolean a bit more vertical space. This
should only be used in special
cases. For general use, don't set
this value.
Resolutions
Status When Returns
WebChat is open and the overlay
resolved opens
rejected WebChat is not currently open Ygﬁgﬁggtclgr:%acnugrently open.
hideOverlay

Hides the slide-down overlay.

Example
oMyPlugin.command('WebChat.hideOverlay').done(function(e){

// WebChat hid overlay successfully

}).fail(function(e){

Widgets API Reference 228

WebChat

// WebChat isn't open
1)

Resolutions

Status

resolved

rejected

APl events

When

WebChat is open and the overlay
closes

WebChat is not currently open

WebChat is not currently open.

Returns

Ignoring command.

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('WebChat.ready', function(e){});

Name

ready
opened

started

submitted

rejected

completed

cancelled

closed

minimized

Description

WebChat is initialized and ready
to accept commands

The WebChat widget has
appeared on screen

The WebChat has successfully
started.

The user has submitted the form.

When the chat session fails to
start. Typically due to form
validation or network errors.

The Chat session ended after
agent is successfully connected
to WebChat.

The Chat session ended before
agent is connected to WebChat.

The WebChat widget has been
removed from the screen

The WebChat widget has been

n/a

n/a

Metadata

Metadata

Metadata

Metadata

Metadata

Metadata

n/a

Data

Widgets API Reference

229

WebChat

Name

unminimized

messageAdded

Metadata

Interaction Lifecycle

Description
changed to a minimized state

The WebChat widget has been
restored from a minimized state
to the standard view

When a message is added to the
transcript, this event will fire

Data

n/a

Returns an object containing two
properties: 'data’' and 'html'.
'data’ contains the JSON data for
the message, while 'html’
contains a reference to the
visible message inside the chat
transcript.

Every WebChat interaction has a sequence of events we call the Interaction Lifecycle. This is a
sequence of events that tracks progress and choices from the beginning of an interaction (opening

WebChat), to the end (closing WebChat), and every step in between.

The following events are part of the Interaction Lifecycle:

ready
opened
started
cancelled
submitted
rejected
completed
closed

Lifecycle scenarios

An Interaction Lifecycle can vary based on each user's intent and experience with WebChat. Here are
several sequences of events in the lifecycle that correspond to different scenarios.

The user opened WebChat but changed their mind and closed it without starting a chat session:

ready -> opened -> cancelled -> closed

The user started a chat session but ended it before an agent connected. Perhaps it was taking too

long to reach someone:

ready -> opened -> started -> cancelled -> closed

The user started a chat, but the chat fails to start:

ready -> opened -> started -> submitted -> rejected

The user started a chat, met with an agent, and the session ended normally:

Widgets API Reference

230

WebChat

ready -> opened -> started -> submitted -> completed -> closed

Tip

For a list of all WebChat events, see API events.

Metadata

Each event in the Interaction Lifecycle includes the following block of metadata. By default, all values
are set to false. As the user progresses through the lifecycle of a WebChat interaction, these values

will be updated.

The metadata block contains boolean state flags, counters, timestamps, and elapsed times. These
values can be used to track and identify trends or issues with chat interactions. During run-time, the
metadata can help you offer a smart and dynamic experience to your users.

Reference

Name

proactive

prefilled

autoSubmitted

filesUploaded

numAgents

userMessages
agentMessages

systemMessages

errors

form

opened

Type

boolean

boolean

boolean

integer

integer

integer
integer

integer

array/boolean

object

integer (timestamp)

Description

Indicates this chat session was
started proactively.

Indicates the registration form
was prefilled with info
automatically.

Indicates the registration form
was submitted automatically,
usually after being prefilled.

Current number of files uploaded
during chat session.

Current number of agents that
have connected to the chat
session.

Current number of messages
sent by user.

Current number of messages
sent by agents.

Current number of system
messages received.

An array of error codes
encountered during chat session.
If no errors, this value will be
false.

An object containing the form
parameters when the form is
submitted.

Timestamp indicating when
WebChat was opened.

Widgets API Reference

231

WebChat

Name

started

cancelled

rejected

completed

closed

agentReached

supervisorReached

elapsed

waitingForAgent

Customizable chat registration form

Type

integer (timestamp)

integer (timestamp)

integer (timestamp)

integer (timestamp)

integer (timestamp)

integer (timestamp)

integer (timestamp)

integer (milliseconds)

integer (milliseconds)

string

Description

Timestamp indicating when chat
session started.

Timestamp indicating when the
chat session was cancelled.
Cancelled refers to when a user
ends a chat session before an
agent connects.

Timestamp indicating when the
chat session was rejected.
Rejected refers to when a chat
session fails to start.

Timestamp indicating when the
chat session ended normally.
Completed refers to when a user
or agent ends a chat after an
agent connected.

Timestamp indicating when
WebChat was closed.

Timestamp indicating when the
first agent was reached, if any.

Timestamp indicating when the
first agent supervisor was
reached, if any.

Total elapsed time in milliseconds
from when the user started the
chat session to when the chat
session ended.

Total time in milleseconds waiting
for an agent from when the user
started the chat session to when
an agent connected to the
session.

A Unique identifier of a chat
session that helps to identify the
instance of that session and its
associated events.

WebChat allows you to customize the registration form shown to users prior to starting a session. The
following form inputs are currently supported:

* Text

* Select

e Hidden

* Checkbox

Widgets API Reference

232

WebChat

¢ Textarea

Customization is done through a JSON object structure that defines the layout, input type, label, and

attributes for each input. You can set the default registration form definition in the
_genesys.widgets.webchat.form configuration option. Alternately, you can pass a new
registration form definition through the WebChat.open command:
_genesys.widgets.bus.command("WebChat.open", {formJSON: oRegFormDef});

Inputs are rendered as stacked rows with one input and one optional label per row.

Default example

The following example is the default JSON object used to render WebChat’s registration form. This is a
very simple definition that does not use many properties.
{

wrapper: "
", inputs: [{ id: "cx_webchat_form_firstname", name: "firstname", maxlength:
"100", placeholder: "@i18n:webchat.ChatFormPlaceholderFirstName", label:
"@il8n:webchat.ChatFormFirstName" }, { id: "cx_webchat form_lastname",
name: "lastname", maxlength: "100", placeholder:
"@il8n:webchat.ChatFormPlaceholderLastName", label:
"@i18n:webchat.ChatFormLastName" }, { id: "cx_webchat_form_email", name:
"email”, maxlength: "100", placeholder:
"@i18n:webchat.ChatFormPlaceholderEmail", label:
"@il8n:webchat.ChatFormEmail" }, { id: "cx_webchat form_subject", name:
"subject", maxlength: "100", placeholder:
"@i1l8n:webchat.ChatFormPlaceholderSubject", label:
"@il8n:webchat.ChatFormSubject" }] }
This JSON definition generates the following output:
Widgets API Reference 233

WebChat

& Live Chat

First Name

Last Name

Required

Required

Email Optional

Subject

Cancel

Properties

Optional

Each input definition can contain any number of properties. These are categorized in two groups:
"Special properties", which are custom properties used internally to handle rendering logic, and
"HTML attributes" which are properties that are applied directly as HTML attributes on the input

element.
Special properties

Property

type

label

string

string

Type

"text"

Default

Description

Sets the type of input to
render. Possible values
are currently "text",
"hidden", "select",
"checkbox", and
"textarea".

Set the text for the
label. If no value
provided, no label will
be shown. You may use
localization query
strings to enable
custom localization (for

Widgets API Reference

234

/File:WebChat_CustomForm_001.png
/File:WebChat_CustomForm_001.png

WebChat

Property

wrapper

validate

validateWhileTyping

options

Type

HTML string

function

boolean

array

false

Default

Description

example, label:
"@il8n:namespace.StringName").
Localization query

strings allow you to use

strings from any widget
namespace or to create

your own namespace in

the localization file

(i18n.json) and use

strings from there (for

example, label:
"@i18n:myCustomNamespace.myCustc
For more information,

see the Labels section.

Each input exists in its
own row in the form. By
default this is a table-
row with the label in the
left cell and the input in
the right cell. You can
redefine this wrapper
and layout by specifying
a new HTML row
structure. See the
Wrappers section for
more info.

The default wrapper for
an inputis "

Define a validation
function for the input
that executes when the
input loses focus (blur)
or changes value. Your
function must return
true or false. True to
indicate it passed, false
to indicate it failed. If
your validation fails, the
form will not submit and
the invalid input will be
highlighted in red. See
the Validation section
for more details and
examples.

Execute validation on
keypress in addition to
blur and change. This
ignores non-character
keys like shift, ctrl, and
alt.

When ‘type’ is set to
‘select’, you can
populate the select by

Widgets API Reference

235

WebChat

Property Type Default Description

adding options to this
array. Each option is an
object (for example,
{text: ‘Option 1’, value:
‘1'} for a selectable
option, and {text:
"Group 1", group: true}
for an option group).

HTML attributes

With the exception of special properties, all properties will be added as HTML attributes on the input
element. You can use standard HTML attributes or make your own.

Example

{
id: "cx webchat form firstname",
name: "firstname",
maxlength: "100",
placeholder: "@il8n:webchat.ChatFormPlaceholderFirstName",
label: "@il8n:webchat.ChatFormFirstName"

}

In this example, id, name, maxlength, and placeholder are all standard HTML attributes for the text
input element. Whatever values are set here will be applied to the input as HTML attributes.

The default input type is "text", so type does not need to be defined if you intend to
make a text input.

HTML output
|

Disabling autocomplete

Since the custom form feature supports adding any HTML attributes to your inputs, you can control
standard HTML features like disabling autocomplete. To disable autocomplete, add autocomplete:
"off" to your input definition.

Example

{
id: "cx webchat form firstname",
name: "firstname",
maxlength: "100",
placeholder: "@il8n:webchat.ChatFormPlaceholderFirstName",
label: "@il8n:webchat.ChatFormFirstName",
autocomplete: "off"

Widgets API Reference 236

WebChat

Labels

A label tag will be generated for your input if you specify label text and if your custom input wrapper
includes a ‘{label}’ designation. If you have added an ID attribute for your input, the label will
automatically be linked to your input so that clicking on the label selects the input or, for checkboxes,
toggles it.

Labels can be defined as static strings or localization queries.

Wrappers

Wrappers are HTML string templates that define a layout. There are two kinds of wrappers, Form
Wrappers and Input Wrappers:

Form wrapper

You can specify the parent wrapper for the overall form in the top-level "wrapper"
property. In the example below, we specify this value as “

This is the default wrapper for the WebChat form:
{

wrapper:
", /¥ form wrapper */ inputs: [] }

Input wrapper

Each input is rendered as a table row inside the Form Wrapper. You can change this by defining a new
wrapper template for your input row. Inside your template you can specify where you want the input
and label to be by adding the identifiers "{label}" and "{input}" to your wrapper value. See the
example below:

{
id: "cx webchat form firstname",
name: "firstname",
maxlength: "100",
placeholder: "@il8n:webchat.ChatFormPlaceholderFirstName",
label: "@il8n:webchat.ChatFormFirstName",
wrapper: "{label}{input}" /* input row wrapper */

}

The {label} identifier is optional. Omitting it will allow the input to fill the row. If you decide to keep
the label, you can move it to any location within the wrapper, such as putting the label on the right,
or stacking the label on top of the input. You can control the layout of each row independently,
depending on your needs.

You are not restricted to using a table for your form. You can change the form
wrapper to "
"and then change the individual input wrappers from a table-row to your own

Widgets API Reference 237

WebChat

specification. Be aware though that when you move away from the default table
wrappers, you are responsible for styling and aligning your layout. Only the
default table-row wrapper is supported by default Themes and CSS.

Validation

You can apply a validation function to each input that lets you check the value after a change has
been made and/or the user has moved to a different input (on change and on blur). You can enable
validation on key press by setting validateWhileTyping to true in your input definition.

Here is how to define a validation function:

{
id: "cx webchat form firstname",
name: "firstname",
maxlength: "100",
placeholder: "@il8n:webchat.ChatFormPlaceholderFirstName",
label: "@il8n:webchat.ChatFormFirstName",

validateWhileTyping: true, // default is false
validate: function(event, form, input, label, $, CXBus, Common){
return true; // or false
}

You must return true or false to indicate that validation has passed or failed, respectively. If you
return false, the WebChat form will not submit, and the input will be highlighted in red. This is
achieved by adding the CSS class "cx-error" to the input. The image below displays the the field
where a user input validation error has occurred, with the field highlighted in red.

) Live Chat

FirstName Required

Validation function arguments

Argument Type Description
event JavaScript event object The input event reference object

Widgets API Reference 238

/File:Validation_failure.png
/File:Validation_failure.png

WebChat

Argument

form
input

label

CXBus

Common

Form submit

Type

HTML reference
HTML reference

HTML reference

jquery instance

CXBus instance

Function Library

Description

related to the form input field.
This event data can be helpful to
perform actions like active
validation on an input field while
the user is typing.

A jquery reference to the form
wrapper element.

A jquery reference to the input
element being validated.

A jquery reference to the label
for the input being validated.

Widget's internal jquery instance.
Use this to help you write your
validation logic, if needed.

Widget’'s internal CXBus
reference. Use this to call
commands on the bus, if needed.

Widget’s internal Common library
of functions and utilities. Use if
needed.

Custom input field form values are submitted to the server as key value pairs
under the userData section of the form submit request, where input field names
will be the property keys. During the submit, this data is merged along with the

userData defined in the WebChat.open command.

Depending on the API used (PureEnagage V2 API or Genesys Cloud CX) the payload
structure in the request can vary for each, but the section below explains how the
form data is submitted by the WebChat Ul plugin when using custom forms.

Below is the internal form data object defined in the WebChat plugin by default.
Since firstname, lastname, nickname, email, and subject are reserved keywords,
users are not allowed to have custom fields with the same name.

{

firstname: ,
lastname: '',
nickname: "'
email: '',
subject: '',

userData: {}

Widgets API Reference

239

WebChat

Once the Chat is started, the customer messages display either the nickname or the
firstname specified during registration as the Name.

Example

The example below shows how the custom form data given in the WebChat form fields have been
mapped as a form data object.

The form fields with reserved keywords like firstname, lastname, and email will be sent as top level
and the rest of the fields will be sent under userData to the WebChatService plugin.

Once the form data object is sent to the WebChatService plugin, it will parse and send in the payload
request.

{

"wrapper":"

", "inputs":[{ "id":"cx_webchat_form_firstname", "name":"firstname”",
"type":"text", "maxlength":"100",
"placeholder":"@il8n:webchat.ChatFormPlaceholderFirstName",
"label":"@il8n:webchat.ChatFormFirstName", "value":"John" }, {
"id":"cx_webchat _form_lastname", "name":"lastname", "type":"text",
"maxlength":"100",
"placeholder":"@il18n:webchat.ChatFormPlaceholderLastName",
"label":"@il8n:webchat.ChatFormLastName", "value":"Smith" }, {
"id":"cx_webchat_form_email”, "name":"email", "type":"text", "maxlength":"100",
"placeholder":"@il8n:webchat.ChatFormPlaceholderEmail", "“label":"Email",
"value":"john.smith@company.com" }, { "id":"cx_webchat_form_phonenumber",
"name":"phonenumber"”, "type":"text", "maxlength":"100", "placeholder":"Phone
Number", "label"™:"Phone Number", "value":"9256328346" }, {

"id":"cx_webchat form_enquirytype", "name":"enquirytype", "type":"select",
"label":"Enquiry Type", "options":[{ "text":"Account", "group":true }, {
"text":"Sales", "value":"Sales", "selected":true }, { "text":"Credit Card",
"value":"credit card" }, { "text":"General", "group":true }, { "text":"Warranty",
"value":"warranty" }, { "text":"Return policy", "value":"returns" } 1} 1}

Widgets API Reference 240

WebChat

& Live Chat

First Name John

Last Name Smith

Email john.smith@company.com

Phone Number 9256328346

Enquiry Type Sales

firstname: 'John',
lastname: 'Smith',
email: 'john.smith@company.com',
userData: {
phonenumber: '9256328346"',
enquirytype: 'Sales' //value selected from the dropdown

Customizable emoji menu

Introduction

WebChat offers a v2 emoji menu that lets you choose which emaojis to include in the emoji menu.

Widgets API Reference 241

/File:WebChat_CustomForm_Dark_v1.png
/File:WebChat_CustomForm_Dark_v1.png

WebChat

W1 Emoji Menu V2 Emoji Menu

0000 @6
Qe O
ooaLBLa

2 & @2 & s

Differences between v1 and v2

* v1 shows as a tooltip-style overlay; v2 shows as a new block between the transcript and the message
input.

¢ vl closes when you select an emoji or click outside the menu; v2 lets you choose multiple emojis and
only closes if you click the emoji menu button again.

¢ v1 has three fixed emojis to choose from; v2 can show hundreds of customizable emojis in a grid layout.

¢ v1 menu appears in mobile mode; v2 menu is not available in mobile mode (when v2 is configured, no
emoji menu button is present in mobile mode).

¢ v1 menu has default emojis; v2 menu does not have default emojis. It must be explicitly configured with
a list of emaojis.

Configuring the emoji menu

Click the emoji menu icon at the bottom-left corner of the WebChat Ul to open the v2 emoji menu.
The transcript will be resized to fit the emoji menu, which can vary in height depending on the
number of emojis configured.

* When 1-8 emojis are configured, the menu has one row, and no scrollbar appears.

¢ When 9-16 emojis are configured, the menu has two rows, and no scrollbar appears.

* When 17-24 emojis are configured, the menu has three rows, and no scrollbar appears.

¢ When 25 or more emojis are configured, the menu has three rows, and a scrollbar appears.

Widgets API Reference 242

/File:WebChat-Emoji-menu.png
/File:WebChat-Emoji-menu.png

WebChat

Configure the v2 emoji menu by passing a string containing emoji into the
WebChat configuration or through localization.

If you define an emoji list in the WebChat configuration, it will override any emoji lists
defined in localization files.

You configure the emoji list by specifying a string of emoji characters, like
OO ", WebChat will parse this string and arrange them in the emoji menu.

// Configure a flat list of emoji characters
_genesys.widgets.webchat.emojilList =
TOOVODODODODODODODOODODODOOODODOOOOOOOOOOY
SODODOOVOODODODODODODOODODODODODODOODCOMKDOOOOOOD";

Add emoji display names

You can also add names to emojis so that their names will appear when you hover over them. To add
a name to an emoji, simply add a colon after the question mark symbol, and then type the name.
Separate each name with a semicolon.

The format is ;¢&:name;

You can only add one name to an emoji. The following sample shows the format
for configuring several emojis.

// Configure an emoji list with emoji names

_genesys.widgets.webchat.emojiList = "<&:Star-Struck;®:Zany Face;®:Face With Hand Over
Mouth;®:Shushing Face;®:Face With Raised Eyebrow;<®:Bitcoin;<®:Face Vomiting;
:Exploding Head;®:Face With Monocle;®:Face With Symbols on Mouth;<®:0range Heart;
:Love-You Gesture;<®:Palms Up Together;<®:Brain;®:Child;®:Person;®:Man: Beard;

:0lder Person;®:Woman With Headscarf;®:Breast-Feeding;<®:Mage;<®:Fairy;<®:Vampire;
:Merperson; ®:ELlf;®:Genie;®:Zombie;®:Person in Steamy Room;<®:Person Climbing;

:Person in Lotus Position;®:Zebra;®:Giraffe;®:Hedgehog;®:Sauropod;<®:T-Rex;®:Cricket;
:Coconut;®:Broccoli;®:Pretzel;®:Cut of Meat;®&:Australia Day;®®:Bastille

QOO

Widgets API Reference 243

/File:Emoji-screenshot-dark-themed.PNG
/File:Emoji-screenshot-dark-themed.PNG

WebChat

Day;®:Birthday;®:Black Friday;®<®:Canada Day;®<®:Carnival;<®:Chinese New Year;<®:Christmas;
&&®:Cinco de Mayo;<®:Diwali;®<®:Dragon Boat Festival;<®:Easter;®:Emoji Movie;<®:Fall/Autumn;
&:Father’s Day;®:Festivus;<®:Graduation;®:Guy Fawkes;<®:Halloween;<® :Hanukkah;
&:Hearts;®:Holi;®®:Independence Day;<®:Mother’s Day;®:New Year’'s Eve;®:0lympics;
&&®:Pride;®:Queen’s Birthday;CG:Ramadan;<®:Spring;+:St Patrick’s Day;#*:Summer;
&:SuperBowl;®:Thanksgiving;®:Valentine'’s Day;<®:Wedding / Marriage;®:Winter;®:Winter

Olympics;®:World Cup;<®:World Emoji Day;";

Partially named lists

You don't have to add names for every emoji. You can add titles to only a select
few.

// Configure an emoji list with only a few emoji names
_genesys.widgets.webchat.emojiList = "®QOOOOOOOOROY ;& :Palms Up Together;
SOODOODOVDOVDODODOVODOODOOOOOOOOOOY; & Black Friday;
SOOOOODOVODOVDODDOVDOODOODOOOOOCOMKOOOY ;& 1Snowman; &OG";

Localization

Emojis can be localized so that each language has a preferred set of emojis and
emoji titles.

If you define an emoji list in the WebChat configuration, it will override any emoji lists
defined in localization files.

The key name for defining an emoji list is "EmojiList". Emoji lists are defined in a
localization file using the same syntax as the WebChat configuration.

{
llenll: {
"webchat": {
"EmojilList": "<&:Star-Struck;<®:Zany Face;®:Face With Hand Over Mouth;<®:Shushing
Face;"

}
}

Terminate Chat session on contact side

To prevent a contact from sending another chat message using the Widget after the chat session is
terminated in Designer, you must add a customization to the widget to notify it to close.

First, set up a text message informing the contact that the chat is terminated by using a Play
Message Block.

Widgets API Reference 244

WebChat

Properties - Play Message

This block is used to play audio mess ages These messages can be TTS (Text to Speech), Audio Files (previously uploaded in Audio Vs
, Resources page, of variables played as TTS. 4
1) Prompts [l Message Settings
Prompts

[# Disable barge-in €@

[# Always play prompt and disable buffering @

+ Add Prompt
Type Var? Value Play as Actions
T8 b | Thanks for contacting us. Goodbye! | text hd P |

Next, set up the Widget Register Handler for WebChatService.messageReceived (or look for the
messageAdded event) to get notifications about messages received, then send the endChat
command when the text message is received. For information about Genesys Widgets events and
commands, refer to Genesys Widget APl Events and Genesys Widget API Commands.

Finally, add the following customized script:

window. genesys.widgets.onReady = function(CXBus){
var oWH = CXBus.registerPlugin("WebChatHandler");
oWH.subscribe("WebChatService.messageReceived", function (e) {

if(e.data) {

/**

* Extract the sample data (can be the Playback message configured in Designer)
* and look for a specific condition to end the chat

*/

const {messages} e.data || {};
let sPlayMessage (messages) ? messages.find(message => message.type ==
'Message' && message.text == 'play message') : "";

if(sPlayMessage) {
oWH. command ("WebChatService.endChat");
/**
* Check for the chat session data stored in localStorage and clear it
*/

(window.localStorage.getItem("WebChatSessionData")) ?
window.localStorage.removeltem("WebChatSessionData") : "";

Widgets API Reference 245

/File:WidgetsWebChat_PlayMessageBlock2_042022.png
/File:WidgetsWebChat_PlayMessageBlock2_042022.png

Engage

Engage

Contents

e 1 Overview
e 1.1 Usage
* 1.2 Namespaces
* 1.3 Screenshots
e 2 Configuration

¢ 3 Localization

4 APl commands
* 4.1 invite
* 4.2 Example
e 4.3 Options
* 4.4 Resolutions
* 4.5 offer
e 4.6 Example
* 4.7 Options
* 5 APl events
* 5.1 Interaction Lifecycle
e 5.2 Lifecycle scenarios
¢ 6 Metadata

¢ 6.1 Reference

Widgets APl Reference 246

Engage

* Developer

Learn how to use the Genesys Multicloud CX plugin to integrate any Engage solution with Genesys
Widgets.

Related documentation:

Overview

GEMESYS

Moments connected

cusiiormers 1o build relationships and layalty.

The Genesys Multicloud CX plugin is generic and contains commands that automate customer
engagement within Genesys Widgets. Starting with version 9.0.015.11, the Engage plugin includes
Offers, which allows a customer to view a product or promotion on a page. It comes with many
display modes and rendering options, such as overlay/toaster mode with text or image-only layouts,

or both.

Widgets APl Reference 247

/File:Desktop_Engage_Offer_Overlay_View_with_Text_on_left_v1.png
/File:Desktop_Engage_Offer_Overlay_View_with_Text_on_left_v1.png

Engage

Need Help?

Connect with an agent today

No, Thanks

Usage
Use the Engage plugin to show either an invite or an offer via the following methods:
e Calling the Engage.invite command

e Calling the Engage.offer command

Namespaces

The Engage plugin uses the following namespaces.

Type Namespace
i18n - Localization Engage
CXBus - APl commands & API events Engage
CSS .CX-engage

Screenshots

Engage Invite

Widgets API Reference 248

/File:Engage_Invite_Dark_v2.png
/File:Engage_Invite_Dark_v2.png

Engage

| GENESYS i GENESYS

Engage Offer

clenter

Configuration

The Genesys Multicloud CX plugin doesn't have any configuration options.

Localization

Widgets API Reference 249

/File:Engage_Invite_Mobile_Dark_theme_v1.png
/File:Engage_Invite_Mobile_Dark_theme_v1.png
/File:Engage_Invite_Mobile_Light_theme_v1.png
/File:Engage_Invite_Mobile_Light_theme_v1.png
/File:Desktop_Engage_Offer_toaster_mode.png
/File:Desktop_Engage_Offer_toaster_mode.png
/File:Desktop_Engage_Offer_modal_overlay_view_with_text_on_top.png
/File:Desktop_Engage_Offer_modal_overlay_view_with_text_on_top.png
/File:Desktop_Engage_Offer_overlay_view_with_text_at_bottom.png
/File:Desktop_Engage_Offer_overlay_view_with_text_at_bottom.png
/File:Desktop_Engage_Offer_Toast_view_with_text_content_on_right.png
/File:Desktop_Engage_Offer_Toast_view_with_text_content_on_right.png
/File:Desktop_Engage_Offer_Toast_view_with_text_content_on_left.png
/File:Desktop_Engage_Offer_Toast_view_with_text_content_on_left.png
/File:Desktop_Engage_Offer_overlay_view_-_Right_text_v1.png
/File:Desktop_Engage_Offer_overlay_view_-_Right_text_v1.png
/File:Desktop_Engage_Offer_modal_Overlay_View_with_Text_on_left.png
/File:Desktop_Engage_Offer_modal_Overlay_View_with_Text_on_left.png
/File:Mobile_Engage_Offer_inserted_onto_the_top_of_a_webpage.png
/File:Mobile_Engage_Offer_inserted_onto_the_top_of_a_webpage.png
/File:Mobile_mode_Engage_Offer_view_in_modal_overlay_with_background_greyed_out_v1.png
/File:Mobile_mode_Engage_Offer_view_in_modal_overlay_with_background_greyed_out_v1.png
/File:Mobile_mode_Engage_Offer_view_in_modal_overlay_v1.png
/File:Mobile_mode_Engage_Offer_view_in_modal_overlay_v1.png

Engage

The Genesys Multicloud CX plugin doesn't have any localization options.

APl commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Engage.invite');
invite

Opens the Engage Widget and renders the text based on the options provided. If no options are
provided, the widget doesn't open.

Example

oMyPlugin.command('Engage.invite', {
"type':'toast’,
'timeout':3000,
'title':'Engage Title',
'ariaTitle':'Engage Invite',
'body':'Engage invite body content',
‘accept':'Yes',
'decline':'No, thanks',
'ariaAccept':'Yes',
'ariaDecline':'No, thanks',
'ariaClose':'Close’,
‘command': 'WebChat.open',
'options':{'proactive': true, 'userData': {'category': 'shoes'}}

3

oMyPlugin.command('Engage.invite',{
"type':'toast’,
'timeout':3000,
'force': true,
'title':'Engage Title',
'ariaTitle':'Engage Invite',
'body':'Engage invite body content',
‘accept':'Yes',
'decline':'No, thanks',
'ariaAccept':'Yes',
'ariaDecline': 'No, thanks',
'ariaClose':'Close’

Widgets API Reference 250

Engage

}) .done(function(response){

// Act upon the received response code

switch(response){
case 'accepted':oMyPlugin.command('WebChat.open');

break;
case 'declined': break;
case 'closed': break;
case 'timeout': break;
}
});
Options
. - Accepted Introduced/
Option Type Description T Default updated
. Widget display
type string type. toast
Timeout
timeout number integer in n/a
milliseconds.
. . String for
title string widget title. n/a
Aria label text
ariaTitle string for the Engage n/a 9.0.015.04
invite window.
. String for offer
body string body text. n/a
String for
accept string Accept button n/a
text.
Aria label text
ariaAccept string for the Accept n/a 9.0.016.10
button.
String for
decline string Decline button n/a
text.
Aria label text
ariaDecline string for the Decline n/a 9.0.016.10
button.
Aria label text
ariaClose string for the Engage n/a 9.0.016.10
Close button.
command string COmTEE & n/a
execute.
Options related
. . to the
options object command n/a
provided.
Widgets API Reference 251

Engage

Introduced/
updated

Accepted

e Default

Option Type Description
Replace the
active lower
priority Engage
invite with the
higher priority
Engage invite.

priority number n/a 0 9.0.015.11

Replace the
active Engage
invite with the
force boolean new Engage n/a false 9.0.015.11
invite
irrespective of
priorities.

Resolutions

Status When Returns

Engage invite is accepted by

resolv
solives user.

accepted

resolved Engage invite is declined by user. declined

Engage invite widget is closed by
user.

resolved closed
Engage invite widget closes due

to timeout. timeout

resolved

offer

Opens a widget for a product offer using the data sent through the command options provided below.
The widget can include both rendering options and the actual data that needs to be displayed in the
Offer Widget. If no options are provided, the widget will not open.

Example

oMyPlugin.command('Engage.offer', {

mode: 'overlay',

modal:true,

layout: 'leftText',

title: 'GRAB WHAT YOU NEED!!',
ariaTitle: 'Offers',

headline: 'We Got All!',

description:'Get free NextDay delivery on orders of $35 or more. Start shopping

now!"',
cta:{
text:'Join',
url:'https://www.genesys.com',
target:' blank'
}I

Widgets API Reference 252

Engage

image:{
src:'https://picsum.photos/id/237/300/300",
alt:'Alternate Text for Image'

}I

styles:{

closeButton:{
'color':'red'
}

ariaCTA:'Join',
ariaClose: 'Close Offer'

1)

Options

Introduced/
updated

Accepted

T Default

Option Type Description
The display
type of the

Offer widget.

Applicable only
when mode is
'‘overlay'. A
smokescreen
will be shown
in the
background of
overlay modal
window. This
window can be
dismissed by
clicking
anywhere in
the
smokescreen
area.

overlay,

toaster 9.0.015.04

mode string toaster

modal boolean n/a false 9.0.015.04

Additional minimal,

layout

headline

ariaTitle

description

cta

string

string

string

string

object

layout options
are supported
for all modes.

The Offer title
header text.

Aria label text
for the Offer
window.

The Offer body
description
text.

An object
containing
HTML
attributes and/

leftText,
rightText,
topText,
bottomText

n/a

n/a

n/a

n/a

leftText

n/a

n/a

n/a

n/a

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

Widgets API Reference

253

Engage

Option

cta.text

cta.url

cta.target

cta.command

Type

string

string

string

string

cta.commandOptishi€ng

image

image.src

image.alt

image.title

insertAfter

object

string

string

string

string

Description

or CXBus

commands for
the CTA (call to
action) button.

The CTA button
text.

The URL string
for the CTA
button.

Note: The URL
must be properly
defined with the
complete Protocol
URL Address. For
example,

Accepted
values

n/a

_blank,
_parent, _self,
_top,
framename

https://www.genesys.com.

Specifies
where the URL
is opened.

A CXBus
command to
execute.

Options related
to CXBUs
command.

An object

containing
image tag
attributes.

The URL of the
image.

Alternate text
for the image.

To indicate the
screen reader
user whether
the image
opens the URL
in a new
window.

Applicable only
in mobile
mode. An ID or
class name of
an HTML
selector from
the host page.
The offer will
be inserted
after this

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

Default

Introduced/

updated

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.016.10

9.0.015.04

Widgets API Reference

254

Engage

Option Type

insertBefore string

insertinto string

styles object

styles.closeButtonobject

Description

element.
Precede the
value
mentioned
here with the
standard Class
(".") and ID
selector ('#')
character.

Applicable only
in mobile
mode. An ID or
class name of
an HTML
selector from
the host page.
The offer will
be inserted
before this
element.
Precede the
value
mentioned
here with the
standard Class
(*.') and ID
selector ('#')
character.

Applicable only
in mobile
mode. An ID or
class name of
an HTML
selector from
the host page.
The offer will
be appended
inside this
element.
Precede the
value
mentioned
here with the
standard Class
(".") and ID
selector ('#')
character.

An object
containing
styles for the
offer content.

An object
containing

Accepted
values

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

Default

Introduced/
updated

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

Widgets API Reference

255

Engage

Introduced/
updated

Accepted

e Default

Option Type Description
styles for the
close button.

The color of
styles.closeButtonstoiiog the close n/a n/a 9.0.015.04
button.

The CSS
'opacity’
styles.closeButtonmpabity property for n/a n/a 9.0.015.04
the close
button.

An object
containing
styles.overlay object styles for the n/a n/a 9.0.015.04
overlay
container.

The CSS 'top'
property for
the overlay
container.

The CSS 'right’
property for
the overlay
container.

The CSS
'‘bottom’
styles.overlay.bottstring property for n/a n/a 9.0.015.04
the overlay
container.

The CSS 'left'
property for
the overlay
container.

styles.overlay.top string n/a n/a 9.0.015.04

styles.overlay.righktring n/a n/a 9.0.015.04

styles.overlay.left string Note: When allthe n/a n/a 9.0.015.04
position values are
provided, the order
of precedence will
be top, right,
bottom, and left.

Aligns the
overlay
styles.overlay.centerolean container to n/a true 9.0.015.04
the center of
the screen.

An object
containing
styles for the
Offer window.

The
background

styles.offer object n/a n/a 9.0.015.04

styles.offer.backgrstrimdColor n/a n/a 9.0.015.04

Widgets API Reference 256

Engage

Option

styles.offer.color string

styles.offer.paddingtring

styles.title

object

styles.title.font string

styles.title.textAligtring

styles.headline object

styles.headline.forstring

styles.headline.texstAilingn

styles.description object

styles.description.sbrihg

styles.description.sérbign

styles.ctaButton object

Type

Description

color of the
offer.

The text color
of the offer.

The padding
for the offer
container.

An object
containing
styles for the
title.

The CSS ‘font'
property for
the title.

The CSS 'text-
align' property
for the title.

An object
containing
styles for the
header text.

The CSS 'font'
property for
the header
text.

The CSS 'text-
align' property
for the header
text.

An object
containing
styles for the
offer
description
text.

The CSS ‘font'
property for
the description
text.

The CSS 'text-
align' property
for the
description
text.

An object
containing
styles for call
to action
button in the

Accepted

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

values

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

Default

Introduced/
updated

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

Widgets API Reference

257

Engage

Accepted
values

Introduced/

Default updated

Option Type Description

offer window.

The CSS 'font
property for
the text in CTA
button.

The CSS 'text-
align' property
for the text in

CTA button.

The CSS
'background'
property for
the CTA button.

The CSS 'color!
property for
the text in CTA
button.

The CSS 'font-
size' property
for the text in
CTA button.

Aria label text
ariaCTA string for the Offer n/a n/a 9.0.016.10
CTA button.

Aria label text
ariaClose string for the Offer n/a n/a 9.0.016.10
Close button.

styles.ctaButton.fatiting n/a n/a 9.0.015.04

styles.ctaButton.testtixiggn n/a n/a 9.0.015.04

styles.ctaButton.batrkiggound n/a n/a 9.0.015.04

styles.ctaButton.cstoing n/a n/a 9.0.015.04

styles.ctaButton.fattBige n/a n/a 9.0.015.04

Replace the
active lower
priority Engage
Offer with the
higher priority
Engage Offer.

priority number n/a 0 9.0.015.11

Replace the
active Engage
Offer with the
force boolean new Engage n/a false 9.0.015.11
Offer
irrespective of
priorities.

APl events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

Widgets API Reference 258

Engage

The global bus object is a debugging tool. When implementing widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('Engage.ready', function(e){});

Name

ready

opened

CTA

hover

dismissed

closed

Description

The Engage widget is
initialized and ready to
accept commands on
the bus.

The Engage widget
opens.

Note: Applicable
only to Engage.offer
command

When the user clicks the
CTA button in the
Engage widget.

Note: Applicable
only to Engage.offer
command

When the user first
hovers over the Engage
widget.

Note: Applicable
only to Engage.offer
command

When the user closes
the Engage widget by
clicking the Close
button.

Note: Applicable
only to Engage.offer
command

The Engage widget
closes.

Note: Applicable
only to Engage.offer
command

n/a

Metadata

Metadata

Metadata

Metadata

Metadata

Introduced/updated

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

Widgets API Reference

259

Engage

Applicable only for Engage.offer command.

Interaction Lifecycle

Every offer interaction has a sequence of events we describe as the Interaction Lifecycle. These
events track progress and user choices from the beginning of an interaction (opening Offers), to the
end (closing Offers), and every step in between.

The following events comprise the Interaction Lifecycle:

ready
opened
CTA

hover
dismissed
closed

Lifecycle scenarios

An Interaction Lifecycle can vary based on each user's intent and experience with the Offer widget.
Here are several sequences of events in the lifecycle that correspond to different scenarios.

The user opened the Offer widget but changed their mind and closed it without seeing the offer
details:

ready -> opened -> dismissed -> closed

The user opened the Offer widget, hovered over the offer details, and then closed it:
ready -> opened -> hover -> dismissed -> closed

The user opened the Offer widget and clicked on the button, which triggers CTA:

ready -> opened -> CTA -> closed

Tip

For a list of all Offer events, see API events.

Metadata

Each event in the Interaction Lifecycle includes the following block of metadata. By default, all values
are set to false. As the user progresses through the lifecycle of an Offer Engage interaction, these
values are updated.

Widgets API Reference 260

Engage

The metadata block contains Boolean state flags, timestamps, and elapsed times. These values can

be used to track and identify trends or issues with interactions. During runtime, the metadata can

help you offer a smart and dynamic experience to your users.

Reference

Name

opened

closed

dismissed

triggeredCTA

timeBeforeCTA

timeFirstHover

timeBeforeHover

timeElapsedHover

elementClicked

Type

integer (timestamp)

integer (timestamp)

integer (timestamp)

integer (timestamp)

integer (milliseconds)

integer (timestamp)

integer (milliseconds)

integer (milliseconds)

string

Description

Timestamp indicating
when the offer was
opened.

Timestamp indicating
when the offer was
closed.

Timestamp indicating
when the user
dismissed the offer by
clicking the close
button.

Timestamp indicating
when the CTA was
triggered.

Total time in
milliseconds from when
the user opened the
offer to when the CTA is
triggered.

Timestamp indicating
when the user first
hovered over the offer.

Total time in
milliseconds from when
the user opened the
offer to when the user
first hovered over the
offer.

Total time in
milliseconds when the
user hovered over the
offer.

Name of CTA element
that was clicked.

Introduced/updated

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

Widgets API Reference

261

Genesys Widgets extensions

Genesys Widgets extensions

Contents

e 1 Overview

* 2 Defining extensions

¢ 3 Creating a new CXBus plugin

* 4 Use cases

4.1 Example:
4.2 Example:
4.3 Example:
4.4 Example:
4.5 Example:

subscribing to an event
publishing an event
calling a command
registering a command

using the 'before()' method

Widgets APl Reference

262

Genesys Widgets extensions

e Developer
Learn how to create your own plugins and widgets.

Related documentation:

Overview

Genesys Widgets allows you to create your own plugins and widgets. These extensions are an easy
way to define your own functionality, while using the same resources as the core Genesys Widgets.

Defining extensions

Extensions are defined at runtime before Genesys Widgets loads. You can define them inline or
include extensions in separate files, either grouped or separated.

Define/include your extensions after your Genesys Widgets configuration object but
before you include the Genesys Widgets JavaScript package.

Make sure that the "extensions" object exists and always include this at the top of your extension
definition.

if(!window. genesys.widgets.extensions){

window. genesys.widgets.extensions = {};

}

Create a new named property inside the "extensions" object and define it as a function. When
Genesys Widgets initializes it will step through each extension and invoke each function, initializing
them. Genesys Widgets will share resources as arguments. These include: jQuery, CXBus, and the
Common Ul utilities.

window. genesys.widgets.extensions["TestExtension"] = function($, CXBus, Common){};

Widgets API Reference 263

Genesys Widgets extensions

Creating a new CXBus plugin

Inside the extension function is where you create a new CXBus plugin. You can use this CXBus plugin
to interface with other Genesys Widgets. You can add your own Ul controller logic in here or simply
use the extension to connect an existing Ul controller to the bus (for example, share its APl over the
bus and coordinate actions with events).

Registering a new plugin on the bus creates a new, unique namespace for all your events and
commands. In this example, the namespace "cx.plugin.TestExtension" is created:

var oTestExtension = CXBus.registerPlugin("TestExtension");

When referring to other namespaces, like "cx.plugin.TestExtension", it is not necessary
to include the "cx.plugin." prefix. It is optional and implied. You can subscribe to
events or call commands using the full or truncated namespace.

Use cases

Extensions are like any other Genesys Widget. You can publish, subscribe, call commands, or register
your own commands on the bus. You can interface with other widgets on the bus for more complex
interactions. The following examples demonstrate how you can make extensions work for you.

Example: subscribing to an event

oTestExtension.subscribe("WebChat.opened", function(e){});

Example: publishing an event
Publishes the event "TestExtension.ready" on the bus.

oTestExtension.publish("ready", {arbitrary data to include});

Example: calling a command
Commands are deferred functions. You must handle their return states asynchronously.

oTestExtension.command("WebChat.open", {any options required}).done(function(e){
// Handle success return state
// "e", the event object, is a standard CXBus format
// Any return data will be available under e.data

}).fail(function(e){

// Handle failure return state

Widgets API Reference 264

Genesys Widgets extensions

// "e", the event object, may contain an error message, warning, or AJAX response object

1)

Example: registering a command
Creates a new command under your namespace that you or other widgets can call.

"e", the event object, is a standard CXBus format

¢ e.data = options passed into command when being called.

e e.commander = the namespace of the widget that called this command.
e e.command = the name of the command being called.

¢ e.time = timestamp when the command was called.

e e.deferred = the deferred promise created for this command call. You MUST always resolve or reject this
promise using e.deferred.resolve() or e.deferred.reject(). You may pass any arbitrary data into either
resolution state.

oTestExtension.registerCommand("demo", function(e){
// Command execution here

3

Example: using the 'before()' method

Allows you to set up an interrupt that is executed before a command every time that command is
called. With this feature, you can link execution of a command with other logic, modify command
options before they're used, or cancel execution of a command.

You can specify multiple "before" functions for a single command. They will be executed in order with
the output of one providing the input to the next. If one of the functions does not return an object,
execution will stop and the command will be cancelled.

oTestExtension.before("WebChat.open", function(oData){

// oData == the options passed into the command call
// e.g. if this command is called: oMyPlugin.command("WebChat.open", {form: {firstname:
"Mike"}});

// then oData will == {form: {firstname: "Mike"}}

// You must return oData back, or an empty object {} for execution to continue.
// If you return false|undefined|null, execution of the command will be stopped
return oData;

Widgets API Reference 265

Genesys Widgets videos

Genesys Widgets videos

Contents

1 Introduction to Widgets
* 2 Getting started with the Genesys WebChat Widget

3 WebChat features
4 The Callback Widget
5 The CallUS Widget

Widgets APl Reference 266

Genesys Widgets videos

This collection of videos from the Genesys Vimeo channel demonstrates some of the most
commonly used features of Genesys Widgets.

Related documentation:

Introduction to Widgets

Available Widgets on Genesys Multicloud CX

Link to video

Getting started with the Genesys WebChat Widget

How to configure Genesys Widgets and start using WebChat

Link to video

WebChat features

Features of the WebChat Widget

Link to video

The Callback Widget

Features of the Callback Widget

Link to video

The CallUS Widget

Features of the CallUs Widget

Link to video

Widgets API Reference 267

https://player.vimeo.com/video/553434064?title=0&byline=0&portrait=0
https://player.vimeo.com/video/441169402?title=0&byline=0&portrait=0
https://player.vimeo.com/video/545672854?title=0&byline=0&portrait=0
https://player.vimeo.com/video/539841733?title=0&byline=0&portrait=0
https://player.vimeo.com/video/548087059?title=0&byline=0&portrait=0

	Widgets API Reference
	Table of Contents
	Widgets Bus API overview
	App
	Common
	Overlay
	Toaster
	WindowManager
	CallbackService
	StatsService
	WebChatService
	Calendar
	Callback
	CallUs
	ChannelSelector
	Console
	SideBar
	WebChat
	Engage
	Genesys Widgets extensions
	Genesys Widgets videos

