
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Widgets API Reference

2/16/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
Widgets bus (CXBus)

Widgets Bus API overview 6
Widgets-Core

App 21
Common 40
Overlay 64
Toaster 70
WindowManager 75

Service plugins
CallbackService 80
StatsService 89
WebChatService 98

UI plugins
Calendar 129
Callback 140
CallUs 163
ChannelSelector 172
Console 186
SideBar 192
WebChat 204

Bridge plugins
Engage 246

Extensions
Genesys Widgets extensions 262

Videos
Genesys Widgets videos 266

Contents

• 1 Widgets bus (CXBus)
• 2 Widgets-Core
• 3 Service plugins
• 4 UI plugins
• 5 Bridge plugins
• 6 Extensions
• 7 Videos

Widgets API Reference 3

The Widgets API Reference covers all of the commands and events for each widget, and covers how
to configure and localize each one.

Related documentation:
•

The APIs are divided into the following categories, as discussed in the article on How Widgets Works.
There is also an article that explains how to get started with Genesys Widgets.

Widgets bus (CXBus)

• Widget Bus API Overview

Widgets-Core

• App
• Common
• Overlay
• Toaster
• WindowManager

Service plugins

• CallbackService
• StatsService
• WebChatService

UI plugins

• Calendar
• Callback
• CallUs
• ChannelSelector
• Console
• SideBar
• WebChat

Widgets API Reference 4

Bridge plugins

• Engage

Extensions

• Genesys Widgets Extensions

Videos

• Genesys Widgets supplemental videos

Widgets API Reference 5

Widgets Bus API overview

Contents

• 1 Overview
• 1.1 Global access
• 1.2 Genesys Widgets onReady callback
• 1.3 Extensions

• 2 CXBus Reference
• 2.1 CXBus.command
• 2.2 CXBus.configure
• 2.3 CXBus.loadFile
• 2.4 CXBus.loadPlugin
• 2.5 CXBus.registerPlugin

• 3 CXBus Plugin Interface Reference
• 3.1 oMyNewPlugin.registerCommand
• 3.2 oMyNewPlugin.registerEvents
• 3.3 oMyNewPlugin.subscribe
• 3.4 oMyNewPlugin.publish
• 3.5 oMyNewPlugin.republish
• 3.6 oMyNewPlugin.publishDirect
• 3.7 oMyNewPlugin.command
• 3.8 oMyNewPlugin.before
• 3.9 oMyNewPlugin.registry
• 3.10 oMyNewPlugin.subscribers
• 3.11 oMyNewPlugin.namespace
• 3.12 oMyNewPlugin.ready

Widgets Bus API overview

Widgets API Reference 6

• Developer

Learn about the bus that all widgets components are built on.

Related documentation:
•

Overview

Genesys Widgets is built on top of the CXBus messaging bus. CXBus uses the publish-subscribe
model to facilitate communication between the Widgets components, all of which are plugins that
can both publish events on the bus and subscribe to the events they are interested in.

With the help of the Widgets-Core plugins, CXBus makes it possible to combine the logic
implemented by user interface plugins, service plugins, and utility plugins into cohesive products that
can provide chat sessions, schedule callbacks, and so on.

Publications and subscriptions are loosely bound so that you can publish and subscribe to any event
without that event explicitly being available. This allows for plugins to lazy load into the bus or
provide conditional logic in your plugins so they can wait for other plugins to be available.

CXBus events and commands are executed asynchronously using deferred methods and promises.
This allows for better performance and standardized Pass/Fail handling for all commands. Command
promises are not resolved until the command is finished, including any nested asynchronous
commands that command may invoke. This gives you assurance that the command completed
successfully and the timing of your follow-up action will occur at the right time. As for permissions,
CXBus provides metadata in every command call including which plugin called the command and at
what time. This allows for plugins to selectively allow/deny invocation of commands.

You can use three methods to access the Bus:

• Global access
• Genesys Widgets onReady callback
• Extensions

Global access
QuickBus

window._genesys.widgets.bus
For quick access to call commands on the bus, you can access the QuickBus instance after Genesys
Widgets loads. QuickBus is a CXBus plugin that is exposed globally for your convenience. Typical use
cases for using QuickBus are for debugging or calling a command when a link or button is clicked.
Instead of creating your own plugin, you can use QuickBus to add the click handler inline in your

Widgets Bus API overview

Widgets API Reference 7

HTML.
Example:

Open WebChat

Global CXBus

CXBus is available as a global instance named "CXBus" (or window.CXBus). Unlike QuickBus, this is
not a plugin but CXBus itself.
CXBus has been updated to include a "command" method that allows you to execute a command
directly from the CXBus instance.
Example:

CXBus.command("WebChat.open");

You can use this, like QuickBus, for debugging or setting up click events.

Genesys Widgets onReady callback
Genesys Widgets provides an "onReady" callback function that you can define in your configuration.
This will be triggered after Genesys Widgets initializes. QuickBus is provided as an argument in this
function, but you may also access CXBus globally in your function.

window._genesys.widgets.onReady = function(QuickBus){

// Use the QuickBus plugin provided here to interface with the bus
// QuickBus is analogous to window._genesys.widgets.bus

};

Extensions
You can define your own plugins/widgets that interface with Genesys Widgets. For more information,
please see Genesys Widgets extensions.

CXBus Reference

The CXBus instance is exposed globally (window.CXBus) and has several methods available:

• CXBus.command
• CXBus.configure
• CXBus.loadFile
• CXBus.loadPlugin
• CXBus.registerPlugin

CXBus.command
Calls a command on the bus under the namespace "CXBus". Use this to quickly and easily call

Widgets Bus API overview

Widgets API Reference 8

commands without needing to generate a unique plugin interface object first.

Example
CXBus.command("WebChat.open", {});

Arguments

Name Type Description

Command name string The name of the command you
wish to execute.

Command options object

Optional: You may pass an object
containing properties that the
command will accept. Refer to
the documentation on each
command to see what options
are available.

Returns

Always returns a promise. You can define done(), fail(), or always() callbacks for every command.

CXBus.configure
Allows you to change configuration options for CXBus.

Example
CXBus.configure({debug: true, pluginsPath: "/js/widgets/plugins/"});

Arguments

Name Type Description

Configuration options object
An object containing properties,
similar to command options. In
this object you can change
configuration options for CXBus.

Configuration options

Name Type Description

debug boolean
Enable or disable CXBus logging
in the javascript console. Set to
true to enable; set to false to
disable. Default value is false.

pluginsPath string

The location of the Genesys
Widgets "plugins" folder.
Example: "/js/widgets/plugins/" The
default value here is "". This configuration
option is used for lazy loading plugin files.

Widgets Bus API overview

Widgets API Reference 9

Name Type Description

Be sure to configure this option when
using Genesys Widgets in lazy loading
mode.

pluginMap object

Used to change the target JS file
for each plugin or to add a new
plugin.
Example:

{sendmessage:
"https://www.yoursite.com/
plugins/custom-
sendmessage.js"}

CXBus will automatically lazy load plugins
defined in this object when something
tries to call a command on that plugin.

For instance, if SendMessage.open is
called and SendMessage isn't loaded,
CXBus will fetch it from the default
"plugins/" folder. If you want to load a
different SendMessage widget, you can
override the default URL of the JS file
associated with "sendmessage".

You can also prevent a plugin from
loading by mapping it to false.

Example:

{sendmessage: false}

Important

• Any number of plugins
can be included in this
object.

• Only works when using
the lazy-loading method
of initializing Widgets.

• Not intended to be used
to load different versions
of Genesys Widgets
plugins.

• Intended to be used
along with the proper
pluginsPath
configuration. Do not use
pluginMap method
separately.

Returns

This method returns nothing.

Widgets Bus API overview

Widgets API Reference 10

CXBus.loadFile
Loads any javascript file.

Example
CXBus.loadFile("/js/widgets/plugins/webchat.min.js");

Arguments

Name Type Description

File path string Loads a javascript file based on
the file path specified.

Returns

Always returns a promise. You can define done(), fail(), or always() callbacks. When the file loads
successfully, done() will be triggered. When the file fails to load, fail() will be triggered.

CXBus.loadPlugin
Loads a plugin file from the configured "plugins" folder.

Example
CXBus.loadPlugin("webchat");

Arguments

Name Type Description

Plugin name string

Loads a plugin from the "plugins"
folder by name (configured by
the "pluginsPath" option). Plugin
names match their CXBus
namespaces but are lowercase.
Example: To load WebChat, use
"webchat".
You can refer to the files inside
the "plugins" folder as well. The
first part of the file name will be
the name you use with this
function.
Example: Use "webchat" to load
"webchat.min.js".

Returns

Always returns a promise. You can define done(), fail(), or always() callbacks. When the plugin loads
successfully, done() will be triggered. When the plugin fails to load, fail() will be triggered.

Widgets Bus API overview

Widgets API Reference 11

CXBus.registerPlugin
Registers a new plugin namespace on the bus and returns a plugin interface object. You will use the
plugin interface object to publish, subscribe, call commands, and perform other CXBus functions.

Example
var oMyNewPlugin = CXBus.registerPlugin("MyNewPlugin");

Arguments

Name Type Description

CXBus plugin namespace string The namespace you want to
reserve for your plugin.

Returns

If the namespace is not already taken, it will return a CXBus plugin interface object configured with
the selected namespace. If the namespace is already taken, it will return false.

CXBus Plugin Interface Reference

When you register a plugin using CXBus.registerPlugin(), it returns a CXBus Plugin Interface Object.
This object contains many methods that allow you to interact with other plugins on the bus.

Let's start with the assumption that we've created the below plugin interface:

var oMyNewPlugin = CXBus.registerPlugin("MyNewPlugin");

oMyNewPlugin.registerCommand
Allows you to register a new command on the bus for other plugins to use.

Example
oMyNewPlugin.registerCommand("test", function(e){

console.log("'MyNewPlugin.test' command was called", e)

e.deferred.resolve();
});

Arguments

Name Type Description

Command name string
The name you want for this
command. When other plugins
call your command, they must
specify the namespace as well.

Widgets Bus API overview

Widgets API Reference 12

Name Type Description
Example: "test" is called on the
bus as "MyNewPlugin.test".

Command function function

The command function that is
executed when the command is
called. This function is provided
an Event Object that contains
metadata and any options
passed in.

Event object

Name Type Description

time number (integer time) The time the command was
called.

commander string

The name of the plugin that
called your command. Example:
If your plugin called a command,
the value would be
"MyNewPlugin".
You can use this information to
create plugin-specific logic in
your command.

command string

The name of this command.
Example: "MyNewPlugin.test".
This can be useful if you are
using the same function for
multiple commands and need to
identify which command was
called.

deferred deferred promise object

When a command is called, a
promise is generated. You must
resolve this promise in your
command without exception.
Either execute
e.deferred.resolve() or
e.deferred.reject().
You may pass values back
through these methods. If you
pass a value back inside reject()
it will be printed in the console as
an error log automatically.

data object

This is the object containing
command options passed in
when the command was called. If
no options were passed, this will
default to an empty object.

Returns

Returns true.

Widgets Bus API overview

Widgets API Reference 13

oMyNewPlugin.registerEvents
Registering events is a formality that allows CXBus to keep a registry of all possible events. You don't
need to register events before publishing them, but it's a best practice to always register events.

Example
oMyNewPlugin.registerEvents(["ready", "testEvent"]);

Arguments

Name Type Description
Event name array array An array of event names.

Returns

Returns true if at least one value event was included in the array. Returns false if no events are
included in the array or no array is passed in.

oMyNewPlugin.subscribe
Subscribes your plugin to an event on the bus with a callback function. When the event is published,
the callback function is executed. You can subscribe to any event, even if the event does not exist.
This allows for binding events that may come in the future.

Example
oMyNewPlugin.subscribe("WebChat.opened", function(e){

// e = Event Object. Contains metadata and attached data
//
// Example Event Object data:
//
// e.time == 1532017560154
// e.event == "WebChat.opened"
// e.publisher == "WebChat"

});

Arguments

Name Type Description

Event name string
The name of the event you want
to subscribe to. Must include the
plugin's namespace.

Callback function function

A function to execute when the
event is published. An Event
Object is passed into this
function that gives you access to
metadata and attached data.

Widgets Bus API overview

Widgets API Reference 14

Event object

Name Type Description

time number (integer time) The time the event was
published.

event string
The name of the event, including
namespace. That can be useful if
you are using the same function
to handle multiple events.

publisher string The namespace of the plugin
that published the event.

Returns

Returns the name of the event back to you if the subscription was successful. Returns false if you did
not specify an event and/or a callback function.

oMyNewPlugin.publish
Publishes an event on the bus under your plugin's namespace.

Example
// Publishes the event "MyNewPlugin.testEvent" with attached data {test: "123"}
oMyNewPlugin.publish("testEvent", {test: "123"});

Arguments

Name Type Description

Event name string
The name of the event you want
to publish. Do not include the
plugin namespace.

Attached data object An object of arbitrary properties
you can attach to your event.

Returns

Always returns true.

oMyNewPlugin.republish
A special method of publishing intended for one-off events like "ready". In some cases, an event will
fire only once. If a plugin is loaded at a later time that needs to subscribe to this event, it will never
get it because it will never be published again. To solve this problem, the "republish" method will
automatically republish an event to new subscribers as soon as they subscribe to it.

In Genesys Widgets, every plugin publishes a "ready" event. This event is published using "republish"
so that any plugin loaded and/or initialized after can still receive the event.

It is important that you only use "republish" for events that publish once. Using republish multiple

Widgets Bus API overview

Widgets API Reference 15

times for the same event can cause unwanted behavior.

Genesys Widgets plugins all publish a "ready" event. This is not related to the CXBus plugin interface
object's "ready()" method. Calling oMyNewPlugin.ready() will not publish any events.

Example
oMyNewPlugin.republish("ready", {...});

Arguments

Name Type Description

Event name string
The name of the event you want
to have republished. Do not
include the plugin namespace.

Attached data object An object of arbitrary properties
you can attach to your event.

Returns

Always returns true.

oMyNewPlugin.publishDirect
A slight variation on "publish", this method will only publish an event on the bus if it has subscribers.
The intention of this method is to avoid spamming the logs with events that no plugins are listening
to. In particular, if you have an event that publishes frequently or on an interval, "publishDirect" may
be used to minimize its impact on logs in the console.

Example
oMyNewPlugin.publishDirect("poll", {...});

Arguments

Name Type Description

Event name string
The name of the event you want
to have republished. Do not
include the plugin namespace.

Attached data object An object of arbitrary properties
you can attach to your event.

Returns

Always returns true.

oMyNewPlugin.command
Have your plugin call a command on the bus.

Widgets Bus API overview

Widgets API Reference 16

Example
oMyNewPlugin.command("WebChat.open", {...}).done(function(e){

// If command succeeds
// e == any returned data

}).fail(function(e){

// If command fails
// e == any returned data

}).always(function(){

// Always executed
});

Arguments

Name Type Description

Command name string Name of the command you wish
to call.

Command options string

Optional: An object containing
properties the command will use
in its execution. Refer to plugin
references for a list of options
available for each command.

Returns

Always returns a promise. You can define done(), fail(), or always() callbacks for every command.

oMyNewPlugin.before
Allows you to interrupt a registered command on the bus with your own "before" function. You may
modify the command options before they're passed to the command, you may trigger some action
before the command is executed, or you can cancel the command before it executes.

You may specify more than one "before" function for a command. If you do, they will be executed in a
chain where the output of the previous function becomes the input for the next function. You cannot
remove "before" functions once they have been added.

Example
oMyNewPlugin.before("WebChat.open", function(oData){

// oData == the options passed into the command call
// e.g. if this command is called: oMyPlugin.command("WebChat.open", {form: {firstname:

"Mike"
// then oData will == {form: {firstname: "Mike"
// You must return oData back, or an empty object {} for execution to continue.
// If you return false|undefined|null or don't return anything, execution of the command

will be stopped
return oData;

});

Widgets Bus API overview

Widgets API Reference 17

Arguments

Name Type Description

Command name string
Name of the function you want to
interrupt with your "before"
function.

"before" function function

A function that accepts command
options (oData in above
example). If you want the
command to continue executing,
you must return the oData
object. If you want to cancel the
command, return false or
undefined or don't return
anything. You may modify the
contents of oData before it is
sent to the command. This allows
you to override command options
or add on dynamic options
depending on external
conditions.

Returns

Returns true when you pass a properly formatted command name (e.g.
"PluginName.commandName"). Returns false when you pass an improperly formatted command
name.

oMyNewPlugin.registry
Returns the CXBus Registry lookup table.

Example
oMyNewPlugin.registry();

Arguments

No arguments.

Returns

Returns the internal CXBus registry that tracks all plugins, their commands, and their events.
Registry Structure Example:

{
"Plugin1": {

commands: ["command1", "command2"],
events: ["event1", "event2"]

},

"Plugin2": {

Widgets Bus API overview

Widgets API Reference 18

commands: ["command1", "command2"],
events: ["event1", "event2"]

}
}

oMyNewPlugin.subscribers
Returns a list of events and their subscribers.

Example
oMyNewPlugin.subscribers();

Arguments

No arguments.

Returns

Returns an object identifying a list of events being subscribed to, and a list of plugin names
subscribed to each event.

Example of WebChatService's subscribers:

// Format {"eventname": ["subscriber1", "subscriber2"]}

{
"WebChatService.agentConnected":["WebChat"],
"WebChatService.agentDisconnected":["WebChat"],
"WebChatService.ready":[],
"WebChatService.started":["WebChat"],
"WebChatService.restored":["WebChat"],
"WebChatService.clientDisconnected":[],
"WebChatService.clientConnected":[],
"WebChatService.messageReceived":["WebChat"],
"WebChatService.error":["WebChat"],
"WebChatService.restoreTimeout":["WebChat"],
"WebChatService.restoreFailed":["WebChat"],
"WebChatService.ended":["WebChat"],
"WebChatService.agentTypingStarted":["WebChat"],
"WebChatService.agentTypingStopped":["WebChat"],
"WebChatService.restoredOffline":["WebChat"],
"WebChatService.chatServerWentOffline":["WebChat"],
"WebChatService.chatServerBackOnline":["WebChat"],
"WebChatService.disconnected":["WebChat"],
"WebChatService.reconnected":["WebChat"]

}

oMyNewPlugin.namespace
Returns your plugin's namespace.

Example
oMyNewPlugin.namespace();

Widgets Bus API overview

Widgets API Reference 19

Arguments

No arguments.

Returns

Returns your plugin's namespace. If your plugin's namespace is "MyNewPlugin", it will return
"MyNewPlugin".

oMyNewPlugin.ready
Marks your plugin as ready to have its commands called. This method is required to be called for all
plugins. You should call this method after all your commands are registered, initialization code is
finished, and configuration has completed. Failure to call this method will result in your commands
being unexecutable.

Example
oMyNewPlugin.ready();

Arguments

No arguments.

Returns

Returns nothing.

Widgets Bus API overview

Widgets API Reference 20

App

Contents

• 1 Overview
• 1.1 Usage
• 1.2 Customization
• 1.3 Mobile support

• 2 Configuration
• 2.1 Description
• 2.2 Example
• 2.3 Options

• 3 Localization
• 4 API commands

• 4.1 setTheme
• 4.2 getTheme
• 4.3 reTheme
• 4.4 themeDemo
• 4.5 setLanguage
• 4.6 closeAll
• 4.7 updateAJAXHeader
• 4.8 removeAJAXHeader
• 4.9 registerExtension
• 4.10 registerAutoLoad
• 4.11 deregisterAutoLoad

• 5 API Events

App

Widgets API Reference 21

• Developer

Learn how to control your widgets.

Related documentation:
•

Overview

App is the main controller for Genesys Widgets and has no UI. It controls all startup routines, global
configurations, and extensions, and it executes the onReady event and distributes changes to theme,
language, mobile mode, and other application-wide effects.

Usage
App's main interface is its configuration. You set all global defaults using the
window._genesys.widgets.main property. App also has a few commands you can use to change
the language and theme.

Customization
App itself cannot be customized, but its configuration options affect all widgets.

Mobile support
App has built-in mobile detection and can automatically notify all widgets to switch to mobile mode.
You can also control this manually.

Configuration

Description
App uses the configuration property _genesys.widgets.main. App controls the Genesys Widgets
product as a whole, handling themes, languages, and mobile devices.

Example
window._genesys.widgets = {

main: {
theme: 'dark',

App

Widgets API Reference 22

themes: {

dark: 'cx-theme-dark',
light: 'cx-theme-light',
blue: 'cx-theme-blue',
red: 'cx-theme-red'

},
lang: 'en',
i18n: 'i18n.json',
mobileMode: 'auto',
mobileModeBreakpoint: 600,
debug: true,
downloadGoogleFont: true,
googleFontUrl: 'https://apps.mypurecloud.com/webfonts/roboto.css',
header: {'Authorization': 'value'},
cookieOptions: {

secure: true,
domain: 'genesys.com',
path: '/',
sameSite: 'Strict'

}
},
onReady: function(){

// Do something on Widgets ready
}

}

Options

Name Type Description Default Required Introduced/
Updated

main.themes object

An object list
containing
the CSS
classname
for each
theme. The
property
names are
used to
select the
theme in the
theme
property, for
example
{dark: cx-
theme-dark,
light: cx-
theme-
light, red:
cx-theme-
red, blue:
cx-theme-
blue}.
Where dark
and light

{dark: 'cx-
theme-dark',
light: 'cx-
theme-
light'}

n/a

App

Widgets API Reference 23

Name Type Description Default Required Introduced/
Updated

are the built-
in themes
provided in
Genesys
Widgets,
and red and
blue are
example
custom
theme
names you
may create
on your own.

Important
It is not
necessary to
define the
dark and
light theme
as shown in
this example.
It is included
to help show
how the
formatting
works.
Whatever
you put in
this object
will be
merged with
the default
themes
object
internally.

main.theme string

Selects the
theme to
apply to
Genesys
Widgets
from the
Themes
object. Uses
the property
name of the
theme, for
example
using the
example
from themes
above,
possible
values for
this could be
dark, light,
red, blue.

dark n/a

App

Widgets API Reference 24

Name Type Description Default Required Introduced/
Updated

main.lang string

Select the
language to
use from the
i18n
language
pack.
Language
codes are
selected by
the
customer.
Any
language
code format
can be used
as long as
this property
matches one
of the
language
codes in
your i18n
language
pack. For
more
information
about
localization,
see
localization.

en n/a

main.i18n URL string or
JSON

Either a path
to a remote
i18n.json
language
pack file or
an inline
JSON
language
pack
definition.
For more
information
about
language
packs, see
localization.

en

Default
English
language
strings are
built into
each widget
and are
displayed by
default.
Defining this
i18n
language
pack
overrides
the built-in
strings.

n/a

main.header object

An object
containing a
key value
pair for the
authorization
header.

n/a n/a 9.0.002.06

array Note: For none When lazy

App

Widgets API Reference 25

Name Type Description Default Required Introduced/
Updated

main.preload

use with lazy
loading only.
A list of
plugins you
want pre-
loaded at
startup. You
may want
certain
plugins,
such as
SideBar, to
be shown on
screen as
soon as
possible; to
do so, you
may add
'sidebar' to
this preload
plugins
array so it
will be
loaded after
Widgets
starts up.
The names
you add to
the list must
match the
first part of
the plugin
filename you
wish to load.
Example:
sidebar will
load
sidebar.min.js
from the
plugins/
folder. All
filenames
are
lowercase.

Important
This preload
array is
intended for
use when
running
widgets in
lazy loading
mode. You
may also use
this to pre-

loading
Widgets

App

Widgets API Reference 26

Name Type Description Default Required Introduced/
Updated

load your
own custom-
made
plugins.

main.mobileModeboolean/
string

Mobile Mode
setting.
true = Force
Mobile Mode on
all devices.
false =
Disable Mobile
Mode
completely.
auto = Genesys
Widgets
automatically
switches
between mobile
and desktop
,odes using the
mobileModeBreakpoint
property and
UserAgent
detection.

auto n/a

main.timeFormatnumber/
string

This sets the
time format
for the
timestamps.
It can be 12
or 24.

12 n/a

main.mobileModeBreakpointnumber

The
breakpoint
width in
pixels where
Genesys
Widgets will
switch to
Mobile
Mode.
Breakpoint
checked at
startup only.

600 n/a

main.debug boolean

Enable
debug
logging from
the bus to
appear in
the browser
console.

false n/a

main.customStylesheetIDstring The HTML ID
of a n/a n/a

main.downloadGoogleFontboolean By default,
Genesys true n/a

App

Widgets API Reference 27

Name Type Description Default Required Introduced/
Updated

Widgets
downloads
and uses the
Google font
Roboto. To
disable this
download,
set value
false.

main.googleFontUrlstring

The string
used to refer
the URL
where the
Google fonts
are hosted
in Genesys
Hosted
Repository.
You can
configure
one of the
Genesys
Hosted
region font
URLs
specified
here
Genesys
Web Fonts.

Important
This Option is
only
applicable
when the
downloadGoogleF
option is set
to true.

https://apps.mypurecloud.com/
webfonts/
roboto.css

n/a 9.0.018.00

main.deploymentIDstring

The string
used to
customize
cookie
names so
that multiple
Widgets
deployments
can run in
the same
domain.

n/a n/a 9.0.006.02

main.cookieOptionsobject

An object
containing
cookie
attributes
that applies

{sameSite:'Strict'}n/a 9.0.017.01

App

Widgets API Reference 28

Name Type Description Default Required Introduced/
Updated

globally to
all Widgets.
The
following
cookie
attributes
are
supported:

1. secure -
Either
true or
false,
indicating
if the
cookie
transmission
requires
a secure
protocol
(https).

2. domain -
A string
indicating
a valid
domain
where
the
cookie
should
be
visible.

3. path - A
string
indicating
the path
where
the
cookie is
visible.

4. expires -
Specifies
the
number
of days,
either
from
time of
creation
or from a
date
instance,

App

Widgets API Reference 29

Name Type Description Default Required Introduced/
Updated

until the
cookie is
to be
removed.
domain
and path
can be
used to
make
cookies
compatible
with
environments
that use
a non
FQDN
URL,
such as
an
intranet
hostname.
However,
the
domain
should
only be
manually
set in
production
if the
automated
values
are
causing
problems.
Otherwise,
rely on
the
automated
domain
and
path.

5. sameSite
- This
maps to
the
cookie
SameSite
attribute
allowing
the
cookie to

App

Widgets API Reference 30

Name Type Description Default Required Introduced/
Updated

be
restricted
to a first-
party or
same-
site
context.
It can
take any
of the
supported
values
that
SameSite
attribute
takes.

Important
The
values
are
automatically
set by
Widgets
to
support
cross-
sub-
domain
cookies.
Modifying
these
options
overrides
the
automated
values
and
might
break
cross-
sub-
domain
cookie
support if
not
properly
set. For
usage,
please
refer to
the above
example

onReady function A callback
function that none n/a

App

Widgets API Reference 31

Name Type Description Default Required Introduced/
Updated

is invoked
when the
Widgets are
ready and
initialized
with the
configuration
provided.

Localization

No localization options.

API commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('App.themeDemo');

setTheme
Sets the theme for Genesys Widgets from the list of registered themes. Default themes are light and
dark. You can register as many new themes as you need.

Example
oMyPlugin.command('App.setTheme', {theme: 'light'}).done(function(e){

// App set theme successfully

}).fail(function(e){

// App failed to set theme
});

App

Widgets API Reference 32

Options

Option Type Description

theme string

Name of the theme you want to
use. This name is specified in
window._genesys.main.themes.
Default themes are light and
dark.

Resolutions

Status When Returns

resolved Theme exists and is successfully
changed

The name of the theme that was
chosen, for example light.

rejected Theme does not exist 'Invalid theme specified'.

getTheme
Get the CSS classname for the currently selected theme.

Example
oMyPlugin.command('App.getTheme').done(function(e){

// App got theme successfully
// e == CSS classname for current theme

}).fail(function(e){

// App failed to get theme
});

Resolutions

Status When Returns

resolved Always
CSS classname for the currently
selected theme, for example, cx-
theme-light.

rejected Never n/a

reTheme
Accepts an HTML reference (either string or jQuery wrapped set) and applies the proper CSS theme
classname to that HTML and returns it back. When widgets receive the theme event from App, they
pass in their UI containers into App.reTheme to have the old theme classname stripped and the new

App

Widgets API Reference 33

classname applied.

Example
oMyPlugin.command('App.reTheme', {html: '
Test Theme
'}).done(function(e){

// App set theme successfully

}).fail(function(e){

// App failed to set theme
});

Options

Option Type Description

html string or jQuery Wrapped Set HTML string or jQuery Wrapped
Set you want to have modified.

Resolutions

Status When Returns

resolved HTML is provided and theme is
updated

HTML that was passed-in and
modified

rejected No HTML is provided 'No HTML provided by [plugin
name]'

themeDemo
Start an automated demo of each theme. All registered themes will be applied with a default delay
between themes of 2 seconds. You can override this delay. This command is useful for comparing
themes or testing themes with official or custom widgets.

Example
oMyPlugin.command('App.themeDemo', {delay: 1000}).done(function(e){

// App demo successfully started

}).fail(function(e){

// App failed to start demo
});

Options

Option Type Description

delay number Number of milliseconds between
theme changes. Default value is

App

Widgets API Reference 34

Option Type Description
2000 milliseconds.

Resolutions

Status When Returns
resolved Always n/a
rejected Never n/a

setLanguage
Changes the language

Example
oMyPlugin.command('App.setLanguage', {lang: 'eng'}).done(function(e){

// App set language successfully started

}).fail(function(e){

// App failed to set language
});

Options

Option Type Description

lang string
Change the language of Genesys
Widgets. Switches all strings in
Widgets to selected language.

Resolutions

Status When Returns
resolved Language successfully changed n/a
rejected No language code is provided No language code provided

rejected No matching language code is
specified in your language pack

No matching language code
found in language pack

closeAll
Publishes the 'App.closeAll' event that requests all widgets to close.

Example
oMyPlugin.command('App.closeAll').done(function(e){

App

Widgets API Reference 35

// App closed all successfully

}).fail(function(e){

// App failed to close all
});

Resolutions

Status When Returns
resolved Always n/a
rejected Never n/a

updateAJAXHeader
Introduced: 9.0.002.06

Updates the Authorization header.

Example
_genesys.widgets.bus.command('App.updateAJAXHeader', {header:

{'Authorization': 'value'}

});

Resolutions

Status When Returns
resolved Header is updated n/a
rejected Never No request header found

removeAJAXHeader
Introduced: 9.0.002.06

Removes the set Authorization header.

Example
_genesys.widgets.bus.command('App.removeAJAXHeader');

Resolutions

Status When Returns
resolved Always n/a

App

Widgets API Reference 36

registerExtension
Introduced: 9.0.002.06

Allows you to register and initialize new extensions at runtime instead of predefining extensions
before Genesys Widgets starts up.

Options

Option Type Description

undefined function
Your extension function. Receives
the following arguments: $
(jQuery), CXBus, Common

Resolutions

Status When Returns
resolved Valid 'extension' object provided n/a

rejected Invalid 'extension' option
provided n/a

registerAutoLoad
(For use with lazy loading only) Allows you to register a plugin into the preload plugins array so that it
can be pre-loaded at the startup rather than lazy loading later. This can be useful when there is an
active session maintained by your Widget and you would like to show it immediately at startup during
page refresh or navigating across pages.

Note: This command is intended for use when running widgets in lazy loading mode.
You may also use this to register and pre-load your own custom-made plugins.

Options

Option Type Description

name string
The name of the plugin that
needs to be registered for auto
loading.

Resolutions

Status When Returns

resolved A plugin is added into the
preload list n/a

rejected Never n/a

deregisterAutoLoad
(For use with lazy loading only) Allows you to de-register a plugin from the preload plugins array so
that it will not be pre-loaded at startup. This can be useful when there is no more active session

App

Widgets API Reference 37

maintained by your Widget and you don't want to show it on the screen immediately at startup.

Note: This command is intended for use when running widgets in lazy loading mode.
You may also use this to de-register your own custom-made plugins.

Options

Option Type Description

name string
The name of the plugin that
needs to be de-registered from
auto loading.

Resolutions

Status When Returns

resolved A plugin is removed from the
preload list n/a

rejected Never n/a

API Events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('App.ready', function(e){});

Name Description Data

ready CallUs is initialized and ready to
accept commands.

i18n
Published when the language for
Genesys Widgets is changed or is
being set for the first time.

'(language code)'

theme Published when the theme for
Genesys Widgets is changed or is

{theme: '(theme CSS
classname)'}

App

Widgets API Reference 38

Name Description Data
being set for the first time.

timeFormat
Published when the time format
for Genesys Widgets is changed
or is being set for the first time.

{timeFormat: iTimeFormat}

App

Widgets API Reference 39

Common

Contents

• 1 Common.Generate.Container({options})
• 1.1 Example
• 1.2 Arguments

• 2 Common.Generate.Buttons({options})
• 2.1 Example
• 2.2 Arguments

• 3 Common.Generate.Icon(name)
• 3.1 Example
• 3.2 Arguments

• 4 Common.Generate.Scrollbar(element, {options})
• 4.1 Example
• 4.2 Arguments

• 5 Common.config(object)
• 5.1 Example
• 5.2 Arguments

• 6 Common.checkPath(object, path)
• 6.1 Example
• 6.2 Arguments

• 7 Common.createPath(object, path, value)
• 7.1 Example
• 7.2 Arguments

• 8 Common.linkify(string, options)
• 8.1 Example
• 8.2 Arguments

• 9 Common.log(mixed, type)
• 9.1 Example
• 9.2 Arguments

Common

Widgets API Reference 40

• 10 Common.sanitizeHTML(string)
• 10.1 Example
• 10.2 Arguments

• 11 Common.updateTemplateI18n(element, object)
• 11.1 Example
• 11.2 Arguments

• 12 Common.debugIcons
• 12.1 Example

• 13 Common.debug
• 13.1 Example
• 13.2 Arguments

• 14 Common.error
• 14.1 Example
• 14.2 Arguments

• 15 Common.populateAllPlaceholders
• 15.1 Example
• 15.2 Arguments

• 16 Common.populateLanguageStrings
• 16.1 Example
• 16.2 Arguments

• 17 Common.populateIcons
• 17.1 Example
• 17.2 Arguments

• 18 Common.insertIcon
• 18.1 Example
• 18.2 Arguments

• 19 Common.injectScript
• 19.1 Example
• 19.2 Arguments

• 20 Common.mobileScreenScale
• 20.1 Example
• 20.2 Arguments

• 21 Common.showLoading

Common

Widgets API Reference 41

• 21.1 Example
• 21.2 Arguments

• 22 Common.hideLoading
• 22.1 Example
• 22.2 Arguments

• 23 Common.showWaiting
• 23.1 Example
• 23.2 Arguments

• 24 Common.hideWaiting
• 24.1 Example
• 24.2 Arguments

• 25 Common.watch
• 25.1 Example
• 25.2 Arguments

• 26 Common.addDialog
• 26.1 Example
• 26.2 Arguments

• 27 Common.showDialog
• 27.1 Example
• 27.2 Arguments

• 28 Common.hideDialog
• 28.1 Example
• 28.2 Arguments

• 29 Common.hideDialogs
• 29.1 Example
• 29.2 Arguments

• 30 Common.showAlert
• 30.1 Example
• 30.2 Arguments

• 31 Common.bytesToSize
• 31.1 Example
• 31.2 Arguments

• 32 Common.getFormattedTime

Common

Widgets API Reference 42

• 32.1 Example
• 32.2 Arguments

Common

Widgets API Reference 43

• Developer

Learn how to access Widgets utility functions and dynamically generate the common HTML
containers used throughout Genesys Widgets.

Related documentation:
•

Common is a utility object available for import into Plugins/Widgets and Extensions. It is also
accessible directly from the path window._genesys.widgets.common.

Common provides utility functions and dynamically generates common HTML Containers used
throughout Genesys Widgets.

For all examples below, assume that _genesys.widgets.common has been stored in a local variable
named 'Common'.

var Common = _genesys.widgets.common;

Common.Generate.Container({options})

Dynamically generates a new HTML Container in matching the style of Genesys Widgets with the
selected components you request in your options object. Returns the generated container HTML as a
jQuery wrapped set.

Example
'Generate an Overlay Container'

var ndContainer = Common.Generate.Container({

type: 'overlay',
title: 'My Overlay',body: 'Some HTML here as a string or jQuery wrapped set',
icon: 'call-outgoing',
controls: 'close',
buttons: false

}),

'Generate a Toast Container'

var ndContainer = Common.Generate.Container({

type: 'generic',
title: 'My Toast',body: 'Some HTML here as a string or jQuery wrapped set',
icon: 'chat',

Common

Widgets API Reference 44

controls: '',
buttons: {

type:'binary',
primary: 'OK',
secondary:'cancel'

}
}),

Arguments
Argument Type Description

options object An object containing options to
apply to the generated container.

options.type string

'generic' or 'overlay'. Overlay
containers have special CSS
properties for appearing inside
the Overlay widget. Default is
'generic'.

options.title string Title to apply to the container's
titlebar area.

options.body string or jQuery wrapped set The HTML body you want the
container to wrap.

options.icon string CSS Classname of icon to use.

options.controls string

Select from a set of window
control buttons to show at the
top right. 'close' = Show only the
close button. 'minimize' = Show
only the minimize button. 'all' =
Show both close and minimize
buttons.

options.buttons object
Options for displaying action
buttons at the bottom of the
container, such as OK and Cancel
buttons.

options.buttons.type string

Currently 'binary' is the only
supported button set at this time.
Additional sets and
arrangements will be available in
a later release. Please pass
'binary' as the type here if you
wish to show typical 'accept' and
'dismiss' buttons.

options.buttons.primary string
Display name on the primary
button. (for example 'OK', 'Yes',
'Accept', 'Continue', etc.)

options.buttons.secondary string
Display name on the secondary
button. (for example 'Cancel',
'No', 'Dismiss', 'Reject', etc.)

Common

Widgets API Reference 45

Common.Generate.Buttons({options})

Dynamically generates a new HTML Binary Button set in matching the style of Genesys Widgets with
the selected options in your options object. Returns the buttons as a jQuery wrapped set.

Example
'Generate Binary Buttons'

var ndButtons = Common.Generate.Buttons({

type: 'binary',
primary: 'OK',
secondary: 'Cancel'

}),

Arguments
Argument Type Description

options object Options for generating buttons,
such as OK and Cancel buttons.

options.type string

Currently 'binary' is the only
supported button set at this time.
Additional sets and
arrangements will be available in
a later release. Please pass
'binary' as the type here if you
wish to show typical 'accept' and
'dismiss' buttons.

options.primary string
Display name on the primary
button. (for example 'OK', 'Yes',
'Accept', 'Continue', etc.)

options.secondary string
Display name on the secondary
button. (for example 'Cancel',
'No', 'Dismiss', 'Reject', etc.)

Common.Generate.Icon(name)

Dynamically generates an icon from the included icon set. Icons are in SVG format.

Example
'Generate Chat Icon'

Common

Widgets API Reference 46

var ndChatIcon = Common.Generate.Icon('chat');

'Insert Chat Icon'

$('#your_icon_container').append(Common.Generate.Icon('chat'));

Arguments
Argument Type Description

name string
Select the icon you want to
generate by name. See the icon
reference page for icon names.

Common.Generate.Scrollbar(element, {options})

Dynamically generates a widget scrollbar for selected DOM element.

Example
'Generate Scrollbar for a container'

var scrollContainer = Common.Generate.Scrollbar($('#your_container'))

Arguments
Argument Type Description

element DOM element or jQuery selector Select the element to which you
would like to apply scrollbar.

options object
This is an iScroll component. So,
all the options that iScroll
supports can be passed here.

Common.config(object)

Configure some debug options for Common at runtime.

Common

Widgets API Reference 47

Example
'Enable full debug logging'

Common.config({debug: true, debugTimestamps: true});

Arguments
Argument Type Description

object object

Supported options are 'debug'
and 'debugTimestamps'. Setting
debug to true will enable debug
messages created by
Common.log(). Setting
debugTimestamps to true will
add timestamps to the front of
each debug message created by
Common.log(). Default value for
both is false.

Common.checkPath(object, path)

Check for the existence of a sub-property of an object at any depth. Returns the value of that
property if found otherwise it returns undefined. Useful for checking configuration object paths
without having to check each sub-property level individually.

Example
'Check for window._genesys.main'

var oMainConfig = false;

if(oMainConfig = Common.checkPath(window, '_genesys.main')){
//... Utilize oMainConfig

}

Arguments
Argument Type Description

object object
An Object you want checked for a
particular sub property at any
depth.

path string The object path in dot notation

Common

Widgets API Reference 48

Argument Type Description
you wish to search for.

Common.createPath(object, path, value)

Related to checkPath, createPath lets you specify a target object and path string but lets you create
the path and set a value for it. This saves you the pain of defining each node in the path individually.
All nodes in your path will be created as objects. Your final node, the property you are trying to
create, will be whatever value you assign it.

Example
'Create window._genesys.main'

var oMainConfig = false;

if(oMainConfig = Common.createPath(window, '_genesys.main', {debug:true})){
//... Utilize oMainConfig

}

Arguments
Argument Type Description

object object An object you want to add your
new path to.

path string The object path in dot notation
you wish to create.

value any
The value you want to assign to
the final node (property) in your
path.

Common.linkify(string, options)

Search for and convert URLs within a string into HTML links. Returns transformed string.

Example
'Check for window._genesys.main'

var sString = 'Please visit www.genesys.com';
sString = Common.linkify(sString, {target: 'self'});

Common

Widgets API Reference 49

// sString == 'Please visit www.genesys.com

Arguments
Argument Type Description

string string Any string you want to check for
URLs and have them converted.

options object A list of options to apply to the
linkify operation.

options.target string

Choose the HTML TARGET
attribute to apply to the
generated links. Default is
'_blank'. Set this option to 'self'
to apply the target '_self' to the
generated links.

Common.log(mixed, type)

Log something to the browser's console. When using Common.log, _genesys.main.debug must be set
to true to see your logs. This allows you to add debug logging to your code without worrying about
unwanted debug messages in production. If timestamps are enabled, they will be prefixed to all
messages printed through Common.log.

Example
'Check the contents of window._genesys.main'

var Common = _genesys.widgets.common;
Common.log(window._genesys.main);

if(!window._genesys.main){
Common.log('window._genesys.main is not defined', 'error');

}

Arguments
Argument Type Description

mixed Any Any value or message you'd like
to log.

type string
You can specify the log type,
such as 'log', 'debug' and 'error'.
Default type is 'log'. Note, if your
browser doesn't support the

Common

Widgets API Reference 50

/u01/app/apache/html/extensions/PrincePDF/pdf/www.genesys.com

Argument Type Description
'debug' or 'error' log type, use
'log' instead.

Common.sanitizeHTML(string)

Search for and escape characters within a string. Returns transformed string. Useful for escaping
HTML.

Example
'Check for window._genesys.main'

var sString = 'Please visit www.genesys.com';

sString = Common.sanitizeHTML(sString);

// sString == 'Please visit www.genesys.com''

Arguments
Argument Type Description

string string Any string you want to be
transformed.

Common.updateTemplateI18n(element, object)

Searches through an element's contents for i18n string elements to update with new strings. Used
when updating the language in real-time. Works by searching for elements with the CSS classname
'i18n' and reading the custom attribute 'data-message' to match the string name in the language
object. See example below.

Example
'Check for window._genesys.main'

var ndContainer = $('

');

Common.updateTemplateI18n(ndContainer, {CustomButton001: 'Accept'});

Common

Widgets API Reference 51

/u01/app/apache/html/extensions/PrincePDF/pdf/www.genesys.com

// ndContainer ==
Accept

Arguments
Argument Type Description

element jQuery wrapped set Element you want to search
within to replace i18n strings.

object Object of i18n Strings

The list of languages strings you
want to update your UI with. This
object comes from the App.i18n
event or you can define your own
custom object inline or using
some other system. Object
format is a simple name:value
pair format. the 'data-message'
attribute on your HTML element
must match one of these
property names to be updated.

Common.debugIcons

Returns the list of all the Icons with their names that Widgets support.

Example
'Fetch and Display list of icons present in Widgets'

Common.debugIcons()

Common.debug

Adds debug logs in to the browser's console. When using Common.debug, _genesys.main.debug
must be set to true to see your logs. This allows you to add debug logging to your code without
worrying about unwanted debug messages in production. If timestamps are enabled, they will be
prefixed to all messages printed through Common.debug.

Example
'Check the File upload limits in WebChatService'

Common

Widgets API Reference 52

Common.debug(data_server_returned_file_limits);

Arguments
Argument Type Description

mixed Any
Any value or message you'd like
to add debug log. Note: This is
only supported if your browser
supports debug log type.

Common.error

Adds error logs in to the browser's console. When using Common.error, _genesys.main.debug must
be set to true to see your logs. This allows you to add error logging to your code without worrying
about unwanted error messages in production.

Example
'Logging error messages'

Common.error('A widget plugin did not receive the following config:');

Arguments
Argument Type Description

mixed Any
Any value or message you'd like
to add error log. Note: This is
only supported if your browser
supports error log type.

Common.populateAllPlaceholders

Adds place holder content to the input elements in a form with the given text strings.

Example
'Show placeholders strings in a form'

Common.populateAllPlaceholders($('#your_form'), {strings})

Common

Widgets API Reference 53

Arguments
Argument Type Description

Form Selector jQuery DOM selector for a form

Form containing input elements.
Note: Input elements should
contain i18n class name and data
attribute 'data-message-type'
with value 'placeholder' for the
place holder details to appear.

Key/Value pairs object

Placeholder messages that needs
to be displayed. This is an object
with key-value pairs where, key
should be equal to the 'data-
message' attribute value of an
input element and value can be
any text that you would like to
display.

Common.populateLanguageStrings

Adds the preferred language place holder text to the given input elements in a form.

Example
'Show placeholders strings in a form'

Common.populateLanguageStrings($('#your_form'), {strings})

Arguments
Argument Type Description

Form Selector jQuery DOM selector for a form

Form containing input elements.
Note: Input elements should
contain i18n class name and data
attribute 'data-message-type'
with value 'placeholder' for the
place holder details to appear.

Key/Value pairs object

Placeholder messages that needs
to be displayed. This is an object
with key-value pairs where, key
should be equal to the 'data-
message' attribute value of an
input element and value can be

Common

Widgets API Reference 54

Argument Type Description
any text that you would like to
display.

Common.populateIcons

Show all the Icons on a Widget.

Example
'Populate all Widget Icons'

Common.populateIcons($('#your_continer'));

Arguments
Argument Type Description

element jQuery DOM selector
Specify the Widget container for
which all the Icons have to be
displayed.

Common.insertIcon

Adds an icon before the selected element.

Example
'Insert a check mark icon to an element you desire.'

Common.insertIcon($('#your_element'), 'alert-checkmark', 'alert')

Arguments
Argument Type Description

element jQuery DOM selector An html element to which Icon is
to be displayed.

icon name string Name of the Icon that you would

Common

Widgets API Reference 55

Argument Type Description
like to display. Note: Refer to
Common.debugIcons method to
find out all the icons names that
widgets supports.

icon Aria Name string Name for the icon to be read by
screen readers.

Common.injectScript

Injects javascript code dynamically into widgets with the help of a script tag.

Example
'Inject your Widget WebChat extension plugin.'

Common.injectScript('path/to/LoadWebChat.ext.js')

Arguments
Argument Type Description

Script file name string path to JavaScript file JavaScript file name that needs
to be injected into widgets.

Common.mobileScreenScale

Re-sizes and fits Widget to any mobile screen.

Example
'Fit your widget to any mobile screen.'

var mobileScaledWidget = Common.mobileScreenScale($('#your_widget'));

Common

Widgets API Reference 56

Arguments
Argument Type Description

element jQuery DOM Selector

Your main Widget wrapper
container selector that contains
the entire Widget with 'cx-
titlebar', 'cx-body', 'cx-footer',
'cx-button-container' and 'cx-
message-container' classes in it.

Common.showLoading

Show loading spinner Icon.

Example
'Show loading spinner during an Ajax request'

Common.showLoading($('#your_container'))

Arguments
Argument Type Description

element jQuery DOM Selector
An html container where loading
spinner should appear. This adds
a class name 'cx-loading'.

Common.hideLoading

Remove loading spinner Icon.

Example
'Remove loading spinner after the Ajax request'

Common.hideLoading($('#your_container'))

Common

Widgets API Reference 57

Arguments
Argument Type Description

element jQuery DOM Selector An html container which contains
the loading spinner.

Common.showWaiting

Show waiting Icon.

Example
'Show waiting Icon when uploading a file.'

Common.showWaiting($('#your_container'),'waiting'))

Arguments
Argument Type Description

element jQuery DOM Selector
An html container where waiting
symbol should appear. This adds
a class name 'cx-waiting'.

Aria Label string
The value of the aria-label
attribute for the loading screen
icon. The default value is
‘waiting’

Common.hideWaiting

Remove waiting Icon.

Example
'Remove waiting Icon after file upload is done.'

Common.hideWaiting($('#your_container'))

Common

Widgets API Reference 58

Arguments
Argument Type Description

element jQuery DOM Selector An html container which contains
the waiting symbol.

Common.watch

Repeat your function execution for every 'x' milliseconds (default 1 second) up to a maximum
number of times (default - infinite) or till your function returns true.

Example
'Make Request Notifications till none are pending.'

Common.watch(function(iteration, maxIterations){

if(bRequestNotificationsPending){
// ..POST Request

}
return !bRequestNotificationsPending;

}, 3000, 30)

Arguments
Argument Type Description

function name function
The function that you would like
to execute. It should return true/
false.

frequency milliseconds Execute the function for every 'x'
milliseconds until it returns true.

limit number The maximum number of times
function is executed.

Common.addDialog

Create your own dialog box and append it in to the Widget.

Example
'Add a dialog box on your preferred container div

Common

Widgets API Reference 59

Common.addDialog($('#your_container'), $('#your_dialog_box'), 'my_warning')

Arguments
Argument Type Description

element jQuery selector The parent container that holds
the dialog box.

element jQuery selector

The actual dialog box that you
would like to display. This should
contain the data-dialog attribute
with the value equal to the dialog
box name.

name string Dialog box name.

Common.showDialog

Show the dialog box that you prefer, using the dialog box name created with Common.addDialog().

Example
'Show the dialog box created using Common.addDialog()'

Common.showDialog($('#your_container'), 'your_dialog_box_name');

Arguments
Argument Type Description

element jQuery Selector The parent container which has
the Dialog box appended in to it.

name string The actual dialog box name.

Common.hideDialog

Hide the dialog box that you showed using Common.showDialog().

Common

Widgets API Reference 60

Example
'Hide dialog box'

Common.hideDialog($('#your_container'), 'your_dialog_box_name);

Arguments
Argument Type Description

element jQuery Selector The parent container which is
showing the dialog box.

name string The actual dialog box name.

Common.hideDialogs

Hide all the dialog boxes. Dialog box name is not needed here.

Example
'Hide all dialog boxes.'

Common.hideDialogs($('#your_container'));

Arguments
Argument Type Description

element jQuery Selector The parent container which is
showing all the dialog boxes.

Common.showAlert

Show a native alert dialog box on the Widget you prefer with your own text message. By default, a
primary button is added to dismiss the alert dialog.

Example
Show an alert dialog box on the Widget you prefer. But default it adds the dismiss button.

Common.showAlert($('.cx-widget.cx-webchat'), {text: 'your alert message', buttonText: 'Ok'})

Common

Widgets API Reference 61

Arguments
Argument Type Description

element jQuery selector

The Widget plugin container that
should display the alert dialog.
This should be the top level
container wrapper holding the
Widget.

options object
The data options containing the
text to be shown on the Alert
dialog box.

options.text string Display text on the Alert dialog
box.

options.buttonText string Display text on the primary
button. (for example 'OK')

Common.bytesToSize

Convert any number in bytes to Kilobytes, Megabytes, Gigabytes and Terabytes.

Example
'bytes to KB, MB, GB or TB.'

var fileSize = Common.bytesToSize(parseInt(fileSizeInBytes));

Arguments
Argument Type Description

bytes number Number in bytes size.

Common.getFormattedTime

Returns time in 12 hrs or 24 hrs format from the actual date timestamp. If no timestamp is provided,
it uses current time.

Example
'convert date timestamp to return time in 12 hrs format'

Common

Widgets API Reference 62

var formattedTime = Common.getFormattedTime(timestamp, 12);

Arguments
Argument Type Description

timestamp Date JavaScript Date timestamp
object.

format number Time format with value 12 or 24.

Common

Widgets API Reference 63

Overlay

Contents

• 1 Overview
• 1.1 Usage
• 1.2 Customization
• 1.3 Mobile Support

• 2 Configuration
• 3 Localization
• 4 API commands

• 4.1 open
• 4.2 close

• 5 API events

Overlay

Widgets API Reference 64

• Developer

Learn how to use an overlay window control that widgets can inject their UI into.

Related documentation:
•

Overview

The Overlay plugin provides an overlay window control that widgets can inject their UI into, accepting
the HTML UI, placing it inside an overlay control, and displaying the UI onscreen in a uniform overlay
window fashion. This prevents individual widgets from managing the overlay themselves. It also
means that each widget's UI can be moved between different container types.

Overlay provides these benefits:

• Shows the UI in the center of the window.
• Open and close transition animations.
• No overlapping overlays. Only one at a time. Automatically managed by the Overlay plugin.
• Auto-recenter as the browser window size is changed.
• Automatic application of mobile styles when running in mobile mode.

Usage
Overlay is easy to use; you simply open and close it. When you call Overlay.open, you pass in the
HTML content you want to show. If you call Overlay.open again while an overlay is already open, it will
automatically close the previous overlay before showing yours (unless the previous overlay has
reserved the overlay to prevent new overlays).

Important
By default, the overlay has no visible styles or content. You must pass in the HTML you
want to show inside the Overlay area. Typically you should create an overlay-type
container using Common.Generate.Container, put your content inside that, then send
the whole thing into Overlay.open.

Customization
Overlay does not have customization options.

Overlay

Widgets API Reference 65

Mobile Support
Overlay automatically applies mobile CSS styles to its outer container to affect the content within the
overlay view. It is up to the content inside the overlay view to dynamically change when the Genesys
Widgets .cx-mobile CSS classname is applied to an outer container.

Configuration

Overlay does not have configuration options.

Localization

Overlay does not have localization options.

API commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Overlay.close');

open
Opens the provided HTML in an Overlay View. When successful, it returns back the HTML and a
custom close event for you to subscribe to. This alerts you when your overlay instance has been
closed. You can also make your overlay immutable so that new overlay instances don't close yours.
Only your widget can close its overlay when immutable is set to true.

Overlay

Widgets API Reference 66

Example
oMyPlugin.command('Overlay.open', {

html: '
Template
',

immutable: false,
group: false

}).done(function(e){

// Overlay opens successfully

}).fail(function(e){

// Overlay failed to open
});

Options

Option Type Description

html string HTML String template for overlay
window.

immutable boolean When set to true, overlay cannot
be closed by other plugins.

group string
The name of the overlay window
group you want to add a new
overlay view into.

Resolutions

Status When Returns

resolved When overlay is successfully
opened {html: , events:

Overlay

Widgets API Reference 67

Status When Returns
, group: } rejected When no html
template is passed 'No HTML
content was provided. Overlay has
ignored your command.' rejected
When overlay is already opened
'Overlay view is currently
reserved.'

close
Closes the Overlay UI. Publishes
the appropriate custom close
event for current overlay being
closed.

Example

Resolutions

Status When Returns

resolved

When
Overlay
is
successfully
closed.

n/a

rejected

When
Overlay
is
already
closed.

'Overlay
view is
already
closed'

rejected
When
Overlay
view is
immutable.

'Overlay
view is
currently
reserved'

API events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

Overlay

Widgets API Reference 68

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('Overlay.ready', function(e){});

Name Description Data

ready The Overlay plugin is initialized
and ready to accept commands n/a

Overlay

Widgets API Reference 69

Toaster

Contents

• 1 Overview
• 1.1 Usage
• 1.2 Namespace
• 1.3 Customization
• 1.4 Mobile support

• 2 Configuration
• 3 Localization
• 4 API Commands

• 4.1 open
• 4.2 close

• 5 API Events

Toaster

Widgets API Reference 70

• Developer

Learn how to use a toast view control into which widgets can inject their UI.

Related documentation:
•

Overview

The Toaster plugin provides a toast view control that widgets can inject their UI into, accepting the
HTML UI, placing it inside a toast view, and displaying the UI on-screen at the lower-bottom-right.
When it opens, it slides up from the bottom. When it closes, it slides down until it is off-screen.

Toaster provides these benefits:

• Shows UI as a slide-up toast view in the lower-bottom-right of the screen.
• Open and close transition animations.
• No overlapping toasts; only one at a time. Automatically managed by the Toaster plugin.

Usage
Toaster is easy to use - you simply open and close it. When you call Toaster.open, you pass in the
HTML content you want to show. If you call Toaster.open again while a toast is already open, it will
automatically close the previous toast before showing yours (unless the previous toast has reserved
the view to prevent new toasts).

Namespace
The Toaster plugin has the following namespaces tied to each of the following types.

Type Namespace
CXBus—API commands & API events Toaster
CSS .cx-toaster

Customization
Toaster does not have customization options.

Mobile support
Toaster does not have mobile-specific styles at this time.

Toaster

Widgets API Reference 71

Configuration

Toaster does not have configuration options.

Localization

Toaster does not have localization options.

API Commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Toaster.close');

open
Opens the Toaster UI.

Example
oMyPlugin.command('Toaster.open', {

type: 'generic',
title: 'Toaster Title',
body: 'Toaster Body',
icon: 'chat',
controls: 'close',
immutable: false,
buttons:{

type: 'binary',
primary: 'Accept',
secondary: 'Decline'

}

Toaster

Widgets API Reference 72

}).done(function(e){

// Toaster opened successfully

}).fail(function(e){

// Toaster failed to open properly
});

Options

Option Type Description

type string

Specifies the type of body
content that can be provided to
Toaster window. Generic type
shows the default body content
and custom type overrides the
default html body content.

title string Heading title to display on the
Toaster window.

body string
Holds text value for Generic
Toaster type and html string
template for Custom Toaster
type.

icon string The CSS class name for an icon.

controls string Show close and minimize
controls on Toaster window.

buttons object Define the type of buttons.

buttons.type string Shows two buttons on the Toaster
.

buttons.primary string Text to be shown on primary
button.

buttons.secondary string Text to be shown on secondary
button.

immutable boolean When set to true, Toaster cannot
be closed by other plugins.

Resolutions

Status When Returns
resolved Toaster is successfully opened n/a

rejected No Toaster type is specified
'No content was provided.
Toaster has ignored your
command'

rejected Toaster is already opened 'Toaster view is currently
reserved'

Toaster

Widgets API Reference 73

close
Closes the Toaster UI.

Example
oMyPlugin.command('Toaster.close').done(function(e){

// Toaster closed successfully

}).fail(function(e){

// Toaster failed to close
});

Resolutions

Status When Returns
resolved Toaster is successfully closed n/a
rejected Toaster is already closed 'Toaster view is already closed'

rejected Toaster view is immutable 'Toaster view is currently
reserved'

API Events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('Toaster.ready', function(e){});

Name Description Data

ready The Toaster plugin is initialized
and ready to accept commands n/a

closed The Toaster plugin has been
removed from the screen n/a

Toaster

Widgets API Reference 74

WindowManager

Contents

• 1 Overview
• 1.1 Usage
• 1.2 Customization
• 1.3 Screenshot

• 2 Configuration
• 3 Localization
• 4 API Commands

• 4.1 registerDockView
• 4.2 registerSideButton

• 5 API Events

WindowManager

Widgets API Reference 75

• Developer

Learn how to use the WindowManager plugin, which provides a controller for several different types
of window group.

Related documentation:
•

Overview

The WindowManager plugin provides a controller for several different types of window group. HTML
UIs added to these WindowManager groups are arranged and managed in accordance with each
group's purpose.

One group type is Dock View, which appears as a toast-like UI docked in the lower-bottom-right of the
screen. This group automatically stacks widgets horizontally. When one of the widgets closes, the
stack collapses toward the right. Widgets can register themselves into this WindowManager group
and let it do all the work.

Another group type is Side Button, with its launcher button on the right side of the screen. Like the
dock view, buttons are stacked, but in this case they are stacked vertically. As buttons are added and
removed from the group, the button stack collapses to fill in the gaps.

Usage
WindowManager has "register" commands for registering your UI into different groups. They all
accept one argument, the HTML you want to be handled by WindowManager. You can use
'registerDockView' or 'registerSideButton' at this time. More window management groups will be
added in upcoming releases.

Customization
WindowManager does not have customization options.

Screenshot

•

WindowManager

Widgets API Reference 76

/File:Chat_widget.PNG
/File:Chat_widget.PNG

Configuration

WindowManager does not have configuration options.

Localization

WindowManager does not have localization options.

API Commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('WindowManager.registerDockView', {html: '
HTML
'});

registerDockView
Creates a docked view container to show a widget on the bottom right corner. Its position is adjusted
(stacked) to appear beside another widget if already present and is indexed with a tabindex.

Example
oMyPlugin.command('WindowManager.registerDockView', {html: '
Template
'}).done(function(e){

// WindowManager registered a dockView successfully

}).fail(function(e){

// WindowManager failed to register a dock view
});

WindowManager

Widgets API Reference 77

Options

Option Type Description

html string
A Widget HTML string template
that needs to be shown in dock
view.

Resolutions

Status When Returns

resolved
The HTML template is
successfully opened and
registered in dock view.

n/a

rejected No HTML template is found. 'No html content'

registerSideButton
Registers a button to show on the right side of the screen for a particular plugin. Its position is based
on the respective plugin order defined in the array configuration. Currently, this is not supported for
external plugins.

Example
oMyPlugin.command('WindowManager.registerSideButton', {template: '
Button Text
'}).done(function(e){

// WindowManager registered a side button successfully

}).fail(function(e){

// WindowManager failed to register a side button
});

Options

Option Type Description

template string Custom HTML string template for
a button.

Resolutions

Status When Returns

resolved The HTML button is successfully
registered. n/a

WindowManager

Widgets API Reference 78

Status When Returns

rejected No HTML template is found. 'No button template found to
register'

API Events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('WindowManager.ready', function(e){});

Name Description Data

ready WindowManager is initialized and
ready to accept commands. n/a

changed
WindowManager publishes this
event when there is any change
in the position of widgets on the
screen.

{registry: (object)}

WindowManager

Widgets API Reference 79

CallbackService

Contents

• 1 Overview
• 1.1 Usage
• 1.2 Namespace
• 1.3 Customization

• 2 Configuration
• 2.1 Description
• 2.2 Example
• 2.3 Options

• 3 Localization
• 4 API Commands

• 4.1 configure
• 4.2 schedule
• 4.3 availability

• 5 API Events

CallbackService

Widgets API Reference 80

• Developer

Learn how to use CallbackService to schedule a callback with customer service.

Related documentation:
•

Overview

CallbackService exposes high-level API access to Genesys Callback services, allowing you to use our
Callback Widget to schedule a callback with customer service—or to develop your own custom
Callback Widget. CallbackService dramatically simplifies integration, improving the reliability, feature
set, and compatibility of every widget on the bus.

Usage
Callback Service and the matching Callback widget work together, and they share a configuration
object. Using Callback uses CallbackService.

You can also use Callback Service as a high-level API using bus commands and events to build your
own Callback widget.

Namespace
The CallbackService plugin has the following namespaces tied to each of the following types:

Type Namespace
Configuration Sendmessage
CXBus—API commands & API events CallbackService

Customization
CallbackService does not have customization options. It is a Plug and Play plugin and works as is.

Configuration

CallbackService

Widgets API Reference 81

Description
Callback and CallbackService share the _genesys.widgets.callback configuration namespace.
Callback contains the UI options and CallbackService contains the connection options.

Example
window._genesys.widgets.callback = {

apikey: 'n3eNkgXXXXXXXXOXXXXXXXXA',
apiVersion: 'v3',
serviceName: 'service',
dataURL: 'http://host:port/callbacks',
userData: {},
countryCodes: true

};

Options

Name Type Description Accepted
Values Default Required

apikey string
If apiVersion is
v3, this holds
the x-api-key
value.

n/a n/a Yes, if using
Apigee Proxy

dataURL URL String

URL to the API
endpoint for
Callback.

Important
The base URL
for your API
endpoints is:
https://gapi-.genesyscloud.com/
engagement/v3

You will receive
the information
from Genesys at
the same time
that you receive
your API key.

n/a n/a Always

apiVersion string

Version of
Callback API.

Important
This value
determines the
version of
Callback API.

'v3' 'v1'
Yes, if using
Callback v3
dataURL

serviceName string
Name of the
Callback virtual
queue.

n/a n/a
Yes, if using
Callback v3
dataURL

userData object Arbitrary n/a {}

CallbackService

Widgets API Reference 82

Name Type Description Accepted
Values Default Required

attached data
to include
while
scheduling a
callback.

ajaxTimeout number
Number of
milliseconds to
wait before
AJAX timeout.

n/a 3000

Localization

CallbackService does not have localization options.

API Commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('CallbackService.schedule', {

userData: {},
firstname: 'Bob',
lastname: 'Jones',
email: 'b.jones@mail.com',
subject: 'product questions',
desiredTime: '2017-04-04T00:24:17.804Z',
phonenumber: '4151110000'

});

configure
Internal use only. The main App plugin shares configuration settings with widgets using each widget’s
configure command. The configure command can only be called at startup. Calling configure again
after startup may result in unpredictable behavior.

CallbackService

Widgets API Reference 83

schedule
Schedule a callback service with the callback schedule API.

Example
oMyPlugin.command('CallbackService.schedule', {

userData: {},
serviceName: 'service' // service name from callback API v3 version,
firstname: 'Bob',
lastname: 'Jones',
email: 'b.jones@mail.com',
subject: 'product questions',
desiredTime: '2017-03-03T00:24:17.804Z',
phonenumber: '4151110000'

});

Options

Option Type Description

firstname string Receive a Call entry Form Data:
'firstname'.

lastname string Receive a Call entry Form Data:
'lastname'.

phonenumber string Receive a Call entry Form Data:
'phonenumber'.

subject string Receive a Call entry Form Data:
'notes'.

email string Receive a Call entry Form Data:
'email'.

desiredtime string
The preferred desired time user
would like to get the callback
scheduled. Time should be in UTC
format.

userData object

Arbitrary data that is to be
attached with callback schedule.
Properties defined here will be
merged with default userData set
in the configuration object.

serviceName string Service Name of Callback API to
be passed if the apiVersion is v3.

Resolutions

Status When Returns

resolved Server confirms callback is
scheduled

200 OK AJAX Response -
Schedule Callback

CallbackService

Widgets API Reference 84

Status When Returns

For Callback API v3, refer
to 'Responses' in Schedule
Callback V3

rejected Selected time slot is not available

400 Bad Request AJAX Error
Response
For Callback API v3, refer
to 'Responses' in Schedule
Callback V3

rejected AJAX exception occurs

429 Too Many Requests AJAX
Error Response
For Callback API v3, refer
to 'Responses' in Schedule
Callback V3

rejected Server exception occurs

500 Internal Server Error
Response
For Callback API v3, refer
to 'Responses' in Schedule
Callback V3

rejected No form data is found to
schedule callback

'No data found to schedule
callback'

availability
Get the list of available callback time slots using the callback service.

Example
oMyPlugin.command('CallbackService.availability', {

serviceName: 'service' // service name from callback API v3 version,
startDate: '2017-04-03T00:24:17.804Z',
numberOfDays: '5',
maxTimeSlots: 20

}).done(function(e){

// CallbackService successfully showing availability

}).fail(function(e){

// CallbackService failed to show availability
});

CallbackService

Widgets API Reference 85

Options

Option Type Description

startDate string
The start date is specified in ISO
8601 format, using UTC as the
timezone (yyyy-MM-
ddTHH:mm:ss.SSSZ).

endDate string

The end date is specified in ISO
8601 format, using UTC as
timezone (yyyy-MM-
ddTHH:mm:ss.SSSZ). If neither
endDate nor numberOfDays is
specified, the end date is
assumed to be the same as the
start date.

numberOfDays string

Used as an alternative to the end
date. If neither endDate nor
numberOfDays is specified, the
end date is assumed to be the
same as the start date.

maxTimeSlots number
The maximum number of time
slots to be included in the
response.

serviceName string Service Name of Callback API to
be passed if the apiVersion is v3.

Resolutions

Status When Returns

resolved Server confirms the list of
available callback time slots

200 OK AJAX Response - Query
Callback Availability
For Callback API v3, refer
to 'Responses' in
Availability Callback V3

rejected Time slots are not available for
selected period

400 Bad Request AJAX Response
For Callback API v3, refer
to 'Responses' in
Availability Callback V3

rejected AJAX exception occurs

400 Bad Request AJAX Response
For Callback API v3, refer
to 'Responses' in
Availability Callback V3

rejected Server exception occurs 500 Internal Server Error
Response

CallbackService

Widgets API Reference 86

Status When Returns

For Callback API v3, refer
to 'Responses' in
Availability Callback V3

rejected No query data is found 'No query parameters passed for
callback availability service'

API Events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('CallbackService.ready', function(e){});

Name Description Data

ready CallbackService is initialized and
ready to accept commands. n/a

scheduled Callback is scheduled
successfully.

200 OK AJAX Response -
Schedule Callback
For Callback API v3, refer
to 'Responses' in Schedule
Callback V3

scheduleError
An error occurred between the
client and the server during a
callback schedule.

The JSON data returned by
Callback server.
For Callback API v3, refer
to 'Responses' in Schedule
Callback V3

availableSlots Callback available slots fetched
successfully.

200 OK AJAX Response - Query
Callback Availability
For Callback API v3, refer
to 'Responses' in
Availability Callback V3

availabilityError An error occurred between the The JSON data returned by

CallbackService

Widgets API Reference 87

Name Description Data

client and the server while
fetching the available timeslots.

Callback server.
For Callback API v3, refer
to 'Responses' in
Availability Callback V3

CallbackService

Widgets API Reference 88

StatsService

Contents

• 1 Overview
• 1.1 Usage
• 1.2 Namespace
• 1.3 Customization

• 2 Configuration
• 2.1 Description
• 2.2 Example
• 2.3 Options

• 3 Localization
• 4 API commands

• 4.1 configure
• 4.2 getStats

• 5 API events
• 6 Estimated wait time

• 6.1 API versions
• 6.2 Where to look for EWT data

StatsService

Widgets API Reference 89

• Developer

Learn how to fetch estimated wait time (EWT) details for a channel.

Related documentation:
•

Overview

StatsService exposes high-level API access to Genesys statistics services, allowing you to fetch
estimated wait time (EWT) details for each channel, such as WebChat or Callback, and display these
details across the channels.

Usage
StatsService and the Channel Selector widget work together right out of the box to display EWT
details across all channels. Using the Channel Selector widget uses StatsService.

You can also use StatsService as a high-level API with bus commands and events and integrate in
your own widget.

Namespace
The StatsService plugin has the following namespaces, tied to each of the following types:

Type Namespace
Configuration stats
CXBus—API commands & API events StatsService

Customization
StatsService doesn't have any customization options. It is a plug-and-play plugin and works as is.

Configuration

Description
StatsService shares the _genesys.widgets.stats configuration namespace and has connection
settings to fetch EWT details from each channel.

StatsService

Widgets API Reference 90

Example
window._genesys.widgets.stats =
ajaxTimeout: 3000,
ewt: {

dataURL: 'http://10.0.0.121:7777/genesys/1/service/ewt-for-vq',
apikey: 'n3exxxxxXREBMYjGxxxx8VA',
apiVersion: 'v1',
mode: 'urs2'}
};

Options

Name Type Description Default Required Accepted
Values

ajaxTimeout number

Number of
milliseconds
to wait before AJAX
timeout

3000 N/A N/A

ewt.apikey string

Apigee Proxy
secure token.
If
apiVersion
is v3, this
holds the x-
api-key
value.

N/A
Yes, if using
Apigee Proxy
or v3 API.

N/A

ewt.dataURL URL String
URL to the API
endpoint for
estimated wait
time (EWT)

N/A Always N/A

ewt.apiVersion string

Version of EWT
API.
Note: This
value
determines
the version
of EWT API
in GMS/v3.
That is:
'v1' - GMS
EWT v1
'v2' - GMS
EWT v2
'v3' - EWT v3

Only GET
request type
with virtual
queue name
as query
parameters

v1'
Yes, if using
GMS EWT v2 or
EWT v3
dataURL

'v1', 'v2', 'v3'

StatsService

Widgets API Reference 91

Name Type Description Default Required Accepted
Values

are
supported.

ewt.mode string

EWT mode
parameter for
GMS/v3 API.
This value will vary
based on the
above apiVersion.

Will vary based
on the above
apiVersion as
shown below.
'urs2' for
'v1'
'ewt2' for
'v2'
'mode2' for
'v3'

N/A

'urs','urs2'
or 'stat'
for 'v1'

'ewt1,'ewt2'
or 'ewt3'
for 'v2'

'mode1','mode2'
or 'mode3'
for 'v3'

Localization

StatsService doesn't have any localization options.

API commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('StatsService.getStats');

configure
This is for internal use only. The main App plugin shares configuration settings to widgets using each
widget’s configure command. The configure command can only be called once at startup. Calling
configure again after startup may result in unpredictable behavior.

StatsService

Widgets API Reference 92

Example
oMyPlugin.command('StatsService.configure', {

ewt:{

apikey: '12345',
dataURL: 'http://localhost:8080/foo/bar'

},
ajaxTimeout: 10000

}).done(function(e){

// StatsService configured successfully

}).fail(function(e){

// StatsService failed to configure
});

Options

Option Type Description

ewt.apikey string
API access token. Please contact
your Genesys representative to
obtain your API access token.

ewt.dataURL URL String URL of GES server.

ajaxTimeout number Number of milliseconds to wait
before AJAX timeout.

Resolutions

Status When Returns

resolved Configuration options are
provided and set. n/a

rejected No configuration options are
provided. 'Invalid configuration'

getStats
Ask the Genesys Stat server to fetch EWT details.

Example
oMyPlugin.command('StatsService.getStats', {

group: 'EWT',
vqName: 'chat_ewt_test_eservices',
mode: 'urs2'

StatsService

Widgets API Reference 93

}).done(function(e){

// StatsService got stats successfully

}).fail(function(e){

// StatsService failed to get stats
});

Options

Option Type Description

group string
Mention specific group name you
would like to request, such as
EWT, etc.

vqname string/array

Specify a single virtual queue
name as a string or a list of
virtual queue names as an array.
EWT will be fetched only for
these virtual queues specified
here. If nothing is specified, EWT
will be fetched for all the
available virtual queues.

mode string
Specify EWT mode. This will vary
based on apiVersion. Refer to
mode configuration option for
possible values.

Resolutions

Status When Returns
resolved Server returns EWT data. (AJAX Response Object)

rejected Server fail request fails. 'EWT request failed due to
unknown reason'

rejected No EWT dataURL provided. 'Invalid EWT configuration'

API events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see

StatsService

Widgets API Reference 94

Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('StatsService.ready', function(e){});

Name Description Data

ready StatsService is initialized and
ready to accept commands. n/a

updated Latest Stats data is available. EWT AJAX Response data

error.ewt An error occurred between the
client and the server for EWT. {(AJAX data Response)}

Estimated wait time

Estimated wait time (EWT) is displayed in the ChannelSelector and Callback widgets. These widgets
use the getStats command to fetch EWT data from the GMS or GES server. These servers support
multiple API versions and this document will explain how to configure the StatsService plugin to use
the version that you need.

Use the ewt.apiVersion configuration option to specify the API version. Each version value
corresponds to a particular API of GMS/GES. For all possible version values and their mapping, refer to
the Description section of the ewt.apiVersion configuration option.

Sample configuration:

_genesys.widgets.stats.ewt.apiVersion =

API versions
v1

If ewt.apiVersion is configured to v1 (this is also the default value), the ewt.dataURL configured must
be a valid GMS 8.5.1 EWT API url. If not, an incorrect EWT value might be displayed.

Depending on this API version, the ewt.mode configuration option can hold a set of predefined
possible values for this version. They are 'urs', 'urs2' and 'stat', where 'urs2' is the default value if not
specified.

Default example

_genesys.widgets.stats = {
ewt: {

apiVersion: "v1"
dataURL: http://somedomain/genesys/1/service/ewt-for-vq
mode: "urs2"

}
}

StatsService

Widgets API Reference 95

For the above configuration, the StatsService plugin will construct the relevant dataURL as shown
below.

http://somedomain/genesys/1/service/ewt-for-vq?name=vq1&aqt=urs2

'vq1' is added to the URL via the vqName option passed into the getStats command.

v2

If ewt.apiVersion is configured to v2, the ewt.dataURL configured must be a valid GMS 8.5.2 EWT API
url. If not, incorrect EWT may be displayed. For this apiVersion, the possible values for ewt.mode are
'ewt1', 'ewt2' and 'ewt3'. 'ewt2' is the default value.

Example

_genesys.widgets.stats = {
ewt: {

apiVersion: "v2"
dataURL: http://somedomain/genesys/2/ewt
mode: "ewt2"

}
}

For the above configuration, the StatsService plugin will construct the relevant dataURL as shown
below.

http://somedomain/genesys/2/ewt/ewt2?vq=vq1,vq2

'vq1' and 'vq2' are added to the URL via the vqName option passed into the getStats command.

v3

If ewt.apiVersion is set to v3, the ewt.dataURL configured must be a valid GES EWT API url. If not,
incorrect EWT may be displayed. For this apiVersion, the possible values for ewt.mode are 'mode1',
'mode2' and 'mode3', where 'mode2' will be the default value if not specified.

Example

_genesys.widgets.stats = {
ewt: {

apiVersion: "v3"
dataURL: http://somedomain/engagement/v3/estimated-wait-time
mode: "mode2"

}
}

For the above configuration, the StatsService plugin will construct the relevant dataURL as shown
below.

http://somedomain/engagement/v3/estimated-wait-time?virtual-queues=vq1,vq2&mode=mode2

'vq1' and 'vq2' are added to the URL via the vqName option passed into the getStats command.

Where to look for EWT data
When the getStats command is called, it fetches the EWT data from either GMS/GES server based on

StatsService

Widgets API Reference 96

the configuration. This response data is included in the updated event in a standard format as shown
below. In this data format, the ewt section will contain the virtual queue name and the estimated
wait time as a key value pair. The response section contains the original raw data from the server
and may vary between each server API.

{
ewt: {

"VQ_GMS_Callback_Out": 9.999 // consolidated standardized EWT data for each
virtual queue.

"VQ_GMS_Callback": 5.12
...

},
response: { // Original raw data from GMS.

"VQ_GMS_Callback_Out": {
"time": 1506021728,
"wt": 0,
"calls": 0,
"wcalls": 0,
"pos": 1,
"wpos": 1,
"aqt": 9.999,
"ewt": 9.999,
"hit": 0

},
"VQ_GMS_Callback": {

...
}

}
}

StatsService

Widgets API Reference 97

WebChatService

Contents

• 1 Overview
• 1.1 Usage
• 1.2 Namespace
• 1.3 Customization
• 1.4 Limitations

• 2 Configuration
• 2.1 Example
• 2.2 Options

• 3 Localization
• 4 API commands

• 4.1 configure
• 4.2 startChat
• 4.3 endChat
• 4.4 sendMessage
• 4.5 sendCustomNotice
• 4.6 sendTyping
• 4.7 sendFilteredMessage
• 4.8 addPrefilter
• 4.9 updateUserData
• 4.10 poll
• 4.11 startPoll
• 4.12 stopPoll
• 4.13 resetPollExceptions
• 4.14 restore
• 4.15 getTranscript
• 4.16 getAgents
• 4.17 getStats
• 4.18 sendFile

WebChatService

Widgets API Reference 98

• 4.19 downloadFile
• 4.20 getSessionData
• 4.21 fetchHistory
• 4.22 registerTypingPreviewInput
• 4.23 registerPreProcessor
• 4.24 verifySession

• 5 API events

WebChatService

Widgets API Reference 99

• Developer

Learn how to use Genesys chat services.

Related documentation:
•

Overview

WebChatService exposes high-level API access to Genesys chat services, so you can monitor and
modify a chat session on the front end, or develop your own custom WebChat widgets. Compared to
developing a custom chat UI and using the chat REST API, WebChatService dramatically simplifies
integration—improving the reliability, feature set, and compatibility of every widget on the bus.

Usage
WebChatService and the matching WebChat widget work together right out of the box and they share
the same configuration object. Using WebChat uses WebChatService.

You can also use WebChatService as a high-level API using bus commands and events to build your
own WebChat widget or other UI features based on WebChatService events.

Namespace
The WebChat Service plugin has the following namespaces tied to each of the following types:

Type Namespace
Configuration webchat
CXBus—API commands & API events WebChatService

Customization
WebChatService has many configuration options but no customization options. It is a plug-and-play
plugin and works as is.

Limitations
Multiple instances of the same chat session

After starting a chat session, that session can be opened in any number of new tabs on the same site.
Each tab runs an independent instance of WebChat connected to the same chat session. Currently,
Instances are not synchronized with each other due to Nexus limitation.

WebChatService

Widgets API Reference 100

Configuration

WebChat and WebChatService share the _genesys.widgets.webchat configuration namespace.
WebChat contains the UI options and WebChatService contains the connection options.

Important
Starting with version 9.0.008.04, WebChatService allows you to choose between the
types of chat services available in Genesys via the transport section in configuration
options.

Example
// When using v2 API

window._genesys.widgets.webchat = {

apikey: 'n3eNkgxxxxxxxxxxxx8VA',
dataURL: 'https://api.genesyscloud.com/gms-chat/2/chat',
enableCustomHeader: true,

userData: {},
emojis: true,
actionsMenu: true,

autoInvite: {

enabled: false,
timeToInviteSeconds: 10,
inviteTimeoutSeconds: 30

},

chatButton: {

enabled: true,
template: '

CHAT NOW
',

effect: 'fade',
openDelay: 1000,
effectDuration: 300,
hideDuringInvite: true

}
};

// When using v3 API

window._genesys.widgets.webchat = {

emojis: true,
userData: {},
transport: {

type: 'pureengage-v3-rest',
dataURL: https:///nexus/v3/chat/sessions,
endpoint: 'xxxxxxxxx',

WebChatService

Widgets API Reference 101

headers: {
'x-api-key': 'xxxxxxxx'

},
async: {

enabled: true,

getSessionData: function(sessionData, Cookie, CookieOptions) {

// Note: You don't have to use cookies. You can, instead,
store in a secured location like a database.

Cookie.set('customer-defined-session-cookie',
JSON.stringify(sessionData), CookieOptions);

},

setSessionData: function(Open, Cookie, CookieOptions) {

// Retrieve from your secured location.
return Cookie.get('customer-defined-session-cookie');

}
},

chatButton: {

enabled: true,
template: '

CHAT NOW
',

effect: 'fade',
openDelay: 1000,
effectDuration: 300,
hideDuringInvite: true

}
};

Options
Version 2 API

Name Type Description Default Required Introduced/
Updated

apikey string

Apigee Proxy
secure token.

Important
This option is
only supported
in GMS REST
mode.

n/a Yes, if using
Apigee Proxy

endpoint string
Manually select
the endpoint
on which to
initiate chat.

n/a n/a

dataURL string (URL)
URL for GMS
REST chat
service. If
cometD.enabled

n/a Always

WebChatService

Widgets API Reference 102

Name Type Description Default Required Introduced/
Updated

is set to true,
this property
will be ignored.

enableCustomHeaderboolean

Enables the
use of the
custom
authorization
header defined
in
_genesys.widgets.main.header
static config.
Attaches the
custom
authorization
header to all
WebChatService
request.

false No 9.0.002.06

userData object

Arbitrary
attached data
to include
when initiating
a chat.

{} n/a

ajaxTimeout number
Number of
milliseconds to
wait before
AJAX timeout.

3000 n/a

xhrFields object

Allows you to
set the
properties for
the AJAX
xhrFields
object (for
example,
{withCredentials:
false}).

Important
This option is
only supported
in GMS REST
mode.

{withCredentials:
false} n/a

pollExceptionLimitnumber

Number of
successive poll
exceptions
(chat server
offline) before
WebChatService
publishes
'chatServerWentOffline'.

5 n/a

restoreTimeout number
Number of
milliseconds
before restore

60000

WebChatService

Widgets API Reference 103

Name Type Description Default Required Introduced/
Updated

timeout.
Prevents the
chat session
from restoring
after a certain
time away
from the
session (for
example, user
navigated to a
different site
during chat
and never
ended the
session).

Version 3 API

Name Type Description Default Required Introduced/
Updated

transport object

Object
containing the
transport
service
configuration
options.

n/a

Yes, when
using new
transport
services
available with
WebChat.

9.0.008.04

transport.type string

Select the type
of transport
service that
needs to work
with WebChat
UI plugin. For
Pure Engage
v3 REST API,
the value is
'pureengage-
v3-rest'.

n/a
Yes, when
using Pure
Engage v3
REST API.

9.0.008.04

transport.dataURLstring (URL)

URL for Pure
Engage v3
REST API chat
service. Please
contact your
local Genesys
customer
representative
to obtain a
valid dataURL.

n/a Always 9.0.008.04

transport.endpointstring
The endpoint
for Genesys
Multicloud CX
v3 API.

n/a Yes 9.0.008.04

transport.headersobject Object n/a Yes 9.0.008.04

WebChatService

Widgets API Reference 104

Name Type Description Default Required Introduced/
Updated

containing key
value pairs of
any custom
headers.

transport.headers[x-
api-key] string

The API key
provided from
Genesys.
Please contact
your local
Genesys
customer
representative
to obtain a
valid API key.

n/a Yes 9.0.008.04

transport.async object

Object
containing
Async mode
configuration
options.

Important
To properly
restore a chat
session that has
ended
previously,
you'll need to
navigate back
to the page and
open the
WebChat
Widget. This
way, the chat
session is
restored in the
background and
is ready.
Presently, this is
a current
limitation in
Async WebChat.

{} No 9.0.008.04

transport.async.enabledboolean

Enable
Asynchronous
Chat where a
chat session
can be active
indefinitely.
When you
close WebChat
without ending
the chat
session, the
session will
simply go
dormant. When
you open

false
Yes, when
Async WebChat
mode is
enabled

9.0.008.04

WebChatService

Widgets API Reference 105

Name Type Description Default Required Introduced/
Updated

WebChat
again, the
session will
restore and
continue
chatting where
left off.

transport.async.getSessionDatafunction

A function that
you can define
to retrieve
updated
session data
from the
WebChatService
plugin. This
function is
called back
when starting a
new Async
chat session
for the first
time, or when
the
sessionData
changes over
the course of
an active chat
session. This
function takes
the following
arguments:
sessionData
(current active
session data),
Cookie
(Widgets
Internal cookie
reference), and
CookieOptions
(a parameter
that is needed
when using
Widgets
Cookie). The
purpose of this
function is to
provide you
with the active
session data so
that it can be
stored
somewhere
safe and
secure. Later

none
Yes, when
Async WebChat
mode is
enabled

9.0.008.04

WebChatService

Widgets API Reference 106

Name Type Description Default Required Introduced/
Updated

this needs to
be provided in
the below
setSessionData
function to
restore the
chat session.
Refer to the
example for
usage.

transport.async.setSessionDatafunction

A function that
you can define
to return the
session data to
the
WebChatService
plugin. During
initialization,
the
WebChatService
plugin will call
this function to
check if any
session data is
returned. If
found,
WebChatService
tries to restore
the chat
session using
this session
data and open
the WebChat
Widget.
WebChatService
will also pass
the following
arguments into
this function:
Open
(WebChat
current open
state value),
Cookie
(Widgets
Internal cookie
reference), and
CookieOptions
(a parameter
that isneeded
when using
Widgets
Cookie). Refer
to the example

none
Yes, when
Async WebChat
mode is
enabled

9.0.008.04

WebChatService

Widgets API Reference 107

Name Type Description Default Required Introduced/
Updated

for usage.

transport.async.deleteSessionDatafunction

A function that
you can define
to delete the
session data
from your
secret storage,
it will be called
by
WebChatService
plugin when
Async chat
session is lost
or cannot find
anymore due
to unknown
reasons. This
function will
enable you
write the script
for deleting the
session data
from your
secret storage,
in this way
WebChat will
try to start a
new chat
normally rather
than trying to
restore a lost
chat session.
WebChatService
will also pass
the following
arguments into
this function -
errorData (lost
session and
error details),
Cookie
(Widgets
Internal cookie
reference) and
CookieOptions
(a parameter
that will be
needed when
using Widgets
Cookie).

none
Yes, when
Async WebChat
mode is
enabled

9.0.015.12

userData object
Arbitrary
attached data
to include
when initiating

{} n/a

WebChatService

Widgets API Reference 108

Name Type Description Default Required Introduced/
Updated

a chat.

ajaxTimeout number
Number of
milliseconds to
wait before
AJAX timeout.

3000 n/a

Localization

WebChatService doesn't have any localization options.

API commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('WebChatService.getAgents');

Important
Starting with version 9.0.008.04, WebChatService allows you to choose between the
types of chat API services available in Genesys via the transport section configuration
options. For more information, see the Options table in configuration options.

configure
Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling
configure again after startup may result in unpredictable behavior.

WebChatService

Widgets API Reference 109

startChat
Initiates a new chat session with the chat server via GES or with the service configured under the
transport section.

Important
The options data must be under the “form” object when using the
"WebChatService.startChat" command in v3 API.

Example
// When using v2 API

oMyPlugin.command('WebChatService.startChat', {

nickname: 'Jonny',
firstname: 'Johnathan',
lastname: 'Smith',
email: 'jon.smith@mail.com',
subject: 'product questions',
userData: {}

}).done(function(e){

// WebChatService started a chat successfully

}).fail(function(e){

// WebChatService failed to start chat
});

// When using v3 API

oMyPlugin.command('WebChatService.startChat', {

form:{
nickname: 'Jonny',
firstname: 'Johnathan',
lastname: 'Smith',
email: 'jon.smith@mail.com',
subject: 'product questions',

},
userData: {}

}).done(function(e){

// WebChatService started a chat successfully

}).fail(function(e){

// WebChatService failed to start chat
});

WebChatService

Widgets API Reference 110

Options

Option Type Description

nickname string Chat Entry Form Data:
'nickname'.

firstname string Chat Entry Form Data:
'firstname'.

lastname string Chat Entry Form Data:
'lastname'.

email string Chat Entry Form Data: 'email'.
subject string Chat Entry Form Data: 'subject'.

userData object

Arbitrary data to attach to the
chat session (AKA attachedData).
Properties defined here will be
merged with default userData set
in the configuration object.

Resolutions

Status When Returns
resolved Server confirms session started (AJAX Response Object)

rejected A chat session is already active 'There is already an active chat
session'

rejected AJAX exception occurs (AJAX Response Object)
rejected Server exception occurs (AJAX Response Object)

rejected userData is invalid 'malformed data object provided
in userData property'

endChat
Ends the chat session with the chat server via GES or with the service configured under transport
section.

Example
oMyPlugin.command('WebChatService.endChat').done(function(e){

// WebChatService ended a chat successfully

}).fail(function(e){

// WebChatService failed to end chat
});

Resolutions

Status When Returns

resolved Active session is ended
successfully (AJAX Response Object)

WebChatService

Widgets API Reference 111

Status When Returns

rejected No chat session is currently
active 'There is no active chat session'

sendMessage
Sends a message from the client to the chat session.

Example
oMyPlugin.command('WebChatService.sendMessage', {message: 'hi'}).done(function(e){

// WebChatService sent a message successfully

}).fail(function(e){

// WebChatService failed to send a message
});

Options

Option Type Description
message string The message you want to send

Resolutions

Status When Returns
resolved Message is successfully sent (AJAX Response Object)
rejected No message text provided 'No message text provided'

rejected No chat session is currently
active 'There is no active chat session'

rejected AJAX exception occurs (AJAX Response Object)

sendCustomNotice
Sends a custom notice from the client to the chat server. This request is used to deliver any custom
notification between a custom client application and a custom agent desktop. Neither Genesys
Widgets, nor Workspace, uses this out of the box.

Example
oMyPlugin.command('WebChatService.sendCustomNotice', {message: 'bye'}).done(function(e){

// WebChatService sent a custom message successfully

}).fail(function(e){

// WebChatService failed to send a custom message
});

WebChatService

Widgets API Reference 112

Options

Option Type Description

message string A message you want to send
along with the custom notice

Resolutions

Status When Returns Introduced/Updated

resolved Message is successfully
sent (AJAX Response Object)

rejected AJAX exception occurs (AJAX Response Object)

rejected
The server doesn't
support receiving
custom notices

This transport doesn't
support
sendCustomNotice
command.

9.0.008.04

sendTyping
Sends a "Customer typing" notification to the chat session. A visual indication will be shown to the
agent.

Example
oMyPlugin.command('WebChatService.sendTyping').done(function(e){

// WebChatService sent typing successfully

}).fail(function(e){

// WebChatService failed to send typing
});

Options

Option Type Description

Message String The message you want to send
along with the typing notification

Resolutions

Status When Returns
resolved AJAX request is successful (AJAX Response Object)
rejected AJAX exception occurs (AJAX Response Object)

rejected No chat session is currently
active 'There is no active chat session'

WebChatService

Widgets API Reference 113

sendFilteredMessage
Sends a message along with a regular expression to match the message and hide it from the client.
Useful for sending codes and tokens through the WebChat interface to the Agent Desktop.

Important
Filters are now automatically stored and recalled on chat restore for the duration of
the session.

Example
oMyPlugin.command('WebChatService.sendFilteredMessage', {

message: 'filtered message',
regex: /[a-zA-Z]/

}).done(function(e){

// WebChatService sent filtered message successfully

}).fail(function(e){

// WebChatService failed to send filtered message
});

Options

Option Type Description

message string
Message you want to send but
don't want to appear in the
transcript

regex RegExp Regular expression to match the
message

Resolutions

Status When Returns
resolved There is an active session n/a

rejected No chat session is currently
active 'No active chat session'

addPrefilter
Adds a new pre-filter regular expression to the pre-filter list. Any messages matched using the pre-
filters will not be shown in the transcript

WebChatService

Widgets API Reference 114

Important
Filters are now automatically stored and recalled on chat restore for the duration of
the session.

Example
oMyPlugin.command('WebChatService.addPrefilter', {filters: /[a-zA-Z]/}).done(function(e){

// WebChatService added filter successfully
// e == Object of registered prefilters

}).fail(function(e){

// WebChatService failed to add filter
});

Options

Option Type Description

filters RegExp or Array of RegExp Regular Expression(s) to add to
the prefilter list

Resolutions

Status When Returns
resolved Valid filters are provided Array of all registered prefilters.

rejected Invalid or missing filters provided
'Missing or invalid filters
provided. Please provide a
regular expression or an array of
regular expressions.'

updateUserData
Updates the userData properties associated with the chat session. If this command is called before a
chat session starts, it will update the internal userData object and will be sent when a chat session
starts. If this command is called after a chat session starts, a request to the server will be made to
update the userData on the server associated with the chat session.

Example
oMyPlugin.command('WebChatService.updateUserData', {firstname: 'Joe'}).done(function(e){

// WebChatService updated user data successfully

}).fail(function(e){

// WebChatService failed to update user data
});

WebChatService

Widgets API Reference 115

Options

Option Type Description

n/a object
userData object you want to send
to the server for this active
session

Resolutions

Status When Returns Introduced/Updated

resolved
Session is active and
userData is successfully
sent

(AJAX Response Object)

rejected Session is active and
AJAX exception occurs (AJAX Response Object)

resolved

Session is not active
and internal userData
object is merged with
new userData properties
provided

The internal userData
object that will be sent
to the server

rejected
Session is active and
the server doesn't
support updating
userData

This transport doesn't
support updating
userData during an
active chat session.

9.0.008.04

poll
Internal use only. Starts polling for new messages.

Example
oMyPlugin.command('WebChatService.poll').done(function(e){

// WebChatService started polling successfully

}).fail(function(e){

// WebChatService failed to start polling
});

Resolutions

Status When Returns Introduced/Updated

resolved There is an active
session n/a

rejected WebChatService isn't
calling this command

'Access Denied to
private command. Only
WebChatService is
allowed to invoke this
command.'

rejected No chat session is 'previous poll has not

WebChatService

Widgets API Reference 116

Status When Returns Introduced/Updated
currently active finished.'

rejected The server doesn't
support polling

'This transport doesn't
support polling.' 9.0.008.04

startPoll
Starts automatic polling for new messages.

Example
oMyPlugin.command('WebChatService.startPoll').done(function(e){

// WebChatService started polling successfully

}).fail(function(e){

// WebChatService failed to start polling
});

Resolutions

Status When Returns Introduced / Updated

resolved There is an active
session n/a

rejected No chat session is
currently active No active chat session

rejected The server doesn't
support polling

This transport doesn't
support polling 9.0.008.04

stopPoll
Stops automatic polling for new messages.

Example
oMyPlugin.command('WebChatService.stopPoll').done(function(e){

// WebChatService stopped polling successfully

}).fail(function(e){

// WebChatService failed to stop polling
});

Resolutions

Status When Returns Introduced / Updated

resolved There is an active
session n/a

rejected No chat session is No active chat session

WebChatService

Widgets API Reference 117

Status When Returns Introduced / Updated
currently active

rejected The server doesn't
support polling

This transport doesn't
support polling 9.0.008.04

resetPollExceptions
Resets the poll exception count to 0. pollExceptionLimit is set in the configuration.

Example
oMyPlugin.command('WebChatService.resetPollExceptions').done(function(e){

// WebChatService reset polling successfully

}).fail(function(e){

// WebChatService failed to reset polling
});

Resolutions

Status When Returns Introduced / Updated
resolved Always n/a

rejected The server doesn't
support polling

This transport doesn't
support
resetPollExceptions
command.

9.0.008.04

restore
Internal use only. You should not invoke this manually unless you are using Async mode.

Example
oMyPlugin.command('WebChatService.restore').done(function(e){

// WebChatService restored successfully

}).fail(function(e){

// WebChatService failed to restore
});

Options

Option Type Description Accepted Values Introduced /
Updated

sessionData string
The session data
that is needed to
restore the
WebChat in Async

(JWT string token) 9.0.008.04

WebChatService

Widgets API Reference 118

Option Type Description Accepted Values Introduced /
Updated

mode. It is a JWT
token string value.
Applicable only
when using
WebChat with
Genesys
Multicloud CX v3
API. For more
information, see
the “Genesys
Multicloud CX v3”
tab in the
“Options” table in
configuration
options.

Resolutions

Status When Returns Introduced / Updated
resolved Session has been found n/a
rejected Session cannot be found n/a

rejected Restoring chat session is
in progress

Already restoring.
Ignoring request. 9.0.002.06

rejected Chat session is already
active

Chat session is already
active, ignoring restore
command.

9.0.002.06

rejected Trying restore chat
session manually

Access Denied to
private command. Only
WebChatService is
allowed to invoke this
command in Non-Async
mode.

9.0.002.06

getTranscript
Fetches an array of all messages in the chat session.

Important
For more information on the fields included in JSON response, see Digital Channels
Chat V2 Response Format.

Example
oMyPlugin.command('WebChatService.getTranscript').done(function(e){

// WebChatService got transcript successfully

WebChatService

Widgets API Reference 119

// e == Object with an array of messages

}).fail(function(e){

// WebChatService failed to get transcript
});

Resolutions

Status When Returns
resolved Always Object with an array of messages

getAgents
Return a list of agents currently participating in the chat. Includes agent metadata.

Example
oMyPlugin.command('WebChatService.getAgents').done(function(e){

// WebChatService got agents successfully
// e == Object with agents information in chat

}).fail(function(e){

// WebChatService failed to get agents
});

Resolutions

Status When Returns

resolved Always

(Object List) {name: (String),
connected: (Boolean), supervisor:
(Boolean), connectedTime: (int
time),disconnectedTime: (int
time)}

getStats
Returns stats on chat session including start time, end time, duration, and list of agents.

Example
oMyPlugin.command('WebChatService.getStats').done(function(e){

// WebChatService got stats successfully
// e == Object with chat session stats

}).fail(function(e){

// WebChatService failed to get stats
});

WebChatService

Widgets API Reference 120

Resolutions

Status When Returns

resolved Always
{agents: (Object), startTime: (int
time), endTime: (int time),
duration: (int time)}

sendFile
[Introduced: 9.0.008.04]

Sends the file from the client machine to the agent.

Example
oMyPlugin.command('WebChatService.sendFile', {files: $('').attr('type', 'file') /* Only works
on UI, can not dynamically change */ }).done(function(e){

// WebChatService sent file successfully

}).fail(function(e){

// WebChatService failed to send file
});

Options

Option Type Description

files File A reference to a file input
element (for example)

Resolutions

Status When Returns

resolved The file sent is a valid type and
size (AJAX Response Object)

rejected The file sent is an invalid type (AJAX Response Object)

rejected The number of uploads is
exceeded (AJAX Response Object)

rejected The file size exceeds the limit (AJAX Response Object)

rejected The file size is too large or an
unknown error occurs (AJAX Response Object)

rejected The server doesn't support file
uploads

This transport doesn't support
file uploads

WebChatService

Widgets API Reference 121

downloadFile
Downloads the file to the client machine. Example
oMyPlugin.command('WebChatService.downloadFile', {fileId: '1', fileName:
'myfile.txt'}).done(function(e){

// WebChatService sent file successfully

}).fail(function(e){

// WebChatService failed to send file
});

Options

Option Type Description

field string This is the id of the file to be
downloaded from the session

Resolutions

Status When Returns

resolved The file is downloaded
successfully n/a

getSessionData
[Introduced: 9.0.002.06]

Retrieves the active session data at any time.

Example
oMyPlugin.command('WebChatService.getSessionData')

Resolutions

Status When Returns Introduced / Updated

resolved

Always, when using
Chat via GMS API. For
more information, see
the 'GMS' tab in the
'Options' table in
configuration options.

{secureKey: (string),
sessionID: (number/
string), alias: (number/
string), userId: (number/
string)}

resolved

Always, when using
Chat via Genesys
Multicloud CX v3 API.
For more information,
see the 'Genesys
Multicloud CX v3' tab in
the 'Options' table in

{participantId: (string),
sessionId: {string),
token: (string),
transportId: (string)}

9.0.008.04

WebChatService

Widgets API Reference 122

Status When Returns Introduced / Updated
configuration options.

rejected Never undefined

fetchHistory
[Introduced: 9.0.008.04]

This applies only in Asynchronous mode to fetch older chat messages. It does not fetch all of the
messages at once; rather a certain number of messages are fetched every time this command is
called. Response data will be available in the messageReceived event. This internal command
determines the last received message index and, based on this information, fetches older messages
whenever it is called.

Example
oMyPlugin.command('WebChatService.fetchHistory')

Resolutions

Status When Returns
resolved Old messages are retrieved (AJAX Response Object)
rejected Request fails (AJAX Response Object)

rejected Asynchronous mode is not
enabled

Fetching history messages
applies only to Asynchronous
chat

rejected All messages are received No more messages to fetch

registerTypingPreviewInput
Selects an HTML input to watch for key events. Used to trigger startTyping and stopTyping
automatically.

Example
oMyPlugin.command('WebChatService.registerTypingPreviewInput', {input: $('input')
}).done(function(e){

// WebChatService registered input area successfully

}).fail(function(e){

// WebChatService failed to register typing preview
});

Options

Option Type Description

input HTML Reference An HTML reference to a text or
textarea input

WebChatService

Widgets API Reference 123

Resolutions

Status When Returns

resolved Valid HTML input reference is
provided n/a

rejected Invalid or missing HTML input
reference

'Invalid value provided for the
'input' property. An HTML
element reference to a textarea
or text input is required.'

registerPreProcessor
Registers a function that receives the message object, allowing you to manipulate the values before
it is rendered in the transcript.

Example
oMyPlugin.command('WebChatService.registerPreProcessor', {preprocessor: function(message){

message.text = message.text + ' some preprocessing text';
return message;

} }).done(function(e){
// WebChatService registered preprocessor function
// e == function that was registered

}).fail(function(e){
// WebChatService failed to register function

});

Options

Option Type Description

preprocessor function The preprocessor function you
want to register.

Resolutions

Status When Returns

resolved A valid preprocessor function is
provided and is registered

The registered preprocessor
function.

rejected An invalid preprocessor function
is provided

No preprocessor function
provided. Type provided was ''.

verifySession
Checks for existing WebChat session before triggering a proactive invite.

oMyPlugin.command('WebChatService.verifySession').done(function(e){
if(e.sessionActive) {

// dont show chat invite
} else if(!e.sessionActive) {

if(oMyPlugin.data('WebChat.open') == false){

WebChatService

Widgets API Reference 124

// show chat invite
} else {

// dont trigger chat invite
}

}
}).fail(function(e){

// verifySession not supported for the transport
});

Resolutions

Status When Returns

resolved A session exists or not A boolean sessionActive, which
holds the session state

rejected The verifySession command is
not supported for this transport

This transport doesn't support
the verifySession command

API events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('WebChatService.ready', function(e){});

Name Description Data Introduced/updated

ready
WebChatService is
initialized and ready to
accept commands.

n/a

restored

Chat session has been
restored after page
navigation or refresh. In
Asynchronous mode,
this event includes data
indicating whether a
chat session has been
restored in Async mode
or not.

{async: (boolean)} 9.0.002.06

restoreTimeout
Chat session restoration
attempted was denied
after user navigated

n/a

WebChatService

Widgets API Reference 125

Name Description Data Introduced/updated
away from originating
website for longer than
the time limit: default
60 seconds.

restoreFailed
Could not restore chat
session after page
navigation or refresh.

n/a

restoredOffline

Chat session was
restored normally but
chat server is offline.
This means no
messages can come
through. When chat
server is comes back
online,
'chatServerBackOnline'
is published.

n/a

messageReceived

A new message has
been received from the
server. Includes text
messages, status
messages, notices, and
other message types.

{originalMessages:
(object), messages:
(array of objects),
restoring: (boolean),
sessionData: (object)}

9.0.002.06

error
An error occurred
between the client and
the server.

(AJAX Response)

started Chat session has
successfully started.

(AJAX Response
containing session data)

ended Chat session has
successfully ended. n/a

agentTypingStarted Agents has started
typing a new message. (AJAX Response)

agentTypingStopped Agent has stopped
typing. (AJAX Response)

pollingStarted Chat server automatic
polling has started. n/a

pollingStopped Chat server automatic
polling has stopped. n/a

clientConnected
Indicates the user has
been connected to the
chat session.

{message: (object),
agents: (object),
numAgentsConnected:
(number)}

clientDisconnected
Indicates the user has
been disconnected form
the chat session.

{message: (object),
agents: (object),
numAgentsConnected:
(number)}

agentConnected Indicates an agent has
connected to the chat.

{message: (object),
agents: (object),
numAgentsConnected:

WebChatService

Widgets API Reference 126

Name Description Data Introduced/updated
(number)}

agentDisconnected
Indicates an agent has
disconnected from the
chat.

{message: (object),
agents: (object),
numAgentsConnected:
(number)}

supervisorConnected
Indicates a supervisor
has connected to the
chat.

{message: (object),
agents: (object),
numAgentsConnected:
(number)}

supervisorDisconnected
Indicates a supervisor
has disconnected from
the chat.

{message: (object),
agents: (object),
numAgentsConnected:
(number)}

botConnected

Indicates a bot has
connected to the chat.

Important
This event is applicable
only when using v2 API.

{message: (object),
agents: (object),
numAgentsConnected:
(number)}

9.0.014.13

botDisconnected

Indicates a bot has
disconnected from the
chat.

Important
This event is applicable
only when using v2 API.

{message: (object),
agents: (object),
numAgentsConnected:
(number)}

9.0.014.13

clientTypingStarted
The user has started
typing. Sends an event
to the agent.

n/a

clientTypingStopped

After a user stops
typing, a countdown
begins. When the
countdown completes,
the typing notification
will clear for the agent.

n/a

disconnected
Cannot reach servers.
No connection. Either
the user is offline or the
server is offline.

n/a

reconnected
Connection restored.
This event is only
published after
'disconnected'.

n/a

chatServerWentOffline

Chat server has gone
offline but chat session
has not ended. New
messages are
temporarily unavailable.
This event is published
only after the

n/a

WebChatService

Widgets API Reference 127

Name Description Data Introduced/updated
configuration option
'pollExceptionLimit' has
been exceeded. Default
limit is 5 poll
exceptions.
'restoredOffline' is an
alternate to this event
that is used only when
the chat server is down
while trying to restore
your chat session. The
reason for having two
events is to allow for
separate handling of
both scenarios.

Important
This event is applicable
only when using v2 API.

chatServerBackOnline

Chat server had come
back online after going
offline. This will only be
published after
'chatServerWentOffline'.

Important
This event is applicable
only when using v2 API.

n/a

connectionPending

If there is a connection
problem and
WebChatService is
trying to reconnect, this
event will be published.
Published before
'chatServerWentOffline'.

Important
This event is applicable
only when using v2 API.

n/a

connectionRestored

Is published when the
connection has be
reestablished. Publishes
at the same time as
'chatServerBackOnline'.

n/a

WebChatService

Widgets API Reference 128

Calendar

Contents

• 1 Overview
• 1.1 Usage
• 1.2 Customization
• 1.3 Namespace
• 1.4 Mobile support
• 1.5 Screenshots

• 2 Configuration
• 2.1 Description
• 2.2 Example
• 2.3 Options

• 3 Localization
• 3.1 Usage
• 3.2 Example i18n JSON

• 4 API commands
• 4.1 configure
• 4.2 generate
• 4.3 showAvailability
• 4.4 reset

• 5 API events

Calendar

Widgets API Reference 129

• Developer

Learn how to display a calendar, so your customers can choose when they want to be contacted.

Related documentation:
•

Overview

The Calendar UI plugin displays time slots for a selected day. The number of days to display—and the
opening and closing times for a day—are configurable, as shown in the configuration section.

Calendar

Widgets API Reference 130

Usage

Important
By default, the Calendar widget needs a UI container to display itself properly. For
information about how to create and display a calendar, see the API events section.

• Enable or disable certain sections of a day using calendarHours.section.enable
• Define your own business hours for each section of a day using calendarHours.section.openTime and

calendarHours.section.closeTime
• Use showAvailability to enable only those time slots for which a customer service agent is available and

Calendar

Widgets API Reference 131

/File:Calendar_MainScreen_04032020.jpg
/File:Calendar_MainScreen_04032020.jpg

disable the rest.
• Define your own time interval between each time slot.

How does the Calendar widget render time slots in local time zones?

1. The Calendar widget uses the command showAvailability which calls
CallbackService.availability with the start date. This start date is then converted into the ISO
8601 format, using UTC as the timezone by toISOString(), internally.

2. The Callback service fetches the available time slots from the server.
3. The Calendar gets the available time slots from CallbackService.availableSlots in the ISO 8601

format, using UTC as the timezone.
4. Each and Every Time Slot is converted according to the user's local time zone internally through Date()

and toTimeString() methods in the Calendar Plugin.

Customization
All the texts displayed by the Calendar Widget are fully localizable.

Namespace
The Calendar plugin has the following namespaces tied to each of the following types:

Type Namespace
Configuration calendar
i18n - Localization calendar
CXBus—API commands & API events Calendar
CSS .cx-calendar

Mobile support
Calendar supports both desktop and mobile devices. Like all Genesys Widgets, there are two main
modes: Desktop and Mobile. Desktop is used for monitors, portable computers, and tablets, while
Mobile is used for mobile devices. When a mobile device is detected, Calendar switches to special
full-screen templates that are optimized for both portrait and landscape orientations.

Switching between Desktop and Mobile mode is done automatically by default. You can also configure
Genesys Widgets to switch between Desktop and Mobile mode manually.

Screenshots
Dark theme

Calendar

Widgets API Reference 132

Light theme

Configuration

Description
Calendar shares the _genesys.widgets.calendar configuration namespace. It also has UI options.

Example
window._genesys.widgets.calendar = {

showAvailability: true,
numberOfDays: 5,
hideUnavailableTimeSlots: false

calendarHours: {

interval: 10,
allDay: {

openTime: '09:00',
closeTime: '23:59'

}
}

};

Calendar

Widgets API Reference 133

/File:Calendar_Mobile_Potrait_DarkMode_04032020.jpg
/File:Calendar_Mobile_Potrait_DarkMode_04032020.jpg
/File:Calendar_Mobile_Landscape_DarkMode_04032020.jpg
/File:Calendar_Mobile_Landscape_DarkMode_04032020.jpg
/File:Calendar_Mobile_Potrait_LightMode_04032020.jpg
/File:Calendar_Mobile_Potrait_LightMode_04032020.jpg
/File:Calendar_Mobile_Landscape_LightMode_04032020.jpg
/File:Calendar_Mobile_Landscape_LightMode_04032020.jpg

Options
Name Type Description Default Required

showAvailability boolean

Enable or disable
calendar to update
the time slots
based on the
callback
availability. The
unavailable time
slots are grayed
out.

true n/a

numberOfDays number
The number of
days to display on
calendar starting
today.

5 n/a

timeFormat number/string

This sets the time
format for the
timestamps in this
widget. It can be
12 or 24.

12 n/a

hideUnavailableTimeSlotsboolean
Show hide the
unavailable
callback time slots.

false n/a

calendarHours.interval number

The time interval
between each
consecutive time
slot displayed on
calendar.

15 n/a

calendarHours.allDay.openTimenumber
Opening time in
'HH:MM' 24 Hr
format.

17:00 n/a

calendarHours.allDay.closeTimenumber
Closing time in
'HH:MM' 24 Hr
format.

23:59 n/a

Localization

Important
For information on how to set up localization, refer to Localize widgets and services.

Usage
You must use the calendar namespace when you're defining localization strings for the Calendar
plugin in your i18n JSON file.

Calendar

Widgets API Reference 134

The following example shows how to define new strings for the en (English) language. You can use
any language codes you wish, as there isn't a standard format. When selecting the active language in
your configuration, you must match one of the language codes defined in your i18n JSON file. Note
that you must only define a language code once in your i18n JSON file. Inside each language object
you must define new strings for each widget.

Example i18n JSON
{

"en": {
"calendar": {

"CalendarDayLabels": [
"Sunday",
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday"

],
"CalendarMonthLabels": [

"Jan",
"Feb",
"Mar",
"Apr",
"May",
"Jun",
"Jul",
"Aug",
"Sept",
"Oct",
"Nov",
"Dec"

],
"CalendarLabelToday": "Today",
"CalendarLabelTomorrow": "Tomorrow",
"CalendarTitle": "Schedule a Call",
"CalendarOkButtonText": "Okay",
"CalendarError": "Unable to fetch availability details.",
"CalendarClose": "Cancel",
"AriaWindowTitle": "Calendar Window",
"AriaCalendarClose": "Cancel",
"AriaYouHaveChosen": "You have chosen",
"AriaNoTimeSlotsFound": "No time slots found for selected date"

}
}

}

API commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Calendar

Widgets API Reference 135

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, you must not use the global bus object to register your custom plugins. For more
information about extending Genesys Widgets, see Genesys Widgets Extensions.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Calendar.reset');

configure
Internal use only. The main App plugin shares widget configuration settings using each widget’s
configure command. The configure command can only be called once, at startup. If you call
configure after startup, the results are unpredictable.

generate
Builds and generates the calendar. Subscribe to the generate events to get the generated calendar
and display it where you would like to.

Example
oMyPlugin.command('Calendar.generate', {date: 'Mon Mar 20 2017 19:51:47 GMT-0700
(PDT)'}).done(function(e){

// Calendar generated successfully

}).fail(function(e){

// Calendar failed to generate
});

Options

Option Type Description

date Date string/object To pre-select the date and time
on calendar.

Calendar

Widgets API Reference 136

Resolutions

Status When Returns

resolved When the calendar is
successfully generated n/a

rejected When Invalid date is passed to
calendar 'Invalid data'

showAvailability
Update the calendar time slots with the callback availability. This enables only those time slots that
have the callback facility and disables the rest.

Example
oMyPlugin.command('Calendar.showAvailability', {date: '03/22/17'}).done(function(e){

// Calendar showed availability successfully

}).fail(function(e){

// Calendar failed to show availability
});

Options

Option Type Description

date Date string/object

Update the available time slots in
the Calendar plugin for the
selected Date. Note that, after
calling this command, the
internal showAvailability value
is set to true for this session and
the Calendar only shows the
available time slots when
switching between other dates.

Resolutions

Status When Returns

resolved When time slots are successfully
updated n/a

rejected When no date value is found to 'No date found to check

Calendar

Widgets API Reference 137

Status When Returns
check the availability availability'

rejected When invalid date value is found 'Invalid date'

reset
Resets the calendar with no pre-selected values.

Example
oMyPlugin.command('Calendar.reset').done(function(e){

// Calendar reset successfully

}).fail(function(e){

// Calendar failed to reset
});

Resolutions

Status When Returns

resolved When calendar is successfully
reset n/a

API events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, you must not use the global bus object to register your custom plugins. Instead,
see Genesys Widgets Extensions for more information about extending Genesys
Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

Calendar

Widgets API Reference 138

oMyPlugin.subscribe('Calendar.ready', function(e){});

Name Description Data

ready Calendar is initialized and ready
to accept commands. n/a

generated
Calendar UI has been generated.
Use this event to get the
calendar UI and display where
you would like to.

{ ndCalendar: }

selectedDateTime Date and time selected on
calendar.

{ dayString: , dateString: ,
timeString: , date: }

Calendar

Widgets API Reference 139

Callback

Contents

• 1 Overview
• 1.1 Usage
• 1.2 Dependency
• 1.3 Customization
• 1.4 Namespace
• 1.5 Mobile support
• 1.6 Screenshots

• 2 Configuration
• 2.1 Example
• 2.2 Options

• 3 Localization
• 3.1 Usage
• 3.2 Example i18n JSON

• 4 API commands
• 4.1 open
• 4.2 close
• 4.3 minimize
• 4.4 showOverlay
• 4.5 hideOverlay
• 4.6 configure

• 5 API events
• 6 Metadata

• 6.1 Interaction Lifecycle
• 6.2 Lifecycle scenarios
• 6.3 Metadata

• 7 Customizable Callback registration form
• 7.1 Default example
• 7.2 Properties

Callback

Widgets API Reference 140

• 7.3 Labels
• 7.4 Wrappers
• 7.5 Validation
• 7.6 Form submit
• 7.7 Form pre-fill

Callback

Widgets API Reference 141

• Developer

Learn how to use the Callback Widget to fetch user details.

Related documentation:
•

Link to video

Overview

Important
This documentation relies on Genesys Callback APIs available to Engage Cloud
customers. The only supported version is v3 as exposed by Engagement API.

The Callback Widget provides a form to fetch user details such as name, phone number, and
email—and whether the customer would like an immediate callback or would prefer to receive a call
at another time of their choosing. Callback then submits this information to Customer Service. The
times that Callback displays are based on agent availability, meaning the user can select a time that
works for everyone.

Callback

Widgets API Reference 142

https://player.vimeo.com/video/539841733?title=0&byline=0&portrait=0

Usage
Use the following methods to launch Callback manually:

• Call the Callback.open command
• Configure ChannelSelector so that Receive a Call appears as a channel
• Configure Calendar to show a Date-Time picker for selecting a preferred time

Dependency
The Callback Widget requires the Calendar plugin.

Customization
You can customize and localize all of the text shown in the Callback Widget by adding entries into
your configuration and localization options.

Callback supports themes. You can create and register your own themes for Genesys Widgets.

Callback

Widgets API Reference 143

/File:Callback_MainScreen.jpg
/File:Callback_MainScreen.jpg

Namespace
The Callback plugin has the following namespaces tied up with each of the following types:

Type Namespace
Configuration callback
i18n—Localization callback
CXBus— API commands & API events Callback
CSS .cx-callback

Mobile support
Callback supports both desktop and mobile devices. Like all Genesys Widgets, there are two main
modes: Desktop & Mobile. Desktop is employed for monitors, laptops, and tablets. Mobile is
employed for smartphones. When a smartphone is detected, Callback switches to special full-screen
templates that are optimized for both portrait and landscape orientations.

Switching between desktop and mobile mode is done automatically by default. You may configure
Genesys Widgets to switch between Desktop and Mobile mode manually if necessary.

Screenshots
Dark theme

Light theme

Callback

Widgets API Reference 144

/File:Callback_MobileMode_Potrait.jpg
/File:Callback_MobileMode_Potrait.jpg
/File:Callback_ChooseTime.jpg
/File:Callback_ChooseTime.jpg
/File:Callback_Calendar_Desktop.jpg
/File:Callback_Calendar_Desktop.jpg
/File:Callback_Mobile_DarkMode_Landscape.jpg
/File:Callback_Mobile_DarkMode_Landscape.jpg
/File:Callback_DateChoosen_LightMode.jpg
/File:Callback_DateChoosen_LightMode.jpg
/File:Callback_LightPotrait_Mobile.jpg
/File:Callback_LightPotrait_Mobile.jpg
/File:Callback_CountryCodes_LightMode.jpg
/File:Callback_CountryCodes_LightMode.jpg
/File:Callback_Done_Light_28022020.jpg
/File:Callback_Done_Light_28022020.jpg

Configuration

Callback and CallbackService share the _genesys.widgets.callback configuration namespace.
Callback has UI options while CallbackService has connection options.

Example
window._genesys.widgets.callback = {

apikey: 'n3eNkgXXXXXXXXOXXXXXXXXA',
dataURL: 'http://host:port/genesys/1/service/callback/samples',
userData: {},
countryCodes: true,
immediateCallback: true,
scheduledCallback: true,
ewt: {

display: true,
queue: 'chat_ewt_test',
threshold: 2000,
immediateCallback: {

thresholdMin: 1000,
thresholdMax: 3000

}
}

};

Options
Name Type Description Default Required

countryCodes boolean
Enable/disable
display of country
codes for phone
number.

true n/a

immediateCallback boolean
Enable/disable the
immediate (As
Soon As Possible)
callback option.

true n/a

scheduledCallback boolean
Enable/disable the
scheduling (Pick
date & time)
callback option.

true n/a

form object

An object
containing a
custom
registration form
definition. The
definition placed
here becomes the
default registration
form layout for
Callback. See
Customizable
Callback

A basic
registration form is
defined internally
by default

n/a

Callback

Widgets API Reference 145

Name Type Description Default Required
Registration Form.

ewt.display boolean
To display
Estimated Wait
Time (EWT)
details.

true n/a

ewt.queue string
EWT service
channel virtual
queue.

none
Always required if
Estimated Waiting
Time has to be
displayed.

ewt.threshold number

If EWT is less than
this threshold
value (seconds),
wait time will not
be shown.

30 n/a

ewt.refreshInterval number
EWT is updated for
every time interval
(seconds) defined
here.

10 n/a

ewt.immediateCallback.thresholdMinnumber

If EWT is less than
this minimum
threshold value
(seconds), then 'As
Soon As Possible'
option (Immediate
Callback) will be
disabled. This
value should be
configured less
than or equal to
above
ewt.threshold
value.

none n/a

ewt.immediateCallback.thresholdMaxnumber

If EWT is more
than this
maximum
threshold value
(seconds), then 'As
Soon As Possible'
option (Immediate
Callback) will be
disabled.

none n/a

Localization

Important
For information on how to set up localization, please refer to Localize widgets and

Callback

Widgets API Reference 146

services.

Usage
Use the callback namespace when defining localization strings for the Callback plugin in your i18n
JSON file.

The following example shows how to define new strings for the en (English) language. You can use
any language codes you wish; there is no standard format. When selecting the active language in
your configuration, you must match one of the language codes defined in your i18n JSON file. Please
note that you must only define a language code once in your i18n JSON file. Inside each language
object you should define new strings for each widget.

Example i18n JSON
{

"en": {
"callback": {

"CallbackTitle": "Receive a Call",
"CancelButtonText": "Cancel",
"AriaCancelButtonText": "Cancel",
"ConfirmButtonText": "Confirm",
"AriaConfirmButtonText": "Confirm",
"CallbackPlaceholderRequired": "Required",
"CallbackPlaceholderOptional": "Optional",
"CallbackFirstName": "First Name",
"CallbackLastName": "Last Name",
"CallbackPhoneNumber": "Phone",
"CallbackQuestion": "When should we call you?",
"CallbackDayLabels": [

"Sunday",
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday"

],
"CallbackMonthLabels": [

"Jan",
"Feb",
"Mar",
"Apr",
"May",
"Jun",
"Jul",
"Aug",
"Sep",
"Oct",
"Nov",
"Dec"

],
"CallbackConfirmDescription": "You're booked in!",
"CallbackNumberDescription": "We will call you at the number

provided:",
"CallbackNotes": "Notes",

Callback

Widgets API Reference 147

"CallbackDone": "Close",
"AriaCallbackDone": "Close",
"CallbackOk": "Okay",
"AriaCallbackOk": "Okay",
"CallbackCloseConfirm": "Are you sure you want to cancel arranging

this callback?",
"CallbackNoButtonText": "No",
"AriaCallbackNoButtonText": "No",
"CallbackYesButtonText": "Yes",
"AriaCallbackYesButtonText": "Yes",
"CallbackWaitTime": "Wait Time",
"CallbackWaitTimeText": "min wait",
"CallbackOptionASAP": "As soon as possible",
"CallbackOptionPickDateTime": "Pick date & time",
"AriaCallbackOptionPickDateTime": "Opens a date picker",
"CallbackPlaceholderCalendar": "Select Date & Time",
"AriaMinimize": "Callback Minimize",
"AriaWindowLabel": "Callback Window",
"AriaMaximize": "Callback Maximize",
"AriaClose": "Callback Close",
"AriaCalendarClosedStatus": "Calendar is closed",
"Errors": {

"501": "Invalid parameters cannot be accepted, please check
the supporting server API documentation for valid parameters.",

"503": "Missing apikey, please ensure it is configured
properly.",

"1103": "Missing apikey, please ensure it is configured
properly.",

"7030": "Please enter a valid phone number.",
"7036": "Callback to this number is not possible. Please

retry with another phone number.",
"7037": "Callback to this number is not allowed. Please retry

with another phone number.",
"7040": "Please configure a valid service name.",
"7041": "Too many requests at this time.",
"7042": "Office closed. Please try scheduling within the

office hours.",
"unknownError": "Something went wrong, we apologize for the

inconvenience. Please check your connection settings and try again.",
"phoneNumberRequired": "Phone number is required."

}
}

}
}

API commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

Callback

Widgets API Reference 148

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Callback.open');

open
Opens the Callback UI.

Example
oMyPlugin.command('Callback.open', {

form: {

autoSubmit: false,
firstname: 'John',
lastname: 'Smith',
subject: 'Customer Satisfaction',
desiredTime: 'now',
phonenumber: '8881110000'

},
formJSON: {...}

}).done(function(e){

// Callback opened successfully

}).fail(function(e){

// Callback failed to open
});

Options

Option Type Description

form object
Object containing form data to
prefill in the callback form and
optionally auto-submit the form.

form.autoSubmit boolean Automatically submit the
callback form.

form.firstname string Value for the first name entry
field.

form.lastname string Value for the last name entry
field.

form.subject string Value for the notes entry field.

form.desiredTime string

This value is shared by the
immediate or scheduled callback
drop down option in the form (in
other words, As Soon As Possible
or Pick date & time). A string
value 'now' pre-selects the 'As
Soon As Possible' option. A string
value with Date Time or Date
Object, is passed into this drop
down option and pre-selected.

Callback

Widgets API Reference 149

Option Type Description
During form submission, it is
converted into UTC string format
and sent to the server as the
desired callback time.

form.phonenumber string

Value for the phone entry field.
Should be a valid telephone
number, when used with a prefix
'+' auto selects the country flag
near the phone input field.

formJSON object
An object containing a custom
registration form definition. See
Customizable Callback
Registration Form.

userData object

Arbitrary data that is to be
attached with callback schedule.
Properties defined here will be
merged with default userData set
in the configuration object.

Resolutions

Status When Returns

resolved Callback form is successfully
opened n/a

rejected Callback form is already open 'already opened'

close
Closes the Callback UI.

Example
oMyPlugin.command('Callback.close');

Resolutions

Status When Returns

resolved Callback form is successfully
closed n/a

rejected Callback form is already closed 'already closed'

rejected
User has entered some details on
the form and trying to close it
without confirming cancellation

'User must confirm close'

Callback

Widgets API Reference 150

minimize
Minimizes or un-minimizes the Callback UI.

Example
oMyPlugin.command('Callback.minimize');

Options

Option Type Description

minimized boolean

Rather than toggling the current
minimized state you can specify
the minimized state directly: true
= minimized, false =
unminimized.

Resolutions

Status When Returns
resolved Always n/a
rejected Never n/a

showOverlay
Displays a slide-down overlay over the Callback's content. You can fill this overlay with disclaimers,
articles and other information.

Example
oMyPlugin.command('Callback.showOverlay', {

html: '
Example text
'

});

Options

Option Type Description

html string or HTML reference The HTML content you want to
display in the overlay.

hideFooter boolean Normally the overlay appears

Callback

Widgets API Reference 151

Option Type Description
between the titlebar and footer
bar. Set this to true to have the
overlay overlap the footer to gain
a bit more vertical space. This
should only be used in special
cases. For general use, don't set
this value.

Resolutions

Status When Returns

resolved Callback is open and the overlay
opens n/a

rejected Callback is not currently open Callback is not currently open.
Ignoring command.

hideOverlay
Hides the slide-down overlay.

Example
oMyPlugin.command('Callback.hideOverlay');

Resolutions

Status When Returns

resolved Callback is open and the overlay
closes n/a

rejected Callback is not currently open Callback is not currently open.
Ignoring command.

configure
Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling configure
again after startup may result in unpredictable behavior.

API events

Callback

Widgets API Reference 152

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('Callback.ready', function(e){});

Name Description Data

opened The Callback widget has
appeared on screen. Metadata

ready Callback is initialized and ready
to accept commands. n/a

started
When the user has started filling
out the Callback widget form or
auto pre-filled it.

Metadata

submitted When the user has submitted the
form. Metadata

completed When the Callback widget form is
submitted successfully. Metadata

cancelled
When the user has abandoned
the interaction by closing the
Callback widget before
scheduling a callback.

Metadata

closed The Callback widget has been
removed from the screen. Metadata

Metadata

Interaction Lifecycle
Every Callback interaction has a sequence of events we describe as the Interaction Lifecycle. This is a
sequence of events that tracks progress and choices from the beginning of an interaction (opening
Callback), to the end (closing Callback), and every step in between.

The following events are part of the Interaction Lifecycle:

ready
opened
started
submitted

Callback

Widgets API Reference 153

cancelled
completed
closed

Lifecycle scenarios
An Interaction Lifecycle can vary, based on each user's intent and experience with Callback. Here are
several sequences of events in the lifecycle that correspond to different scenarios.

The user opened Callback but changed their mind and closed it without entering any information:

ready -> opened -> cancelled -> closed

The user started filling out the form but closed Callback without submitting the callback request:

ready -> opened -> started -> cancelled -> closed

The user started filling out the form and submitted it successfully:

ready -> opened -> started -> submitted -> completed -> closed

Tip
For a list of all Callback events, see API events.

Metadata
Each event in the Interaction Lifecycle includes the following block of metadata. By default, all values
are set to false. As the user progresses through the lifecycle of a Callback interaction, these values
will be updated.

The metadata block contains boolean state flags, counters, timestamps, and elapsed times. These
values can be used to track and identify trends or issues with callback interactions. During run-time,
the metadata can help you offer a smart and dynamic experience to your users.

Reference

Name Type Description

proactive boolean Indicates Callback was offered
and accepted proactively.

prefilled boolean Indicates the form was prefilled
with info automatically.

autoSubmitted boolean
Indicates the form was submitted
automatically, usually after being
prefilled.

errors array/boolean
An array of error codes
encountered after submitting the
form. If no errors, this value will
be false.

Callback

Widgets API Reference 154

Name Type Description

form object
An object containing the form
parameters when the form is
submitted.

opened integer (timestamp) Timestamp indicating when
Callback was opened.

started integer (timestamp)
Timestamp indicating when the
user started entering information
into the form.

cancelled integer (timestamp)

Timestamp indicating when the
callback request is cancelled.
Cancelled refers to when a user
abandoned the interaction by
closing Callback before
scheduling a callback.

completed integer (timestamp)
Timestamp indicating when the
callback request was sent
successfully.

closed integer (timestamp) Timestamp indicating when
Callback was closed.

elapsed integer (milliseconds)

Total elapsed time in milliseconds
from when the user started
entering information to when the
user cancelled or completed the
interaction.

Customizable Callback registration form

Callback allows you to customize the registration form shown to users prior to starting a session. The
following form inputs are currently supported:

• Text
• Select
• Hidden
• Checkbox
• Textarea

Customization is done through an object definition that defines the layout, input type, label, and
attributes for each input. You can set the default registration form definition in the
_genesys.widgets.callback.form configuration option. Alternately, you can pass a new registration
form definition through the Callback.open command:

_genesys.widgets.bus.command("Callback.open", {formJSON: oRegFormDef});

Inputs are rendered as stacked rows with one input and one optional label per row.

Callback

Widgets API Reference 155

Default example
The following example is the default object used to render Callback's registration form. This is a very
simple definition that does not use many properties.

Important
The Phone Number field with name phonenumber is required for all Callback custom
forms. This field value is required by Genesys Callback API to schedule a Callback.

{
wrapper: "

", inputs: [{ id: "cx_form_callback_firstname", name: "firstname", maxlength:
"100", placeholder: "@i18n:callback.CallbackPlaceholderOptional", label:
"@i18n:callback.CallbackFirstName" }, { id: "cx_form_callback_lastname", name:
"lastname", maxlength: "100", placeholder:
"@i18n:callback.CallbackPlaceholderOptional", label:
"@i18n:callback.CallbackLastName" }, { id: "cx_form_callback_phone_number",
name: "phonenumber", maxlength: "14", placeholder:
"@i18n:callback.CallbackPlaceholderRequired", label:
"@i18n:callback.CallbackPhoneNumber", onkeypress: function(event) { // To
allow only number inputs return (event.charCode >= 48 && event.charCode
Using this definition will result in this output:

Callback

Widgets API Reference 156

Important
Form fields with id cx_form_schedule_options and cx_form_schedule_time are not
customizable.

Properties
Each input definition can contain any number of properties. These are categorized in two groups:
Special Properties, which are custom properties used internally to handle rendering logic, and HTML
Attributes which are properties that are applied directly as HTML attributes on the input element.

Callback

Widgets API Reference 157

/File:Callback_MainScreen_28022020.jpg
/File:Callback_MainScreen_28022020.jpg

Special properties

Property Type Default Description

type string "text"

Sets the type of input to
render. Possible values
are currently text,
hidden, select,
checkbox, and
textarea.

label string

Set the text for the
label. If no value
provided, no label will
be shown. You may use
localization query
strings to enable
custom localization (for
example, label:
"@i18n:namespace.StringName").
Localization query
strings allow you to use
strings from any widget
namespace or to create
your own namespace in
the localization file
(i18n.json) and use
strings from there (for
example, label:
"@i18n:myCustomNamespace.myCustomString001").
For more information,
see the Labels section.

wrapper HTML string “
”

Each input exists in its
own row in the form. By
default this is a table-
row with the label in the
left cell and the input in
the right cell. You can
redefine this wrapper
and layout by specifying
a new HTML row
structure. See the
Wrappers section for
more info.
The default wrapper for
an input is "

validate function

Define a validation
function for the input
that executes when the
input loses focus (blur)
or changes value. Your
function must return
true or false. True to
indicate it passed, false
to indicate it failed. If
your validation fails, the
form will not submit and

Callback

Widgets API Reference 158

Property Type Default Description
the invalid input will be
highlighted in red. See
the Validation section
for more details and
examples.

validateWhileTyping boolean false

Execute validation on
keypress in addition to
blur and change. This
ignores non-character
keys like shift, ctrl, and
alt.

options array []

When ‘type’ is set to
‘select’, you can
populate the select by
adding options to this
array. Each option is an
object (for example,
{name: ‘Option 1’,
value: ‘1’} for a
selectable option, and
{name: "Group 1",
group: true} for an
option group).

HTML attributes

With the exception of special properties, all properties will be added as HTML attributes on the input
element. You can use standard HTML attributes or make your own.

Example

{
id: "cx_callback_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:callback.CallbackPlaceholderOptional",
label: "@i18n:callback.CallbackFirstName"

}

In this example, id, name, maxlength, and placeholder are all standard HTML attributes for the text
input element. Whatever values are set here will be applied to the input as HTML attributes.

Note: the default input type is "text", so type does not need to be defined if you intend to make a
text input.

HTML output

Labels
A label tag will be generated for your input if you specify label text and if your custom input wrapper
includes a ‘{label}’ designation. If you have added an ID attribute for your input, the label will

Callback

Widgets API Reference 159

automatically be linked to your input so that clicking on the label selects the input or, for check
boxes, toggles it.

Labels can be defined as static strings or localization queries.

Wrappers
Wrappers are HTML string templates that define a layout. There are two kinds of wrappers, form
wrappers and input wrappers:

Form wrapper

You can specify the parent wrapper for the overall form in the top-level "wrapper" property. In the
example below, we specify this value as " ". This is the default wrapper for the Callback form.

{
wrapper: "

", /* form wrapper */ inputs: [] }
Input wrapper

Each input is rendered as a table row inside the form wrapper. You can change this by defining a new
wrapper template for your input row. Inside your template you can specify where you want the input
and label to be by adding the identifiers "{label}" and "{input}" to your wrapper value. See the
example below:

{
id: "cx_callback_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:callback.CallbackPlaceholderOptional",
label: "@i18n:callback.CallbackFirstName"
wrapper: "{label}{input}" /* input row wrapper */

}

The {label} identifier is optional. Omitting it will allow the input to fill the row. If you decide to keep
the label, you can move it to any location within the wrapper, such as putting the label on the right,
or stacking the label on top of the input. You can control the layout of each row independently,
depending on your needs.

You are not restricted to using a table for your form. You can change the form wrapper to "

" and then change the individual input wrappers from a table-row to your own
specification. Be aware though that when you move away from the default table
wrappers, you are responsible for styling and aligning your layout. Only the
default table-row wrapper is supported by default Themes and CSS.

Validation
You can apply a validation function to each input that lets you check the value after a change has
been made and/or the user has moved to a different input (on change and on blur). You can enable
validation on key press by setting validateWhileTyping to true in your input definition.

Callback

Widgets API Reference 160

Here is how a validation function is defined:

{
id: "cx_callback_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:callback.CallbackPlaceholderOptional",
label: "@i18n:callback.CallbackFirstName"

validateWhileTyping: true, // default is false

validate: function(event, form, input, label, $, CXBus, Common){

if(input && input.val()) { // to validate some input exits in the
firstname input field (required field)

return true; // validation passed

}else{

return false; // no input exists, validation failed
}

}
}

You can perform any validation you like in the validate function but it must return true or false to
indicate that validation has passed or failed, respectively. If you return false, the Callback form will
not submit, and the input will be highlighted in red. This is achieved by adding the CSS class "cx-
error" to the input.

Validation function arguments

Argument Type Description

event JavaScript event object

The input event reference object
related to the form input field.
This event data can be helpful to
perform actions like active
validation on an input field while
the user is typing.

form HTML reference A jquery reference to the form
wrapper element.

input HTML reference A jquery reference to the input
element being validated.

label HTML reference A jquery reference to the label
for the input being validated.

$ jquery instance
Widget’s internal jquery instance.
Use this to help you write your
validation logic, if needed.

CXBus CXBus instance
Widget’s internal CXBus
reference. Use this to call
commands on the bus, if needed.

Common Function Library
Widget’s internal Common library
of functions and utilities. Use if
needed.

Callback

Widgets API Reference 161

Form submit
Custom input field form values are submitted to the server as key value pairs in the form submit
request, where the input field names are the property keys and the input field values are the property
values.

Form pre-fill
You can pre-fill the custom form using the Callback.open command by passing the form (form data)
and formJSON (custom registration form), provided the form input names in the formJSON must
match with the property names in the form data.

The following example will open the Callback form with the phone number already entered in the
Phone input field.

_genesys.widgets.bus.command("Callback.open", {

formJSON: {
wrapper: "

", inputs: [{ id: "cx_form_phone_number", name: "phonenumber", maxlength:
"12", placeholder: "@i18n:callback.CallbackPlaceholderPhoneNumber", label:
"@i18n:callback.CallbackPhoneNumber" }] }, form: { phonenumber:
9453222222 } });

Callback

Widgets API Reference 162

CallUs

Contents

• 1 Overview
• 1.1 Usage
• 1.2 Customization
• 1.3 Namespace
• 1.4 Mobile support
• 1.5 Screenshots

• 2 Configuration
• 2.1 Example
• 2.2 Options

• 3 Localization
• 3.1 Usage
• 3.2 Example i18n JSON

• 4 API commands
• 4.1 open
• 4.2 close
• 4.3 configure

• 5 API events

CallUs

Widgets API Reference 163

• Developer

Learn how to display an overlay screen showing one or more phone numbers for customer service,
as well as the hours that this service is available.

Related documentation:
•

Link to video

Overview

The CallUs Widget provides an overlay screen showing one or more phone numbers for customer
service, as well as the hours that this service is available. The arrangement of numbers in this layout
starts with a main phone number, which can be followed by alternative or additional phone numbers.
Each number can be named, and there is no limit to the number of phone numbers you can include.
If the list of numbers doesn't fit in the widget, the user can scroll down to see the rest.

Usage
Launch CallUs manually by using the following methods:

CallUs

Widgets API Reference 164

https://player.vimeo.com/video/548087059?title=0&byline=0&portrait=0
/File:CallUs_Dark_Desktop.png
/File:CallUs_Dark_Desktop.png

• Call the CallUs.open command
• Configure ChannelSelector to show CallUs as a channel
• Create your own custom button or link to open CallUs (using the "CallUs.open" command)

Important
By default a user has no way of launching the CallUs Widget. You must choose a
suitable method for launching this widget.

Customization
You can customize and localize all of the text, titles, names, and numbers shown in the CallUs Widget
by adding entries into your configuration and localization options. There are no formatting
requirements. Text will appear as you entered it.

Important
If you do not configure the CallUs Widget it will appear as an empty overlay. You must
configure this Widget before using it.

CallUs supports themes. You can create and register your own themes for Genesys Widgets.

Namespace
The CallUs plugin has the following namespaces tied up with each of the following types:

Type Namespace
Configuration callus
i18n—Localization callus
CXBus—API commands & API events CallUs
CSS .cx-call-us

Mobile support
CallUs supports both desktop and mobile devices. Like all Genesys Widgets, there are two main
modes: Desktop & Mobile. Desktop is employed for monitors, laptops, and tablets. Mobile is
employed for smartphones. When a smartphone is detected, CallUs switches to special full-screen
templates that are optimized for both portrait and landscape orientations.

Switching between desktop and mobile mode is done automatically by default. You may configure
Genesys Widgets to switch between Desktop and Mobile mode manually if necessary.

CallUs

Widgets API Reference 165

Screenshots
Dark theme

Light theme

Configuration

CallUs uses the _genesys.widgets.callus configuration property. You must specify all of the
numbers and labels that appear in the CallUs UI.

Example
window._genesys.widgets.callus = callus: {

contacts: [

{
displayName: 'Payments',
i18n: 'Number001',
number: '1 202 555 0162'

},
{

displayName: 'Local',
i18n: 'Number002',
number: '202 555 0134'

},
{

CallUs

Widgets API Reference 166

/File:CallUs_Dark_Desktop.png
/File:CallUs_Dark_Desktop.png
/File:CallUs_Dark_Mobile_Portrait.png
/File:CallUs_Dark_Mobile_Portrait.png
/File:CallUs_Dark_Mobile_Landscape.png
/File:CallUs_Dark_Mobile_Landscape.png
/File:CallUs_Light_Desktop.png
/File:CallUs_Light_Desktop.png
/File:CallUs_Light_Mobile_Portrait.png
/File:CallUs_Light_Mobile_Portrait.png
/File:CallUs_Light_Mobile_Landscape.png
/File:CallUs_Light_Mobile_Landscape.png

displayName: 'International',
i18n: 'Number003',
number: '0647 555 0131'

}
],

hours: [

'8am - 8pm Mon - Fri',
'10am - 6pm Sat - Sun'

]
};

Options
Name Type Description Default Required

contacts array

An array of objects
that represent
phone numbers
and their labels.
The first number in
this list will display
as the larger, main
number. Phone
labels can be set
directly using the
'displayName'
property or you
can use String
Names from your
localization file by
setting the String
Name in the 'i18n'
property. 'i18n'
overrides
'displayName'.

Example
{

"displayName":
"Payments",

"i18n":
"Number001",

"number": "1
202 555 0162"
}

[] true

hours array

Array of strings to
show stacked in
the business hours
section. Strings
here are freeform.
See screenshots
for ideas.

[]

CallUs

Widgets API Reference 167

Localization

Important
For information on how to set up localization, please refer to Localize widgets and
services.

Usage
Use the callus namespace when defining localization strings for the CallUs plugin in your i18n JSON
file.

The following example shows how to define new strings for the en (English) language. You can use
any language codes you wish; there is no standard format. When selecting the active language in
your configuration, you must match one of the language codes defined in your i18n JSON file. Please
note that you must only define a language code once in your i18n JSON file. Inside each language
object you should define new strings for each widget.

Example i18n JSON
{

"en": {
"callus": {

"CallUsTitle": "Call Us",
"SubTitle": "You can reach us at any of the following NUMBERS...",
"CancelButtonText": "Cancel",
"AriaWindowLabel": "Call Us Window",
"AriaCallUsClose": "Call Us Close",
"AriaBusinessHours": "Business Hours",
"AriaCallUsPhoneApp": "Opens the phone application",
"AriaCancelButtonText": "Cancel"

}
}

}

API commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

CallUs

Widgets API Reference 168

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('CallUs.open');

open
Opens the CallUs UI.

Example
oMyPlugin.command('CallUs.open').done(function(e){

// CallUs opened successfully

}).fail(function(e){

// CallUs failed to open
});

Resolutions

Status When Returns
resolved CallUs is successfully opened n/a
rejected CallUs is already open 'Already opened'

close
Closes the CallUs UI.

Example
oMyPlugin.command('CallUs.close').done(function(e){

// CallUs closed successfully

}).fail(function(e){

// CallUs failed to close
});

Resolutions

Status When Returns
resolved CallUs successfully closed n/a
rejected CallUs is already closed 'Already closed'

CallUs

Widgets API Reference 169

configure
Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling configure
again after startup may result in unpredictable behavior.

Example
oMyPlugin.command('CallUs.configure', {

contacts: [
{

displayName: 'Payments',
i18n: 'Number001',
number: '1 888 436 3797'

}
],
hours: ['8am - 8pm Mon - Fri']

}).done(function(e){

// CallUs configred successfully

}).fail(function(e){

// CallUs failed to configure
});

Options

Option Type Description

contacts Array

An array of objects that represent
phone numbers and their labels.
The first number in this list will
display as the larger, main
number.

hours Array
Array of strings to show stacked
in the business hours section.
Strings here are freeform.

Resolutions

Status When Returns
resolved CallUs configuration is provided n/a
rejected No configuration is provided 'Invalid Configuration'

API events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.

CallUs

Widgets API Reference 170

Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('CallUs.ready', function(e){});

Name Description Data

ready CallUs is initialized and ready to
accept commands

opened CallUs UI has been opened
closed CallUs UI has been closed

CallUs

Widgets API Reference 171

ChannelSelector

Contents

• 1 Overview
• 1.1 Usage
• 1.2 Customization
• 1.3 Namespace
• 1.4 Mobile support
• 1.5 Screenshots

• 2 Configuration
• 3 Example

• 3.1 Options

• 4 Localization
• 4.1 Usage
• 4.2 Example i18n JSON

• 5 API commands
• 5.1 close
• 5.2 open
• 5.3 configure
• 5.4 displayStats
• 5.5 disableStats
• 5.6 enableStats

• 6 API events

ChannelSelector

Widgets API Reference 172

• Developer

Learn how to provide your customers with a configurable list of channels as an entry point for
contacting customer service.

Related documentation:
•

Overview

The ChannelSelector Widget displays a configurable list of channels, as an entry point for customers
to contact customer service. In addition to showing multiple channels, ChannelSelector can be
configured to display the estimated wait time (EWT) for each channel. You can also use an EWT value
to configure channels to hide, or to show, that they disabled. Channels are not limited to Genesys
Widgets; you can add your own custom channels to launch applications or open new windows as
necessary.

Note the screenshots in the following section, and visit the configuration section for more
information.

ChannelSelector

Widgets API Reference 173

/File:Live_assistance_channels_pec.png
/File:Live_assistance_channels_pec.png

Usage
Use the following methods to launch ChannelSelector manually:

• Call the ChannelSelector.open command
• Create your own custom button or link to open ChannelSelector (using the "ChannelSelector.open"

command)

Important
By default ChannelSelector has no channels configured. The UI will appear empty if
not configured. See the configuration section for examples and information on how to
set up your own custom channels.

Customization
You can customize and localize all of the static text shown in the ChannelSelector Widget by adding
entries into your configuration and localization options.

ChannelSelector supports Themes. You can create and register your own themes for Genesys
Widgets.

Namespace
The Channel Selector plugin has the following namespaces tied to each of the following types:

Type Namespace
Configuration channelselector
i18n—Localization channelselector
CXBus—API commands & API events ChannelSelector
CSS .cx-channel-selector

Mobile support
ChannelSelector supports both desktop and mobile devices. Like all Genesys Widgets, there are two
main modes: Desktop and Mobile. Desktop is employed for monitors, laptops, and tablets. Mobile is
employed for smartphones. When a smartphone is detected, ChannelSelector switches to special full-
screen templates that are optimized for both portrait and landscape orientations.

Switching between Desktop and Mobile modes is done automatically by default. You may configure
Genesys Widgets to switch between Desktop and Mobile modes manually if necessary.

Screenshots
Dark theme

ChannelSelector

Widgets API Reference 174

Light theme

ChannelSelector

Widgets API Reference 175

/File:GEC_CS_MaxUnAvl_dark_MobileLandscape.png
/File:GEC_CS_MaxUnAvl_dark_MobileLandscape.png
/File:GEC_CS_MaxUnAvl_dark.png
/File:GEC_CS_MaxUnAvl_dark.png
/File:GEC_CS_Avl_dark_MobileLandscape.png
/File:GEC_CS_Avl_dark_MobileLandscape.png
/File:GEC_CS_Avl_dark.png
/File:GEC_CS_Avl_dark.png
/File:GEC_CS_MaxUnAvl_dark_MobilePortrait.png
/File:GEC_CS_MaxUnAvl_dark_MobilePortrait.png
/File:GEC_CS_Min_dark.png
/File:GEC_CS_Min_dark.png
/File:GEC_CS_Avl_dark_MobilePortrait.png
/File:GEC_CS_Avl_dark_MobilePortrait.png
/File:GEC_CS_Min_dark_MobileLandscape.png
/File:GEC_CS_Min_dark_MobileLandscape.png
/File:GEC_CS_Min_dark_MobilePortrait.png
/File:GEC_CS_Min_dark_MobilePortrait.png
/File:GEC_CS_Max_dark_MobileLandscape.png
/File:GEC_CS_Max_dark_MobileLandscape.png
/File:GEC_CS_Max_dark_MobilePortrait.png
/File:GEC_CS_Max_dark_MobilePortrait.png
/File:GEC_CS_Avl_light_MobilePortrait.png
/File:GEC_CS_Avl_light_MobilePortrait.png
/File:GEC_CS_Avl_light_MobileLandscape.png
/File:GEC_CS_Avl_light_MobileLandscape.png
/File:GEC_CS_Avl_light.png
/File:GEC_CS_Avl_light.png
/File:GEC_CS_Max_light_MobileLandscape.png
/File:GEC_CS_Max_light_MobileLandscape.png
/File:GEC_CS_MaxUnAvl_light_MobileLandscape.png
/File:GEC_CS_MaxUnAvl_light_MobileLandscape.png
/File:GEC_CS_Min_light.png
/File:GEC_CS_Min_light.png
/File:GEC_CS_Min_light_MobileLandscape.png
/File:GEC_CS_Min_light_MobileLandscape.png

Configuration

ChannelSelector shares the _genesys.widgets.channelselector configuration namespace.
ChannelSelector has UI options to enable and disable channels, hide channels, add new channels,
and display estimated wait time (EWT) details. All the channels are displayed based on the array of
objects order defined in the channel's configuration. To hide a particular channel, simply remove the
corresponding array object.

Important
EWT can only be configured for WebChat, Callback, ClickToCall, and CallUs channels. It
may not be applicable for other channels. If configured for the Send Message channel,
it will always be shown as available regardless of any EWT value.

Example
window._genesys.widgets.channelselector = {

ewtRefreshInterval: 10,

channels: [{

enable: true,
clickCommand: 'CallUs.open',
displayName: 'Call Us',
i18n: 'CallusTitle',
icon: 'call-outgoing',
html: '',
ewt: {

display: true,
queue: 'callus_ewt_test_eservices',
availabilityThresholdMin: 300,
availabilityThresholdMax: 480,
hideChannelWhenThresholdMax: false
}

},

{

ChannelSelector

Widgets API Reference 176

/File:GEC_CS_MaxUnAvl_light.png
/File:GEC_CS_MaxUnAvl_light.png
/File:GEC_CS_Max_light_MobilePortrait.png
/File:GEC_CS_Max_light_MobilePortrait.png
/File:GEC_CS_MaxUnAvl_light_MobilePortrait.png
/File:GEC_CS_MaxUnAvl_light_MobilePortrait.png
/File:GEC_CS_Min_light_MobilePortrait.png
/File:GEC_CS_Min_light_MobilePortrait.png

enable: true,
clickCommand: 'WebChat.open',
displayName: 'Web Chat',
i18n: 'ChatTitle',
icon: 'chat',
html: '',
ewt: {

display: true,
queue: 'chat_ewt_test_eservices',
availabilityThresholdMin: 300,
availabilityThresholdMax: 480,
hideChannelWhenThresholdMax: false
}

},

{
enable: true,
clickCommand: 'Callback.open',
displayName: 'Receive a Call',
i18n: 'CallbackTitle',
icon: 'call-incoming',
html: '',
ewt: {

display: true,
queue: 'callback_ewt_test_eservices',
availabilityThresholdMin: 300,
availabilityThresholdMax: 480,
hideChannelWhenThresholdMax: false
}

},

};

Options
Name Type Description Default Required

ewtRefreshInterval number
EWT is updated for
every time interval
(seconds) defined
here.

10 n/a

channels[].enable boolean Enable/disable a
channel. true n/a

channels[].clickCommandstring

The CXBus
command name
for opening a
particular Widget
when this channel
is clicked.

none Always

channels[].displayNamestring
A channel name to
display on
ChannelSelector
Widget.

none Always

channels[].i18n string To support
localization of the none n/a

ChannelSelector

Widgets API Reference 177

Name Type Description Default Required
channel display
name, this takes a
key parameter of
the
channelselector
section in the
language pack file.
Overrides above
displayName.

channels[].icon string

Select from one of
the Genesys
Widgets icons by
specifying icon css
class name.

none Always

channels[].html string

Overrides and
replaces the icon
section of a
channel with the
html (image tag)
defined here.

none n/a

channels[].ewt.displayboolean To display EWT
details. true n/a

channels[].ewt.queuestring
EWT service
channel virtual
queue.

none Always

channels[].ewt.availabilityThresholdMinnumber (seconds)

If EWT is greater
than 0 minutes
and less than this
minimum
threshold value (in
minutes), then the
EWT is shown with
a yellow warning
icon.

Important
Comparison is made
after converting the
threshold value in
seconds to minutes.

300 n/a

channels[].ewt.availabilityThresholdMaxnumber (seconds)

If EWT is greater
than this minimum
threshold value (in
minutes) and less
than the maximum
threshold value (in
minutes), then the
EWT is shown with
a red alert icon.

Important
Comparison is made

480 n/a

ChannelSelector

Widgets API Reference 178

Name Type Description Default Required

after converting the
threshold value in
seconds to minutes.

channels[].ewt.hideChannelWhenThresholdMaxboolean

Hides this channel
when EWT is
greater than the
maximum
threshold value.

true n/a

Localization

Important
For information on how to set up localization, refer to Localize widgets and services.

Usage
Use the channelselector namespace when you define localization strings for the ChannelSelector
plugin in your i18n JSON file.

The following example shows how to define new strings for the en (English) language. You can use
any language codes you wish; there is no standard format. When selecting the active language in
your configuration, you must match one of the language codes defined in your i18n JSON file. You
must only define a language code once in your i18n JSON file. Inside each language object you must
define new strings for each Widget.

Example i18n JSON
{

"en": {
"channelselector": {

"Title": "Live Assistance",
"SubTitle": "How would you like to get in touch?",
"WaitTimeTitle": "Wait Time",
"AvailableTitle": "Available",
"AriaAvailableTitle": "Available",
"UnavailableTitle": "Unavailable",
"CallbackTitle": "Receive a Call",
"AriaClose": "Live Assistance Close",
"AriaWarning": "Warning",
"AriaAlert": "Alert",
"minute": "min",
"minutes": "mins",
"AriaWindowLabel": "Live Assistance Window"

}
}

}

ChannelSelector

Widgets API Reference 179

API commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('ChannelSelector.open');

close
Closes the ChannelSelector UI.

Example
oMyPlugin.command('ChannelSelector.close').done(function(e){

// ChannelSelector closed successfully

}).fail(function(e){

// ChannelSelector failed to close
});

Resolutions

Status When Returns

resolved ChannelSelector is successfully
closed n/a

rejected ChannelSelector is already closed Already closed

open
Opens the ChannelSelector UI.

Example
oMyPlugin.command('ChannelSelector.open').done(function(e){

// ChannelSelector opened successfully

ChannelSelector

Widgets API Reference 180

}).fail(function(e){

// ChannelSelector failed to open
});

Resolutions

Status When Returns

resolved ChannelSelector Widget is
successfully opened n/a

rejected ChannelSelector Widget is
already open 'Already open'

configure
Modifies the ChannelSelector configuration.

Example
oMyPlugin.command('ChannelSelector.configure', {

channels: [
{

enabled: true,
clickCommand: 'CallUs.open',
readyEvent: 'CallUs.ready',
displayName: 'Call Us',
i18n: 'CallusTitle',
icon: 'call-outgoing',
html: '',
ewt:{

display: true,
queue:'chat_ewt_test_eservices',
availabilityThresholdMin:60,
availabilityThresholdMax:600

}
}

]

}).done(function(e){

// ChannelSelector configured successfully

}).fail(function(e){

// ChannelSelector failed to configure
});

Options

Option Type Description

ewtRefreshInterval number EWT is updated for every time
interval (seconds) is defined.

ChannelSelector

Widgets API Reference 181

Option Type Description

channels array
Array containing each channel
configuration object. The order of
channels is displayed based on
the order defined here.

channels[].enable boolean Enable/disable chat channel.

channels[].clickCommand string
The CXBus command name for
opening a particular Widget
when this channel is clicked.

channels[].readyEvent string
Subscribes to this ready event
published by a plugin and
enables the channel when that
plugin is ready.

channels[].displayName string A channel name to display in the
ChannelSelector Widget.

channels[].i18n string

To support localization of channel
display name, this takes a key
parameter of the channelselector
section in the language pack file.
Overrides above displayName.

channels[].icon string
Select from one of the Genesys
Widgets icons by specifying icon
css class name.

channels[].html string
Overrides and replaces the icon
section of a channel with the
html (image tag) defined here.

channels[].ewt.display boolean To display EWT details.

channels[].ewt.queue string EWT service channel virtual
queue name.

channels[].ewt.availabilityThresholdMinnumber (seconds)

If EWT is greater than 0 minutes
and less than this minimum
threshold value (in minutes),
then the EWT is shown with a
yellow warning icon.
Note: Comparison is made
after converting the
threshold
value in seconds to minutes.

channels[].ewt.availabilityThresholdMaxnumber (seconds)

If EWT is greater than this
minimum threshold value (in
minutes) and less than the
maximum threshold value (in
minutes), then the EWT is shown
with a red alert icon.
Note: Comparison is made
after converting the
threshold
value in seconds to minutes.

ChannelSelector

Widgets API Reference 182

Option Type Description

channels[].ewt.hideChannelWhenThresholdMaxboolean
Hides this channel when EWT is
greater than the maximum
threshold value.

Resolutions

Status When Returns

resolved Configuration options are
provided and set n/a

rejected No configuration options are
provided 'Invalid configuration'

displayStats
Displays estimated wait time (EWT) and availability details for each channel.

Example
oMyPlugin.command('ChannelSelector.displayStats').done(function(e){

// ChannelSelector displayed stats successfully

}).fail(function(e){

// ChannelSelector failed to display stats
});

Resolutions

Status When Returns
resolved EWT is displayed successfully n/a

rejected StatsService fails to retrieve EWT
data

'Unable to display EWT Stats in
ChannelSelector'

rejected
enableEwt config is disabled or
when required channel plugins
are not ready

'Either EWT config is disabled or
plugins not yet ready'

disableStats
Clears the UI of any EWT. Disables EWT fetching for the defined time interval.

ChannelSelector

Widgets API Reference 183

Example
oMyPlugin.command('ChannelSelector.disableStats').done(function(e){

// ChannelSelector disabled stats successfully

}).fail(function(e){

// ChannelSelector failed to disable stats
});

Resolutions

Status When Returns

resolved ChannelSelector Widget is
successfully opened n/a

rejected ChannelSelector Widget is not
opened

'ChannelSelector not opened to
disable stats details'

rejected EWT is disabled for all channels 'Stats already disabled'

enableStats
Displays EWT and availability details in the UI. Enables fetching EWT for the defined time interval.

Example
oMyPlugin.command('ChannelSelector.enableStats').done(function(e){

// ChannelSelector enabled stats successfully

}).fail(function(e){

// ChannelSelector failed to enable stats
});

Resolutions

Status When Returns

resolved ChannelSelector Widget is
successfully opened n/a

rejected EWT details are already
displayed 'Stats already enabled'

rejected ChannelSelector Widget is not
opened

'ChannelSelector not opened to
enable stats details'

API events

ChannelSelector

Widgets API Reference 184

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('ChannelSelector.ready', function(e){});

Name Description Data

ready
ChannelSelector plugin is
initialized and ready to accept
commands

n/a

opened ChannelSelector Widget has
appeared on screen n/a

closed ChannelSelector Widget has
been removed from the screen n/a

ChannelSelector

Widgets API Reference 185

Console

Contents

• 1 Overview
• 1.1 Usage

• 2 Configuration
• 2.1 Description
• 2.2 Example
• 2.3 Options

• 3 Localization
• 4 Strings
• 5 API commands

• 5.1 open
• 5.2 close
• 5.3 configure

• 6 API events

Console

Widgets API Reference 186

• Developer

Learn how to debug commands and events on the widget bus.

Related documentation:
•

Overview

Use the Console Widget to debug commands and events on the widget bus. You can use dynamically
populated lists to test, debug, or demo all commands. You can also create event watch lists that alert
you when an event has fired.

Console provides an easy-to-use interface for debugging the widget bus that complements the
standard command-line methods. You can drag and drop the console anywhere on your screen, and
when you refresh the page or move to another one, Console reappears right where you left it. It is a
great tool for getting to know the widget bus, the API for each widget, and debugging issues.

Usage
Launch WebChat manually by using the following methods:

Console

Widgets API Reference 187

/File:Console_Main.png
/File:Console_Main.png

• Call the Console.open command
• Configure the settings to show Console when the browser window is opened.
• Create your own custom button or link to open Console (using the Console.open command)

Configuration

Description
Console option to open on initial loading.

Example
window._genesys.widgets.console = {open: true};

Options
Name Type Description Default Required

open boolean
Set to true for
console to open at
start.

false false

Localization

Important
For information on how to set up localization, please refer to Localize widgets and
services.

Strings
{

"ConsoleTitle": "CXBus Console",
"Commands": "Commands",
"Plugin": "Plugin",
"ConsoleErrorButton": "OK",
"Execute": "Execute",
"Event": "Event",
"SubscribeTo": "Subscribe to",
"Unsubscribe": "Unsubscribe",
"ReturnData": "Return Data",
"EventsSubscriber": "Events Subscriber",

Console

Widgets API Reference 188

"Watch": "Watch",
"pluginNameEvent": "PluginName.Event",
"ClearAll": "Clear All",
"OptionsSample": "JSON Formatted Options {'option': value}"

}

API commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Console.open');

open
Opens the Console UI.

Example
oMyPlugin.command('Console.open').done(function(e){

// Console opened successfully

}).fail(function(e){

// Console failed to open
});

Resolutions

Status When Returns
resolved Console is successfully opened n/a
rejected Console is already open 'Already opened'

Console

Widgets API Reference 189

close
Closes the Console UI.

Example
oMyPlugin.command('Console.close').done(function(e){

// Console closed successfully

}).fail(function(e){

// Console failed to close
});

Resolutions

Status When Returns
resolved Console successfully closed n/a
rejected Console is already closed 'Already closed'

configure
Modifies the Console configuration options. See the Console configuration page.

Example
oMyPlugin.command('Console.configure', {

open: false

}).done(function(e){

// Console configured successfully

}).fail(function(e){

// Console failed to configure
});

Options

Option Type Description

open boolean
If setting is open: true, the
console will automatically be
open when Widgets is launched
and the console is ready.

Console

Widgets API Reference 190

Resolutions

Status When Returns
resolved Console configuration is provided n/a
rejected No configuration is provided 'Invalid Configuration'

API events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('Console.ready', function(e){});

Name Description Data

ready Console is initialized and ready to
accept commands. n/a

opened The Console Widget has
appeared on screen. n/a

closed The Console Widget has been
removed from the screen. n/a

Console

Widgets API Reference 191

SideBar

Contents

• 1 Overview
• 1.1 Usage
• 1.2 Dependency
• 1.3 Customization
• 1.4 Namespace
• 1.5 Mobile support
• 1.6 Screenshots

• 2 Configuration
• 2.1 Example
• 2.2 Options

• 3 Localization
• 3.1 Strings

• 4 API commands
• 4.1 configure

• 5 API events
• 5.1 Resolutions
• 5.2 open
• 5.3 close
• 5.4 expand
• 5.5 contract

SideBar

Widgets API Reference 192

• Developer

Learn about the Sidebar widget, which customers use to launch other widgets with a single click.

Related documentation:
•

Overview

Use the Sidebar to launch other widgets with a single click. By default, Sidebar is displayed on the
right side of the screen, and you can configure any launchable widgets onto Sidebar, including your
custom extension widgets. The Sidebar UI expands when you hover your cursor over it, and contracts
when you move the cursor away. Other features include configurable positioning and mobile support.
You can also add new configurations on the fly, which automatically re-renders the sidebar.

SideBar

Widgets API Reference 193

/File:Cloud_Sidebar_DesktopLeftPositioned_10032020.png
/File:Cloud_Sidebar_DesktopLeftPositioned_10032020.png

Usage
Use the following methods to launch SideBar manually:

• Call the SideBar.open command
• Configure Sidebar to show and launch custom widgets.

Dependency
You must configure at least one customer-facing UI widget in order to use the Sidebar Widget.

Customization
You can customize and localize all of the text shown in the Sidebar Widget by adding entries to your
configuration and localization options.

Sidebar supports themes. You can create and register your own themes for Genesys Widgets.

Namespace
The Sidebar plugin has the following namespaces tied up with each of the following types:

Type Namespace
Configuration sidebar
i18n—Localization sidebar
CXBus—API commands & API events SideBar
CSS .cx-sidebar

SideBar

Widgets API Reference 194

/File:Cloud_Sidebar_DesktopExpanded_DarkMode_.png
/File:Cloud_Sidebar_DesktopExpanded_DarkMode_.png

Mobile support
Sidebar supports both desktop and mobile devices. In mobile mode, the sidebar launcher button is
displayed to the bottom of the screen. When triggered, it expands to the full screen of mobile and
shows all channels configured with scrollbar when necessary. Like all Genesys Widgets, there are two
main modes: Desktop & Mobile. Desktop is employed for monitors, laptops, and tablets. Mobile is
employed for smartphones. When a smartphone is detected, Sidebar switches to special full-screen
templates that are optimized for both portrait and landscape orientations.

Switching between desktop and mobile mode is done automatically by default. You may configure
Genesys Widgets to switch between Desktop and Mobile mode manually if necessary.

Screenshots
Dark theme

Light theme

Configuration

SideBar shares the _genesys.widgets.sidebar configuration namespace. SideBar has UI options to
handle its position on the screen, disable expand feature sidebar, hide sidebar, and add new
channels on the fly. The display order of channels is based on the order defined in channels
configuration array.

SideBar

Widgets API Reference 195

/File:Cloud_Sidebar_Desktop_DarkMode_10032020.png
/File:Cloud_Sidebar_Desktop_DarkMode_10032020.png
/File:Cloud_Sidebar_DesktopExpanded_DarkMode_10032020.png
/File:Cloud_Sidebar_DesktopExpanded_DarkMode_10032020.png
/File:M_Cloud_Sidebar_MobilePotrait_DarkMode_10032020.png
/File:M_Cloud_Sidebar_MobilePotrait_DarkMode_10032020.png
/File:M_Cloud_Sidebar_MobileLandscape_DarkMode_10032020.png
/File:M_Cloud_Sidebar_MobileLandscape_DarkMode_10032020.png
/File:Cloud_Sidebar_Desktop_LightMode_10032020.png
/File:Cloud_Sidebar_Desktop_LightMode_10032020.png
/File:Cloud_Sidebar_DesktopExpanded_LightMode_10032020_.png
/File:Cloud_Sidebar_DesktopExpanded_LightMode_10032020_.png
/File:Sidebar_MobileNeedHelpLight_28022020.jpg
/File:Sidebar_MobileNeedHelpLight_28022020.jpg
/File:M_Cloud_Sidebar_MobilePotrait_LightMode_10032020.png
/File:M_Cloud_Sidebar_MobilePotrait_LightMode_10032020.png
/File:M_Cloud_Sidebar_MobileLandscape_LightMode_10032020.png
/File:M_Cloud_Sidebar_MobileLandscape_LightMode_10032020.png

Example
window._genesys.widgets.sidebar = {

showOnStartup: true,

position: 'left',

expandOnHover: true,

channels: [{

name: 'ChannelSelector',
clickCommand: 'ChannelSelector.open',
clickOptions: {},

//use your own static string or i18n query string for the below two
display properties

displayName: 'Live Assist',
displayTitle: 'Get live help',

icon: 'agent'
},

{
name: 'WebChat'

}
]

};

Options
Name Type Description Default Required

showOnStartup boolean
Shows the sidebar
on the screen
when Widgets is
launched.

true false

position string

Defines the
position of sidebar
on the screen.
Acceptable values
are left or right.

right false

expandOnHover boolean

Enables the
expand (slide-out)
or contract (slide-
in) behavior of
sidebar.

true false

channels[index].namestring

Name of the
channel. It can be
found in the
namespace
section
documentation of
each Widget. Used
to identify official
channels vs

n/a true

SideBar

Widgets API Reference 196

Name Type Description Default Required
custom channels.
If a reserved name
is used here,
Sidebar will apply
default values for
that channel. A
plugin name
defined in the new
custom plugin can
also be given here.
To override the
default values or
when defining a
new custom
channel/plugin,
use the below
following
properties.

channels[index].clickCommandstring
Change the default
command that is
triggered when
clicked.

n/a false

channels[index].clickOptionsobject

Pass valid
command options
that are used in
above click
command
execution.

n/a n/a

channels[index].readyEventstring
Subscribes to this
ready event
published by a
plugin.

n/a false

channels[index].displayNamestring or i18n
query string

Change the default
display name for
this channel with
your own static
string or to
achieve
localization, use
i18n query string.
Syntax: @i18n:.

n/a false

channels[index].displayTitlestring or i18n
query string

Change the default
tooltip content for
this channel with
your own static
string or to
achieve
localization, use
i18n query string.
Syntax: @i18n:.

n/a false

channels[index].icon string
Change the default
icon for this
channel. For the

n/a false

SideBar

Widgets API Reference 197

Name Type Description Default Required
list of icon names
see Customize
icons in Customize
appearance.

channels[index].onClickfunction

Define a custom
onclick function,
this overrides
clickCommand and
clickOptions.

n/a false

Localization

For your custom plugins, you can define string key names and values for Name and Title (tooltip) to
display on sidebar. The key format requires the plugin name, followed by "Title" or "Name". For
example, a plugin named "MyPlugin" will have keys called "MyPluginName" and "MyPluginTitle".

Important
For information on how to set up localization, refer to Localize widgets and services.

Strings
{

"SidebarTitle": "Need help?",
"ChannelSelectorName": "Live Assistance",
"ChannelSelectorTitle": "Get assistance from one of our agents right away",
"CallUsName": "Call Us",
"CallUsTitle": "Call Us details",
"CallbackName": "Callback",
"CallbackTitle": "Receive a Call",
"WebChatName": "Live Chat",
"WebChatTitle": "Live Chat",
"AriaClose": "Close the menu Need help"

}

API commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Important

SideBar

Widgets API Reference 198

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('SideBar.open');

configure
Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. Sidebar widget has to be configured at least with one channel. The configure
command can also be called at runtime with new configuration, this will override the existing
configuration showing new channels on the screens.

Example
oMyPlugin.command('SideBar.configure', {

showOnStartup: false,
position: 'left',
expandOnHover: false,
channels: [

{
name: 'ChannelSelector',
clickCommand: 'ChannelSelector.open',
clickOptions: {},

//use your own static string or i18n query string for the below two
display properties.
Example for i18n query string: '@i18n:sidebar.ChannelSelectorName' where 'sidebar' refers to
plugin namespace and
ChannelSelectorName' name refers to the property key containing the actual text.

displayName: '@i18n:sidebar.ChannelSelectorName',
displayTitle: 'Get assistance from one of our agents right away', //

Your own static string
readyEvent: 'ChannelSelector.ready',
icon: 'agent',
onClick: function($, CXBus, Common) {

_genesys.widgets.bus.command('MyPlugin.open');
}

}
...

]

}).done(function(e){

// Sidebar configured successfully

}).fail(function(e){

// Sidebar failed to configure properly
});

SideBar

Widgets API Reference 199

Options

Option Type Description

showOnStartup boolean Shows the sidebar on the screen
when Widgets is launched.

position string Defines the position of sidebar on
the screen.

expandOnHover boolean Enables the expand or contract
behavior of sidebar.

channels array
Array containing each channel
configuration object. The order of
channels are displayed based on
the order defined here.

channels[index].name string

Name of the channel. It can be
found in the namespace section
documentation of each Widget.
Used to identify official channels
vs custom channels. If a reserved
name is used here, Sidebar will
apply default values for that
channel. To override the default
values or when defining a new
custom channel, use the below
following properties.

channels[index].clickCommand string Change the default command
that is triggered when clicked.

channels[index].clickOptions object
Pass valid command options that
are used in above click command
execution.

channels[index].displayName string or i18n query string

Change the default display name
for this channel with your own
static string or to achieve
localization, use i18n query
string. Syntax: @i18n:..

channels[index].displayTitle string or i18n query string

Change the default tooltip
content for this channel with
your own static string or to
achieve localization, use i18n
query string. Syntax: @i18n:..

channels[index].readyEvent string Subscribes to this ready event
published by a plugin.

channels[index].icon string
Change the default Icon for this
channel. For the list of Icon
names see Customize icons in
Customize appearance.

channels[index].onClick function
Define a custom onclick function,
this overrides clickCommand and
clickOptions.

SideBar

Widgets API Reference 200

API events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('SideBar.ready', function(e){ /* sample code */ });

Name Description Data

ready Sidebar is initialized and ready to
accept commands. n/a

opened

Sidebar widget has appeared on
screen. For desktop it is
displayed on the sides of the
screen and in mobiles at the
bottom corner as a button.

n/a

closed Sidebar widget has been
removed from the screen. n/a

expanded Sidebar widget has expanded,
showing channel icon and name. n/a

contracted Sidebar widget has contracted
back, showing channel icons only. n/a

Resolutions

Status When Returns

resolved When configuration options are
provided and set n/a

rejected When no configuration options
are provided

'Invalid configuration. Please
ensure at least one channel is
configured.'

open
Opens the Sidebar UI. In Desktop mode, it opens as an actual SideBar and shows the configured
channels where as in mobile it opens as a button at the bottom to start.

SideBar

Widgets API Reference 201

Example
oMyPlugin.command('SideBar.open');

Resolutions

Status When Returns

resolved When sidebar is successfully
opened n/a

rejected When sidebar is already opened 'Already opened'

close
Closes the Sidebar UI.

Example
oMyPlugin.command('SideBar.close');

Resolutions

Status When Returns

resolved When sidebar is successfully
closed n/a

rejected When sidebar is already closed 'already closed'

expand
To show more details about the channels, Sidebar slides out from the sides of the screen on desktop
machines but expands to full screen in mobile devices.

Example
oMyPlugin.command('SideBar.expand');

Resolutions

Status When Returns

resolved When sidebar is successfully
expanded n/a

rejected When sidebar is already
expanded 'sidebar already expanded'

SideBar

Widgets API Reference 202

contract
Retracts the expanded version of Sidebar, showing only the channel buttons on desktop machines
and the sidebar launcher button on mobile devices.

Example
oMyPlugin.command('SideBar.contract');

Resolutions

Status When Returns

resolved When sidebar is successfully
contracted n/a

rejected When sidebar is already
contracted sidebar already contracted

SideBar

Widgets API Reference 203

WebChat

Contents

• 1 Overview
• 1.1 Usage
• 1.2 Customization
• 1.3 Namespace
• 1.4 Mobile support
• 1.5 Screenshots

• 2 Configuration
• 2.1 Example
• 2.2 Options

• 3 Localization
• 3.1 Special values for localization
• 3.2 Error handling
• 3.3 Usage
• 3.4 Inactivity messages
• 3.5 Default i18n JSON

• 4 API commands
• 4.1 configure
• 4.2 open
• 4.3 close
• 4.4 minimize
• 4.5 endChat
• 4.6 invite
• 4.7 reInvite
• 4.8 injectMessage
• 4.9 showChatButton
• 4.10 hideChatButton
• 4.11 showOverlay
• 4.12 hideOverlay

WebChat

Widgets API Reference 204

• 5 API events
• 6 Metadata

• 6.1 Interaction Lifecycle
• 6.2 Lifecycle scenarios
• 6.3 Metadata

• 7 Customizable chat registration form
• 7.1 Default example
• 7.2 Properties
• 7.3 Labels
• 7.4 Wrappers
• 7.5 Validation
• 7.6 Form submit

• 8 Customizable emoji menu
• 8.1 Introduction
• 8.2 Differences between v1 and v2
• 8.3 Configuring the emoji menu
• 8.4 Localization

• 9 Terminate Chat session on contact side

WebChat

Widgets API Reference 205

• Developer

Learn how to enable live chats between customers and agents.

Related documentation:
•

Link to video

Overview

WebChat

Widgets API Reference 206

https://player.vimeo.com/video/545672854?title=0&byline=0&portrait=0

WebChat

Widgets API Reference 207

/File:WebChat-Main-new.PNG
/File:WebChat-Main-new.PNG

The WebChat Widget allows a customer to start a live chat with a customer service agent. The UI
appears within the page and follows the customer as they traverse your website. Other features
include minimize/maximize, auto-reconnect, and a built-in invite feature.

Usage
You can launch WebChat manually by using the following methods:

• Call the WebChat.open command
• Configure ChannelSelector to show WebChat as a channel
• Enable the built-in launcher button for WebChat that appears on the right side of the screen
• Create your own custom button or link to open WebChat (using the WebChat.open command)

Customization
You can customize and localize all of the static text shown in the WebChat Widget by adding entries
to your configuration and localization options.

WebChat supports themes. You can create and register your own themes for Genesys Widgets.

Namespace
The WebChat plugin has the following namespaces tied to each of the following types:

Type Namespace
Configuration webchat
i18n—Localization webchat
CXBus—API commands & API events WebChat
CSS .cx-webchat

Mobile support
WebChat supports both desktop and mobile devices. Like all Genesys Widgets, there are two main
modes: Desktop & Mobile. Desktop is employed for monitors, laptops, and tablets. Mobile is
employed for smartphones. When a smartphone is detected, WebChat switches to special full-screen
templates that are optimized for both portrait and landscape orientations.

Switching between desktop and mobile mode is done automatically by default. You may configure
Genesys Widgets to switch between Desktop and Mobile mode manually if necessary.

Screenshots
Dark theme

WebChat

Widgets API Reference 208

Light theme

WebChat

Widgets API Reference 209

/File:WebChat_Form_Desktop_Dark.png
/File:WebChat_Form_Desktop_Dark.png
/File:WebChat_Form_Portrait_Dark.png
/File:WebChat_Form_Portrait_Dark.png
/File:WebChat_Form_Landscape_Dark.png
/File:WebChat_Form_Landscape_Dark.png
/File:Widgets_WebChat_Typing_Indicator_Dark_0721.png
/File:Widgets_WebChat_Typing_Indicator_Dark_0721.png
/File:WebChat_Transcript_Desktop_Dark-without-cobrowse.PNG
/File:WebChat_Transcript_Desktop_Dark-without-cobrowse.PNG
/File:WebChat_Transcript_Portrait_Dark-without-cobrowse.png
/File:WebChat_Transcript_Portrait_Dark-without-cobrowse.png
/File:WebChat_Transcript_Landscape_Dark_without-cobrowse.png
/File:WebChat_Transcript_Landscape_Dark_without-cobrowse.png
/File:WebChat_Form_Desktop_Light.png
/File:WebChat_Form_Desktop_Light.png
/File:WebChat_Form_Portrait_light.png
/File:WebChat_Form_Portrait_light.png
/File:WebChat_Form_Landscape_light.png
/File:WebChat_Form_Landscape_light.png
/File:Widgets_WebChat_Typing_Indicator_0721.png
/File:Widgets_WebChat_Typing_Indicator_0721.png

Important
The dark theme is active by default. You may also change colors/themes for widgets
by following the instructions on the Customize appearance page.

Configuration

Link to video

WebChat and WebChatService share the _genesys.widgets.webchat configuration namespace.
WebChat has UI options while WebChatService has connection options.

Example
window._genesys.widgets.webchat = {

apikey: 'n3eNkgLLgLKXREBMYjGm6lygOHHOK8VA',
dataURL: 'https://api.genesyscloud.com/gms-chat/2/chat',
userData: {},
emojis: true,
uploadsEnabled: false,
confirmFormCloseEnabled: true,
actionsMenu: true,
maxMessageLength: 140,

autoInvite: {

enabled: false,

WebChat

Widgets API Reference 210

/File:WebChat_Transcript_Desktop_light-without-cobrowse.PNG
/File:WebChat_Transcript_Desktop_light-without-cobrowse.PNG
/File:WebChat_Transcript_Portrait_Light_without_cobrowse.png
/File:WebChat_Transcript_Portrait_Light_without_cobrowse.png
/File:WebChat_Transcript_Landscape_Light_without_cobrowse.png
/File:WebChat_Transcript_Landscape_Light_without_cobrowse.png
https://player.vimeo.com/video/441169402?title=0&byline=0&portrait=0

timeToInviteSeconds: 10,
inviteTimeoutSeconds: 30

},

chatButton: {

enabled: true,
template: '

',
effect: 'fade',
openDelay: 1000,
effectDuration: 300,
hideDuringInvite: true

},

minimizeOnMobileRestore: false,

ariaIdleAlertIntervals:[50,25,10],

ariaCharRemainingIntervals:[75, 25, 10]
};

Options

Name Type Description Default Required Introduced/
Updated

emojis boolean

Enable/disable
Emoji menu
inside chat
message input.
Emojis are
supported
using unicode
characters and
the list
includes ☺
U+263A
(smile), ⯑
U+1F44D
(thumbs up)
and ☹ U+2639
(sad).

false n/a

form object

A JSON object
containing a
custom
registration
form definition.
The JSON
definition
placed here
becomes the
default
registration
form layout for
WebChat. See
Customizable
Chat

A basic
registration
form is defined
internally by
default

n/a

WebChat

Widgets API Reference 211

Name Type Description Default Required Introduced/
Updated

Registration
Form.

uploadsEnabled boolean

Show/Hide the
Send File
button. The
button will be
shown if the
value is set to
true.

false n/a

confirmFormCloseEnabledboolean

Enable or
disable
displaying a
confirmation
message
before closing
WebChat if
information
has been
entered into
the registration
form.

true n/a

timeFormat number/string

This sets the
time format for
the
timestamps in
this widget. It
can be 12 or
24.

12 false

actionsMenu boolean
Enable/disable
actions menu
next to chat
message input.

true n/a

maxMessageLengthnumber

Set a character
limit that the
user can input
into the
message area
during a chat.
When max is
reached, user
cannot type
any more.

500 n/a

charCountEnabledboolean

Show/Hide the
number of
characters
remaining in
the input
message area
while the user
is typing.

false n/a

autoInvite.enabledboolean Enable/disable false n/a

WebChat

Widgets API Reference 212

Name Type Description Default Required Introduced/
Updated

auto-invite
feature.
Automatically
invites user to
chat after user
idles on page
for preset time.

Important
When running
Widgets in lazy
load mode, this
option requires
that you pre-
load the
WebChat plugin.

autoInvite.timeToInviteSecondsnumber

Number of
seconds of idle
time before
inviting
customer to
chat.

5 n/a

autoInvite.inviteTimeoutSecondsnumber

Number of
seconds to
wait, after
showing invite,
before closing
chat invite.

30 n/a

chatButton.enabledboolean

Enable/disable
chat button on
screen.

Important
When running
Widgets in lazy
load mode, this
option requires
that you pre-
load the
WebChat plugin.

false n/a

chatButton.templatestring
Custom HTML
string template
for chat button.

n/a

chatButton.effect string

Type of
animation
effect when
revealing chat
button. 'slide'
or 'fade'.

fade n/a

chatButton.openDelaynumber
Number of
milliseconds
before
displaying chat

1000 n/a

WebChat

Widgets API Reference 213

Name Type Description Default Required Introduced/
Updated

button on
screen.

chatButton.effectDurationnumber
Length of
animation
effect in
milliseconds.

300 n/a

chatButton.hideDuringInviteboolean

When the auto-
invite feature is
activated,
hides the chat
button. When
invite is
dismissed,
reveals the
chat button
again.

true n/a

ariaIdleAlertIntervalsarray/boolean

An array
containing the
intervals as a
percentage at
which the
screen reader
will announce
the remaining
idle time. By
default, it is
enabled with
the following
time intervals,
and it is
customizable
according to
the user's
needs.
Configuring a
value of 'false'
will let the
screen reader
call out idle
time for every
change.

[100, 75, 50,
25, 10] n/a 9.0.016.11

ariaCharRemainingIntervalsarray/boolean

An array
containing the
intervals as a
percentage at
which the
screen reader
will announce
the remaining
characters
when the user
inputs text into
the message

[50, 25, 10] n/a 9.0.016.11

WebChat

Widgets API Reference 214

Name Type Description Default Required Introduced/
Updated

area. By
default, it is
enabled with
the following
intervals, and it
is customizable
according to
the user needs.
Configuring a
value of 'false'
will let the
screen reader
call out
remaining
characters for
every change.

Localization

You can define string key names and values to match the system messages that are received from
the chat server. If a customer system message is received as SYS001 in the message body, Webchat
checks to determine if any keys match in the language pack, and then replaces the message body
accordingly. SYS001 is an example format. There are no format restrictions on custom message
keys. The purpose of this feature is to allow localization for the User Interface and Server to be kept
in the same file.

Special values for localization
You can inject the special value. When used, the agent's name is rendered in its place at runtime.

Error handling
Customers can define their own error messages in the Errors section found in the above Webchat
Localization. If no error messages are defined, default error messages are used.

Important
For information on how to set up localization, refer to Localize widgets and services.

Usage
You must use the webchat namespace for defining localization strings for the WebChat plugin in your
i18n JSON file.

The following example shows how to define new strings for the en (English) language. You can use

WebChat

Widgets API Reference 215

any language codes you wish; there is no standard format. When selecting the active language in
your configuration, you must match one of the language codes defined in your i18n JSON file. Please
note that you must only define a language code once in your i18n JSON file. Inside each language
object you should define new strings for each widget.

Inactivity messages
If Chat Server is configured to end the chat session after a certain idle time, it may send several
warning messages to the client to inform them and prompt them to act. Chat Server can be
configured to show a first warning, a second warning, and a final notice when it ends the chat
session. By default, WebChat will display the warning message text as it is received from the server.
If you wish to localize these methods on the client side instead, follow these steps:

The first warning can be localized by setting the string 'IdleMessage1'.

The second warning can be localized by setting the string 'IdleMessage2'.

The final notice can be localized by setting the string 'IdleMessageClose'.

Tip
If Chat Server ever allows more than two idle warning messages, you can localize
them by incrementing the integer value in the string name (e.g. 'IdleMessage3',
'IdleMessage4', and so on).

Default i18n JSON
{

"en": {
"webchat": {

"ChatButton": "Chat",
"ChatStarted": "Chat Started",
"ChatEnded": "Chat Ended",
"AgentNameDefault": "Agent",
"AgentConnected": " Connected",
"AgentDisconnected": " Disconnected",
"BotNameDefault": "Bot",
"BotConnected": " Connected",
"BotDisconnected": " Disconnected",
"SupervisorNameDefault": "Supervisor",
"SupervisorConnected": " Connected",
"SupervisorDisconnected": " Disconnected",
"AgentTyping": "...",
"AriaAgentTyping": "Agent is typing",
"AgentUnavailable": "Sorry. There are no agents available. Please try

later.",
"ChatTitle": "Live Chat",
"ChatEnd": "X",
"ChatClose": "X",
"ChatMinimize": "Min",
"ChatFormFirstName": "First Name",
"ChatFormLastName": "Last Name",
"ChatFormNickname": "Nickname",
"ChatFormEmail": "Email",

WebChat

Widgets API Reference 216

"ChatFormSubject": "Subject",
"ChatFormPlaceholderFirstName": "Required",
"ChatFormPlaceholderLastName": "Required",
"ChatFormPlaceholderNickname": "Optional",
"ChatFormPlaceholderEmail": "Optional",
"ChatFormPlaceholderSubject": "Optional",
"ChatFormSubmit": "Start Chat",
"AriaChatFormSubmit": "Start Chat",
"ChatFormCancel": "Cancel",
"AriaChatFormCancel": "Cancel",
"ChatFormClose": "Close",
"ChatInputPlaceholder": "Type your message here",
"ChatInputSend": "Send",
"AriaChatInputSend": "Send",
"ChatEndQuestion": "Are you sure you want to end this chat session?",
"ChatEndCancel": "Cancel",
"ChatEndConfirm": "End chat",
"AriaChatEndCancel": "Cancel",
"AriaChatEndConfirm": "End chat",
"ConfirmCloseWindow": "Are you sure you want to close chat?",
"ConfirmCloseCancel": "Cancel",
"ConfirmCloseConfirm": "Close",
"AriaConfirmCloseCancel": "Cancel",
"AriaConfirmCloseConfirm": "Close",
"ActionsDownload": "Download transcript",
"ActionsEmail": "Email transcript",
"ActionsPrint": "Print transcript",
"ActionsSendFile": "Attach Files",
"AriaActionsSendFileTitle": "Opens a file upload dialog",
"ActionsEmoji": "Send Emoji",
"ActionsVideo": "Invite to Video Chat",
"ActionsTransfer": "Transfer",
"ActionsInvite": "Invite",
"InstructionsTransfer": "Open this link on another device to transfer

your chat session",
"InstructionsInvite": "Share this link with another person to add

them to this chat session",
"InviteTitle": "Need help?",
"InviteBody": "Let us know if we can help out.",
"InviteReject": "No thanks",
"InviteAccept": "Start chat",
"AriaInviteAccept": "Start chat",
"AriaInviteReject": "No thanks",
"ChatError": "There was a problem starting the chat session. Please

retry.",
"ChatErrorButton": "OK",
"AriaChatErrorButton": "OK",
"ChatErrorPrimaryButton": "Yes",
"ChatErrorDefaultButton": "No",
"AriaChatErrorPrimaryButton": "Yes",
"AriaChatErrorDefaultButton": "No",
"DownloadButton": "Download",
"AriaDownloadButton": "Download",
"FileSent": "has sent:",
"FileTransferRetry": "Retry",
"AriaFileTransferRetry": "Retry",
"FileTransferError": "OK",
"AriaFileTransferError": "OK",
"FileTransferCancel": "Cancel",
"AriaFileTransferCancel": "Cancel",
"RestoreTimeoutTitle": "Chat ended",
"RestoreTimeoutBody": "Your previous chat session has timed out.

Would you like to start a new one?",

WebChat

Widgets API Reference 217

"RestoreTimeoutReject": "No thanks",
"RestoreTimeoutAccept": "Start chat",
"AriaRestoreTimeoutAccept": "Start chat",
"AriaRestoreTimeoutReject": "No thanks",
"EndConfirmBody": "Would you really like to end your chat session?",
"EndConfirmAccept": "End chat",
"EndConfirmReject": "Cancel",
"AriaEndConfirmAccept": "End chat",
"AriaEndConfirmReject": "Cancel",
"SurveyOfferQuestion": "Would you like to participate in a survey?",
"ShowSurveyAccept": "Yes",
"ShowSurveyReject": "No",
"AriaShowSurveyAccept": "Yes",
"AriaShowSurveyReject": "No",
"UnreadMessagesTitle": "unread",
"AriaYouSaid": "You said",
"AriaSaid": "said",
"AriaSystemSaid": "System said",
"AriaWindowLabel": "Live Chat Window",
"AriaMinimize": "Live Chat Minimize",
"AriaMaximize": "Live Chat Maximize",
"AriaClose": "Live Chat Close",
"AriaEmojiStatusOpen": "Emoji picker dialog is opened",
"AriaEmojiStatusClose": "Emoji picker dialog is closed",
"AriaEmoji": "emoji",
"AriaCharRemaining": "Characters remaining",
"AriaMessageInput": "Message box",
"AsyncChatEnd": "End Chat",
"AsyncChatClose": "Close Window",
"AriaAsyncChatEnd": "End Chat",
"AriaAsyncChatClose": "Close Window",
"DayLabels": [

"Sun",
"Mon",
"Tue",
"Wed",
"Thur",
"Fri",
"Sat"

],
"MonthLabels": [

"Jan",
"Feb",
"Mar",
"Apr",
"May",
"Jun",
"Jul",
"Aug",
"Sept",
"Oct",
"Nov",
"Dec"

],
"todayLabel": "Today",
"Errors": {

"102": "First name is required.",
"103": "Last name is required.",
"161": "Please enter your name.",
"201": "The file could not be sent.

''

The maximum number of attached files would be exceeded ().

WebChat

Widgets API Reference 218

",
"202": "The file could not be sent.

''

Upload limit and/or maximum number of attachments would be exceeded ().

",
"203": "The file could not be sent.

''

File type is not allowed.

",
"204": "We're sorry but your message is too long. Please

write a shorter message.",
"240": "We're sorry but we cannot start a new chat at this

time. Please try again later.",
"364": "Invalid email address.",
"401": "We're sorry but we are not able to authorize the chat

session. Would you like to start a new chat?",
"404": "We're sorry but we cannot find your previous chat

session. Would you like to start a new chat?",
"500": "We're sorry, an unexpected error occurred with the

service. Would you like to close and start a new Chat?",
"503": "We're sorry, the service is currently unavailable or

busy. Would you like to close and start a new Chat again?",
"ChatUnavailable": "We're sorry but we cannot start a new

chat at this time. Please try again later.",
"CriticalFault": "Your chat session has ended unexpectedly

due to an unknown issue. We apologize for the inconvenience.",
"StartFailed": "There was an issue starting your chat

session. Please verify your connection and that you submitted all required information
properly, then try again.",

"MessageFailed": "Your message was not received successfully.
Please try again.",

"RestoreFailed": "We're sorry but we were unable to restore
your chat session due to an unknown error.",

"TransferFailed": "Unable to transfer chat at this time.
Please try again later.",

"FileTransferSizeError": "The file could not be sent.

''

File size is larger than the allowed size ().

",
"InviteFailed": "Unable to generate invite at this time.

Please try again later.",
"ChatServerWentOffline": "Messages are currently taking

longer than normal to get through. We're sorry for the delay.",
"RestoredOffline": "Messages are currently taking longer than

normal to get through. We're sorry for the delay.",
"Disconnected": "

Connection lost
",

"Reconnected": "
Connection restored

",
"FileSendFailed": "The file could not be sent.

There was an unexpected disconnection. Try again?

",
"Generic": "
An unexpected error occurred.

WebChat

Widgets API Reference 219

",
"pureengage-v3-rest-INVALID_FILE_TYPE": "Invalid file type.

Only Images are allowed.",
"pureengage-v3-rest-LIMIT_FILE_SIZE": "File size is larger

than the allowed size.",
"pureengage-v3-rest-LIMIT_FILE_COUNT": "The maximum number of

attached files exceeded the limit.",
"pureengage-v3-rest-INVALID_CONTACT_CENTER": "Invalid x-api-

key transport configuration.",
"pureengage-v3-rest-INVALID_ENDPOINT": "Invalid endpoint

transport configuration.",
"pureengage-v3-rest-INVALID_NICKNAME": "First Name is

required.",
"pureengage-v3-rest-AUTHENTICATION_REQUIRED": "We're sorry

but we are not able to authorize the chat session.",
"purecloud-v2-sockets-400": "Sorry, something went wrong.

Please verify your connection and that you submitted all required information properly, then
try again.",

"purecloud-v2-sockets-500": "We're are sorry, an unexpected
error occurred with the service.",

"purecloud-v2-sockets-503": "We're sorry, the service is
currently unavailable."

}
}

}
}

API commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('WebChat.open');

configure
Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling configure
again after startup may result in unpredictable behavior.

WebChat

Widgets API Reference 220

open
Opens the WebChat UI.

Example
oMyPlugin.command('WebChat.open', {

userData: {},
form: {

autoSubmit: false,
firstname: 'John',
lastname: 'Smith',
email: 'John@mail.com',
subject: 'Customer Satisfaction'

}
formJSON: {...}
markdown: false

}).done(function(e){

// WebChat opened successfully

}).fail(function(e){

// WebChat isn't open or no active chat session
});

Options

Option Type Description

form object
Object containing form data to
prefill in the chat entry form and
optionally auto-submit the form.

form.autoSubmit boolean
Automatically submit the form.
Useful for bypassing the entry
form step.

form.firstname string Value for the first name entry
field.

form.lastname string Value for the last name entry
field.

form.email string Value for the email entry field.
form.subject string Value for the subject entry field.

formJSON object
An object containing a custom
registration form definition. See
Customizable chat registration
form.

userData object
Object containing arbitrary data
that gets sent to the server.
Overrides userData set in the
webchat configuration object.

async boolean Starts a new chat either in

WebChat

Widgets API Reference 221

Option Type Description
asynchronous or normal mode
based on the boolean value. Note
that unless async static
configuration is defined, a chat in
normal mode will start
automatically.

markdown boolean The markdown feature for chat
messages.

id string

A Unique identifier of a chat
session that helps to identify the
instance of that session and its
associated events. A random
value is automatically generated
and assigned when no value is
passed explicitly.

Resolutions

Status When Returns
resolved WebChat is successfully opened n/a
rejected WebChat is already open 'already opened'

close
Closes the WebChat UI.

Example
oMyPlugin.command('WebChat.close').done(function(e){

// WebChat closed successfully

}).fail(function(e){

// WebChat is already closed or no active chat session
});

Resolutions

Status When Returns
resolved WebChat is successfully closed n/a
rejected WebChat is already closed 'already closed'

minimize
Minimizes or un-minimizes the WebChat UI.

WebChat

Widgets API Reference 222

Example
oMyPlugin.command('WebChat.minimize').done(function(e){

// WebChat minimized successfully

}).fail(function(e){

// WebChat ignores command
});

Options

Option Type Description

minimized boolean
Rather than toggling the current
minimized state you can specify
the minified state directly: true =
minimized, false = uniminimized.

Resolutions

Status When Returns
resolved Always n/a
rejected Never 'Invalid configuration'

endChat
Starts the end chat procedure. User may be prompted to confirm.

Example
oMyPlugin.command('WebChat.endChat').done(function(e){

// WebChat ended a chat successfully

}).fail(function(e){

// WebChat has no active chat session
});

Resolutions

Status When Returns

resolved There is an active chat session to
end n/a

rejected There is no active chat session to
end

'there is no active chat session to
end'

invite
Shows an invitation to chat using the Toaster popup element. The text shown in the invitation can be
edited in the localization file.

WebChat

Widgets API Reference 223

Example
oMyPlugin.command('WebChat.invite').done(function(e){

// WebChat invited successfully

}).fail(function(e){

// WebChat is already open and will be ignored
});

Resolutions

Status When Returns

resolved WebChat is closed and the toast
element is created successfully n/a

rejected
WebChat is already open
(prevents inviting a user that is
already in a chat)

'Chat is already open. Ignoring
invite command.'

reInvite
When an active chat session cannot be restored, this invitation offers to start a new chat for the user.
The text shown in the invitation can be edited in the localization file.

Example
oMyPlugin.command('WebChat.reInvite').done(function(e){

// WebChat reinvited successfully

}).fail(function(e){

// WebChat is already open and will be ignored
});

Resolutions

Status When Returns

resolved

WebChat is closed, the config
item
'webchat.inviteOnRestoreTimeout'
is set, and the toast element is
created successfully

n/a

rejected
WebChat is already open
(prevents inviting a user that is
already in a chat)

'Chat is already open. Ignoring
invite command.'

injectMessage
Injects a custom message into the chat transcript. Useful for extending WebChat functionality with
other Genesys products.

WebChat

Widgets API Reference 224

Example
oMyPlugin.command('WebChat.injectMessage', {

type: 'text',
name: 'person',
text: 'hello',
custom: false,
bubble:{

fill: '#00FF00',
radius: '4px',
time: false,
name: false,
direction: 'right',
avatar:{

custom: '
word
',

icon: 'email'
}

}

}).done(function(e){

// WebChat injected a message successfully
// e.data == The message HTML reference (jQuery wrapped set)

}).fail(function(e){

// WebChat isn't open or no active chat
});

Options

Option Type Description

type string
Switch the rendering type of the
injected message between text
and html.

name string
Specify a name label for the
message to identify what service
or widget has injected the
message.

text string The content of the message.
Either plain text or HTML.

custom boolean

If set to true, the default
message template will not be
used, allowing you to inject a
highly customized HTML block
unconstrained by the normal
message template.

bubble.fill string of valid CSS color value The content of the message.
Either plain text or HTML.

bubble.radius string of valid CSS border radius
value

The border radius you'd like for
the bubble.

WebChat

Widgets API Reference 225

Option Type Description

bubble.time boolean If you'd like to show the
timestamp for the bubble.

bubble.name boolean If you'd like to show the name for
the bubble.

bubble.direction string Which direction you want the
message bubble to come from.

bubble.avatar.custom string or HTML reference
Change the content of the html
that would be the avatar for the
chat bubble.

bubble.avatar.icon class name Generated common library
provided for icon name.

Resolutions

Status When Returns

resolved WebChat is open and there is an
active chat session

An HTML reference (jQuery
wrapped set) to the new injected
message.

rejected WebChat is not open and/or there
was no active chat session 'No chat session to inject into'

showChatButton
Displays the standalone chat button using either the default template and CSS, or customer-defined
ones.

Example
oMyPlugin.command('WebChat.showChatButton', {

openDelay: 1000,
duration: 1500

}).done(function(e){

// WebChat shows chat button successfully

}).fail(function(e){

// WebChat button is already visible, side bar is active and overrides the chat
button, or chat button is disabled in configuration
});

Options

Option Type Description

openDelay number
Duration in milliseconds to delay
showing the chat button on the
page.

duration number Duration in milliseconds for the

WebChat

Widgets API Reference 226

Option Type Description
show and hide animation.

Resolutions

Status When Returns

resolved
The chat button is enabled in the
configuration, is currently not
visible, and the SideBar plugin is
not initialized

n/a

rejected
The chat button is not enabled in
the configuration, or it's already
visible, or the SideBar plugin is
initialized

'Chat button is already visible.
Ignoring command.'

rejected
The SideBar plugin is active the
standalone chat button will be
disabled automatically

'SideBar is active and overrides
the default chat button'

hideChatButton
Hides the standalone chat button.

Example
oMyPlugin.command('WebChat.hideChatButton', {duration: 1500}).done(function(e){

// WebChat hid chat button successfully

}).fail(function(e){

// WebChat button is already hidden
});

Options

Option Type Description

duration number Duration in milliseconds for the
show and hide animation.

Resolutions

Status When Returns

resolved The chat button is currently
visible n/a

rejected The chat button is already hidden 'Chat button is already hidden.
Ignoring command.'

showOverlay
Opens a slide-down overlay over WebChat's content. You can fill this overlay with content such as

WebChat

Widgets API Reference 227

disclaimers, articles, and other information.

Example
oMyPlugin.command('WebChat.showOverlay', {

html: '
Example text
',

hideFooter: false

}).done(function(e){

// WebChat successfully shows overlay

}).fail(function(e){

// WebChat isn't open
});

Options

Option Type Description

html string or HTML reference The HTML content you want to
display in the overlay.

hideFooter boolean

Normally the overlay appears
between the titlebar and footer
bar. Set this to true to have the
overlay overlap the footer to gain
a bit more vertical space. This
should only be used in special
cases. For general use, don't set
this value.

Resolutions

Status When Returns

resolved WebChat is open and the overlay
opens

rejected WebChat is not currently open WebChat is not currently open.
Ignoring command.

hideOverlay
Hides the slide-down overlay.

Example
oMyPlugin.command('WebChat.hideOverlay').done(function(e){

// WebChat hid overlay successfully

}).fail(function(e){

WebChat

Widgets API Reference 228

// WebChat isn't open
});

Resolutions

Status When Returns

resolved WebChat is open and the overlay
closes

rejected WebChat is not currently open WebChat is not currently open.
Ignoring command.

API events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('WebChat.ready', function(e){});

Name Description Data

ready WebChat is initialized and ready
to accept commands n/a

opened The WebChat widget has
appeared on screen n/a

started The WebChat has successfully
started. Metadata

submitted The user has submitted the form. Metadata

rejected
When the chat session fails to
start. Typically due to form
validation or network errors.

Metadata

completed
The Chat session ended after
agent is successfully connected
to WebChat.

Metadata

cancelled The Chat session ended before
agent is connected to WebChat. Metadata

closed The WebChat widget has been
removed from the screen Metadata

minimized The WebChat widget has been n/a

WebChat

Widgets API Reference 229

Name Description Data
changed to a minimized state

unminimized
The WebChat widget has been
restored from a minimized state
to the standard view

n/a

messageAdded When a message is added to the
transcript, this event will fire

Returns an object containing two
properties: 'data' and 'html'.
'data' contains the JSON data for
the message, while 'html'
contains a reference to the
visible message inside the chat
transcript.

Metadata

Interaction Lifecycle
Every WebChat interaction has a sequence of events we call the Interaction Lifecycle. This is a
sequence of events that tracks progress and choices from the beginning of an interaction (opening
WebChat), to the end (closing WebChat), and every step in between.

The following events are part of the Interaction Lifecycle:

ready
opened
started
cancelled
submitted
rejected
completed
closed

Lifecycle scenarios
An Interaction Lifecycle can vary based on each user's intent and experience with WebChat. Here are
several sequences of events in the lifecycle that correspond to different scenarios.

The user opened WebChat but changed their mind and closed it without starting a chat session:

ready -> opened -> cancelled -> closed

The user started a chat session but ended it before an agent connected. Perhaps it was taking too
long to reach someone:

ready -> opened -> started -> cancelled -> closed

The user started a chat, but the chat fails to start:

ready -> opened -> started -> submitted -> rejected

The user started a chat, met with an agent, and the session ended normally:

WebChat

Widgets API Reference 230

ready -> opened -> started -> submitted -> completed -> closed

Tip
For a list of all WebChat events, see API events.

Metadata
Each event in the Interaction Lifecycle includes the following block of metadata. By default, all values
are set to false. As the user progresses through the lifecycle of a WebChat interaction, these values
will be updated.

The metadata block contains boolean state flags, counters, timestamps, and elapsed times. These
values can be used to track and identify trends or issues with chat interactions. During run-time, the
metadata can help you offer a smart and dynamic experience to your users.

Reference

Name Type Description

proactive boolean Indicates this chat session was
started proactively.

prefilled boolean
Indicates the registration form
was prefilled with info
automatically.

autoSubmitted boolean
Indicates the registration form
was submitted automatically,
usually after being prefilled.

filesUploaded integer Current number of files uploaded
during chat session.

numAgents integer
Current number of agents that
have connected to the chat
session.

userMessages integer Current number of messages
sent by user.

agentMessages integer Current number of messages
sent by agents.

systemMessages integer Current number of system
messages received.

errors array/boolean
An array of error codes
encountered during chat session.
If no errors, this value will be
false.

form object
An object containing the form
parameters when the form is
submitted.

opened integer (timestamp) Timestamp indicating when
WebChat was opened.

WebChat

Widgets API Reference 231

Name Type Description

started integer (timestamp) Timestamp indicating when chat
session started.

cancelled integer (timestamp)

Timestamp indicating when the
chat session was cancelled.
Cancelled refers to when a user
ends a chat session before an
agent connects.

rejected integer (timestamp)
Timestamp indicating when the
chat session was rejected.
Rejected refers to when a chat
session fails to start.

completed integer (timestamp)

Timestamp indicating when the
chat session ended normally.
Completed refers to when a user
or agent ends a chat after an
agent connected.

closed integer (timestamp) Timestamp indicating when
WebChat was closed.

agentReached integer (timestamp) Timestamp indicating when the
first agent was reached, if any.

supervisorReached integer (timestamp)
Timestamp indicating when the
first agent supervisor was
reached, if any.

elapsed integer (milliseconds)
Total elapsed time in milliseconds
from when the user started the
chat session to when the chat
session ended.

waitingForAgent integer (milliseconds)

Total time in milleseconds waiting
for an agent from when the user
started the chat session to when
an agent connected to the
session.

id string
A Unique identifier of a chat
session that helps to identify the
instance of that session and its
associated events.

Customizable chat registration form

WebChat allows you to customize the registration form shown to users prior to starting a session. The
following form inputs are currently supported:

• Text
• Select
• Hidden
• Checkbox

WebChat

Widgets API Reference 232

• Textarea

Customization is done through a JSON object structure that defines the layout, input type, label, and
attributes for each input. You can set the default registration form definition in the
_genesys.widgets.webchat.form configuration option. Alternately, you can pass a new
registration form definition through the WebChat.open command:

_genesys.widgets.bus.command("WebChat.open", {formJSON: oRegFormDef});

Inputs are rendered as stacked rows with one input and one optional label per row.

Default example
The following example is the default JSON object used to render WebChat’s registration form. This is a
very simple definition that does not use many properties.

{
wrapper: "

", inputs: [{ id: "cx_webchat_form_firstname", name: "firstname", maxlength:
"100", placeholder: "@i18n:webchat.ChatFormPlaceholderFirstName", label:
"@i18n:webchat.ChatFormFirstName" }, { id: "cx_webchat_form_lastname",
name: "lastname", maxlength: "100", placeholder:
"@i18n:webchat.ChatFormPlaceholderLastName", label:
"@i18n:webchat.ChatFormLastName" }, { id: "cx_webchat_form_email", name:
"email", maxlength: "100", placeholder:
"@i18n:webchat.ChatFormPlaceholderEmail", label:
"@i18n:webchat.ChatFormEmail" }, { id: "cx_webchat_form_subject", name:
"subject", maxlength: "100", placeholder:
"@i18n:webchat.ChatFormPlaceholderSubject", label:
"@i18n:webchat.ChatFormSubject" }] }
This JSON definition generates the following output:

WebChat

Widgets API Reference 233

Properties
Each input definition can contain any number of properties. These are categorized in two groups:
"Special properties", which are custom properties used internally to handle rendering logic, and
"HTML attributes" which are properties that are applied directly as HTML attributes on the input
element.

Special properties

Property Type Default Description

type string "text"

Sets the type of input to
render. Possible values
are currently "text",
"hidden", "select",
"checkbox", and
"textarea".

label string

Set the text for the
label. If no value
provided, no label will
be shown. You may use
localization query
strings to enable
custom localization (for

WebChat

Widgets API Reference 234

/File:WebChat_CustomForm_001.png
/File:WebChat_CustomForm_001.png

Property Type Default Description
example, label:
"@i18n:namespace.StringName").
Localization query
strings allow you to use
strings from any widget
namespace or to create
your own namespace in
the localization file
(i18n.json) and use
strings from there (for
example, label:
"@i18n:myCustomNamespace.myCustomString001").
For more information,
see the Labels section.

wrapper HTML string “
"

Each input exists in its
own row in the form. By
default this is a table-
row with the label in the
left cell and the input in
the right cell. You can
redefine this wrapper
and layout by specifying
a new HTML row
structure. See the
Wrappers section for
more info.

The default wrapper for
an input is "

validate function

Define a validation
function for the input
that executes when the
input loses focus (blur)
or changes value. Your
function must return
true or false. True to
indicate it passed, false
to indicate it failed. If
your validation fails, the
form will not submit and
the invalid input will be
highlighted in red. See
the Validation section
for more details and
examples.

validateWhileTyping boolean false

Execute validation on
keypress in addition to
blur and change. This
ignores non-character
keys like shift, ctrl, and
alt.

options array []
When ‘type’ is set to
‘select’, you can
populate the select by

WebChat

Widgets API Reference 235

Property Type Default Description
adding options to this
array. Each option is an
object (for example,
{text: ‘Option 1’, value:
‘1’} for a selectable
option, and {text:
"Group 1", group: true}
for an option group).

HTML attributes

With the exception of special properties, all properties will be added as HTML attributes on the input
element. You can use standard HTML attributes or make your own.

Example

{
id: "cx_webchat_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderFirstName",
label: "@i18n:webchat.ChatFormFirstName"

}

In this example, id, name, maxlength, and placeholder are all standard HTML attributes for the text
input element. Whatever values are set here will be applied to the input as HTML attributes.

Important
The default input type is "text", so type does not need to be defined if you intend to
make a text input.

HTML output

Disabling autocomplete

Since the custom form feature supports adding any HTML attributes to your inputs, you can control
standard HTML features like disabling autocomplete. To disable autocomplete, add autocomplete:
"off" to your input definition.

Example

{
id: "cx_webchat_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderFirstName",
label: "@i18n:webchat.ChatFormFirstName",
autocomplete: "off"

}

WebChat

Widgets API Reference 236

Labels
A label tag will be generated for your input if you specify label text and if your custom input wrapper
includes a ‘{label}’ designation. If you have added an ID attribute for your input, the label will
automatically be linked to your input so that clicking on the label selects the input or, for checkboxes,
toggles it.

Labels can be defined as static strings or localization queries.

Wrappers
Wrappers are HTML string templates that define a layout. There are two kinds of wrappers, Form
Wrappers and Input Wrappers:

Form wrapper

You can specify the parent wrapper for the overall form in the top-level "wrapper"
property. In the example below, we specify this value as “
".
This is the default wrapper for the WebChat form:
{

wrapper: "

", /* form wrapper */ inputs: [] }
Input wrapper

Each input is rendered as a table row inside the Form Wrapper. You can change this by defining a new
wrapper template for your input row. Inside your template you can specify where you want the input
and label to be by adding the identifiers "{label}" and "{input}" to your wrapper value. See the
example below:

{
id: "cx_webchat_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderFirstName",
label: "@i18n:webchat.ChatFormFirstName",
wrapper: "{label}{input}" /* input row wrapper */

}

The {label} identifier is optional. Omitting it will allow the input to fill the row. If you decide to keep
the label, you can move it to any location within the wrapper, such as putting the label on the right,
or stacking the label on top of the input. You can control the layout of each row independently,
depending on your needs.

You are not restricted to using a table for your form. You can change the form
wrapper to "
" and then change the individual input wrappers from a table-row to your own

WebChat

Widgets API Reference 237

specification. Be aware though that when you move away from the default table
wrappers, you are responsible for styling and aligning your layout. Only the
default table-row wrapper is supported by default Themes and CSS.

Validation
You can apply a validation function to each input that lets you check the value after a change has
been made and/or the user has moved to a different input (on change and on blur). You can enable
validation on key press by setting validateWhileTyping to true in your input definition.

Here is how to define a validation function:

{
id: "cx_webchat_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderFirstName",
label: "@i18n:webchat.ChatFormFirstName",

validateWhileTyping: true, // default is false

validate: function(event, form, input, label, $, CXBus, Common){

return true; // or false
}

}

You must return true or false to indicate that validation has passed or failed, respectively. If you
return false, the WebChat form will not submit, and the input will be highlighted in red. This is
achieved by adding the CSS class "cx-error" to the input. The image below displays the the field
where a user input validation error has occurred, with the field highlighted in red.

Validation function arguments

Argument Type Description
event JavaScript event object The input event reference object

WebChat

Widgets API Reference 238

/File:Validation_failure.png
/File:Validation_failure.png

Argument Type Description
related to the form input field.
This event data can be helpful to
perform actions like active
validation on an input field while
the user is typing.

form HTML reference A jquery reference to the form
wrapper element.

input HTML reference A jquery reference to the input
element being validated.

label HTML reference A jquery reference to the label
for the input being validated.

$ jquery instance
Widget’s internal jquery instance.
Use this to help you write your
validation logic, if needed.

CXBus CXBus instance
Widget’s internal CXBus
reference. Use this to call
commands on the bus, if needed.

Common Function Library
Widget’s internal Common library
of functions and utilities. Use if
needed.

Form submit
Custom input field form values are submitted to the server as key value pairs
under the userData section of the form submit request, where input field names
will be the property keys. During the submit, this data is merged along with the
userData defined in the WebChat.open command.

Important
Depending on the API used (PureEnagage V2 API or Genesys Cloud CX) the payload
structure in the request can vary for each, but the section below explains how the
form data is submitted by the WebChat UI plugin when using custom forms.

Below is the internal form data object defined in the WebChat plugin by default.
Since firstname, lastname, nickname, email, and subject are reserved keywords,
users are not allowed to have custom fields with the same name.
{

firstname: '',
lastname: '',
nickname: '',
email: '',
subject: '',
userData: {}

}

WebChat

Widgets API Reference 239

Important
Once the Chat is started, the customer messages display either the nickname or the
firstname specified during registration as the Name.

Example

The example below shows how the custom form data given in the WebChat form fields have been
mapped as a form data object.

The form fields with reserved keywords like firstname, lastname, and email will be sent as top level
and the rest of the fields will be sent under userData to the WebChatService plugin.

Once the form data object is sent to the WebChatService plugin, it will parse and send in the payload
request.

{
"wrapper":"

", "inputs":[{ "id":"cx_webchat_form_firstname", "name":"firstname",
"type":"text", "maxlength":"100",
"placeholder":"@i18n:webchat.ChatFormPlaceholderFirstName",
"label":"@i18n:webchat.ChatFormFirstName", "value":"John" }, {
"id":"cx_webchat_form_lastname", "name":"lastname", "type":"text",
"maxlength":"100",
"placeholder":"@i18n:webchat.ChatFormPlaceholderLastName",
"label":"@i18n:webchat.ChatFormLastName", "value":"Smith" }, {
"id":"cx_webchat_form_email", "name":"email", "type":"text", "maxlength":"100",
"placeholder":"@i18n:webchat.ChatFormPlaceholderEmail", "label":"Email",
"value":"john.smith@company.com" }, { "id":"cx_webchat_form_phonenumber",
"name":"phonenumber", "type":"text", "maxlength":"100", "placeholder":"Phone
Number", "label":"Phone Number", "value":"9256328346" }, {
"id":"cx_webchat_form_enquirytype", "name":"enquirytype", "type":"select",
"label":"Enquiry Type", "options":[{ "text":"Account", "group":true }, {
"text":"Sales", "value":"Sales", "selected":true }, { "text":"Credit Card",
"value":"credit card" }, { "text":"General", "group":true }, { "text":"Warranty",
"value":"warranty" }, { "text":"Return policy", "value":"returns" }] }] }

WebChat

Widgets API Reference 240

{
firstname: 'John',
lastname: 'Smith',
email: 'john.smith@company.com',
userData: {

phonenumber: '9256328346',
enquirytype: 'Sales' //value selected from the dropdown

}
}

Customizable emoji menu

Introduction
WebChat offers a v2 emoji menu that lets you choose which emojis to include in the emoji menu.

WebChat

Widgets API Reference 241

/File:WebChat_CustomForm_Dark_v1.png
/File:WebChat_CustomForm_Dark_v1.png

Differences between v1 and v2

• v1 shows as a tooltip-style overlay; v2 shows as a new block between the transcript and the message
input.

• v1 closes when you select an emoji or click outside the menu; v2 lets you choose multiple emojis and
only closes if you click the emoji menu button again.

• v1 has three fixed emojis to choose from; v2 can show hundreds of customizable emojis in a grid layout.
• v1 menu appears in mobile mode; v2 menu is not available in mobile mode (when v2 is configured, no

emoji menu button is present in mobile mode).
• v1 menu has default emojis; v2 menu does not have default emojis. It must be explicitly configured with

a list of emojis.

Configuring the emoji menu
Click the emoji menu icon at the bottom-left corner of the WebChat UI to open the v2 emoji menu.
The transcript will be resized to fit the emoji menu, which can vary in height depending on the
number of emojis configured.

• When 1-8 emojis are configured, the menu has one row, and no scrollbar appears.
• When 9-16 emojis are configured, the menu has two rows, and no scrollbar appears.
• When 17-24 emojis are configured, the menu has three rows, and no scrollbar appears.
• When 25 or more emojis are configured, the menu has three rows, and a scrollbar appears.

WebChat

Widgets API Reference 242

/File:WebChat-Emoji-menu.png
/File:WebChat-Emoji-menu.png

Configure the v2 emoji menu by passing a string containing emoji into the
WebChat configuration or through localization.

Important
If you define an emoji list in the WebChat configuration, it will override any emoji lists
defined in localization files.

You configure the emoji list by specifying a string of emoji characters, like
"⯑⯑⯑⯑". WebChat will parse this string and arrange them in the emoji menu.
// Configure a flat list of emoji characters
_genesys.widgets.webchat.emojiList =
"⯑⯑⯑
⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑☪⯑☘☀⯑⯑⯑⯑⯑⯑⯑⯑";

Add emoji display names

You can also add names to emojis so that their names will appear when you hover over them. To add
a name to an emoji, simply add a colon after the question mark symbol, and then type the name.
Separate each name with a semicolon.

The format is ;⯑:name;

You can only add one name to an emoji. The following sample shows the format
for configuring several emojis.
// Configure an emoji list with emoji names
_genesys.widgets.webchat.emojiList = "⯑:Star-Struck;⯑:Zany Face;⯑:Face With Hand Over
Mouth;⯑:Shushing Face;⯑:Face With Raised Eyebrow;⯑:Bitcoin;⯑:Face Vomiting;
⯑:Exploding Head;⯑:Face With Monocle;⯑:Face With Symbols on Mouth;⯑:Orange Heart;
⯑:Love-You Gesture;⯑:Palms Up Together;⯑:Brain;⯑:Child;⯑:Person;⯑:Man: Beard;
⯑:Older Person;⯑:Woman With Headscarf;⯑:Breast-Feeding;⯑:Mage;⯑:Fairy;⯑:Vampire;
⯑:Merperson;⯑:Elf;⯑:Genie;⯑:Zombie;⯑:Person in Steamy Room;⯑:Person Climbing;
⯑:Person in Lotus Position;⯑:Zebra;⯑:Giraffe;⯑:Hedgehog;⯑:Sauropod;⯑:T-Rex;⯑:Cricket;
⯑:Coconut;⯑:Broccoli;⯑:Pretzel;⯑:Cut of Meat;⯑⯑:Australia Day;⯑⯑:Bastille

WebChat

Widgets API Reference 243

/File:Emoji-screenshot-dark-themed.PNG
/File:Emoji-screenshot-dark-themed.PNG

Day;⯑:Birthday;⯑:Black Friday;⯑⯑:Canada Day;⯑⯑:Carnival;⯑:Chinese New Year;⯑:Christmas;
⯑⯑:Cinco de Mayo;⯑:Diwali;⯑⯑:Dragon Boat Festival;⯑:Easter;⯑:Emoji Movie;⯑:Fall/Autumn;
⯑:Father’s Day;⯑:Festivus;⯑:Graduation;⯑:Guy Fawkes;⯑:Halloween;⯑:Hanukkah;
⯑:Hearts;⯑:Holi;⯑⯑:Independence Day;⯑:Mother’s Day;⯑:New Year’s Eve;⯑:Olympics;
⯑⯑:Pride;⯑:Queen’s Birthday;☪:Ramadan;⯑:Spring;☘:St Patrick’s Day;☀:Summer;
⯑:SuperBowl;⯑:Thanksgiving;⯑:Valentine’s Day;⯑:Wedding / Marriage;⯑:Winter;⯑:Winter
Olympics;⯑:World Cup;⯑:World Emoji Day;";

Partially named lists

You don't have to add names for every emoji. You can add titles to only a select
few.
// Configure an emoji list with only a few emoji names
_genesys.widgets.webchat.emojiList = "⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑;⯑:Palms Up Together;
⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑;⯑:Black Friday;
⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑☪⯑☘☀⯑⯑⯑⯑;⯑:Snowman;⯑⯑⯑";

Localization
Emojis can be localized so that each language has a preferred set of emojis and
emoji titles.

Important
If you define an emoji list in the WebChat configuration, it will override any emoji lists
defined in localization files.

The key name for defining an emoji list is "EmojiList". Emoji lists are defined in a
localization file using the same syntax as the WebChat configuration.
{

"en": {
"webchat": {

"EmojiList": "⯑:Star-Struck;⯑:Zany Face;⯑:Face With Hand Over Mouth;⯑:Shushing
Face;"

}
}

}

Terminate Chat session on contact side

To prevent a contact from sending another chat message using the Widget after the chat session is
terminated in Designer, you must add a customization to the widget to notify it to close.

First, set up a text message informing the contact that the chat is terminated by using a Play
Message Block.

WebChat

Widgets API Reference 244

Next, set up the Widget Register Handler for WebChatService.messageReceived (or look for the
messageAdded event) to get notifications about messages received, then send the endChat
command when the text message is received. For information about Genesys Widgets events and
commands, refer to Genesys Widget API Events and Genesys Widget API Commands.

Finally, add the following customized script:

window._genesys.widgets.onReady = function(CXBus){

var oWH = CXBus.registerPlugin("WebChatHandler");

oWH.subscribe("WebChatService.messageReceived", function (e) {

if(e.data) {

/**
* Extract the sample data (can be the Playback message configured in Designer)
* and look for a specific condition to end the chat
*/

const {messages} = e.data || {};
let sPlayMessage = (messages) ? messages.find(message => message.type ==

'Message' && message.text == 'play message') : "";

if(sPlayMessage) {

oWH.command("WebChatService.endChat");

/**
* Check for the chat session data stored in localStorage and clear it
*/

(window.localStorage.getItem("WebChatSessionData")) ?
window.localStorage.removeItem("WebChatSessionData") : "";

}
}

});
};

WebChat

Widgets API Reference 245

/File:WidgetsWebChat_PlayMessageBlock2_042022.png
/File:WidgetsWebChat_PlayMessageBlock2_042022.png

Engage

Contents

• 1 Overview
• 1.1 Usage
• 1.2 Namespaces
• 1.3 Screenshots

• 2 Configuration
• 3 Localization
• 4 API commands

• 4.1 invite
• 4.2 Example
• 4.3 Options
• 4.4 Resolutions
• 4.5 offer
• 4.6 Example
• 4.7 Options

• 5 API events
• 5.1 Interaction Lifecycle
• 5.2 Lifecycle scenarios

• 6 Metadata
• 6.1 Reference

Engage

Widgets API Reference 246

• Developer

Learn how to use the Genesys Multicloud CX plugin to integrate any Engage solution with Genesys
Widgets.

Related documentation:
•

Overview

The Genesys Multicloud CX plugin is generic and contains commands that automate customer
engagement within Genesys Widgets. Starting with version 9.0.015.11, the Engage plugin includes
Offers, which allows a customer to view a product or promotion on a page. It comes with many
display modes and rendering options, such as overlay/toaster mode with text or image-only layouts,
or both.

Engage

Widgets API Reference 247

/File:Desktop_Engage_Offer_Overlay_View_with_Text_on_left_v1.png
/File:Desktop_Engage_Offer_Overlay_View_with_Text_on_left_v1.png

Usage
Use the Engage plugin to show either an invite or an offer via the following methods:

• Calling the Engage.invite command
• Calling the Engage.offer command

Namespaces
The Engage plugin uses the following namespaces.

Type Namespace
i18n - Localization Engage
CXBus - API commands & API events Engage
CSS .cx-engage

Screenshots
Engage Invite

Engage

Widgets API Reference 248

/File:Engage_Invite_Dark_v2.png
/File:Engage_Invite_Dark_v2.png

Engage Offer

Configuration

The Genesys Multicloud CX plugin doesn't have any configuration options.

Localization

Engage

Widgets API Reference 249

/File:Engage_Invite_Mobile_Dark_theme_v1.png
/File:Engage_Invite_Mobile_Dark_theme_v1.png
/File:Engage_Invite_Mobile_Light_theme_v1.png
/File:Engage_Invite_Mobile_Light_theme_v1.png
/File:Desktop_Engage_Offer_toaster_mode.png
/File:Desktop_Engage_Offer_toaster_mode.png
/File:Desktop_Engage_Offer_modal_overlay_view_with_text_on_top.png
/File:Desktop_Engage_Offer_modal_overlay_view_with_text_on_top.png
/File:Desktop_Engage_Offer_overlay_view_with_text_at_bottom.png
/File:Desktop_Engage_Offer_overlay_view_with_text_at_bottom.png
/File:Desktop_Engage_Offer_Toast_view_with_text_content_on_right.png
/File:Desktop_Engage_Offer_Toast_view_with_text_content_on_right.png
/File:Desktop_Engage_Offer_Toast_view_with_text_content_on_left.png
/File:Desktop_Engage_Offer_Toast_view_with_text_content_on_left.png
/File:Desktop_Engage_Offer_overlay_view_-_Right_text_v1.png
/File:Desktop_Engage_Offer_overlay_view_-_Right_text_v1.png
/File:Desktop_Engage_Offer_modal_Overlay_View_with_Text_on_left.png
/File:Desktop_Engage_Offer_modal_Overlay_View_with_Text_on_left.png
/File:Mobile_Engage_Offer_inserted_onto_the_top_of_a_webpage.png
/File:Mobile_Engage_Offer_inserted_onto_the_top_of_a_webpage.png
/File:Mobile_mode_Engage_Offer_view_in_modal_overlay_with_background_greyed_out_v1.png
/File:Mobile_mode_Engage_Offer_view_in_modal_overlay_with_background_greyed_out_v1.png
/File:Mobile_mode_Engage_Offer_view_in_modal_overlay_v1.png
/File:Mobile_mode_Engage_Offer_view_in_modal_overlay_v1.png

The Genesys Multicloud CX plugin doesn't have any localization options.

API commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Engage.invite');

invite
Opens the Engage Widget and renders the text based on the options provided. If no options are
provided, the widget doesn't open.

Example
oMyPlugin.command('Engage.invite', {

'type':'toast',
'timeout':3000,
'title':'Engage Title',
'ariaTitle':'Engage Invite',
'body':'Engage invite body content',
'accept':'Yes',
'decline':'No, thanks',
'ariaAccept':'Yes',
'ariaDecline':'No, thanks',
'ariaClose':'Close',
'command': 'WebChat.open',
'options':{'proactive': true, 'userData': {'category': 'shoes'}}

});

oMyPlugin.command('Engage.invite',{
'type':'toast',
'timeout':3000,
'force': true,
'title':'Engage Title',
'ariaTitle':'Engage Invite',
'body':'Engage invite body content',
'accept':'Yes',
'decline':'No, thanks',
'ariaAccept':'Yes',
'ariaDecline':'No, thanks',
'ariaClose':'Close'

Engage

Widgets API Reference 250

}).done(function(response){

// Act upon the received response code

switch(response){
case 'accepted':oMyPlugin.command('WebChat.open');

break;
case 'declined': break;
case 'closed': break;
case 'timeout': break;

}

});

Options

Option Type Description Accepted
values Default Introduced/

updated

type string Widget display
type. toast

timeout number
Timeout
integer in
milliseconds.

n/a

title string String for
widget title. n/a

ariaTitle string
Aria label text
for the Engage
invite window.

n/a 9.0.015.04

body string String for offer
body text. n/a

accept string
String for
Accept button
text.

n/a

ariaAccept string
Aria label text
for the Accept
button.

n/a 9.0.016.10

decline string
String for
Decline button
text.

n/a

ariaDecline string
Aria label text
for the Decline
button.

n/a 9.0.016.10

ariaClose string
Aria label text
for the Engage
Close button.

n/a 9.0.016.10

command string Command to
execute. n/a

options object
Options related
to the
command
provided.

n/a

Engage

Widgets API Reference 251

Option Type Description Accepted
values Default Introduced/

updated

priority number

Replace the
active lower
priority Engage
invite with the
higher priority
Engage invite.

n/a 0 9.0.015.11

force boolean

Replace the
active Engage
invite with the
new Engage
invite
irrespective of
priorities.

n/a false 9.0.015.11

Resolutions
Status When Returns

resolved Engage invite is accepted by
user. accepted

resolved Engage invite is declined by user. declined

resolved Engage invite widget is closed by
user. closed

resolved Engage invite widget closes due
to timeout. timeout

offer
Opens a widget for a product offer using the data sent through the command options provided below.
The widget can include both rendering options and the actual data that needs to be displayed in the
Offer Widget. If no options are provided, the widget will not open.

Example
oMyPlugin.command('Engage.offer', {

mode:'overlay',
modal:true,
layout:'leftText',
title: 'GRAB WHAT YOU NEED!!',

ariaTitle: 'Offers',
headline:'We Got All!',
description:'Get free NextDay delivery on orders of $35 or more. Start shopping

now!',

cta:{
text:'Join',
url:'https://www.genesys.com',
target:'_blank'

},

Engage

Widgets API Reference 252

image:{
src:'https://picsum.photos/id/237/300/300',
alt:'Alternate Text for Image'

},

styles:{
closeButton:{

'color':'red'
}

},
ariaCTA:'Join',
ariaClose:'Close Offer'

});

Options

Option Type Description Accepted
values Default Introduced/

updated

mode string
The display
type of the
Offer widget.

overlay,
toaster toaster 9.0.015.04

modal boolean

Applicable only
when mode is
'overlay'. A
smokescreen
will be shown
in the
background of
overlay modal
window. This
window can be
dismissed by
clicking
anywhere in
the
smokescreen
area.

n/a false 9.0.015.04

layout string
Additional
layout options
are supported
for all modes.

minimal,
leftText,
rightText,
topText,
bottomText

leftText 9.0.015.04

headline string The Offer title
header text. n/a n/a 9.0.015.04

ariaTitle string
Aria label text
for the Offer
window.

n/a n/a 9.0.015.04

description string
The Offer body
description
text.

n/a n/a 9.0.015.04

cta object
An object
containing
HTML
attributes and/

n/a n/a 9.0.015.04

Engage

Widgets API Reference 253

Option Type Description Accepted
values Default Introduced/

updated
or CXBus
commands for
the CTA (call to
action) button.

cta.text string The CTA button
text. n/a n/a 9.0.015.04

cta.url string

The URL string
for the CTA
button.
Note: The URL
must be properly
defined with the
complete Protocol
URL Address. For
example,
https://www.genesys.com.

_blank,
_parent, _self,
_top,
framename

n/a 9.0.015.04

cta.target string
Specifies
where the URL
is opened.

n/a n/a 9.0.015.04

cta.command string
A CXBus
command to
execute.

n/a n/a 9.0.015.04

cta.commandOptionsstring
Options related
to CXBUs
command.

n/a n/a 9.0.015.04

image object
An object
containing
image tag
attributes.

n/a n/a 9.0.015.04

image.src string The URL of the
image. n/a n/a 9.0.015.04

image.alt string Alternate text
for the image. n/a n/a 9.0.015.04

image.title string

To indicate the
screen reader
user whether
the image
opens the URL
in a new
window.

n/a n/a 9.0.016.10

insertAfter string

Applicable only
in mobile
mode. An ID or
class name of
an HTML
selector from
the host page.
The offer will
be inserted
after this

n/a n/a 9.0.015.04

Engage

Widgets API Reference 254

Option Type Description Accepted
values Default Introduced/

updated
element.
Precede the
value
mentioned
here with the
standard Class
('.') and ID
selector ('#')
character.

insertBefore string

Applicable only
in mobile
mode. An ID or
class name of
an HTML
selector from
the host page.
The offer will
be inserted
before this
element.
Precede the
value
mentioned
here with the
standard Class
('.') and ID
selector ('#')
character.

n/a n/a 9.0.015.04

insertInto string

Applicable only
in mobile
mode. An ID or
class name of
an HTML
selector from
the host page.
The offer will
be appended
inside this
element.
Precede the
value
mentioned
here with the
standard Class
('.') and ID
selector ('#')
character.

n/a n/a 9.0.015.04

styles object
An object
containing
styles for the
offer content.

n/a n/a 9.0.015.04

styles.closeButtonobject An object
containing n/a n/a 9.0.015.04

Engage

Widgets API Reference 255

Option Type Description Accepted
values Default Introduced/

updated
styles for the
close button.

styles.closeButton.colorstring
The color of
the close
button.

n/a n/a 9.0.015.04

styles.closeButton.opacitynumber

The CSS
'opacity'
property for
the close
button.

n/a n/a 9.0.015.04

styles.overlay object

An object
containing
styles for the
overlay
container.

n/a n/a 9.0.015.04

styles.overlay.top string
The CSS 'top'
property for
the overlay
container.

n/a n/a 9.0.015.04

styles.overlay.rightstring
The CSS 'right'
property for
the overlay
container.

n/a n/a 9.0.015.04

styles.overlay.bottomstring

The CSS
'bottom'
property for
the overlay
container.

n/a n/a 9.0.015.04

styles.overlay.left string

The CSS 'left'
property for
the overlay
container.
Note: When all the
position values are
provided, the order
of precedence will
be top, right,
bottom, and left.

n/a n/a 9.0.015.04

styles.overlay.centerboolean

Aligns the
overlay
container to
the center of
the screen.

n/a true 9.0.015.04

styles.offer object
An object
containing
styles for the
Offer window.

n/a n/a 9.0.015.04

styles.offer.backgroundColorstring The
background n/a n/a 9.0.015.04

Engage

Widgets API Reference 256

Option Type Description Accepted
values Default Introduced/

updated
color of the
offer.

styles.offer.color string The text color
of the offer. n/a n/a 9.0.015.04

styles.offer.paddingstring
The padding
for the offer
container.

n/a 0 9.0.015.04

styles.title object
An object
containing
styles for the
title.

n/a n/a 9.0.015.04

styles.title.font string
The CSS 'font'
property for
the title.

n/a n/a 9.0.015.04

styles.title.textAlignstring
The CSS 'text-
align' property
for the title.

n/a n/a 9.0.015.04

styles.headline object
An object
containing
styles for the
header text.

n/a n/a 9.0.015.04

styles.headline.fontstring
The CSS 'font'
property for
the header
text.

n/a n/a 9.0.015.04

styles.headline.textAlignstring
The CSS 'text-
align' property
for the header
text.

n/a n/a 9.0.015.04

styles.description object

An object
containing
styles for the
offer
description
text.

n/a n/a 9.0.015.04

styles.description.fontstring
The CSS 'font'
property for
the description
text.

n/a n/a 9.0.015.04

styles.description.textAlignstring

The CSS 'text-
align' property
for the
description
text.

n/a n/a 9.0.015.04

styles.ctaButton object

An object
containing
styles for call
to action
button in the

n/a n/a 9.0.015.04

Engage

Widgets API Reference 257

Option Type Description Accepted
values Default Introduced/

updated
offer window.

styles.ctaButton.fontstring
The CSS 'font'
property for
the text in CTA
button.

n/a n/a 9.0.015.04

styles.ctaButton.textAlignstring
The CSS 'text-
align' property
for the text in
CTA button.

n/a n/a 9.0.015.04

styles.ctaButton.backgroundstring
The CSS
'background'
property for
the CTA button.

n/a n/a 9.0.015.04

styles.ctaButton.colorstring
The CSS 'color'
property for
the text in CTA
button.

n/a n/a 9.0.015.04

styles.ctaButton.fontSizestring
The CSS 'font-
size' property
for the text in
CTA button.

n/a n/a 9.0.015.04

ariaCTA string
Aria label text
for the Offer
CTA button.

n/a n/a 9.0.016.10

ariaClose string
Aria label text
for the Offer
Close button.

n/a n/a 9.0.016.10

priority number

Replace the
active lower
priority Engage
Offer with the
higher priority
Engage Offer.

n/a 0 9.0.015.11

force boolean

Replace the
active Engage
Offer with the
new Engage
Offer
irrespective of
priorities.

n/a false 9.0.015.11

API events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

Engage

Widgets API Reference 258

Important
The global bus object is a debugging tool. When implementing widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('Engage.ready', function(e){});

Name Description Data Introduced/updated

ready
The Engage widget is
initialized and ready to
accept commands on
the bus.

n/a

opened

The Engage widget
opens.
Note: Applicable
only to Engage.offer
command

Metadata 9.0.015.04

CTA

When the user clicks the
CTA button in the
Engage widget.
Note: Applicable
only to Engage.offer
command

Metadata 9.0.015.04

hover

When the user first
hovers over the Engage
widget.
Note: Applicable
only to Engage.offer
command

Metadata 9.0.015.04

dismissed

When the user closes
the Engage widget by
clicking the Close
button.
Note: Applicable
only to Engage.offer
command

Metadata 9.0.015.04

closed

The Engage widget
closes.
Note: Applicable
only to Engage.offer
command

Metadata 9.0.015.04

Engage

Widgets API Reference 259

Important
Applicable only for Engage.offer command.

Interaction Lifecycle
Every offer interaction has a sequence of events we describe as the Interaction Lifecycle. These
events track progress and user choices from the beginning of an interaction (opening Offers), to the
end (closing Offers), and every step in between.

The following events comprise the Interaction Lifecycle:

ready
opened
CTA
hover
dismissed
closed

Lifecycle scenarios
An Interaction Lifecycle can vary based on each user's intent and experience with the Offer widget.
Here are several sequences of events in the lifecycle that correspond to different scenarios.

The user opened the Offer widget but changed their mind and closed it without seeing the offer
details:

ready -> opened -> dismissed -> closed

The user opened the Offer widget, hovered over the offer details, and then closed it:

ready -> opened -> hover -> dismissed -> closed

The user opened the Offer widget and clicked on the button, which triggers CTA:

ready -> opened -> CTA -> closed

Tip
For a list of all Offer events, see API events.

Metadata

Each event in the Interaction Lifecycle includes the following block of metadata. By default, all values
are set to false. As the user progresses through the lifecycle of an Offer Engage interaction, these
values are updated.

Engage

Widgets API Reference 260

The metadata block contains Boolean state flags, timestamps, and elapsed times. These values can
be used to track and identify trends or issues with interactions. During runtime, the metadata can
help you offer a smart and dynamic experience to your users.

Reference
Name Type Description Introduced/updated

opened integer (timestamp)
Timestamp indicating
when the offer was
opened.

9.0.015.04

closed integer (timestamp)
Timestamp indicating
when the offer was
closed.

9.0.015.04

dismissed integer (timestamp)

Timestamp indicating
when the user
dismissed the offer by
clicking the close
button.

9.0.015.04

triggeredCTA integer (timestamp)
Timestamp indicating
when the CTA was
triggered.

9.0.015.04

timeBeforeCTA integer (milliseconds)

Total time in
milliseconds from when
the user opened the
offer to when the CTA is
triggered.

9.0.015.04

timeFirstHover integer (timestamp)
Timestamp indicating
when the user first
hovered over the offer.

9.0.015.04

timeBeforeHover integer (milliseconds)

Total time in
milliseconds from when
the user opened the
offer to when the user
first hovered over the
offer.

9.0.015.04

timeElapsedHover integer (milliseconds)
Total time in
milliseconds when the
user hovered over the
offer.

9.0.015.04

elementClicked string Name of CTA element
that was clicked. 9.0.015.04

Engage

Widgets API Reference 261

Genesys Widgets extensions

Contents

• 1 Overview
• 2 Defining extensions
• 3 Creating a new CXBus plugin
• 4 Use cases

• 4.1 Example: subscribing to an event
• 4.2 Example: publishing an event
• 4.3 Example: calling a command
• 4.4 Example: registering a command
• 4.5 Example: using the 'before()' method

Genesys Widgets extensions

Widgets API Reference 262

• Developer

Learn how to create your own plugins and widgets.

Related documentation:
•

Overview

Genesys Widgets allows you to create your own plugins and widgets. These extensions are an easy
way to define your own functionality, while using the same resources as the core Genesys Widgets.

Defining extensions

Extensions are defined at runtime before Genesys Widgets loads. You can define them inline or
include extensions in separate files, either grouped or separated.

Important
Define/include your extensions after your Genesys Widgets configuration object but
before you include the Genesys Widgets JavaScript package.

Make sure that the "extensions" object exists and always include this at the top of your extension
definition.

if(!window._genesys.widgets.extensions){

window._genesys.widgets.extensions = {};
}

Create a new named property inside the "extensions" object and define it as a function. When
Genesys Widgets initializes it will step through each extension and invoke each function, initializing
them. Genesys Widgets will share resources as arguments. These include: jQuery, CXBus, and the
Common UI utilities.

window._genesys.widgets.extensions["TestExtension"] = function($, CXBus, Common){};

Genesys Widgets extensions

Widgets API Reference 263

Creating a new CXBus plugin

Inside the extension function is where you create a new CXBus plugin. You can use this CXBus plugin
to interface with other Genesys Widgets. You can add your own UI controller logic in here or simply
use the extension to connect an existing UI controller to the bus (for example, share its API over the
bus and coordinate actions with events).

Registering a new plugin on the bus creates a new, unique namespace for all your events and
commands. In this example, the namespace "cx.plugin.TestExtension" is created:

var oTestExtension = CXBus.registerPlugin("TestExtension");

Important
When referring to other namespaces, like "cx.plugin.TestExtension", it is not necessary
to include the "cx.plugin." prefix. It is optional and implied. You can subscribe to
events or call commands using the full or truncated namespace.

Use cases

Extensions are like any other Genesys Widget. You can publish, subscribe, call commands, or register
your own commands on the bus. You can interface with other widgets on the bus for more complex
interactions. The following examples demonstrate how you can make extensions work for you.

Example: subscribing to an event
oTestExtension.subscribe("WebChat.opened", function(e){});

Example: publishing an event
Publishes the event "TestExtension.ready" on the bus.

oTestExtension.publish("ready", {arbitrary data to include});

Example: calling a command
Commands are deferred functions. You must handle their return states asynchronously.

oTestExtension.command("WebChat.open", {any options required}).done(function(e){

// Handle success return state
// "e", the event object, is a standard CXBus format
// Any return data will be available under e.data

}).fail(function(e){

// Handle failure return state

Genesys Widgets extensions

Widgets API Reference 264

// "e", the event object, may contain an error message, warning, or AJAX response object
});

Example: registering a command
Creates a new command under your namespace that you or other widgets can call.

"e", the event object, is a standard CXBus format

• e.data = options passed into command when being called.
• e.commander = the namespace of the widget that called this command.
• e.command = the name of the command being called.
• e.time = timestamp when the command was called.
• e.deferred = the deferred promise created for this command call. You MUST always resolve or reject this

promise using e.deferred.resolve() or e.deferred.reject(). You may pass any arbitrary data into either
resolution state.

oTestExtension.registerCommand("demo", function(e){

// Command execution here
});

Example: using the 'before()' method
Allows you to set up an interrupt that is executed before a command every time that command is
called. With this feature, you can link execution of a command with other logic, modify command
options before they're used, or cancel execution of a command.

You can specify multiple "before" functions for a single command. They will be executed in order with
the output of one providing the input to the next. If one of the functions does not return an object,
execution will stop and the command will be cancelled.

oTestExtension.before("WebChat.open", function(oData){

// oData == the options passed into the command call
// e.g. if this command is called: oMyPlugin.command("WebChat.open", {form: {firstname:

"Mike"}});
// then oData will == {form: {firstname: "Mike"}}

// You must return oData back, or an empty object {} for execution to continue.
// If you return false|undefined|null, execution of the command will be stopped
return oData;

});

Genesys Widgets extensions

Widgets API Reference 265

Genesys Widgets videos

Contents

• 1 Introduction to Widgets
• 2 Getting started with the Genesys WebChat Widget
• 3 WebChat features
• 4 The Callback Widget
• 5 The CallUS Widget

Genesys Widgets videos

Widgets API Reference 266

This collection of videos from the Genesys Vimeo channel demonstrates some of the most
commonly used features of Genesys Widgets.

Related documentation:
•

Introduction to Widgets

Available Widgets on Genesys Multicloud CX

Link to video

Getting started with the Genesys WebChat Widget

How to configure Genesys Widgets and start using WebChat

Link to video

WebChat features

Features of the WebChat Widget

Link to video

The Callback Widget

Features of the Callback Widget

Link to video

The CallUS Widget

Features of the CallUs Widget

Link to video

Genesys Widgets videos

Widgets API Reference 267

https://player.vimeo.com/video/553434064?title=0&byline=0&portrait=0
https://player.vimeo.com/video/441169402?title=0&byline=0&portrait=0
https://player.vimeo.com/video/545672854?title=0&byline=0&portrait=0
https://player.vimeo.com/video/539841733?title=0&byline=0&portrait=0
https://player.vimeo.com/video/548087059?title=0&byline=0&portrait=0

	Widgets API Reference
	Table of Contents
	Widgets Bus API overview
	App
	Common
	Overlay
	Toaster
	WindowManager
	CallbackService
	StatsService
	WebChatService
	Calendar
	Callback
	CallUs
	ChannelSelector
	Console
	SideBar
	WebChat
	Engage
	Genesys Widgets extensions
	Genesys Widgets videos

