
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Widgets Developer's Guide

11/1/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
Administrator resources

Accessibility 4
Customize appearance 11
Cookies 24
Localize widgets and services 28
Supported browsers 33

Search the table of all articles in this guide, listed in alphabetical order, to find the article you need.

Related documentation:
•

Related documentation:
•

Widgets Developer's Guide 3

Accessibility

Contents

• 1 Overview
• 2 What is WCAG?
• 3 Support
• 4 Screen reader support
• 5 Keyboard accessibility
• 6 Focus trap
• 7 Color contrast
• 8 Browser zoom and text resizing
• 9 Customization

• 9.1 Localization
• 9.2 Configuration options

• 10 Resources and tools used
• 10.1 Online
• 10.2 Screen readers

Accessibility

Widgets Developer's Guide 4

Learn how Widgets aligns with the Web Content Accessibility Guidelines (WCAG) 2.1, Level AA.

Related documentation:
•

Overview

Genesys provides a Voluntary Product Accessibility Template® - VPAT® report from ITI, to document
conformance of Widgets to WCAG 2.1 specification. The VPAT® report is a standardized template for
documenting conformance to various accessibility specifications. The VPAT® report provided by
Genesys follows the W3C/WAI’s WCAG 2.1 specification, as this is an international standard adopted
and recognized by our customers worldwide. The Genesys VPAT® can be downloaded here: Genesys
Widgets WCAG 2.1 AA VPAT®.

What is WCAG?

Web Content Accessibility Guidelines (WCAG) 2.1 covers a wide range of recommendations for
making Web content more accessible. Following these guidelines will make content more accessible
to a wider range of people with disabilities and will also often make Web content more usable to
users in general. WCAG relies on four guiding principles for building accessible UIs:

1. Perceivable: Information and user interface components must be presentable to users in ways they
can perceive.

2. Operable: User interface components and navigation must be operable.
3. Understandable: Information and the operation of user interface must be understandable.
4. Robust: Content must be robust enough that it can be interpreted by a wide variety of user agents,

including assistive technologies.

Support

Plugin Genesys Cloud CX
WebChat Level AA
CallUs Level AA
ChannelSelector Level AA

Accessibility

Widgets Developer's Guide 5

Plugin Genesys Cloud CX
SideBar Level AA

Screen reader support

Supported widgets are accessible via screen readers, which announce the following:

• all the textual and non-textual content on the Widgets window elements
• new chat messages sent by the agent to the user
• outgoing messages sent by the user to the agent
• error messages

To achieve a consistent reading behavior of live data across all the screen readers and the browsers,
recommended ARIA live regions have been implemented in WebChat for reading new messages.

Genesys Widgets is built and maintained following WCAG A/AA accessibility standards. These
standards are supported by popular screen readers, such as JAWS, VoiceOver (MacOS, iOS), TalkBack,
and others.

Genesys supports compatibility with most commonly used screen readers in the following cases:

• PC Windows OS: JAWS with Chrome and Internet Explorer 11 or Edge
• Mac OS: VoiceOver with Chrome and Safari
• iOS: VoiceOver with Safari
• Android: TalkBack with Chrome

Important
Not all screen readers may read all the textual and non-textual window functionality.
There are known issues around Firefox and Internet Explorer with some screen
readers. The content is read as long as the screen reader model is supported on that
particular browser.

Keyboard accessibility

Accessibility

Widgets Developer's Guide 6

Supported Widgets are accessible via the keyboard. Users may navigate to and within any widget
using the tab key or shift+tab key combo. For dropdowns and the date picker, the user can
highlight a selection using the arrow keys. The enter or space key can then be used to make a
selection, send a message, or activate a button.

• tab - step forward to the next element
• shift+tab - step backward to the previous element
• arrow keys - move between options within a dropdown or date picker
• enter - make a selection or submit
• space - make a selection or activate a button

Important
In macOS, Safari Browser's accessibility settings must be enabled to allow for proper
keyboard navigation in Widgets.

Focus trap
In desktop browsers, when the Engage Offer Widget is rendered in an overlay
modal dialog with the background disabled, the focus is trapped within the
content until it is closed. In mobile devices, all the widget layouts are expanded
to full screen modal dialog. These mobile layouts contain the aria-modal property
as recommended in the W3C ARIA Dialog modal best practices.

Important
Widgets does not add the aria-hidden attribute on the customer page html
elements. Due to this limitation, when using screen reader gestures on some Android

Accessibility

Widgets Developer's Guide 7

/File:Screen-Recording-2020-03-25-at-1.gif
/File:Screen-Recording-2020-03-25-at-1.gif

devices, the focus may not be trapped within the widget. To trap the focus, a custom
event handling script needs to be added subscribing to the widget opened event.
Also, add the aria-hidden attribute on the host page html elements, and remove
them from subscribing to the corresponding closed/minimized events.

Color contrast

Text and background colors and buttons now meet WCAG 2.1 Level AA accessibility contrast
guidelines. This allows text to be read clearly. There are changes in the default Widgets themes that
increase color contrast in our dark and light themes. Changes include border, button, link, text, and
background color adjustments to meet the contrast requirements while maintaining the same look
and feel. In addition, there is an outline to indicate which element or section of each widget is in
focus.

The following table details some examples of the changes included as part of WCAG implementation.
The changes apply to both the light and dark themes, and the light theme is used in the table
examples.

Description Before After
As per the “1.4.11 Non-text
contrast” success criterion, icon
color has been modified to meet
the contrast requirement of at
least 3:1 ratio against the
adjacent/background color.
As per the “1.4.3 Contrast
(minimum)” success criterion,
background color of the primary
button has been modified to
ensure that the contrast ratio of
at least 4.5:1 exists between text
and background.
As per the “1.4.3 Contrast
(minimum)” success criterion,
placeholder text color has been
modified to ensure that the
contrast ratio of at least 4.5:1
exists between text and
background.

As per the “2.4.7 Focus visible &
1.4.11 Non-text contrast”
success criterion, borders with
3:1 contrast ratio have been
added to highlight the focused
state of the menu items.

Accessibility

Widgets Developer's Guide 8

https://all.docs.genesys.com/File:Before_5.pngcenterthumb100x100px
https://all.docs.genesys.com/File:Before_5.pngcenterthumb100x100px
https://all.docs.genesys.com/File:After_5.pngthumb100x100pxcenter
https://all.docs.genesys.com/File:After_5.pngthumb100x100pxcenter
https://all.docs.genesys.com/File:Before_6.pngcenterthumb100x100px
https://all.docs.genesys.com/File:Before_6.pngcenterthumb100x100px
https://all.docs.genesys.com/File:After_6.pngcenterthumb100x100px
https://all.docs.genesys.com/File:After_6.pngcenterthumb100x100px
https://all.docs.genesys.com/File:Before_10.pngcenterthumb100x100px
https://all.docs.genesys.com/File:Before_10.pngcenterthumb100x100px
https://all.docs.genesys.com/File:After_10.pngcenterthumb100x100px
https://all.docs.genesys.com/File:After_10.pngcenterthumb100x100px
https://all.docs.genesys.com/File:Before_20.pngcenterthumb115x115px
https://all.docs.genesys.com/File:Before_20.pngcenterthumb115x115px
https://all.docs.genesys.com/File:After_20.pngcenterthumb115x115px
https://all.docs.genesys.com/File:After_20.pngcenterthumb115x115px

Browser zoom and text resizing
Genesys Widgets supports zooming in and out, or resizing text using the
browser's built-in controls. This makes it easier for some viewers to read text on
the screen.

Important
The SideBar Widget can only support the zoom feature properly if it contains six or
fewer rows.

Customization

Localization
Aria labels are used throughout Genesys Widgets to supply callouts and context for screen readers.
These labels have been added to the standard localization language pack definition, allowing you to
customize these labels yourself. All aria label strings are prefixed with aria to make them easy to
identify. Review each widget's localization reference page to find these new aria labels. Example:
WebChat Widget localization reference

Configuration options

Widget Option name Description

WebChat ariaCharRemainingIntervals

An array containing the intervals
as a percentage at which the
screen reader will announce the
remaining characters when the
user inputs text into the message
area. By default, it is enabled
with the following intervals, and
it is customizable according to
user needs. Configuring a value
of false will let the screen
reader call out remaining
characters for every change.

WebChat emojiList

emojiList must be configured
with display names to support
the screen reader calling out the
emoji name. These emoji names
are applied as aria-label
attributes on the non-text emoji
markup.

Accessibility

Widgets Developer's Guide 9

Resources and tools used

Online

• webaim.org
• deque.com
• contrastchecker.com

Screen readers

• JAWS
• NVDA
• VoiceOver

Accessibility

Widgets Developer's Guide 10

Customize appearance

Contents

• 1 Set the active theme
• 2 Create a custom theme

• 2.1 Theme templates
• 2.2 Name a theme
• 2.3 Customization guidelines

• 3 Register a theme with Genesys Widgets
• 4 Change the appearance of a specific widget
• 5 Change the layout and structure of a widget
• 6 Change fonts

• 6.1 Disable Roboto font download
• 6.2 Change font size

• 7 Icons
• 7.1 How to use icons
• 7.2 Multi-tone icon set
• 7.3 Outline icon set

Customize appearance

Widgets Developer's Guide 11

Use themes to change the appearance of Genesys Widgets. Themes allow you to apply colors and
fonts to all of your widgets in a single operation.

Related documentation:
•

Genesys Widgets includes two built-in themes: dark and light. The dark theme is active by default.

Dark theme

Light theme

Customize appearance

Widgets Developer's Guide 12

/File:Darktheme.png
/File:Darktheme.png

Set the active theme

There are two ways to set the active theme:

Configuration

window._genesys.widgets.main.theme = "light"; // or "dark"

Widget bus command

window._genesys.widgets.bus.command("App.setTheme", {theme: "light"}); // or "dark"

Create a custom theme

Customize appearance

Widgets Developer's Guide 13

/File:Lighttheme.png
/File:Lighttheme.png

Theme templates
Genesys Widgets uses special LESS files called theme templates to define themes. Use a theme
template to create a new color palette and add custom styles. Everything is laid out clearly in the
template file.

LESS syntax defines local variables that allow you to create a clear color palette consisting of no less
than 28 separate color variables, which are grouped by their usage:

• Background Colors
• Text Colors
• Icon Colors
• Border Colors
• Outline Colors

At a bare minimum, you can create a new style by simply changing the color values in the color
palette. You can also add or remove colors from this palette as you see fit.

Color palette example

/* Color Palette */

@bg_color_1: #33383D; // Main Background Color
@bg_color_2: #444A52; // Form Inputs
@bg_color_3: #222529; // Button default
@bg_color_4: #5081E1; // Button primary gradient 1
@bg_color_5: #4375D6; // Button primary gradient 2
@bg_color_6: #CCCCCC; // Button disabled / scrollbar color
@bg_color_7: #212529; // Native scrollbar track color
@bg_color_8: #A3A8AE; // Scrollbar color

@txt_color_1: #FDFDFD; // Main text color
@txt_color_2: #98A7B8; // footer text
@txt_color_3: #FDFDFD; // Button default & primary / autocomplete text hover
color
@txt_color_4: #FDFDFD; // Hyperlink color
@txt_color_5: #C5CCD6; // Placeholder color
@txt_color_6: #F53131; // Alert/error color

@icon_color_1: #FDFDFD; // Base icon color
@icon_color_2: #8C8C8C; // Secondary icon color (multitone only)
@icon_color_3: #000000; // Icon shadow color (multitone only)
@icon_color_4: #000000; // Icon secondary shadow color (multitone only)
@icon_color_5: #98A7B8; // Window control icon color
@icon_color_6: #98A7B8; // Form input icon overlay color (e.g. "clear" icon)
@icon_color_7: #5081E1; // Interactive icon color 1 (attach files, delete
file, etc)
@icon_color_8: #4AC764; // Positive Color (confirmation, availability,
usually green)
@icon_color_9: #F53131; // Negative Color (error, exception, usually red)
@icon_color_10: #F8A740; // Warning Color (warning, pending, offline, usually yellow
or orange)
@icon_color_11: #FDFDFD; // Icon color for primary buttons

@border_color_1: #222529; // Main border color
@border_color_2: #2E69DB; // Button primary
@border_color_3: transparent; // Button default

Customize appearance

Widgets Developer's Guide 14

@border_color_4: transparent; // Button disabled
@border_color_5: #F53131; // Alert/error color
@border_color_6: #758384; // Form controls default state

@outline_color_1: #75A8FF; // Form input focus outline / autocomplete hover
background color
@outline_color_2: #DAE6FC; // Outline color for primary buttons

Sample theme template files

Note: Click the following links to automatically download the sample template files to your computer.

theme-template-dark.less
theme-template-light.less

Theme templates are LESS files, which must be converted to CSS before being used on a website.
Use a website or tool to convert them when you're ready to test and implement them on your site.

By default, theme templates override the styles of all of your Genesys Widgets—but you can also
make changes that only affect a specific widget, as described below.

Name a theme
In the "dark" theme template file, the first class selector is defined as:

.cx-widget.cx-theme-dark

.cx-widget is the base class for the entire Genesys Widget UI. The outermost container of every
widget or standalone UI element has this class and is used to identify UI elements that belong to
Genesys Widgets.

.cx-theme-dark is the class name created for the "dark" theme. Themes are applied by searching
for all elements with the .cx-widget class and appending the theme's classname to it. Thus, the
combined class selector indicates styles that will be applied only when your custom theme is active
in the configuration object.

You can name your theme classname anything you wish. There are no restrictions or limitations.

In a later step, you will register this theme classname in your configuration.

Customization guidelines
When you create your own themes, you can only use the following CSS properties:

• color
• background
• font-family
• font-style
• border-color
• border-style

Customize appearance

Widgets Developer's Guide 15

• and other non-structural properties

Warning
Widgets primarily relies on class names for CSS selectors, rather than fixed node path
selectors. Using class names allows for the HTML structure to be changed without
breaking selectors. For example, the selector ".cx-webchat .cx-message" is all that's
needed to target message bubbles inside WebChat. Using a fixed node path
equivalent, like "div.cx-webchat > div.cx-body > div.cx-transcript > div.cx-message-
group > div.cx-message" creates a dependency on the HTML node type and structure.
If any changes are made to WebChat's HTML structure, this CSS selector will break.
Use the smallest necessary specificity in your selectors and try to use class names
only.

Be careful not to modify the structure and functionality of the CSS when you make your changes.
Otherwise, it won't work right.

In particular, you must avoid setting the following CSS properties: height, width,
thickness, size, and visibility; or any other properties that change the structure of
widgets. These properties are not supported. Changing them can break widget
stability and usability.

Important
By default, the Widgets CSS uses the Roboto font, available at
https://fonts.google.com/

Register a theme with Genesys Widgets

The following example shows how to register themes in the Genesys Widgets configuration.

window._genesys.widgets.main.themes = {
"blue": "cx-theme-blue"

};

The name:value pair used here consists of a key ("blue") and the theme's CSS classname ("cx-theme-
blue"). You can add as many themes to this list as you need.

Use a theme's key to make it the active theme:

window._genesys.widgets.main.theme = "blue";
// OR
window._genesys.widgets.bus.command("App.setTheme", {theme: "blue"});

Customize appearance

Widgets Developer's Guide 16

Change the appearance of a specific widget

You can specify specific widgets—and even specific elements within a widget—by appending the
widget's CSS classname to the theme classname.

The following example shows how to extend the cx-theme-blue class with a widget-specific entry
that makes the WebChat widget's background color a darker shade.

.cx-widget.cx-theme-blue, .cx-widget .cx-container{

color: #FDFDFD;
background: #1e5799;

}

.cx-widget.cx-theme-blue *{

border-color: #7DB9E8;
}

.cx-widget.cx-theme-blue.cx-webchat, .cx-widget.cx-theme-blue .cx-webchat{

background: #225897;
}

Important
Notice the dual CSS selector used when specifying the widget. This is required to
make sure your styles always apply properly.

Widget-Specific and Element-Specific

Customize appearance

Widgets Developer's Guide 17

/File:GWCCustomize_SpecificTheme01.png
/File:GWCCustomize_SpecificTheme01.png

The next example shows how to extend the "cx-theme-blue" class with a widget- and element-
specific entry that changes the background color of the input fields within the WebChat widget to a
light shade of blue.

.cx-widget.cx-theme-blue, .cx-widget .cx-container{

color: #FDFDFD;
background: #1e5799;

}

.cx-widget.cx-theme-blue *{

border-color: #7DB9E8;
}

.cx-widget.cx-theme-blue.cx-webchat, .cx-widget.cx-theme-blue .cx-webchat{

background: #225897; // Darker Shade
}

.cx-widget.cx-theme-blue.cx-webchat .form input, .cx-widget.cx-theme-blue .cx-webchat .form
input{

background: #DCF5FF; // Lighter Shade
}

Change the layout and structure of a widget

You can only use themes to customize a limited set of styles for your version of Genesys Widgets. To
create an alternate layout of your own design, disable the widget you want to customize and use the
provided service plugins to build your own replacement.

Choosing Which Plugins to Load

Refer to the plugins configuration option here: app configuration

Customize appearance

Widgets Developer's Guide 18

/File:GWCCustomize_SpecificTheme02.png
/File:GWCCustomize_SpecificTheme02.png

Service Plugins

Service plugins provide a high-level API for quickly integrating a UI with backend services. Each
widget is matched with a corresponding service plugin. This separation allows for advanced
integrations.

• WebChatService
• CallbackService

Warning
Genesys does not support changes to the layout of the official Genesys Widgets, as
your changes can be overwritten when you upgrade to a newer version of Genesys
Widgets.

Change fonts

By default, Genesys Widgets downloads and uses Google's Roboto font hosted in Genesys
Infrastructure. Please choose the nearest or appropriate region URL specified here or any other URL
to download the roboto.css according to your preference and configure it through the googleFontUrl
option.

window._genesys = {
widgets: {
main: {

downloadGoogleFont: true,
googleFontUrl: 'https://apps.mypurecloud.com/webfonts/roboto.css'

}
}

};

Important
By default, Genesys web fonts are loaded from the North America (East) region.

Use the following CSS to specify a different font:

.cx-widget{ font-family: name-of-font-here; }

The font you choose here will be applied to all of the Genesys Widgets.

Disable Roboto font download
To prevent Google's Roboto font file from being downloaded at startup from Genesys Infrastructure,
set the main.downloadGoogleFont configuration option to false:

Customize appearance

Widgets Developer's Guide 19

_genesys.widgets.main.downloadGoogleFont = false;

If this option is set to true, Google's Roboto font will be downloaded from Genesys Infrastructure. The
default value is true.

Important
Use this configuration option if you have security concerns about including fonts from
third-party sources, to optimize your page load time, or if you already include Roboto
on your website.

Change font size
By default, the font size in Genesys Widgets content is in em units. This is to
support accessibility guidelines allowing font size to scale as needed when
zoomed in or out based on the screen size. For normal text, the font size value is
0.75em and can vary for other text contents.

Important
Since these are relative units, the actual value is derived from the font size of the
parent page body. A base font size can be defined on the .cx-widget class in em units
to change font size, which allows Widgets to calculate internal font size using this
value.

Icons

Genesys Widgets are provided in SVG format, which means you can apply color fills and other SVG
CSS properties when you use them. SVG also supports the highest possible rendering quality on all
devices, regardless of the zoom level or resolution. You can scale the icons to fit any container; use
them either inline or as blocks; and animate their orientation, colors, and other styling.

You can also use the Genesys icons in your own custom extensions, which allows them to match the
look and feel of the default Genesys widgets. Here are some of the things you can do with them:

• Create a custom launcher button for chat, using the chat icon
• Create a custom widget with your choice of icon in the title bar
• Mix icons right in with your text, so you can refer to your widgets graphically

Genesys Widgets includes two sets of icons:

Customize appearance

Widgets Developer's Guide 20

• The Multi-tone icon set uses several layers and colors per icon
• The Outline icon set takes a minimalist approach to both design and color

You can use these icons in any way that works for you, but please note that you can't customize or
replace the icons.

How to use icons
Automatic HTML injection

Specify which icons you want and where you want them by applying the CSS cx-icon class and data-
icon attribute to the appropriate elements:

...SVG icon will be inserted here

When you pass the element into the CXCommon.populateAllPlaceholders($("#your-element")
) function—as a jQuery-wrapped set or an HTML string—Genesys Widgets inserts the appropriate SVG
icons and returns the HTML to you.

Fetching SVG icon markup

You can also fetch the markup for each SVG icon manually:

$("#your-element").append(CXCommon.Generate.Icon("chat"));

Multi-tone icon set

Customize appearance

Widgets Developer's Guide 21

/File:Multi-icon-set1.png
/File:Multi-icon-set1.png

Outline icon set

Customize appearance

Widgets Developer's Guide 22

/File:Multi-icon-set2.png
/File:Multi-icon-set2.png
/File:Multi-icon-set3.png
/File:Multi-icon-set3.png
/File:Outline-icon-set1.png
/File:Outline-icon-set1.png

Customize appearance

Widgets Developer's Guide 23

/File:Outline-icon-set2.png
/File:Outline-icon-set2.png
/File:Outline-icon-set3.png
/File:Outline-icon-set3.png

Cookies

Contents

• 1 Purpose
• 2 Cookie creation
• 3 Duration
• 4 Sub-domains
• 5 Cookie support in test environments
• 6 List of cookies

• 6.1 App
• 6.2 Console
• 6.3 WebChat

Cookies

Widgets Developer's Guide 24

• Developer

Learn which session cookies are used by Widgets in Genesys Cloud CX to restore chat sessions,
track the state of the UI, store a customer's decisions, and more.

Related documentation:
•

Purpose
Genesys Widgets uses cookies to store non-sensitive data in the browser. The end-user's browser
must allow cookies for Genesys Widgets to operate properly. Each cookie is required, and without the
ability to read and write these cookies, Genesys Widgets features will not function properly.

Cookie creation
All cookies start with the prefix _genesys.widgets to easily identify them. By
default, Genesys Widgets cookies are created in a way that allows the cookies to
be read across sub-domains by setting the domain attribute in the cookie
options. We derive the proper domain value by parsing the host site's domain
and extracting it.

Important
Genesys Widgets never stores Personally Identifiable Information (PII) in its cookies.

Duration
All cookies used by Genesys Widgets are created as session cookies and will be deleted when the
user's browser is fully closed.

Sub-domains
Normally, cookies cannot be transferred between sub-domains of a website unless they are
configured to do so. Genesys Widgets automatically detects the domain of the host site and
configures all cookies to be transferable between sub-domains. For example, you could start a chat
on testsite.com and restore that chat session on store.testsite.com, support.testsite.com, or
portal.testsite.com.

Cookie support in test environments
Genesys Widgets uses special cookies that persist across sub-domains. This is a critical feature for

Cookies

Widgets Developer's Guide 25

plugins like WebChat that need to restore an active chat session while navigating around a website.
The side effect of using this type of cookie is that they won't work when using test environment
domain names such as localhost or an IP address. You must use a fully qualified domain name
(FQDN) such as localhost.com or any other variant that can be identified as a domain name.
Cookies will also fail to work if you run the test site as an HTML file path directly in the browser.

One workaround is to update your system's hosts file to create an FQDN alias for localhost, your
test environment's name, or an IP address.

Example

127.0.0.1 localhost
127.0.0.1 localhost.com

A fully qualified domain name (FQDN) such as localhost.com or any other variant that can be
identified as a domain name is not mandatory, but it is recommended. This way, the cookies will also
work when using test environment domain names such as localhost or an IP address.

List of cookies

The following is a list of cookies used by Genesys Widgets.

App
Cookie name Purpose

_genesys.widgets.app.autoLoadList

Contains a list of active plugin names that are
updated based on the usage of widgets during
deployment. This is to ensure that a widget is auto-
loaded during a page refresh or page navigation
when there is an active session associated with it.

Console
Cookie name Purpose

_genesys.widgets.console.session Contains the active Console plugin open/close
state.

_genesys.widgets.console.commandPlugin Contains the selected plugin name from the
Commands section.

_genesys.widgets.console.command Contains the selected command to run from the
Commands section.

_genesys.widgets.console.eventPlugin Contains the selected plugin from the Events
section to listen for events.

_genesys.widgets.console.event Contains the selected event type to listen against,
from the Events section.

_genesys.widgets.console.optionsArea Contains the command options to send when
executing a command.

_genesys.widgets.console.activeSubscriptions Contains the list of all active event subscriptions

Cookies

Widgets Developer's Guide 26

Cookie name Purpose
listening via the Console plugin.

_genesys.widgets.console.windowPosition Contains the position of the Console plugin on the
screen.

WebChat
Cookie name Purpose

_genesys.widgets.webchat.state.open Contains the WebChat Widget open or close state
for internal tracking purposes.

_genesys.widgets.webchat.metaData Contains all the metadata details related to the
current active chat session.

_genesys.widgets.webchat.state.filters
Contains any prefilters that were added using
WebChatService plugin commands addPrefilter or
sendFilteredMessage.

_genesys.widgets.webchat.state.minimized Contains the WebChat Widget minimized or
maximized state for internal tracking purposes.

_genesys.widgets.webchat.autoInvite.disabled
Contains a value that disables or enables the
WebChat autoInvite feature. It is dynamically
updated based on the user's response to the initial
WebChat invite.

_genesys.widgets.webchat.state.lastMessageCountRead

Contains the number of messages that are read
during an active chat session that calculates the
number of unread messages when WebChat is
minimized. It is automatically cleared whenever the
WebChat Widget is maximized or closed/ended.

_genesys.widgets.webchat.state.asyncUnreadMessageCount

Keeps track of the number of unread messages
related to an Async Chat, when WebChat is
minimized. It is cleared whenever the WebChat
Widget is maximized by the user to read the new
messages.

_genesys.widgets.webchat.state.purecloud-
v2-sockets.JWtoken

Used only with PureCloud V2 API, containing the
JWT token related to the current active chat
session.

_genesys.widgets.webchat.state.purecloud-
v2-sockets.ConversationID

Used only with PureCloud V2 API, containing the
active conversation ID related to the current chat
session.

_genesys.widgets.webchat.state.purecloud-
v2-sockets.MemberID

Used only with PureCloud V2 API, containing the
user ID of the WebChat Widget related to the
current active chat session.

_genesys.widgets.webchat.state.purecloud-
v2-sockets.WS_URL

Used only with PureCloud V2 API, containing the
WebSocket event stream URI for listening to new
incoming messages.

_genesys.widgets.webchat.state.purecloud-
v2-sockets.LastMsgId

Used only with PureCloud V2 API, containing the
last unique ID of the message sent in the WebChat
Widget.

Cookies

Widgets Developer's Guide 27

Localize widgets and services

Contents

• 1 Master localization file
• 2 Multiple translated language packs

• 2.1 Example

• 3 Configuration options
• 4 Language pack JSON format
• 5 Localization namespaces
• 6 Language codes
• 7 Plugin localization options

Localize widgets and services

Widgets Developer's Guide 28

• Developer

Localize your Genesys Widgets user messages and prompts by creating and hosting a Language
Pack that Genesys Widgets can access.

Related documentation:
•

The Language Pack is a special file written in JSON format.

You also have to specify your Language Pack file in the window_genesys.widgets.main section of
your Genesys Widgets configuration options, as shown in this example:

Master localization file

The widgets-en.i18n.json file provides the latest i18n localization content containing all the language
codes and strings of all Widgets. This acts as a centralized master file that you can use as a reference
to create your own modified localization file and host it. In this way, you can use this to override the
language content.

Important
The English language pack file provided in the above URL is just for reference. Do not
load this file into Widgets because it is already built into Widgets by default.

Multiple translated language packs

Multiple i18n language pack files are available as individual JSON files in the /i18n folder. You can
select the desired language pack file and then set the i18n and lang properties in the
window._genesys.widgets.main configuration option. Each language pack file is named using the
language code to identify easily. The same language code is also used inside the language pack file
to construct the i18n JSON. This language code must be specified in the main.lang configuration
option.

Example
The French language pack file is available as widgets-fr.i18n.json. To use this language pack file,
follow this example:

window._genesys.widgets = {

Localize widgets and services

Widgets Developer's Guide 29

main: {

lang: "fr",
i18n: "/relative/path/to/i18n/widgets-fr.i18n.json"

// OR using the CDN URL
i18n: "https://apps.mypurecloud.com/widgets//i18n/widgets-fr.i18n.json"

}
};

Language code mapping examples:

Language Code
Brazilian Portuguese pt-BR
Chinese Simplified zh-CN
Chinese Traditional zh-TW
Danish da
Dutch nl
English en
Finnish fi
French fr
German de
Italian it
Japanese ja
Korean ko
Norwegian no
Polish pl
Spanish es
Swedish sv
Thai th
Turkish tr

Important
You may use any language code you wish. The above table is for reference only.

Configuration options

main.lang
Type: string
Default: "en"

Localize widgets and services

Widgets Developer's Guide 30

Requirement: Optional
Description: A language code to specify which language to display in the Widgets. Language codes
are set by the customer.

main.i18n (external file)
Type: string
Default: built-in English words and phrases
Requirement: Required when using main.lang option.
Description: A URL that the Widgets use to fetch the Language Pack file upon startup. Can be partial
or complete. Unspecified strings will use default values.

main.i18n (inline object)
Type: object
Default: built-in English words and phrases
Requirement: Required when using main.lang option.
Description: An inline JSON object. Can be partial or complete. Unspecified strings will use default
values.

Language pack JSON format

The language pack is written in JSON format.

// Root
{

// Language Code
"en": {

// Widget name
"webchat": {

// Localized strings
"ChatStarted": "Chat Started",
"ChatEnded": "Chat Ended",
"ChatFailed": "There was a problem starting the chat session. Please Retry.",

// Customer Defined Strings - Match & Replace messages received from chat server
"SYS0001": "An Agent will be with you shortly"

},

"sendmessage": {

// Localized strings
"SendMessageButton": "Send Message",
"EmailFormFirstname": "First Name",
"EmailFormLastname": "Last Name",

//Errors
"ErrorServerNotAvailable": "Unable to reach server. Please try again.",
"ErrorAttachfileSizeMax": "Total size of attachments exceeds limit: "

}
}

}

Localize widgets and services

Widgets Developer's Guide 31

Localization namespaces
Plugin Namespace

Calendar calendar
CallBack callback
CallUs callus
ChannelSelector channelselector
Offers offers
WebChat webchat

Language codes

To allow flexibility in the way your website handles multiple languages and language codes, there are
no rules for language codes other than that they must be strings. This means that you can use any
language code system.

However, the language code that you set in window._genesys.widgets.main.lang must
correspond to a language code in the Language Pack File.

Important
When using one of the available pre-translated language packs, ensure the language
code maps with the one included in the language pack file.

Plugin localization options

• ChannelSelector
• CallUs
• Callback
• SideBar
• WebChat
• Calendar

Localize widgets and services

Widgets Developer's Guide 32

Supported browsers

Contents

• 1 Desktop browsers
• 1.1 Windows
• 1.2 Mac OS

• 2 Mobile Browsers

Supported browsers

Widgets Developer's Guide 33

Genesys has tested the following desktop and mobile browsers.

Related documentation:
•

Important
Support for the device/OS/browser combinations listed below will only be available for
as long as Genesys can properly reproduce the issue. Please report any issues you
encounter with any of our tested browsers.

Desktop browsers

Windows

• Google Chrome — Current release or one version previous
• Microsoft Edge — Current release or one version previous
• Mozilla Firefox — Current release or one version previous

Mac OS

• Google Chrome — Current release or one version previous
• Microsoft Edge — Current release or one version previous
• Mozilla Firefox — Current release or one version previous
• Safari — Current release or one version previous

Mobile Browsers

• Google Chrome — Current release or one version previous
• Safari — Current release or one version previous

Supported browsers

Widgets Developer's Guide 34

	Widgets Developer's Guide
	Table of Contents
	Accessibility
	Customize appearance
	Cookies
	Localize widgets and services
	Supported browsers

