
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

WebChat

Widgets Developer Resources

2/5/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Contents

• 1 Overview
• 1.1 Usage
• 1.2 Customization
• 1.3 Namespace
• 1.4 Mobile support
• 1.5 Screenshots

• 2 Configuration
• 2.1 Options

• 3 Localization
• 3.1 Special values for localization
• 3.2 Error handling
• 3.3 Usage
• 3.4 Default i18n JSON

• 4 API commands
• 4.1 configure
• 4.2 open
• 4.3 close
• 4.4 minimize
• 4.5 endChat
• 4.6 invite
• 4.7 reInvite
• 4.8 injectMessage
• 4.9 showChatButton
• 4.10 hideChatButton
• 4.11 showOverlay
• 4.12 hideOverlay

• 5 API events
• 6 Metadata

• 6.1 Interaction Lifecycle
• 6.2 Lifecycle scenarios

Widgets Developer Resources 2



• 6.3 Metadata

• 7 Customizable chat registration form
• 7.1 Default example
• 7.2 Properties
• 7.3 Labels
• 7.4 Wrappers
• 7.5 Validation
• 7.6 Form submit

• 8 Customizable emoji menu
• 8.1 Introduction
• 8.2 Differences between v1 and v2
• 8.3 Configuring the emoji menu
• 8.4 Localization

Widgets Developer Resources 3



Learn how to enable live chats between customers and agents in Genesys Cloud CX.

Related documentation:
•

Feature coming soon: Web messaging

If you are a Genesys Cloud CX customer, we encourage you to use the new web messaging feature to
replace web chat. To use web messaging, you configure tracking through the Messenger JavaScript
SDK instead of deploying a tracking snippet.

Overview

The WebChat Widget allows a customer to start a live chat with a customer service agent. The UI
appears within the page and follows the customer as she explores your website. Other features
include minimize/maximize, auto-reconnect, and a built-in invite feature.

Usage
You can launch WebChat manually by using the following methods:

• Call the WebChat.open command
• Configure ChannelSelector to show WebChat as a channel
• Enable the built-in launcher button for WebChat that appears on the right side of the screen
• Create your own custom button or link to open WebChat (using the WebChat.open command)

Customization
You can customize and localize all of the static text shown in the WebChat Widget by adding entries
to your configuration and localization options.

WebChat also supports themes. You can create and register your own themes for Genesys Widgets.

Namespace
The WebChat plugin has the following namespaces:

Type Namespace
Configuration webchat

Widgets Developer Resources 4



Type Namespace
i18n - Localization webchat
CXBus - API commands & API events WebChat
CSS .cx-webchat

Mobile support
WebChat supports both desktop and mobile devices. Like all Genesys Widgets, there are two main
modes: desktop and mobile. Desktop is employed for monitors, laptops, and tablets, and mobile is
employed for smartphones. When a smartphone is detected, WebChat switches to special full-screen
templates that are optimized for both portrait and landscape orientations.

Switching between desktop and mobile mode is done automatically by default. You may configure
Genesys Widgets to switch between desktop and mobile mode manually if necessary.

Screenshots
Dark theme

WebChat forms

Widgets Developer Resources 5

/File:WebChat_Form_Desktop_Dark.png
/File:WebChat_Form_Desktop_Dark.png
/File:WebChat_Form_Portrait_Dark.png
/File:WebChat_Form_Portrait_Dark.png


WebChat transcripts

Widgets Developer Resources 6

/File:WebChat_Form_Landscape_Dark.png
/File:WebChat_Form_Landscape_Dark.png
/File:WebChat_Transcript_Desktop_Dark-without-file-upload.png
/File:WebChat_Transcript_Desktop_Dark-without-file-upload.png
/File:WebChat_Transcript_Landscape_Dark_without-upload.png
/File:WebChat_Transcript_Landscape_Dark_without-upload.png


Light theme

WebChat forms

Widgets Developer Resources 7

/File:WebChat_Transcript_Portrait_Dark-without-upload.png
/File:WebChat_Transcript_Portrait_Dark-without-upload.png
/File:WebChat_Form_Desktop_Light.png
/File:WebChat_Form_Desktop_Light.png
/File:WebChat_Form_Portrait_light.png
/File:WebChat_Form_Portrait_light.png


WebChat transcripts

Widgets Developer Resources 8

/File:WebChat_Form_Landscape_light.png
/File:WebChat_Form_Landscape_light.png
/File:WebChat_Transcript_Desktop_Light-without-file-upload.png
/File:WebChat_Transcript_Desktop_Light-without-file-upload.png
/File:WebChat_Transcript_Portrait_Light_without_upload.png
/File:WebChat_Transcript_Portrait_Light_without_upload.png
/File:WebChat_Transcript_Landscape_Light_without_upload.png
/File:WebChat_Transcript_Landscape_Light_without_upload.png


Important
The dark theme is active by default. You may also change colors/themes for widgets
by following the instructions on the Customize appearance page.

Configuration

WebChat and WebChatService share the _genesys.widgets.webchat configuration namespace.
WebChat has UI options while WebChatService has connection options.

Options

Name Type Description Default Required Introduced/
updated

emojis boolean

Enable/disable
emoji menu
inside chat
message input.
Emojis are
supported
using Unicode
characters.

false N/A

form object

A JSON object
containing a
custom
registration
form definition.
The JSON
definition
placed here
becomes the
default
registration
form layout for
WebChat. See
Customizable
chat
registration
form.

A basic
registration
form is defined
internally by
default

N/A

confirmFormCloseEnabledboolean

Enable or
disable
displaying a
confirmation
message

true N/A

Widgets Developer Resources 9



Name Type Description Default Required Introduced/
updated

before closing
WebChat if
information
has been
entered into
the registration
form.

timeFormat number/string

This sets the
time format for
the
timestamps in
this widget. It
can be 12 or
24.

12 false

maxMessageLengthnumber

Set a character
limit that the
user can input
into the
message area
during a chat.
When the max
is reached,
user cannot
type any more.

500 N/A

charCountEnabledboolean

Show/hide the
number of
characters
remaining in
the input
message area
while the user
is typing.

false N/A

autoInvite.enabledboolean

Enable/disable
auto-invite
feature.
Automatically
invites user to
chat after user
idles on page
for preset time.

Important
When running
Widgets in lazy
load mode, this
option requires
that you pre-
load the
WebChat plugin.

false N/A

autoInvite.timeToInviteSecondsnumber
Number of
seconds of idle
time before
inviting

5 N/A

Widgets Developer Resources 10



Name Type Description Default Required Introduced/
updated

customer to
chat.

autoInvite.inviteTimeoutSecondsnumber

Number of
seconds to
wait, after
showing invite,
before closing
chat invite.

Important
When the focus
is on the Invite
window, the
chat invite will
not auto close
upon the
specified
timeout. In this
scenario, you
must click the
Close button to
manually close
the Invite
window. This
behavior is
implemented to
support the
logical and
predictable
focus order as
recommended
by the WCAG
2.4.3:Focus
Order.

30 N/A

chatButton.enabledboolean

Enable/disable
chat button on
screen.

Important
When running
Widgets in lazy
load mode, this
option requires
that you pre-
load the
WebChat plugin.

false N/A

chatButton.templatestring
Custom HTML
string template
for chat button.

N/A

chatButton.effect string

Type of
animation
effect when
revealing chat
button: slide
or fade.

fade N/A

chatButton.openDelaynumber Number of 1000 N/A

Widgets Developer Resources 11



Name Type Description Default Required Introduced/
updated

milliseconds
before
displaying chat
button on
screen.

chatButton.effectDurationnumber
Length of
animation
effect in
milliseconds.

300 N/A

chatButton.hideDuringInviteboolean

When the auto-
invite feature is
activated, the
chat button
hides. When
invite is
dismissed, the
chat button
reveals again.

true N/A

minimizeOnMobileRestoreboolean

Enable/disable
the minimized
state of
WebChat on
chat restore.
Note: This
option is only
for mobile
mode.

false N/A

markdown boolean
Enable/disable
the markdown
feature for chat
messages.

false N/A 9.0.014.02

ariaCharRemainingIntervalsarray/boolean

An array
containing the
intervals as a
percentage at
which the
screen reader
will announce
the remaining
characters
when the user
inputs text into
the message
area. By
default, it is
enabled with
the following
intervals, and it
is customizable
according to
user needs.
Configuring a

[50, 25, 10] N/A 9.0.016.11

Widgets Developer Resources 12



Name Type Description Default Required Introduced/
updated

value of false
will let the
screen reader
call out
remaining
characters for
every change.

metaDataEnabledboolean
Enable or
disable
WebChat
MetaData.

true n/a 9.0.017.26

Localization

You can define string key names and values to match the system messages that are received from
the chat server. If a customer system message is received as SYS001 in the message body, WebChat
checks to determine if any keys match in the language pack, and then replaces the message body
accordingly. SYS001 is an example format. There are no format restrictions on custom message
keys. The purpose of this feature is to allow localization for the user interface and server to be kept in
the same file.

Special values for localization
You can inject the special value. When used, the agent's name is rendered in its place at runtime.

Error handling
Customers can define their own error messages in the Errors section found in
the above WebChat localization. If no error messages are defined, default error
messages are used.

Important
For information on how to set up localization, refer to Localize widgets and services.

Usage
You must use the webchat namespace for defining localization strings for the WebChat plugin in your
i18n JSON file.

The following example shows how to define new strings for the en (English) language. You can use
any language codes you wish; there is no standard format. When selecting the active language in
your configuration, you must match one of the language codes defined in your i18n JSON file. Please

Widgets Developer Resources 13



note that you must only define a language code once in your i18n JSON file. Inside each language
object you should define new strings for each widget.

Default i18n JSON
{

"en": {
"webchat": {

"ChatButton": "Chat",
"ChatStarted": "Chat Started",
"ChatEnded": "Chat Ended",
"AgentNameDefault": "Agent",
"AgentConnected": " Connected",
"AgentDisconnected": " Disconnected",
"BotNameDefault": "Bot",
"BotConnected": " Connected",
"BotDisconnected": " Disconnected",
"AgentTyping": "...",
"AriaAgentTyping": "Agent is typing",
"AgentUnavailable": "Sorry. There are no agents available. Please

try later.",
"ChatTitle": "Live Chat",
"ChatEnd": "X",
"ChatClose": "X",
"ChatMinimize": "Min",
"ChatFormFirstName": "First Name",
"ChatFormLastName": "Last Name",
"ChatFormNickname": "Nickname",
"ChatFormEmail": "Email",
"ChatFormSubject": "Subject",
"ChatFormPlaceholderFirstName": "Required",
"ChatFormPlaceholderLastName": "Required",
"ChatFormPlaceholderNickname": "Optional",
"ChatFormPlaceholderEmail": "Optional",
"ChatFormPlaceholderSubject": "Optional",
"ChatFormSubmit": "Start Chat",
"AriaChatFormSubmit": "Start Chat",
"ChatFormCancel": "Cancel",
"AriaChatFormCancel": "Cancel Chat",
"ChatFormClose": "Close",
"ChatInputPlaceholder": "Type your message here",
"ChatInputSend": "Send",
"AriaChatInputSend": "Send",
"ChatEndQuestion": "Are you sure you want to end this chat session?",
"ChatEndCancel": "Cancel",
"ChatEndConfirm": "End chat",
"AriaChatEndCancel": "Cancel",
"AriaChatEndConfirm": "End",
"ConfirmCloseWindow": "Are you sure you want to close chat?",
"ConfirmCloseCancel": "Cancel",
"ConfirmCloseConfirm": "Close",
"AriaConfirmCloseCancel": "Cancel",
"AriaConfirmCloseConfirm": "Close",
"ActionsDownload": "Download transcript",
"ActionsEmoji": "Send Emoji",
"ActionsTransfer": "Transfer",
"ActionsInvite": "Invite",
"InstructionsTransfer": "Open this link on another device to

transfer your chat session>",
"InstructionsInvite": "Share this link with another person to add

them to this chat session",

Widgets Developer Resources 14



"InviteTitle": "Need help?",
"InviteBody": "Let us know if we can help out.",
"InviteReject": "No thanks",
"InviteAccept": "Start chat",
"AriaInviteAccept": "Accept invite and start chat",
"AriaInviteReject": "Reject invite",
"ChatError": "There was a problem starting the chat session. Please

retry.",
"ChatErrorButton": "OK",
"AriaChatErrorButton": "OK",
"ChatErrorPrimaryButton": "Yes",
"ChatErrorDefaultButton": "No",
"AriaChatErrorPrimaryButton": "Yes",
"AriaChatErrorDefaultButton": "No",
"RestoreTimeoutTitle": "Chat ended",
"RestoreTimeoutBody": "Your previous chat session has timed out.

Would you like to start a new one?",
"RestoreTimeoutReject": "No thanks",
"RestoreTimeoutAccept": "Start chat",
"AriaRestoreTimeoutAccept": "Accept invite and start chat",
"AriaRestoreTimeoutReject": "Reject invite",
"EndConfirmBody": "Would you really like to end your chat session?",
"EndConfirmAccept": "End chat",
"EndConfirmReject": "Cancel",
"AriaEndConfirmAccept": "End chat",
"AriaEndConfirmReject": "Cancel",
"SurveyOfferQuestion": "Would you like to participate in a survey?",
"ShowSurveyAccept": "Yes",
"ShowSurveyReject": "No",
"AriaShowSurveyAccept": "Yes",
"AriaShowSurveyReject": "No",
"UnreadMessagesTitle": "unread",
"AriaYouSaid": "You said",
"AriaSaid": "said",
"AriaSystemSaid": "System said",
"AriaWindowLabel": "Live Chat Window",
"AriaMinimize": "Live Chat Minimize",
"AriaMaximize": "Live Chat Maximize",
"AriaClose": "Live Chat Close",
"AriaEmojiStatusOpen": "Emoji picker dialog is opened",
"AriaEmojiStatusClose": "Emoji picker dialog is closed",
"AriaEmoji": "emoji",
"AriaEmojiPicker": "Emoji Picker",
"AriaCharRemaining": "Characters remaining",
"AriaMessageInput": "Message box",
"DayLabels": [

"Sun",
"Mon",
"Tue",
"Wed",
"Thur",
"Fri",
"Sat"

],
"MonthLabels": [

"Jan",
"Feb",
"Mar",
"Apr",
"May",
"Jun",
"Jul",
"Aug",

Widgets Developer Resources 15



"Sept",
"Oct",
"Nov",
"Dec"

],
"todayLabel": "Today",
"Errors": {

"204": "We're sorry but your message is too long. Please
write a shorter message.",

"240": "We're sorry but we cannot start a new chat at this
time. Please try again later.",

"401": "We're sorry but we are not able to authorize the chat
session. Would you like to start a new chat?",

"404": "We're sorry but we cannot find your previous chat
session. Would you like to start a new chat?",

"500": "We're sorry, an unexpected error occurred with the
service. Would you like to close and start a new Chat?",

"503": "We're sorry, the service is currently unavailable or
busy. Would you like to close and start a new Chat again?",

"ChatUnavailable": "We're sorry but we cannot start a new
chat at this time. Please try again later.",

"CriticalFault": "Your chat session has ended unexpectedly
due to an unknown issue. We apologize for the inconvenience.",

"StartFailed": "There was an issue starting your chat
session. Please verify your connection and that you submitted all required information
properly, then try again.",

"MessageFailed": "Your message was not received successfully.
Please try again.",

"RestoreFailed": "We're sorry but we were unable to restore
your chat session due to an unknown error.",

"InviteFailed": "Unable to generate invite at this time.
Please try again later.",

"Disconnected": "
Connection lost

",
"Reconnected": "

Connection restored
",

"Generic": "
An unexpected error occurred.

",
"purecloud-v2-sockets-400": "Sorry, something went wrong.

Please verify your connection and that you submitted all required information properly, then
try again.",

"purecloud-v2-sockets-500": "We're are sorry, an unexpected
error occurred with the service.",

"purecloud-v2-sockets-503": "We're sorry, the service is
currently unavailable."
} } } }

API commands
Once you've registered your plugin on the bus, you can call commands on other
registered plugins. Here's how to use the global bus object to register a new
plugin on the bus.

Widgets Developer Resources 16



Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('WebChat.open');

configure
Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling
configure again after startup may result in unpredictable behavior.

open
Opens the WebChat UI.

Example
oMyPlugin.command('WebChat.open', {

userData: {},
form: {

autoSubmit: false,
firstname: 'John',
lastname: 'Smith',
email: 'John@mail.com',
subject: 'Customer Satisfaction'

}
formJSON: {...}

}).done(function(e){

// WebChat opened successfully

}).fail(function(e){

// WebChat isn't open or no active chat session
});

Options

Option Type Description

form object
Object containing form data to
prefill in the chat entry form and
optionally auto-submit the form.

form.autoSubmit boolean Automatically submit the form.
Useful for bypassing the entry

Widgets Developer Resources 17



Option Type Description
form step.

form.firstname string Value for the first name entry
field.

form.lastname string Value for the last name entry
field.

form.email string Value for the email entry field.
form.subject string Value for the subject entry field.

formJSON object
An object containing a custom
registration form definition. See
Customizable chat registration
form.

userData object
Object containing arbitrary data
that gets sent to the server.
Overrides userData set in the
webchat configuration object.

Resolutions

Status When Returns
resolved WebChat is successfully opened N/A
rejected WebChat is already open already opened

close
Closes the WebChat UI.

Example
oMyPlugin.command('WebChat.close').done(function(e){

// WebChat closed successfully

}).fail(function(e){

// WebChat is already closed or no active chat session
});

Resolutions

Status When Returns
resolved WebChat is successfully closed N/A
rejected WebChat is already closed already closed

minimize
Minimizes or un-minimizes the WebChat UI.

Widgets Developer Resources 18



Example
oMyPlugin.command('WebChat.minimize').done(function(e){

// WebChat minimized successfully

}).fail(function(e){

// WebChat ignores command
});

Options

Option Type Description

minimized boolean

Rather than toggling the current
minimized state, you can specify
the minimized state directly: true
= minimized, false = un-
minimized.

Resolutions

Status When Returns
resolved Always N/A
rejected Never Invalid configuration

endChat
Starts the end chat procedure. User may be prompted to confirm.

Example
oMyPlugin.command('WebChat.endChat').done(function(e){

// WebChat ended a chat successfully

}).fail(function(e){

// WebChat has no active chat session
});

Resolutions

Status When Returns

resolved There is an active chat session to
end N/A

rejected There is no active chat session to
end

There is no active chat session to
end

Widgets Developer Resources 19



invite
Shows an invitation to chat using the toaster popup element. The text shown in the invitation can be
edited in the localization file.

Example
oMyPlugin.command('WebChat.invite').done(function(e){

// WebChat invited successfully

}).fail(function(e){

// WebChat is already open and will be ignored
});

Resolutions

Status When Returns

resolved WebChat is closed and the toast
element is created successfully N/A

rejected
WebChat is already open
(prevents inviting a user that is
already in a chat)

Chat is already open. Ignoring
invite command.

reInvite
When an active chat session cannot be restored, this invitation offers to start a new chat for the user.
The text shown in the invitation can be edited in the localization file.

Example
oMyPlugin.command('WebChat.reInvite').done(function(e){

// WebChat reinvited successfully

}).fail(function(e){

// WebChat is already open and will be ignored
});

Resolutions

Status When Returns

resolved

WebChat is closed, the config
item
webchat.inviteOnRestoreTimeout
is set, and the toast element is
created successfully

N/A

rejected
WebChat is already open
(prevents inviting a user that is
already in a chat)

Chat is already open. Ignoring
invite command.

Widgets Developer Resources 20



injectMessage
Injects a custom message into the chat transcript. Useful for extending WebChat functionality with
other Genesys products.

Example
oMyPlugin.command('WebChat.injectMessage', {

type: 'text',
name: 'person',
text: 'hello',
custom: false,
bubble:{

fill: '#00FF00',
radius: '4px',
time: false,
name: false,
direction: 'right',
avatar:{

custom: '
word
',

icon: 'email'
}

}

}).done(function(e){

// WebChat injected a message successfully
// e.data == The message HTML reference (jQuery wrapped set)

}).fail(function(e){

// WebChat isn't open or no active chat
});

Options

Option Type Description

type string
Switch the rendering type of the
injected message between text
and HTML.

name string
Specify a name label for the
message to identify what service
or widget has injected the
message.

text string The content of the message.
Either plain text or HTML.

custom boolean

If set to true, the default
message template will not be
used, allowing you to inject a
highly customized HTML block
unconstrained by the normal

Widgets Developer Resources 21



Option Type Description
message template.

bubble.fill string of valid CSS color value The content of the message.
Either plain text or HTML.

bubble.radius string of valid CSS border radius
vale

The border radius you'd like for
the bubble.

bubble.time boolean If you'd like to show the
timestamp for the bubble.

bubble.name boolean If you'd like to show the name for
the bubble.

bubble.direction string Which direction you want the
message bubble to come from.

bubble.avatar.custom string or HTML reference
Change the content of the HTML
that would be the avatar for the
chat bubble.

bubble.avatar.icon class name Generated common library
provided for icon name.

Resolutions

Status When Returns

resolved WebChat is open and there is an
active chat session

An HTML reference (jQuery
wrapped set) to the new injected
message.

rejected WebChat is not open and/or there
was no active chat session No chat session to inject into.

showChatButton
Displays the standalone chat button using either the default template and CSS, or customer-defined
ones.

Example
oMyPlugin.command('WebChat.showChatButton', {

openDelay: 1000,
duration: 1500

}).done(function(e){

// WebChat shows chat button successfully

}).fail(function(e){

// WebChat button is already visible, side bar is active and overrides the chat
button, or chat button is disabled in configuration
});

Widgets Developer Resources 22



Options

Option Type Description

openDelay number
Duration in milliseconds to delay
showing the chat button on the
page.

duration number Duration in milliseconds for the
show and hide animation.

Resolutions

Status When Returns

resolved
The chat button is enabled in the
configuration, is currently not
visible, and the SideBar plugin is
not initialized

N/A

rejected
The chat button is not enabled in
the configuration, or it's already
visible, or the SideBar plugin is
initialized

Chat button is already visible.
Ignoring command.

rejected
The SideBar plugin is active, the
standalone chat button will be
disabled automatically

SideBar is active and overrides
the default chat button

hideChatButton
Hides the standalone chat button.

Example
oMyPlugin.command('WebChat.hideChatButton', {duration: 1500}).done(function(e){

// WebChat hid chat button successfully

}).fail(function(e){

// WebChat button is already hidden
});

Options

Option Type Description

duration number Duration in milliseconds for the
show and hide animation.

Resolutions

Status When Returns
resolved The chat button is currently N/A

Widgets Developer Resources 23



Status When Returns
visible

rejected The chat button is already hidden Chat button is already hidden.
Ignoring command.

showOverlay
Opens a slide-down overlay over WebChat's content. You can fill this overlay with content such as
disclaimers, articles, and other information.

Example
oMyPlugin.command('WebChat.showOverlay', {

html: '
Example text
',

hideFooter: false

}).done(function(e){

// WebChat successfully shows overlay

}).fail(function(e){

// WebChat isn't open
});

Options

Option Type Description

html string or HTML reference

The HTML content you want to
display in the overlay.

Important
The id attribute value of the HTML
content can be set to
cx_chat_information. This
supports a screen reader's ability
to announce the overlay's content
to the user, as recommended by
WCAG.

hideFooter boolean

Normally the overlay appears
between the title bar and footer
bar. Set this to true to have the
overlay overlap the footer to gain
a bit more vertical space. This
should only be used in special
cases. For general use, don't set
this value.

Widgets Developer Resources 24



Resolutions

Status When Returns

resolved WebChat is open and the overlay
opens N/A

rejected WebChat is not currently open WebChat is not currently open.
Ignoring command.

hideOverlay
Hides the slide-down overlay.

Example
oMyPlugin.command('WebChat.hideOverlay').done(function(e){

// WebChat hid overlay successfully

}).fail(function(e){

// WebChat isn't open
});

Resolutions

Status When Returns

resolved WebChat is open and the overlay
closes N/A

rejected WebChat is not currently open WebChat is not currently open.
Ignoring command.

API events
Once you've registered your plugin on the bus, you can subscribe to and listen
for published events. Here's how to use the global bus object to register a new
plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');
oMyPlugin.subscribe('WebChat.ready', function(e){});

Widgets Developer Resources 25



Name Description Data

ready WebChat is initialized and ready
to accept commands. N/A

opened The WebChat widget has
appeared on screen. N/A

started The WebChat has successfully
started. Metadata

submitted The user has submitted the form. Metadata

rejected
When the chat session fails to
start. Typically due to form
validation or network errors.

Metadata

completed
The chat session ended after the
agent is successfully connected
to WebChat.

Metadata

cancelled
The chat session ended before
the agent is connected to
WebChat.

Metadata

closed The WebChat Widget has been
removed from the screen. Metadata

minimized The WebChat Widget has been
changed to a minimized state. N/A

unminimized
The WebChat Widget has been
restored from a minimized state
to the standard view.

N/A

messageAdded When a message is added to the
transcript, this event will fire.

Returns an object containing two
properties: data and html; data
contains the JSON data for the
message, while html contains a
reference to the visible message
inside the chat transcript.

Metadata

Interaction Lifecycle
Every WebChat interaction has a sequence of events we call the Interaction Lifecycle. This is a
sequence of events that tracks progress and choices from the beginning of an interaction (opening
WebChat), to the end (closing WebChat), and every step in between.

The following events are part of the Interaction Lifecycle:

ready
opened
started
cancelled
submitted
rejected
completed

Widgets Developer Resources 26



closed

Lifecycle scenarios
An Interaction Lifecycle can vary based on each user's intent and experience with WebChat. Here are
several sequences of events in the lifecycle that correspond to different scenarios.

The user opened WebChat but changed their mind and closed it without starting a chat session:

ready -> opened -> cancelled -> closed

The user started a chat session but ended it before an agent connected. Perhaps it was taking too
long to reach someone:

ready -> opened -> started -> cancelled -> closed

The user started a chat, but the chat fails to start:

ready -> opened -> started -> submitted -> rejected

The user started a chat, met with an agent, and the session ended normally:

ready -> opened -> started -> submitted -> completed -> closed

Tip
For a list of all WebChat events, see API events.

Metadata
Each event in the Interaction Lifecycle includes the following block of metadata. By default, all values
are set to false. As the user progresses through the lifecycle of a WebChat interaction, these values
will be updated.

The metadata block contains boolean state flags, counters, timestamps, and elapsed times. These
values can be used to track and identify trends or issues with chat interactions. During run-time, the
metadata can help you offer a smart and dynamic experience to your users.

Reference

Name Type Description

proactive boolean Indicates this chat session was
started proactively.

prefilled boolean
Indicates the registration form
was prefilled with info
automatically.

autoSubmitted boolean
Indicates the registration form
was submitted automatically,
usually after being prefilled.

Widgets Developer Resources 27



Name Type Description

numAgents integer
Current number of agents that
have connected to the chat
session.

userMessages integer Current number of messages
sent by user.

agentMessages integer Current number of messages
sent by agents.

systemMessages integer Current number of system
messages received.

errors array/boolean
An array of error codes
encountered during a chat
session. If no errors, this value
will be false.

form object
An object containing the form
parameters when the form is
submitted.

opened integer (timestamp) Timestamp indicating when
WebChat was opened.

started integer (timestamp) Timestamp indicating when chat
session started.

cancelled integer (timestamp)

Timestamp indicating when the
chat session was cancelled.
Cancelled refers to when a user
ends a chat session before an
agent connects.

rejected integer (timestamp)
Timestamp indicating when the
chat session was rejected.
Rejected refers to when a chat
session fails to start.

completed integer (timestamp)

Timestamp indicating when the
chat session ended normally.
Completed refers to when a user
or agent ends a chat after an
agent connected.

closed integer (timestamp) Timestamp indicating when
WebChat was closed.

agentReached integer (timestamp) Timestamp indicating when the
first agent was reached, if any.

elapsed integer (milliseconds)
Total elapsed time in milliseconds
from when the user started the
chat session to when the chat
session ended.

waitingForAgent integer (milliseconds)

Total time in milliseconds waiting
for an agent from when the user
started the chat session to when
an agent connected to the
session.

id string A unique identifier of a chat

Widgets Developer Resources 28



Name Type Description
session that helps to identify the
instance of that session and its
associated events.

Customizable chat registration form

WebChat allows you to customize the registration form shown to users prior to starting a session. The
following form inputs are currently supported:

• Text
• Select
• Hidden
• Checkbox
• Textarea

Customization is done through a JSON object structure that defines the layout, input type, label, and
attributes for each input. You can set the default registration form definition in the
_genesys.widgets.webchat.form configuration option. Alternately, you can pass a new
registration form definition through the WebChat.open command:

_genesys.widgets.bus.command("WebChat.open", {formJSON: oRegFormDef});

Inputs are rendered as stacked rows with one input and one optional label per row.

Default example
The following example is the default JSON object used to render WebChat’s registration form. This is a
very simple definition that does not use many properties.

{
wrapper: "

",
inputs: [

{
id: "cx_webchat_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderFirstName",
label: "@i18n:webchat.ChatFormFirstName"

},

{
id: "cx_webchat_form_lastname",
name: "lastname",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderLastName",
label: "@i18n:webchat.ChatFormLastName"

},

Widgets Developer Resources 29



{
id: "cx_webchat_form_email",
name: "email",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderEmail",
label: "@i18n:webchat.ChatFormEmail"

},

{
id: "cx_webchat_form_subject",
name: "subject",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderSubject",
label: "@i18n:webchat.ChatFormSubject"

}
]

}

This JSON definition generates the following output:

Properties
Each input definition can contain any number of properties. These are categorized in two groups:
"Special Properties", which are custom properties used internally to handle rendering logic, and
"HTML Attributes" which are properties that are applied directly as HTML attributes on the input
element.

Widgets Developer Resources 30

/File:WebChat_CustomForm_001.png
/File:WebChat_CustomForm_001.png


Special properties

Property Type Default Description

type string "text"

Sets the type of input to
render. Possible values
are currently "text",
"hidden", "select",
"checkbox", and
"textarea".

label string N/A

Set the text for the
label. If no value
provided, no label will
be shown. You may use
localization query
strings to enable
custom localization (for
example, label:
"@i18n:namespace.StringName").
Localization query
strings allow you to use
strings from any widget
namespace or to create
your own namespace in
the localization file
(i18n.json) and use
strings from there (for
example, label:
"@i18n:myCustomNamespace.myCustomString001").
For more information,
see the Labels section.

wrapper HTML string “
"

Each input exists in its
own row in the form. By
default this is a table-
row with the label in the
left cell and the input in
the right cell. You can
redefine this wrapper
and layout by specifying
a new HTML row
structure. See the
Wrappers section for
more info.
The default wrapper for an
input is "

validate function N/A

Define a validation
function for the input
that executes when the
input loses focus (blur)
or changes value. Your
function must return
true or false. True to
indicate it passed, false
to indicate it failed. If
your validation fails, the

Widgets Developer Resources 31



Property Type Default Description
form will not submit and
the invalid input will be
highlighted in red. See
the Validation section
for more details and
examples.

validateWhileTyping boolean false

Execute validation on
keypress in addition to
blur and change. This
ignores non-character
keys like shift, ctrl, and
alt.

options array []

When ‘type’ is set to
‘select’, you can
populate the select by
adding options to this
array. Each option is an
object (for example,
{text: ‘Option 1’, value:
‘1’} for a selectable
option, and {text:
"Group 1", group: true}
for an option group).

HTML attributes

With the exception of special properties, all properties will be added as HTML attributes on the input
element. You can use standard HTML attributes or make your own.

Example

{
id: "cx_webchat_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderFirstName",
label: "@i18n:webchat.ChatFormFirstName"

}

In this example, id, name, maxlength, and placeholder are all standard HTML
attributes for the text input element. Whatever values are set here will be
applied to the input as HTML attributes.

Important
The default input type is "text", so type does not need to be defined if you intend to
make a text input.

HTML output

Widgets Developer Resources 32



Disabling autocomplete

Since the custom form feature supports adding any HTML attributes to your inputs, you can control
standard HTML features like disabling autocomplete. To disable autocomplete, add autocomplete:
"off" to your input definition.

Example

{
id: "cx_webchat_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderFirstName",
label: "@i18n:webchat.ChatFormFirstName",
autocomplete: "off"

}

Labels
A label tag will be generated for your input if you specify label text and if your custom input wrapper
includes a ‘{label}’ designation. If you have added an ID attribute for your input, the label will
automatically be linked to your input so that clicking on the label selects the input or, for checkboxes,
toggles it.

Labels can be defined as static strings or localization queries.

Wrappers
Wrappers are HTML string templates that define a layout. There are two kinds of wrappers: form
wrappers and input wrappers.

Form wrapper

You can specify the parent wrapper for the overall form in the top-level "wrapper" property. The
following example specifies this value as “

". This is the default wrapper for the WebChat form:
{

wrapper: "
", /* form wrapper */

inputs: []
}

Input wrapper

Each input is rendered as a table row inside the form wrapper. You can change this by defining a new
wrapper template for your input row. Inside your template, you can specify where you want the input
and label to be by adding the identifiers label and input to your wrapper value. See the example
below:

Widgets Developer Resources 33



{
id: "cx_webchat_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderFirstName",
label: "@i18n:webchat.ChatFormFirstName",
wrapper: "{label}{input}" /* input row wrapper */

}

The label identifier is optional. Omitting it will allow the input to fill the row. If you decide to keep the
label, you can move it to any location within the wrapper, such as putting the label on the right, or
stacking the label on top of the input. You can control the layout of each row independently,
depending on your needs.

You are not restricted to using a table for your form. You can change the form wrapper to "

" and then change the individual input wrappers from a table-row to your own
specification. Be aware though that when you move away from the default table
wrappers, you are responsible for styling and aligning your layout. Only the
default table-row wrapper is supported by default themes and CSS.

Validation
You can apply a validation function to each input that lets you check the value after a change has
been made and/or the user has moved to a different input (on change and on blur). You can enable
validation on key press by setting validateWhileTyping to true in your input definition.

Here is how to define a validation function:

{
id: "cx_webchat_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderFirstName",
label: "@i18n:webchat.ChatFormFirstName",

validateWhileTyping: true, // default is false

validate: function(event, form, input, label, $, CXBus, Common){

return true; // or false
}

}

You must return true or false to indicate that validation has passed or failed, respectively. If you
return false, the WebChat form will not submit, and the input will be highlighted in red. This is
achieved by adding the CSS class cx-error to the input. The image below displays the the field where
a user input validation error has occurred, with the field highlighted in red.

Widgets Developer Resources 34



Validation function arguments

Argument Type Description

event JavaScript event object

The input event reference object
related to the form input field.
This event data can be helpful to
perform actions like active
validation on an input field while
the user is typing.

form HTML reference A jquery reference to the form
wrapper element.

input HTML reference A jquery reference to the input
element being validated.

label HTML reference A jquery reference to the label
for the input being validated.

$ jquery instance
Widget’s internal jquery instance.
Use this to help you write your
validation logic, if needed.

CXBus CXBus instance
Widget’s internal CXBus
reference. Use this to call
commands on the bus, if needed.

Common Function Library
Widget’s internal Common library
of functions and utilities. Use if
needed.

Form submit
Custom input field form values are submitted to the server as key value pairs
under the userData section of the form submit request, where input field names
will be the property keys. During the submit, this data is merged along with the
userData defined in the WebChat open command.

Widgets Developer Resources 35

/File:Validation_failure.png
/File:Validation_failure.png


Important
Depending on the API used (PureEnagage V2 API or PureCloud) the payload structure
in the request can vary for each, but the section below explains how the form data is
submitted by the WebChat UI plugin when using custom forms. Below is the internal
form data object defined in the WebChat plugin by default. Since firstname, lastname,
nickname, email, and subject are reserved keywords, users are not allowed to have
custom fields with the same name.

{
firstname: '',

lastname: '',
nickname: '',
email: '',
subject: '',
userData: {}

}

Example

The example below shows how the custom form data given in the WebChat form fields have been
mapped as form data object.

The form fields with reserved keywords like firstname, lastname, and email will be sent as top
level, and the rest of the fields will be sent under userData to the WebChatService plugin.

Once the form data object is sent to the WebChatService plugin, it will parse and send in the payload
request.

{
firstname: 'John',
lastname: 'Smith',
email: 'john.smith@company.com',
userData: {

phonenumber: '9256328346',
enquirytype: 'Sales' //value selected from the dropdown

}
}

Customizable emoji menu

Introduction
WebChat offers a v2 emoji menu that lets you choose which emojis to include in the emoji menu.

Widgets Developer Resources 36



Differences between v1 and v2

• v1 shows as a tooltip-style overlay; v2 shows as a new block between the transcript and the message
input.

• v1 closes when you select an emoji or click outside the menu; v2 lets you choose multiple emojis and
only closes if you click the emoji menu button again.

• v1 has three fixed emojis to choose from; v2 can show hundreds of customizable emojis in a grid layout.
• v1 menu appears in mobile mode; v2 menu is not available in mobile mode (when v2 is configured, no

emoji menu button is present in mobile mode).
• v1 menu has default emojis; v2 menu does not have default emojis. It must be explicitly configured with

a list of emojis.

Configuring the emoji menu
Click the emoji menu icon at the bottom-left corner of the WebChat UI to open the v2 emoji menu.
The transcript will be resized to fit the emoji menu, which can vary in height depending on the
number of emojis configured:

• When 1-8 emojis are configured, the menu has one row, and no scrollbar appears.
• When 9-16 emojis are configured, the menu has two rows, and no scrollbar appears.
• When 17-24 emojis are configured, the menu has three rows, and no scrollbar appears.

Widgets Developer Resources 37

/File:WebChat_New_Emoji_without_file_upload.png
/File:WebChat_New_Emoji_without_file_upload.png


• When 25 or more emojis are configured, the menu has three rows, and a scrollbar appears.

Configure the v2 emoji menu by passing a string containing emoji into the
WebChat configuration or through localization.

Important
If you define an emoji list in the WebChat configuration, it will override any emoji lists
defined in localization files.

You configure the emoji list by specifying a string of emoji characters, like
"⯑⯑⯑⯑". WebChat will parse this string and arrange them in the emoji menu.
// Configure a flat list of emoji characters
_genesys.widgets.webchat.emojiList =
"⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑
⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑☪⯑☘☀⯑⯑⯑⯑⯑⯑⯑⯑";

Add emoji display names

You can also add names to emojis so that their names will appear when you hover over them. To add
a name to an emoji, simply add a colon after the question mark symbol, and then type the name.
Separate each name with a semicolon.

The format is ;⯑:name;

You can only add one name to an emoji. The following sample shows the format
for configuring several emojis.
// Configure an emoji list with emoji names
_genesys.widgets.webchat.emojiList = "⯑:Star-Struck;⯑:Zany Face;⯑:Face With Hand Over
Mouth;⯑:Shushing Face;⯑:Face With Raised Eyebrow;⯑:Bitcoin;⯑:Face Vomiting;
⯑:Exploding Head;⯑:Face With Monocle;⯑:Face With Symbols on Mouth;⯑:Orange Heart;
⯑:Love-You Gesture;⯑:Palms Up Together;⯑:Brain;⯑:Child;⯑:Person;⯑:Man: Beard;
⯑:Older Person;⯑:Woman With Headscarf;⯑:Breast-Feeding;⯑:Mage;⯑:Fairy;⯑:Vampire;
⯑:Merperson;⯑:Elf;⯑:Genie;⯑:Zombie;⯑:Person in Steamy Room;⯑:Person Climbing;
⯑:Person in Lotus Position;⯑:Zebra;⯑:Giraffe;⯑:Hedgehog;⯑:Sauropod;⯑:T-Rex;⯑:Cricket;

Widgets Developer Resources 38

/File:WebChat_Emoji_Menu_Resizing_without_file_upload.png
/File:WebChat_Emoji_Menu_Resizing_without_file_upload.png


⯑:Coconut;⯑:Broccoli;⯑:Pretzel;⯑:Cut of Meat;⯑⯑:Australia Day;⯑⯑:Bastille
Day;⯑:Birthday;⯑:Black Friday;⯑⯑:Canada Day;⯑⯑:Carnival;⯑:Chinese New Year;⯑:Christmas;
⯑⯑:Cinco de Mayo;⯑:Diwali;⯑⯑:Dragon Boat Festival;⯑:Easter;⯑:Emoji Movie;⯑:Fall/Autumn;
⯑:Father’s Day;⯑:Festivus;⯑:Graduation;⯑:Guy Fawkes;⯑:Halloween;⯑:Hanukkah;
⯑:Hearts;⯑:Holi;⯑⯑:Independence Day;⯑:Mother’s Day;⯑:New Year’s Eve;⯑:Olympics;
⯑⯑:Pride;⯑:Queen’s Birthday;☪:Ramadan;⯑:Spring;☘:St Patrick’s Day;☀:Summer;
⯑:SuperBowl;⯑:Thanksgiving;⯑:Valentine’s Day;⯑:Wedding / Marriage;⯑:Winter;⯑:Winter
Olympics;⯑:World Cup;⯑:World Emoji Day;";

Partially named lists

You don't have to add names for every emoji. You can add titles to only a select
few.
// Configure an emoji list with only a few emoji names
_genesys.widgets.webchat.emojiList = "⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑;⯑:Palms Up Together;
⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑;⯑:Black Friday;
⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑☪⯑☘☀⯑⯑⯑⯑;⯑:Snowman;⯑⯑⯑";

Localization
Emojis can be localized so that each language has a preferred set of emojis and
emoji titles.

Important
If you define an emoji list in the WebChat configuration, it will override any emoji lists
defined in localization files.

The key name for defining an emoji list is "EmojiList". Emoji lists are defined in a
localization file using the same syntax as the WebChat configuration.
{

"en": {
"webchat": {

"EmojiList": "⯑:Star-Struck;⯑:Zany Face;⯑:Face With Hand Over Mouth;⯑:Shushing
Face;"

}
}

}

Widgets Developer Resources 39


	Widgets Developer Resources

