3 GENESYS

This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Widgets Developer Resources

1/9/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents

API Reference

App 4
Common 21
Overlay 44
Toaster 49
WindowManager 54
WebChatService 59
CallUs 84
ChannelSelector 94
Console 104
SideBar 110
WebChat 122
Engage 160

Widgets Bus API overview
Genesys Widgets Extensions

Search the table of all articles in this guide, listed in alphabetical order, to find the article you need.

Related documentation:

Related documentation:

Widgets Developer Resources

App

APP

Contents

e 1 Overview

e 1.1 Usage

* 1.2 Customization

* 1.3 Mobile support
e 2 Configuration

* 2.1 Description

e 2.2 Example

e 2.3 Options

e 3 Localization

4 APl commands
* 4.1 setTheme
e 4.2 getTheme
* 4.3 reTheme
* 4.4 themeDemo
* 4.5 setLanguage
* 4.6 closeAll
* 4.7 updateAJAXHeader
* 4.8 removeAJAXHeader
* 4.9 registerExtension
* 4.10 registerAutoLoad
* 4.11 deregisterAutoLoad

* 5 APl events

Widgets Developer Resources

App

Learn how to control your widgets.

Related documentation:

Overview

App is the main controller for Genesys Widgets and has no Ul. It controls all startup routines, global
configurations, and extensions, and it executes the onReady event and distributes changes to
theme, language, mobile mode, and other application-wide effects.

Usage
App's main interface is its configuration. You set all global defaults using the

window._genesys.widgets.main property. App also has a few commands you can use to change
the language and theme.

Customization

App itself cannot be customized, but its configuration options affect all widgets.

Mobile support

App has built-in mobile detection and can automatically notify all widgets to switch to mobile mode.
You can also control this manually.

Configuration

Description
App uses the configuration property ' genesys.widgets.main'. App controls the Genesys Widgets
product as a whole, handling themes, languages, and mobile devices.

Example

window. genesys.widgets = {

main: {
theme: 'dark',
themes: {

Widgets Developer Resources

App

dark: 'cx-theme-dark',
light: 'cx-theme-light',
blue: 'cx-theme-blue',
red: 'cx-theme-red'

+

lang: 'en',

i18n: 'il8n.json',

mobileMode: 'auto',

mobileModeBreakpoint: 600,

debug: true,

header: {'Authorization': 'value'},

cookieOptions: {
secure: true,
domain: 'genesys.com',
path: '/"',
sameSite: 'Strict'

}
}I

onReady: function(){

// Do something on Widgets ready

Options

Name Type Description
An object list
containing the
CSS classname
for each
theme. The
property
names are
used to select
the theme in
the 'theme'
property, for
example
{dark:cx-
theme-dark,
light:cx-theme-
light, red:cx-
theme-red,
blue:cx-theme-
blue}. Where
dark and light
are the built-in
themes
provided in
Genesys
Widgets, red
and blue are
example
custom theme

main.themes object

Default Required
{dark: cx-
theme-dark,
light: cx- i
theme-light}

Introduced/
updated

Widgets Developer Resources

App

.. . Introduced/
Name Type Description Default Required updated
names you
may create on
your own.
It is not

necessary to
define the dark
and light theme
as shown in this
example. It is
included to help
show how the
formatting
works.
Whatever you
put in this
object will be
merged with the
default themes
object internally.

Selects the
theme to apply
to Genesys
Widgets from
the themes
object. Uses
the property
name of the

main.theme string theme. For dark n/a
example using
the example
from themes
above, possible
values for this
could be dark,
light, red,
blue.

Select the
language to
use from the
'il18n' language
pack.
Language
codes are
selected by the
customer. Any
language code
format can be
used as long as
this property
matches one of
the language
codes in your
i18n language
pack. For more

main.lang string en n/a

Widgets Developer Resources

App

Name Type
- URL string or
main.il8n JSON
main.header object
main.preload array

Description

information
about
localization,
see
localization.

Either a path to
a remote
i18n.json
language pack
file or an inline
JSON language
pack definition.
For more
information
about
language
packs, see
localization.

An object
containing a
key value pair
for the
authorization
header.

For use with
lazy loading
only. A list of
plugins you
want pre-
loaded at
startup. You
may want
certain plugins,
such as
SideBar, to be
shown on
screen as soon
as possible; to
do so, you may
add sidebar to
this preload
plugins array
so it will be
loaded after
Widgets starts
up. The names
you add to the
list must match
the first part of
the plugin
filename you
wish to load.
Example:

Default

en

n/a

none

Introduced/

Required updated

Default English
language
strings are
built into each
widget and are
displayed by
default.
Defining this
i18n language
pack overrides
the built-in
strings.

n/a

n/a 9.0.002.06

When lazy
loading
Widgets

Widgets Developer Resources

App

Name Type

main.mobileMode boolean/string

main.timeFormat number/string

main.mobileModeBreakbeoint

main.debug boolean

Description Default

sidebar will
load
sidebar.min.js
from the
plugins/
folder. All
filenames are
lowercase.

This preload
array is
intended for use
when running
widgets in lazy
loading mode.
You may also
use this to pre-
load your own
custom-made
plugins.

Mobile Mode
setting.

true = Force

Mobile Mode on all
devices. false =
Disable Mobile

Mode completely.

auto = Genesys
Widgets auto
Automatically

switches between
mobile and

desktop modes

using the
mobileModeBreakpoint
property and
UserAgent

detection.

This sets the
time format for
the
timestamps. It
can be 12 or
24.

The breakpoint

width in pixels

where Genesys
Widgets will

switch to 600
Mobile Mode.
Breakpoint

checked at

startup only.

12

Enable debug

logging from false

Required

n/a

n/a

n/a

n/a

Introduced/
updated

Widgets Developer Resources

App

Name Type

main.customStylesherg D

main.downloadGobglaEant

main.deploymentliBtring

main.cookieOptiorsbject

Description

the bus to
appear in the
browser
console.

The HTML ID of
a

true

The string used
to customize
cookie names
so that
multiple
Widgets
deployments
can run in the
same domain.

An object
containing
cookie
attributes that
applies globally
to all Widgets.
The following
cookie
attributes are
supported:

1. secure -
Either true
or false,
indicating if
the cookie
transmission
requires a
secure
protocol
(https).

2. domain - A
string
indicating a
valid
domain
where the
cookie
should be
visible.

3. path-A
string
indicating
the path
where the

Default Required

n/a n/a

n/a

n/a n/a

Introduced/
updated

9.0.006.02

n/a {sameSite:'Strict'9.0.017.01

Widgets Developer Resources

10

App

Name Type

4.

5.

Description

Default Required

cookie is
visible.

expires -
Specifies
the number
of days,
either from
time of
creation or
from a date
instance,
until the
cookie is to
be
removed.
'domain’
and 'path’
can be
used to
make
cookies
compatible
with
environments
that use a
non FQDN
URL, such
as an
intranet
hostname.
However,
the domain
should only
be
manually
set in
production
if the
automated
values are
causing
problems.
Otherwise,
rely on the
automated
domain and
path.

sameSite -
This maps
to the
cookie
SameSite

Introduced/
updated

Widgets Developer Resources

11

App

Name Type

onReady function

Description

attribute
allowing
the cookie
to be
restricted
to a first-
party or
same-site
context. It
can take
any of the
supported

values that

SamesSite
attribute
takes.

The values

are

automatically

set by

Widgets to

support

cross-sub-

domain
cookies.

Modifying

these
options

Default Required

overrides
the
automated
values and
might break
cross-sub-
domain
cookie
support if
not properly
set. For
usage,
please refer
to the above
example.

A callback

function that is

invoked when
the Widgets
are ready and
initialized with
the
configuration

none n/a

Introduced/

updated

Widgets Developer Resources

12

App

Introduced/

Name Type Description Default Required updated

provided.

Localization

No localization options.

APl commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('App.themeDemo"') ;

setTheme

Sets the theme for Genesys Widgets from the list of registered themes. Default themes are 'light' and
'dark’'. You can register as many new themes as you need.

Example

oMyPlugin.command('App.setTheme', {theme: 'light'}).done(function(e){
// App set theme successfully

}).fail(function(e){

// App failed to set theme
3

Widgets Developer Resources 13

App

Options

Option

theme

Resolutions

Status
resolved

rejected

getTheme

Type

string

When

Theme exists and is successfully
changed.

Theme does not exist.

Get the CSS classname for the currently selected theme.

Example

oMyPlugin.command('App.getTheme').done(function(e){

// App got theme successfully
// e == (CSS classname for current theme

}).fail(function(e){

// App failed to get theme

3

Resolutions

Status
resolved

rejected

reTheme

When
Always

Never

Description

Name of the theme you want to
use. This name is specified in
window._genesys.main.themes.
Default themes are light and
dark.

Returns

The name of the theme that was
chosen, for example light.

Invalid theme specified.

Returns

CSS classname for the currently
selected theme. For example: cx-
theme-light

n/a

Accepts an HTML reference (either string or jQuery wrapped set) and applies the proper CSS Theme
Classname to that HTML and returns it back. When widgets receive the 'theme' event from App, they
pass-in their Ul containers into App.reTheme to have the old theme classname stripped and new

classname applied.

Widgets Developer Resources

14

App

Example

oMyPlugin.command('App.reTheme', {html: '
Test Theme
'}) .done(function(e){

// App set theme successfully
}).fail(function(e){

// App failed to set theme

1)
Options
Option Type Description
. . HTML string or jQuery Wrapped
i) SUTAE) B [RLEr) Ui ppee) B Set you want to have modified.
Resolutions
Status When Returns
resolved HTML is provided and theme is HTML that was passed-in and
updated. modified
rejected No HTML is provided. No HTML provided by [plugin
name]
themeDemo

Start an automated demo of each theme. All registered themes will be applied with a default delay
between themes of 2 seconds. You can override this delay. This command is useful for comparing
themes or testing themes with official or custom widgets.

Example

oMyPlugin.command('App.themeDemo', {delay: 1000}).done(function(e){
// App demo successfully started
}).fail(function(e){

// App failed to start demo
1)

Options

Option Type Description

Number of milliseconds between
delay number theme changes. Default value is
2000 milliseconds.

Widgets Developer Resources 15

App

Resolutions
Status When Returns
resolved Always n/a
rejected Never n/a
setLanguage

Changes the language

Example

oMyPlugin.command('App.setLanguage', {lang: 'eng'}).done(function(e){
// App set language successfully started
}).fail(function(e){

// App failed to set language
1)

Options

Option Type Description

Change the language of Genesys
lang string Widgets. Switches all strings in
Widgets to selected language.

Resolutions
Status When Returns
Language is successfully

resolved changed. n/a

rejected No language code is provided. No language code provided.

reiected No matching language code is No matching language code

) specified in your language pack. found in language pack.

closeAll

Publishes the App.closeAll event that requests all widgets to close.

Example

oMyPlugin.command('App.closeAll').done(function(e){
// App closed all successfully

}).fail(function(e){

Widgets Developer Resources 16

App

// App failed to close all

1)
Resolutions
Status When Returns
resolved Always n/a
rejected Never n/a
updateAJAXHeader

Introduced: 9.0.002.06

Updates the Authorization header.

Example

_genesys.widgets.bus.command('App.updateAJAXHeader', {header:

{'Authorization': 'value'}
1)
Resolutions
Status When Returns
resolved Header is updated n/a
rejected Never No request header found
removeAJAXHeader

Introduced: 9.0.002.06

Removes the set Authorization header.

Example
_genesys.widgets.bus.command('App.removeAJAXHeader");
Resolutions

Status When Returns

resolved Always n/a

registerExtension
Introduced: 9.0.002.06

Allows you to register and initialize new extensions at runtime instead of predefining extensions

Widgets Developer Resources

App

before Genesys Widgets starts up.
Options

Option Type Description

Your extension function. Receives
undefined function the following arguments: $
(jQuery), CXBus, Common.

Resolutions
Status When Returns
resolved Valid extension object provided. n/a
rejected Invalid extension option n/a

provided.

registerAutolLoad

(For use with lazy loading only) Allows you to register a plugin into the preload
plugins array so that it can be pre-loaded at the startup rather than lazy loading
later. This can be useful when there is an active session maintained by your
Widget and you would like to show it immediately at startup during page refresh
or navigating across pages.

This command is intended for use when running widgets in lazy loading mode. You
may also use this to register and pre-load your own custom-made plugins.

Options
Option Type Description
The name of the plugin that
name string needs to be registered for auto
loading.
Resolutions
Status When Returns
A plugin is added into the
sl preload list. i)
rejected Never n/a

Widgets Developer Resources 18

App

deregisterAutoLoad

(For use with lazy loading only) Allows you to de-register a plugin from the preload plugins array so
that it will not be pre-loaded at startup. This can be useful when there is no more active session
maintained by your Widget and you don't want to show it on the screen immediately at startup.

Note: This command is intended for use when running widgets in lazy loading mode.
You may also use this to de-register your own custom-made plugins.

Options

Option Type Description

The name of the plugin that
name string needs to be de-registered from
auto loading.

Resolutions
Status When Returns
A plugin is removed from the
resolved preload list. e
rejected Never n/a
APl events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('App.ready', function(e){});

Name Description Data
read CallUs is initialized and ready to
y accept commands.
i18n Published when the language for '(language code)'

Widgets Developer Resources 19

App

Name

theme

timeFormat

Description

Genesys Widgets is changed or is
being set for the first time.

Published when the theme for
Genesys Widgets is changed or is
being set for the first time.

Published when the time format
for Genesys Widgets is changed
or is being set for the first time.

Data

{theme: '(theme CSS
classname)'}

{timeFormat: iTimeFormat}

Widgets Developer Resources

20

Common

cCommon

Contents

¢ 1 Common.Generate.Container({options})
* 1.1 Example
* 1.2 Arguments
¢ 2 Common.Generate.Buttons({options})
* 2.1 Example
* 2.2 Arguments
* 3 Common.Generate.lcon(name)
e 3.1 Example
* 3.2 Arguments
¢ 4 Common.Generate.Scrollbar(element, {options})
* 4.1 Example
* 4.2 Arguments
* 5 Common.config(object)
* 5.1 Example
* 5.2 Arguments
¢ 6 Common.checkPath(object, path)
* 6.1 Example
* 6.2 Arguments
¢ 7 Common.createPath(object, path, value)
e 7.1 Example
* 7.2 Arguments
¢ 8 Common.linkify(string, options)
* 8.1 Example
* 8.2 Arguments
¢ 9 Common.log(mixed, type)
* 9.1 Example
* 9.2 Arguments

Widgets Developer Resources

21

Common

¢ 10 Common.sanitizeHTML(string)
¢ 10.1 Example
* 10.2 Arguments
¢ 11 Common.updateTemplatel1l8n(element, object)
e 11.1 Example
* 11.2 Arguments
¢ 12 Common.debuglcons
* 12.1 Example
¢ 13 Common.debug
* 13.1 Example
* 13.2 Arguments
* 14 Common.error
* 14.1 Example
* 14.2 Arguments
¢ 15 Common.populateAllPlaceholders
* 15.1 Example
* 15.2 Arguments
¢ 16 Common.populateLanguageStrings
e 16.1 Example
* 16.2 Arguments
e 17 Common.populatelcons
* 17.1 Example
e 17.2 Arguments
e 18 Common.inserticon
e 18.1 Example
* 18.2 Arguments
e 19 Common.injectScript
e 19.1 Example
e 19.2 Arguments
¢ 20 Common.mobileScreenScale
e 20.1 Example
* 20.2 Arguments

e 21 Common.showlLoading

Widgets Developer Resources

22

Common

e 21.1 Example
e 21.2 Arguments

e 22 Common.hidelLoading
* 22.1 Example
* 22.2 Arguments

e 23 Common.showWaiting
* 23.1 Example
* 23.2 Arguments

¢ 24 Common.hideWaiting
* 24.1 Example
* 24.2 Arguments

e 25 Common.watch
* 25.1 Example
* 25.2 Arguments

e 26 Common.addDialog
* 26.1 Example
* 26.2 Arguments

¢ 27 Common.showDialog
* 27.1 Example
* 27.2 Arguments

e 28 Common.hideDialog
e 28.1 Example
* 28.2 Arguments

¢ 29 Common.hideDialogs
e 29.1 Example
* 29.2 Arguments

* 30 Common.showAlert
* 30.1 Example
* 30.2 Arguments

¢ 31 Common.bytesToSize
* 31.1 Example
* 31.2 Arguments

e 32 Common.getFormattedTime

Widgets Developer Resources

23

Common

* 32.1 Example
* 32.2 Arguments

Widgets Developer Resources

24

Common

e Developer

Learn how to access Widgets utility functions and dynamically generate the common HTML
containers used throughout Genesys Widgets.

Related documentation:

Common is a utility object available for import into Plugins/Widgets and Extensions. It is also
accessible directly from the path window._genesys.widgets.common.

Common provides utility functions and dynamically generates common HTML Containers used
throughout Genesys Widgets.

For all examples below, assume that _genesys.widgets.common has been stored in a local
variable named Common.

var Common = genesys.widgets.common;

Common.Generate.Container({options})

Dynamically generates a new HTML Container in matching the style of Genesys Widgets with the
selected components you request in your options object. Returns the generated container HTML as a
jQuery wrapped set.

Example
'Generate an Overlay Container'

var ndContainer = Common.Generate.Container({

type: 'overlay',
title: 'My Overlay',body: 'Some HTML here as a string or jQuery wrapped set',
icon: 'call-outgoing',
controls: 'close',
buttons: false
3,

'Generate a Toast Container'
var ndContainer = Common.Generate.Container({

type: 'generic',

title: 'My Toast',body: 'Some HTML here as a string or jQuery wrapped set',
icon: 'chat',

controls: '',

buttons: {

Widgets Developer Resources 25

Common

type:'binary’,
primary: 'OK',
secondary: 'cancel'’

}
3,
Arguments
Argument
options

options.type

options.title

options.body

options.icon

options.controls

options.buttons

options.buttons.type

options.buttons.primary

options.buttons.secondary

Type

object

string

string

string or jQuery wrapped set

string

string

object

string

string

string

Description

An object containing options to
apply to the generated container.

generic or overlay. Overlay
containers have special CSS
properties for appearing inside
the Overlay widget. Default is
generic.

Title to apply to the container's
titlebar area.

The HTML body you want the
container to wrap.

CSS Classname of icon to use.

Select from a set of window
control buttons to show at the
top right. close = Show only the
close button. minimize = Show
only the minimize button. all =
Show both close and minimize
buttons.

Options for displaying action
buttons at the bottom of the
container, such as OK and
Cancel buttons.

Currently, binary is the only
supported button set at this time.
Additional sets and
arrangements will be available in
a later release. Pass binary as the
type here if you wish to show
typical accept and dismiss
buttons.

Display name on the primary
button. (for example OK, Yes,
Accept, Continue, etc.)

Display name on the secondary
button. (for example Cancel,
No, Dismiss, Reject, etc.)

Widgets Developer Resources

26

Common

Common.Generate Buttons({options})

Dynamically generates a new HTML Binary Button set in matching the style of Genesys Widgets with
the selected options in your options object. Returns the buttons as a jQuery wrapped set.

Example
'Generate Binary Buttons'

var ndButtons = Common.Generate.Buttons({

type: 'binary',
primary: 'OK',
secondary: 'Cancel'

Arguments

Argument Type Description

Options for generating buttons,

options object such as OK and Cancel buttons.

Currently binary is the only
supported button set at this time.
Additional sets and
arrangements will be available in
a later release. Please pass
binary as the type here if you
wish to show typical accept and
dismiss buttons.

options.type string

Display name on the primary
options.primary string button. (for example OK, Yes,
Accept, Continue, etc.)

Display name on the secondary
options.secondary string button. (for example Cancel,
No, Dismiss, Reject, etc.)

Common.Generate.lcon(name)
Dynamically generates an icon from the included icon set. Icons are in SVG format.
Example

'Generate Chat Icon'

var ndChatIcon = Common.Generate.Icon('chat');

Widgets Developer Resources 27

Common

'Insert Chat Icon'

$('#your icon container').append(Common.Generate.Icon('chat'));

Arguments

Argument Type Description

Select the icon you want to
name string generate by name. See the icon
reference page for icon names.

Common.Generate.Scrollbar(element, {options})
Dynamically generates a widget scrollbar for selected DOM element.
Example

'Generate Scrollbar for a container'

var scrollContainer = Common.Generate.Scrollbar($('#your container'))

Arguments
Argument Type Description
. Select the element to which you
element DOM element or jQuery selector would like to apply scrollbar.
This is an iScroll component. So,
all the options that iScroll
options object supports can be passed here. For

more details, refer to:
http://iscrolljs.com/#configuring

Common.config(object)

Configure some debug options for Common at runtime.

Widgets Developer Resources

28

Common

Example
'‘Enable full debug logging'

Common.config({debug: true, debugTimestamps: true});

Arguments

Argument Type Description

Supported options are debug
and debugTimestamps. Setting
debug to true will enable debug
messages created by
Common.log(). Setting
debugTimestamps to true will
add timestamps to the front of
each debug message created by
Common.log(). Default value
for both is false.

object object

Common.checkPath(object, path)

Check for the existence of a sub-property of an object at any depth. Returns the value of that
property; if found otherwise it returns undefined. Useful for checking configuration object paths
without having to check each sub-property level individually.

Example

'Check for window._genesys.main'

var oMainConfig = false;

if(oMainConfig = Common.checkPath(window, ' genesys.main')){
//... Utilize oMainConfig
}
Arguments
Argument Type Description
An object you want checked for a
object object particular sub-property at any
depth.
path string The object path in dot notation

you wish to search for.

Widgets Developer Resources 29

Common

Common.createPath(object, path, value)

Related to checkPath, createPath lets you specify a target object and path string but lets you create

the path and set a value for it. This saves you the pain of defining each node in the path individually.
All nodes in your path will be created as objects. Your final node, the property you are trying to

create, will be whatever value you assign it.

Example
‘Create window. genesys.main'

var oMainConfig = false;

Description

An object you want to add your
new path to.

The object path in dot notation
you wish to create.

The value you want to assign to

if(oMainConfig = Common.createPath(window, ' genesys.main', {debug:true})){
//... Utilize oMainConfig
}
Arguments
Argument Type

object object

path string

value any

Common.linkify(string, options)

the final node (property) in your
path.

Search for and convert URLs within a string into HTML links. Returns transformed string.

Example

‘Check for window._genesys.main'

var sString = 'Please visit www.genesys.com';
sString = Common.linkify(sString, {target: 'self'});
// sString == 'Please visit www.genesys.com

Widgets Developer Resources

30

/u01/app/apache/html/extensions/PrincePDF/pdf/www.genesys.com

Common

Arguments
Argument Type Description
. . Any string you want to check for
S, Sl URLs and have them converted.
. . A list of options to apply to the
options object linkify operation.
Choose the HTML TARGET
attribute to apply to the
options.target string generated links. Default is

_blank. Set this option to self to
apply the target _self to the
generated links.

Common.log(mixed, type)

Log something to the browser's console. When using Common.log, _genesys.main.debug must be set
to true to see your logs. This allows you to add debug logging to your code without worrying about
unwanted debug messages in production. If timestamps are enabled, they will be prefixed to all
messages printed through Common.log.

Example
‘Check the contents of window._genesys.main’

var Common = genesys.widgets.common;
Common.log(window. genesys.main);

if(!window. genesys.main){

Common.log('window. genesys.main is not defined', ‘'error');
b
Arguments
Argument Type Description
mixed Any Any value or message you'd like
to log.
You can specify the log type,
such as log, debug and error.
type string Default type is log. Note, if your

browser doesn't support the
debug or error log type, use log
instead.

Widgets Developer Resources 31

Common

Common.sanitizeHTML(string)

Search for and escape characters within a string. Returns transformed string. Useful for escaping
HTML.

Example

'‘Check for window._genesys.main'

var sString = 'Please visit www.genesys.com';

sString = Common.sanitizeHTML(sString);

// sString == 'Please visit www.genesys.com"'
Arguments
Argument Type Description
string string Any string you want to be

transformed.

Common.updatelemplatell8n(element, object)

Searches through an element's contents for i18n string elements to update with new strings. Used
when updating the language in real-time. Works by searching for elements with the CSS classname
'il8n' and reading the custom attribute 'data-message' to match the string name in the language
object. See example below.

Example

'‘Check for window._genesys.main'

var ndContainer = $(
")
Common.updateTemplateIl8n(ndContainer, {CustomButton00l: 'Accept'});

// ndContainer ==
Accept

Widgets Developer Resources 32

/u01/app/apache/html/extensions/PrincePDF/pdf/www.genesys.com

Common

Arguments

Argument Type Description

Element you want to search

el s RN i e S within to replace i18n strings.

The list of languages strings you
want to update your Ul with. This
object comes from the App.il8n
event or you can define your own
custom object inline or using
object Object of i18n Strings some other system. Object
format is a simple name:value
pair format. The data-message
attribute on your HTML element
must match one of these
property names to be updated.

Common.debuglcons

Returns the list of all the Icons with their names that Widgets support.

Example
'Fetch and Display list of icons present in Widgets'

Common.debugIcons()

Common.debug

Adds debug logs in to the browser's console. When using Common.debug, genesys.main.debug
must be set to true to see your logs. This allows you to add debug logging to your code without
worrying about unwanted debug messages in production. If timestamps are enabled, they will be
prefixed to all messages printed through Common.debug.

Example

'Check the File upload limits in WebChatService'

Common.debug(data server returned file limits);

Widgets Developer Resources 33

Common

Arguments
Argument Type Description
Any value or message you'd like
mixed Any to add debug log. Note: This is

only supported if your browser
supports debug log type.

common.error

Adds error logs in to the browser's console. When using Common.error, _genesys.main.debug
must be set to true to see your logs. This allows you to add error logging to your code without
worrying about unwanted error messages in production.

Example

‘Logging error messages'

Common.error('A widget plugin did not receive the following config:');

Arguments
Argument Type Description
Any value or message you'd like
mixed Any to add error log. Note: This is

only supported if your browser
supports error log type.

Common.populateAllPlaceholders
Adds place holder content to the input elements in a form with the given text strings.
Example

'Show placeholders strings in a form'

Common.populateAllPlaceholders($('#your form'), {strings})

Widgets Developer Resources

34

Common

Arguments

Argument Type Description

Form containing input elements.
Note: Input elements should
contain i18n class name and data
attribute data-message-type
with value placeholder for the
place holder details to appear.

Form Selector jQuery DOM selector for a form

Placeholder messages that needs
to be displayed. This is an object
with key-value pairs where key
should be equal to the data-
message attribute value of an
input element and value can be
any text that you would like to
display.

Key/Value pairs object

Common.populateLanguageStrings

Adds the preferred language place holder text to the given input elements in a form.

Example
'Show placeholders strings in a form'

Common.populatelLanguageStrings($('#your form'), {strings})

Arguments

Argument Type Description

Form containing input elements.
Note: Input elements should
contain i18n class name and data
attribute data-message-type
with value placeholder for the
place holder details to appear.

Form Selector jQuery DOM selector for a form

Placeholder messages that needs
to be displayed. This is an object
with key-value pairs where key
should be equal to the data-
message attribute value of an
input element and value can be
any text that you would like to
display.

Key/Value pairs object

Widgets Developer Resources 35

Common

Common.populatelcons

Show all the Icons on a Widget.

Example
'Populate all Widget Icons'

Common.populateIcons($('#your continer'));

Arguments

Argument Type

element jQuery DOM selector

Common.insertlicon

Adds an icon before the selected element.

Example

'Insert a check mark icon to an element you desire.'

Common.insertIcon($('#your element'), 'alert-checkmark',

Arguments
Argument Type
element jQuery DOM selector
icon name string
icon Aria Name string

Description

Specify the widget container for
which all the icons have to be
displayed.

Description

An html element to which icon is
to be displayed.

Name of the icon that you would
like to display. Note: Refer to
Common.debuglcons method
to find out all the icon names
that widgets support.

Name for the icon to be read by
screen readers.

Widgets Developer Resources

36

Common

Common.injectScript

Injects javascript code dynamically into widgets with the help of a script tag.

Example
'Inject your Widget WebChat extension plugin.'

Common.injectScript('path/to/LoadWebChat.ext.js")

Arguments
Argument Type
Script file name string path to JavaScript file

Common.mobileScreenScale

Re-sizes and fits widget to any mobile screen.

Example

'Fit your widget to any mobile screen.'

Description

JavaScript file name that needs
to be injected into widgets.

var mobileScaledWidget = Common.mobileScreenScale($('#your widget'));

Arguments

Argument Type

element jQuery DOM Selector

Common.showlLoading

Show loading spinner Icon.

Description

Your main widget wrapper
container selector that contains
the entire widget with cx-
titlebar, cx-body, cx-footer,
cx-button-container and cx-
message-container classes in
it.

Widgets Developer Resources

37

Common

Example
'Show loading spinner during an Ajax request'

Common.showLoading ($('#your container'))

Arguments

Argument Type

element jQuery DOM Selector

Common.hideLoading
Remove loading spinner Icon.
Example

'Remove loading spinner after the Ajax request’

Common.hideLoading($('#your container'))

Arguments

Argument Type

element jQuery DOM Selector

Common.showWaiting
Show waiting icon.
Example

'Show waiting Icon when uploading a file.'

Common.showWaiting($('#your container'),'waiting'))

Description
An html container where loading

spinner should appear. This adds

a class name cx-loading.

Description

An html container that contains
the loading spinner.

Widgets Developer Resources

38

Common

Arguments
Argument Type
element jQuery DOM Selector
Aria Label string

Common.hideWaiting

Remove waiting icon.

Example
'Remove waiting icon after file upload is done.'

Common.hideWaiting($('#your container'))

Arguments

Argument Type

element jQuery DOM Selector

Common.watch

Description

An html container where waiting
symbol should appear. This adds
a class name cx-waiting.

The value of the aria-label
attribute for the loading screen
icon. The default value is
waiting.

Description

An html container that contains
the waiting symbol.

Repeat your function execution for every 'x' milliseconds (default 1 second) up to a maximum

number of times (default - infinite) or till your function returns true.

Example
'Make Request Notifications until none are pending.'

Common.watch(function(iteration, maxIterations){

if(bRequestNotificationsPending) {
// ..POST Request

return !'bRequestNotificationsPending;
}, 36000, 30)

Widgets Developer Resources

Common

Arguments
Argument Type Description
The function that you would like
function name function to execute. It should return true/
false.
- Execute the function for every x
frequency milliseconds milliseconds until it returns true.
limit number The maximum number of times

function is executed.

Common.addDialog

Create your own dialog box and append it in to the widget.

Example

'Add a dialog box on your preferred container div

Common.addDialog($('#your container'), $('#your dialog box'), 'my warning')
Arguments
Argument Type Description
e jQuery selector The parent container that holds

the dialog box.

The actual dialog box that you
would like to display. This should

element jQuery selector contain the data-dialog
attribute with the value equal to
the dialog box name.

name string Dialog box name.

Common.showDialog

Show the dialog box that you prefer, using the dialog box name created with Common.addDialog().

Widgets Developer Resources 40

Common

Example

'Show the dialog box created using Common.addDialog()"

Common.showDialog($('#your container'), 'your dialog box name');
Arguments
Argument Type Description
. The parent container which has
element JQuery Selector the dialog box appended in to it.
name string The actual dialog box name.

Common.hideDialog

Hide the dialog box that you showed using Common.showDialog().

Example

'Hide dialog box'

Common.hideDialog($('#your container'), 'your dialog box name);
Arguments
Argument Type Description
. The parent container that is
element e showing the dialog box.
name string The actual dialog box name.

Common.hideDialogs
Hide all the dialog boxes. Dialog box name is not needed here.
Example

'Hide all dialog boxes.'

Common.hideDialogs($('#your container'));

Widgets Developer Resources

41

Common

Arguments

Argument Type Description

The parent container that is

el e SRl Sl showing all the dialog boxes.

Common.showAlert

Show a native alert dialog box on the widget you prefer with your own text message. By default, a
primary button is added to dismiss the alert dialog.

Example

Show an alert dialog box on the Widget you prefer. But default it adds the
dismiss button.

Common.showAlert($('.cx-widget.cx-webchat'), {text: 'your alert message', buttonText: 'Ok'})

Arguments
Argument Type Description

The widget plugin container that
should display the alert dialog.

element jQuery selector This should be the top level
container wrapper holding the
widget.
The data options containing the

options object text to be shown on the Alert
dialog box.

options.text string k:[))cl)sxplay text on the Alert dialog

options.buttonText string Display text on the primary

button (for example: OK).

Common.bytesToSize

Convert any number in bytes to Kilobytes, Megabytes, Gigabytes and Terabytes.

Example

'bytes to KB, MB, GB or TB.'

Widgets Developer Resources 42

Common

var fileSize = Common.bytesToSize(parseInt(fileSizeInBytes));

Arguments

Argument Type Description
bytes number Number in bytes size.

Common.getFormattedTime

Returns time in 12-hour or 24-hour format from the actual date timestamp. If no timestamp is
provided, it uses current time.

Example

‘convert date timestamp to return time in 12 hrs format'

var formattedTime = Common.getFormattedTime(timestamp, 12);

Arguments
Argument Type Description
timestamp Date Ja\{aScrlpt Date timestamp
object.
format number Time format with value 12 or 24.

Widgets Developer Resources

43

Overlay

Overlay

Contents

e 1 Overview
e 1.1 Usage
* 1.2 Customization
* 1.3 Mobile support
e 2 Configuration

¢ 3 Localization

4 APl commands
* 4.1 open

e 4.2 close

* 5 APl events

Widgets Developer Resources

44

Overlay

e Developer

Learn how to use an overlay window control that widgets can inject their Ul into.

Related documentation:

Overview

The Overlay plugin provides an overlay window control that widgets can inject their Ul into, accepting
the HTML UI, placing it inside an overlay control, and displaying the Ul onscreen in a uniform overlay
window fashion. This prevents individual widgets from managing the overlay themselves. It also
means that each widget's Ul can be moved between different container types.

Overlay provides these benefits:

e Shows the Ul in the center of the window.

¢ Open and close transition animations.

* No overlapping overlays. Only one at a time. Automatically managed by the Overlay plugin.
e Auto-recenter as the browser window size is changed.

¢ Automatic application of mobile styles when running in mobile mode.

Usage

Overlay is easy to use; you simply open and close it. When you call Overlay.open, you pass in the
HTML content you want to show. If you call Overlay.open again while an overlay is already open, it
will automatically close the previous overlay before showing yours (unless the previous overlay has
reserved the overlay to prevent new overlays).

By default, the overlay has no visible styles or content. You must pass in the HTML you
want to show inside the Overlay area. Typically you should create an overlay-type
container using Common.Generate.Container, put your content inside that, then
send the whole thing into Overlay.open.

Customization

Overlay does not have customization options.

Widgets Developer Resources 45

Overlay

Mobile support
Overlay automatically applies mobile CSS styles to its outer container to affect the content within the

overlay view. It is up to the content inside the overlay view to dynamically change when the Genesys
Widgets .cx-mobile CSS classname is applied to an outer container.

Configuration

Overlay does not have configuration options.

Localization

Overlay does not have localization options.

APl commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Overlay.close');

open

Opens the provided HTML in an Overlay View. When successful, it returns back the HTML and a
custom close event for you to subscribe to. This alerts you when your overlay instance has been
closed. You can also make your overlay immutable so that new overlay instances don't close yours.
Only your widget can close its overlay when immutable is set to true.

Example

oMyPlugin.command('Overlay.open', {

html: '
Template

Widgets Developer Resources 46

Overlay

immutable: false,

group: false

}) .done(function(e){

// Overlay opens successfully

}).fail(function(e){

// Overlay failed to open

3
Options
Option

html

immutable

group

Resolutions

Status
resolved

rejected

rejected

close

Type
string
boolean
string

When

Overlay is successfully opened.

No html template is passed.

Overlay is already opened.

Description

HTML string template for overlay
window.

When set to true, overlay cannot
be closed by other plugins.

The name of the overlay window
group you want to add a new
overlay view into.

Returns
{html: , events: , group: }

No HTML content was provided.
Overlay has ignored your
command.

Overlay view is currently
reserved.

Closes the Overlay Ul. Publishes the appropriate custom close event for current overlay being closed.

Example

oMyPlugin.command('Overlay.close').done(function(e){

// Overlay closed successfully

}).fail(function(e){

// Overlay failed to close

3

Widgets Developer Resources

47

Overlay

Resolutions

Status
resolved
rejected

rejected

APl events

When
Overlay is successfully closed.
Overlay is already closed.

Overlay view is immutable.

Returns
n/a
Overlay view is already closed.

Overlay view is currently
reserved.

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('Overlay.ready', function(e){});

Name

ready

Description

The Overlay plugin is initialized
and ready to accept commands

Data

n/a

Widgets Developer Resources

48

Toaster

Toaster

Contents

e 1 Overview
e 1.1 Usage
* 1.2 Namespace
* 1.3 Customization
* 1.4 Mobile support
* 2 Configuration
¢ 3 Localization
* 4 APl commands
* 4.1 open

e 4.2 close

* 5 APl events

Widgets Developer Resources

49

Toaster

e Developer

Learn how to use a toast view control into which widgets can inject their Ul.

Related documentation:

Overview

The Toaster plugin provides a toast view control that widgets can inject their Ul into, accepting the
HTML Ul, placing it inside a toast view, and displaying the Ul onscreen in the lower-bottom-right of

the screen. When it is opened, it slides up from the bottom. When it is closed, it slides down until it is

offscreen.
Toaster provides these benefits:

e Shows Ul as a slide-up toast view in the lower-bottom-right of the screen.

¢ Open and close transition animations.

* No overlapping toasts; only one at a time. Automatically managed by the Toaster plugin.

Usage

Toaster is easy to use; you simply open and close it. When you call Toaster.open, you pass in the
HTML content you want to show. If you call Toaster.open again while a toast is already open, it will
automatically close the previous toast before showing yours (unless the previous toast has reserved
the view to prevent new toasts).

Namespace

The Toaster plugin has the following namespaces tied to each of the following types.

Type Namespace

CXBus—API commands & APl events Toaster
CSS .cx-toaster

Customization

Toaster does not have customization options.

Widgets Developer Resources

50

Toaster

Mobile support

Toaster does not have mobile-specific styles at this time.

Configuration

Toaster does not have configuration options.

Localization

Toaster does not have localization options.

APl commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.

Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Toaster.close');

open
Opens the Toaster Ul.

Example

oMyPlugin.command('Toaster.open', {

type: 'generic',

title: 'Toaster Title',
body: 'Toaster Body',
icon: 'chat',

controls: 'close',
immutable: false,
buttons:{

Widgets Developer Resources

51

Toaster

type: 'binary',
primary: 'Accept’,

secondary: 'Decline’

}

}) .done(function(e){

// Toaster opened successfully

}).fail(function(e){

// Toaster failed to open properly

});
Options

Option

type

title

body

icon
controls
buttons

buttons.type
buttons.primary
buttons.secondary
immutable

Resolutions

Status
resolved

rejected

rejected

Type

string

string

string

string
string
object

string
string
string

boolean

When

Toaster is successfully opened.

No Toaster type is specified.

Toaster is already opened.

Description

Specifies the type of body
content that can be provided to
Toaster window. Generic type
shows the default body content
and custom type overrides the
default html body content.

Heading title to display on the
Toaster window.

Holds text value for Generic
Toaster type and html string
template for Custom Toaster

type.
The CSS class name for an icon.

Show close and minimize
controls on Toaster window.

Define the type of buttons.
Shows two buttons on the Toaster

Text to be shown on primary
button.

Text to be shown on secondary
button.

When set to true, Toaster cannot
be closed by other plugins.

Returns
n/a

No content was provided. Toaster
has ignored your command.

Toaster view is currently
reserved.

Widgets Developer Resources

52

Toaster

close

Closes the Toaster Ul.

Example
oMyPlugin.command('Toaster.close').done(function(e){

// Toaster closed successfully
}).fail(function(e){

// Toaster failed to close

1)
Resolutions
Status When
resolved Toaster is successfully closed.
rejected Toaster is already closed.
rejected Toaster view is immutable.
APl events

Returns
n/a
Toaster view is already closed.

Toaster view is currently
reserved.

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('Toaster.ready', function(e){});

Name Description
. The Toaster plugin is initialized
y and ready to accept commands.
closed The Toaster plugin has been

removed from the screen.

Data

n/a

n/a

Widgets Developer Resources

53

WindowManager

WindowManager

Contents

e 1 Overview
e 1.1 Usage
* 1.2 Customization
¢ 2 Configuration
* 3 Localization
* 4 APl commands
e 4.1 registerDockView
* 4.2 registerSideButton

* 5 APl events

Widgets Developer Resources

54

WindowManager

e Developer

Learn how to use the WindowManager plugin, which provides a controller for several different types
of window groups in Genesys Cloud CX.

Related documentation:

Overview

The WindowManager plugin provides a controller for several types of window groups. HTML Uls added
to these WindowManager groups are arranged and managed in accordance with each group's
purpose.

One group type is Dock View. WebChat utilizes this group to show the toast-like Ul docked in the
lower-bottom-right of the screen. This group automatically stacks the widgets horizontally. When
one of the widgets closes, the stack collapses toward the right. Widgets can register themselves into
this WindowManager group and let it do all the work.

Another group type is Side Button. WebChat uses this group to show the launcher button on the right

side of the screen. Like the Dock View, buttons are stacked, but in this case they are stacked
vertically. As buttons are added and removed from the group, the button stack collapses to fill in the

gaps.

Usage

WindowManager has "register" commands for registering your Ul into different groups. They all
accept one argument, the HTML you want to be handled by WindowManager. You can use
‘registerDockView' or 'registerSideButton' at this time. More window management groups will be
added in upcoming releases.

Customization

WindowManager does not have customization options.

Configuration

WindowManager does not have configuration options.

Localization

Widgets Developer Resources 55

WindowManager

WindowManager does not have localization options.

APl commands

Once you've registered your plugin on the bus, you can call commands on other
registered plugins. Here's how to use the global bus object to register a new
plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');
oMyPlugin.command('WindowManager.registerDockView', {html: '

HTML
‘1)

registerDockView

Creates a docked view container to show a widget on the bottom right corner. Its position is adjusted
(stacked) to appear beside another widget if already present and is indexed with a tabindex.

Example

oMyPlugin.command('WindowManager.registerDockView', {html: '
Template
'}) .done(function(e){

// WindowManager registered a dockView successfully
}).fail(function(e){

// WindowManager failed to register a dock view

1)
Options
Option Type Description
A Widget HTML string template
html string that needs to be shown in dock
view.

Widgets Developer Resources 56

WindowManager

Resolutions
Status When
The html template is successfully
resolved opened and registered in dock
view.
rejected No HTML template is found.

registerSideButton

Returns

n/a

No html content

Registers a button to show on the right side of the screen for a particular plugin. Its position is based
on the respective plugin order defined in the array configuration. Currently, this is not supported for

external plugins.

Example

oMyPlugin.command('WindowManager.registerSideButton', {template:

Button Text
'}) .done(function(e){

// WindowManager registered a side button successfully
}).fail(function(e){

// WindowManager failed to register a side button

1)
Options
Option Type
template string
Resolutions
Status When
The HTML button is successfully
sl registered.
rejected No HTML template is found.
APl events

Description

Custom HTML string template for
a button.

Returns
n/a

No button template found to
register

Once you've registered your plugin on the bus, you can subscribe to and listen
for published events. Here's how to use the global bus object to register a new

plugin on the bus.

Widgets Developer Resources

57

WindowManager

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see

Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('WindowManager.ready', function(e){});

Name Description Data

ready WindowManager is initialized and

ready to accept commands. it

WindowManager publishes this
event when there is any change . . .
changed in the position of widgets on the {registry: (object)}
screen.

Widgets Developer Resources

58

WebChatService

WebChatService

Contents

e 1 Overview

e 1.1 Usage

* 1.2 Namespace

* 1.3 Customization
e 2 Configuration

* 2.1 Example

¢ 3 Localization

4 APl commands
* 4.1 configure
* 4.2 startChat
* 4.3 endChat

* 4.4 sendMessage

4.5 sendCustomNotice

* 4.6 sendTyping

4.7 sendFilteredMessage
* 4.8 addPrefilter

e 4.9 updateUserData

* 4.10 poll

* 4.11 startPoll

e 4.12 stopPoall

4.13 resetPollExceptions

* 4.14 restore

4.15 getTranscript

4.16 getAgents

* 4.17 getStats

* 4.18 sendFile

* 4.19 downloadFile

4.20 getSessionData

Widgets Developer Resources

59

WebChatService

4.21 fetchHistory
* 4.22 registerTypingPreviewlnput
* 4.23 registerPreProcessor

* 4.24 verifySession

* 5 APl events

Widgets Developer Resources

60

WebChatService

Learn how to use Genesys chat services in Genesys Cloud CX.

Related documentation:

Feature coming soon: Web messaging

If you are a Genesys Cloud CX customer, we encourage you to use the new web messaging feature to
replace web chat. To use web messaging, you configure tracking through the Messenger JavaScript
SDK instead of deploying a tracking snippet.

Overview

WebChatService exposes high-level APl access to Genesys chat services, so you can monitor and
modify a chat session on the front end, or develop your own custom WebChat Widget. Compared to
developing a custom chat Ul and using the chat REST API, WebChatService dramatically simplifies
integration—improving the reliability, feature set, and compatibility of every widget on the bus.
Usage

WebChatService and the matching WebChat Widget work together right out of the box and they
share the same configuration object. Using WebChat uses WebChatService.

You can also use WebChatService as a high-level APl using bus commands and events to build your
own WebChat Widget or other Ul features based on WebChatService events.

Namespace

The WebChatService plugin has the following namespaces tied to each of the following types:

Type Namespace
Configuration webchat
CXBus— APl commands & API events WebChatService

Customization

WebChatService has many configuration options but no customization options. It is a plug-and-play
plugin and works as is.

Widgets Developer Resources 61

WebChatService

Configuration

WebChat and WebChatService share the _genesys.widgets.webchat
configuration namespace. WebChat contains the Ul options and WebChatService
contains the connection options.

Starting with version 9.0.008.04, WebChatService allows you to choose between the
types of chat services available in Genesys via the transport section configuration
options.

For Genesys Cloud CX, the transport.type property should always be set to
purecloud-v2-sockets.

Example

e Applicable to Genesys Cloud CX - Guest Chat APIs

window. genesys.widgets.webchat = { transport: {

type: 'purecloud-v2-sockets',
dataURL: 'https://api.mypurecloud.com', // replace with API URL matching your region
deploymentKey : 'YOUR DEPLOYMENTKEY HERE', // replace with your Deployment ID
orgGuid : 'YOUR ORGGUID HERE', // replace with your Organization ID
interactionData: {

routing: {

targetType: 'QUEUE',

targetAddress: 'YOUR QUEUENAME HERE',

priority: 2

}

}

}I

userData: {
addressStreet: '64472 Brown Street',
addressCity: 'Lindgrenmouth',
addressPostalCode: '50163-2735',
addressState: 'FL',
phoneNumber: '1-916-892-2045 x293',
phoneType: 'Cell’,
customerId: '59606'

}
}
Options
A . Introduced/
Name Type Description Default Required updated
Object
containing the
transport object transport N/A Yes 9.0.008.04
service

configuration

Widgets Developer Resources 62

WebChatService

Name Type

transport.type string

transport.dataURLstring (URL)

transport.deploy memirtkey

transport.orgGuid string

Description Default

options.

Always set to
purecloud-
v2-sockets for
use with
Genesys Cloud

CX. N/A

For more details
see Widget -
Version 2 in
Genesys Cloud CX
Developer Center.

The Genesys

Cloud CX
WebChatService

URL for your

region. A list of

API URLs per

region is

available in the n/a
Platform API

section.

For more details
see Widget -
Version 2 in
Genesys Cloud CX
Developer Center.

Genesys Cloud
CX widget
deployment
key. Identifies
the widget on
your web page
as the one you
created in the
previous task
(Create a N/A
widget
configuration
object).

For more details
see Widget -
Version 2 in
Genesys Cloud CX
Developer Center.

Genesys Cloud

CX

organization N/A
ID; a unique

GUID.

Required

Yes

Yes

Yes

Yes

Introduced/
updated

9.0.008.04

9.0.008.04

9.0.008.04

9.0.008.04

Widgets Developer Resources

63

WebChatService

Name Type

transport.paginatiboolean

transport.maxMespaigePageSize

Description

For more details
see Widget -
Version 2 in
Genesys Cloud CX
Developer Center.

Enable/disable
pagination
capability to
restore the
chat messages
based on

transport.maxMe

option. If set to
false, chat
messages will
be restored all
at once.

Number of
messages to
be received per
page during
chat restore.

Always set to
UE' to

transport.interactishﬂaja.routing.tar@euqtllz'g;gga

queue.

The queue
name that
receives chat
messages.
Example:

transport.interactistridata.routing.targ/éeRAGress

For more details
see Widget -
Version 2 in
Genesys Cloud CX
Developer Center.

Priority level
from O (lowest)
to 10 (highest).

transport.interactiontBgéa.routing. pribrityore details

transport.interactianﬁyta.routing.skiﬁs

see Widget -
Version 2 in
Genesys Cloud CX
Developer Center.

List of skills.
xample:
omputers,
Printers].

tru
S

100

=

/A

N/A

N/A

N/A

saegePageSize

Default Required

No

Yes

Yes

No

No

Introduced/

updated

9.0.008.04

9.0.008.04

9.0.008.04

9.0.008.04

9.0.008.04

9.0.008.04

Widgets Developer Resources

64

WebChatService

.. . Introduced/
Name Type Description Default Required updated

For more details
see Widget -
Version 2 in
Genesys Cloud CX
Developer Center.

Requested
agent
language skill.
Example:
English -
transport.interactishﬁm_xa.routing.Iaﬂ@ﬂ’ﬁ?fé’- N/A No 9.0.008.04

For more details
see Widget -
Version 2 in
Genesys Cloud CX
Developer Center.

An object of
key/value pairs
of arbitrary
custom data.

userData object N/A No 9.0.008.04

For more details
see Widget -
Version 2 in
Genesys Cloud CX
Developer Center.

Localization

WebChatService doesn't have any localization options.

APl commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

Widgets Developer Resources 65

WebChatService

oMyPlugin.command('WebChatService.getAgents');

Starting with version 9.0.008.04, WebChatService allows you to choose between the
types of chat API services available in Genesys via the transport section configuration
options. For more information, see the Options table in configuration.

configure

Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling
configure again after startup may result in unpredictable behavior.

startChat

Initiates a new chat session with the chat server via GES or with the service configured under the
transport section.

Example

oMyPlugin.command('WebChatService.startChat', {
nickname: 'Jonny',
firstname: 'Johnathan',
lastname: 'Smith',
email: 'jon.smith@mail.com',
subject: 'product questions',
userData: {}
}) .done(function(e){
// WebChatService started a chat successfully
}).fail(function(e){

// WebChatService failed to start chat

1)
Options
Option Type Description
nickname string E\??Engnrargl Form Data:
firstname string (;]f;gt’:cnir:;re)/ Form Data:
lastname string Egsattngr:]cg Form Data:
email string Chat Entry Form Data: 'email'.

Widgets Developer Resources

66

WebChatService

Option

subject

userData

Resolutions

Status

resolved
rejected

rejected

rejected

rejected

endChat

Type
string

object

When

Server confirms session started.

A chat session is already active.

AJAX exception occurs.

Server exception occurs.

userData is invalid.

Description
Chat Entry Form Data: 'subject'.

Arbitrary data to attach to the
chat session (AKA attachedData).
Properties defined here will be
merged with default userData set
in the configuration object.

Returns
(AJAX Response Object)

There is already an active chat
session.

(AJAX Response Object)
(AJAX Response Object)

malformed data object provided
in userData property.

Ends the chat session with the chat server via GES or with the service configured under transport

section.

Example

oMyPlugin.command('WebChatService.endChat').done(function(e){

// WebChatService ended a chat successfully

}).fail(function(e){

// WebChatService failed to end chat

3

Resolutions

Status

resolved

rejected

sendMessage

When

Active session is ended
successfully.

No chat session is currently
active.

Sends a message from the client to the chat session.

Returns

(AJAX Response Object)

There is no active chat session.

Widgets Developer Resources

67

WebChatService

Example

oMyPlugin.command('WebChatService.sendMessage', {message: 'hi'}).done(function(e){
// WebChatService sent a message successfully

}).fail(function(e){

// WebChatService failed to send a message

1)
Options
Option Type Description
message string The message you want to send.
Resolutions
Status When Returns
resolved Message is successfully sent. (AJAX Response Object)
rejected No message text provided. No message text provided.
rejected e _chat Sessionis curmently There is no active chat session.
active.
rejected AJAX exception occurs. (AJAX Response Object)

sendCustomNotice

Sends a custom notice from the client to the chat server. This request is used to deliver any custom
notification between a custom client application and a custom agent desktop. Neither Genesys
Widgets, nor Workspace, uses this out of the box.

Example

oMyPlugin.command('WebChatService.sendCustomNotice', {message: 'bye'}).done(function(e){
// WebChatService sent a custom message successfully

}).fail(function(e){

// WebChatService failed to send a custom message

3
Options
Option Type Description
. A message you want to send
message string

along with the custom notice.

Widgets Developer Resources 68

WebChatService

Resolutions
Status When Returns Introduced/updated
resolved zlleensts',age is successfully (AJAX Response Object)
rejected AJAX exception occurs. (AJAX Response Object)

The server doesn't This transport doesn't

rejected support receiving zgﬁggﬁstomNotice 9.0.008.04
custom notices. S ———

sendTyping

Sends a "Customer typing" notification to the chat session. A visual indication will be shown to the
agent.

Example
oMyPlugin.command('WebChatService.sendTyping').done(function(e){

// WebChatService sent typing successfully
}).fail(function(e){

// WebChatService failed to send typing

1)
Options
Option Type Description
Message String 2long with the typing notification.
Resolutions
Status When Returns
resolved AJAX request is successful. (AJAX Response Object)
rejected AJAX exception occurs. (AJAX Response Object)
rejected e Rl SESHIE S GUTEDy There is no active chat session.

active.

sendFilteredMessage

Sends a message along with a regular expression to match the message and hide it from the client.
Useful for sending codes and tokens through the WebChat interface to the Agent Workspace.

Widgets Developer Resources 69

WebChatService

Filters are now automatically stored and recalled on chat restore for the duration of

the session.

Example

oMyPlugin.command('WebChatService.sendFilteredMessage', {

message: 'filtered message',
regex: /[a-zA-Z1/

}) .done(function(e){
// WebChatService sent filtered message successfully
}).fail(function(e){

// WebChatService failed to send filtered message

3
Options
Option Type
message string
regex RegExp
Resolutions
Status When
resolved There is an active session.
rejected No chat session is currently

active.

addPrefilter

Description

Message you want to send but
don't want to appear in the
transcript.

Regular expression to match the
message.

Returns

n/a

No active chat session.

Adds a new pre-filter regular expression to the pre-filter list. Any messages matched using the pre-

filters will not be shown in the transcript

Filters are now automatically stored and recalled on chat restore for the duration of

the session.

Widgets Developer Resources

WebChatService

Example

oMyPlugin.command('WebChatService.addPrefilter', {filters: /[a-zA-Z]/}).done(function(e){

// WebChatService added filter successfully
// e == 0bject of registered prefilters

}).fail(function(e){

// WebChatService failed to add filter

3
Options
Option
filters
Resolutions
Status
resolved
rejected
updateUserData

Type

RegExp or Array of RegExp

When

Valid filters are provided.

Invalid or missing filters
provided.

Description

Regular Expression(s) to add to
the prefilter list.

Returns
Array of all registered prefilters.

Missing or invalid filters provided.
Please provide a regular
expression or an array of regular
expressions.

Updates the userData properties associated with the chat session. If this command is called before a
chat session starts, it will update the internal userData object and will be sent when a chat session
starts. If this command is called after a chat session starts, a request to the server will be made to

update the userData on the server associated with the chat session.

Example

oMyPlugin.command('WebChatService.updateUserData', {firstname:

// WebChatService updated user data successfully

}).fail(function(e){

// WebChatService failed to update user data

1)
Options
Option

n/a

Type

object

'Joe'}) .done(function(e){

Description

userData object you want to send
to the server for this active
session.

Widgets Developer Resources

71

WebChatService

Resolutions
Status When Returns Introduced/updated
Session is active and
resolved userData is successfully (AJAX Response Object)
sent.
. Session is active and .
rejected AJAX exception occurs. (AJAX Response Object)
Session is not active
and internal userData The internal userData
resolved object is merged with object that will be sent
new userData properties to the server.
provided.
Session is active and This transport doesn't
. the server doesn't support updating
rejected support updating userData during an 9.0.008.04
userData. active chat session.
poll
Internal use only. Starts polling for new messages.
Example
oMyPlugin.command('WebChatService.poll').done(function(e){
// WebChatService started polling successfully
}).fail(function(e){
// WebChatService failed to start polling
1)
Resolutions
Status When Returns Introduced/updated
There is an active
resolved session. n/a
Access Denied to
L private command. Only
rejected \cl\ée”tifhiﬁisse?grcnengzé WebChatService is
9) allowed to invoke this
command.
. No chat session is previous poll has not
e currently active. finished.
. The server doesn't This transport doesn't
rejected support polling. support polling. 9.0.008.04
Widgets Developer Resources 72

WebChatService

startPoll

Starts automatic polling for new messages.

Example

oMyPlugin.command('WebChatService.startPoll').done(function(e){
// WebChatService started polling successfully
}).fail(function(e){

// WebChatService failed to start polling

1)
Resolutions
Status When Returns Introduced/updated
There is an active
resolved session. n/a
rejected No chat sess!on is No active chat session
currently active. ’
rejected The server QOesn t This transport doesn't 9.0.008.04
support polling. support polling.
stopPoll
Stops automatic polling for new messages.
Example
oMyPlugin.command('WebChatService.stopPoll').done(function(e){
// WebChatService stopped polling successfully
}).fail(function(e){
// WebChatService failed to stop polling
1)
Resolutions
Status When Returns Introduced/updated
resolved Therg is an active o
session.
rejected No chat sess!on is No active chat session
currently active. ’
. The server doesn't This transport doesn't
relj2eies support polling. support polling. S 010k 0k
Widgets Developer Resources 73

WebChatService

resetPollExceptions

Resets the poll exception count to 0. pollExceptionLimit is set in the configuration.

Example

oMyPlugin.command('WebChatService.resetPollExceptions').done(function(e){
// WebChatService reset polling successfully

}).fail(function(e){

// WebChatService failed to reset polling

1)
Resolutions
Status When Returns Introduced/updated
resolved Always. n/a
This transport doesn't
. The server doesn't support
rejected support polling. resetPollExceptions 9.0.008.04
command.
restore

Internal use only. You should not invoke this manually unless you are using Async mode.

Example

oMyPlugin.command('WebChatService.restore').done(function(e){
// WebChatService restored successfully
}).fail(function(e){

// WebChatService failed to restore

1)
Options

Introduced/

Option Type Description Accepted values updated

The session data
that is needed to
restore the
WebChat in Async
mode. It is a JWT
sessionData string token string value. (JWT string token) 9.0.008.04
Applicable only
when using
WebChat with
Genesys
Multicloud CX v3

Widgets Developer Resources

74

WebChatService

Option

Resolutions

Status
resolved

rejected

rejected

rejected

rejected

getTranscript

Type

Description

API. For more
information, see
the Genesys
Multicloud CX v3
tab in the Options

table in

configuration.

When
Session has been found.

Session cannot be
found.

Restoring chat session is
in progress.

Chat session is already
active.

Trying restore chat
session manually.

Returns

n/a
n/a

Already restoring.
Ignoring request.

Chat session is already
active, ignoring restore
command.

Access Denied to
private command. Only
WebChatService is
allowed to invoke this
command in Non-Async
mode.

Fetches an array of all messages in the chat session.

Accepted values

Introduced/
updated

Introduced/updated

9.0.002.06

9.0.002.06

9.0.002.06

For more information on the fields included in JSON response, see Digital Channels
Chat V2 Response Format.

Example

oMyPlugin.command ('WebChatService.getTranscript').done(function(e){

// WebChatService got transcript successfully

//e::

}).fail(function(e){

// WebChatService failed to get transcript

1)

Object with an array of messages

Widgets Developer Resources

75

WebChatService

Resolutions
Status When Returns
Object with an array of
resolved Always messages.
getAgents

Return a list of agents that have participated in the chat. Includes agent metadata.

Example

oMyPlugin.command('WebChatService.getAgents').done(function(e){

// WebChatService got agents successfully
// e == Object with agents information in chat

}).fail(function(e){

// WebChatService failed to get agents

3
Resolutions
Status When Returns
(Object List) {name: (String),
connected: (Boolean), supervisor:
resolved Always (Boolean), connectedTime: (int

time),disconnectedTime: (int
time)}

getStats

Returns stats on chat session including start time, end time, duration, and list of agents.

Example

oMyPlugin.command('WebChatService.getStats').done(function(e){

// WebChatService got stats successfully
// e == Object with chat session stats

}).fail(function(e){

// WebChatService failed to get stats

1)
Resolutions
Status When Returns
resolved Always {agents: (Object), startTime: (int

time), endTime: (int time),

Widgets Developer Resources 76

WebChatService

Status When Returns

duration: (int time)}

sendFile
[Introduced: 9.0.008.04]

Sends the file from the client machine to the agent.

Example

oMyPlugin.command('WebChatService.sendFile', {files: $('').attr('type', 'file') /* Only works
on UI, can not dynamically change */ }).done(function(e){

// WebChatService sent file successfully
}).fail(function(e){

// WebChatService failed to send file

1)
Options
Option Type Description
i . A reference to a file input
Az Filz element (for example)
Resolutions
Status When Returns
resolved Iigfz il #=tls @ velel B7pe e (AJAX Response Object)
rejected The file sent is an invalid type. (AJAX Response Object)

. The number of uploads is q
rejected exceeded. (AJAX Response Object)
rejected The file size exceeds the limit. (AJAX Response Object)

. The file size is too large or an]
rejected unkNown error occurs. (AJAX Response Object)
reiected The server doesn't support file This transport doesn't support

) uploads. file uploads.

downloadFile

Downloads the file to the client machine. Example

oMyPlugin.command('WebChatService.downloadFile', {fileId: 'l', fileName:
'myfile.txt'}).done(function(e){

// WebChatService sent file successfully

Widgets Developer Resources

77

WebChatService

}).fail(function(e){

// WebChatService failed to send file

1)
Options
Option
fileld
Resolutions
Status
resolved

getSessionData

[Introduced: 9.0.002.061]

Retrieves the active session data at any time.

Example

oMyPlugin.command('WebChatService.getSessionData')

Resolutions

Status

resolved

resolved

rejected

fetchHistory

Type Description
strin This is the ID of the file to be
9 downloaded from the session.
When Returns
The file is downloaded
n/a
successfully.
When Returns Introduced/updated
Always, when using) .
Chat via GMS API. For isecureKey: (string),
. . sessionID: (number/
more information, see string), alias: (number/
the GMS tab in the string)' userlld' (number/
Options table in string)'} ’
configuration. 9
Always, when using
Chat via Genesys
Multicloud CX v3 API. {participantld: (string),
For more information, sessionld: {string), 9.0.008.04

see the Genesys
Multicloud CX v3 tab
in the Options table in
configuration.

Never

[Introduced: 9.0.008.04]

This applies only in Asynchronous mode to fetch older chat messages. It does not fetch all of the

token: (string),
transportld: (string)}

undefined

Widgets Developer Resources

WebChatService

messages at once; rather a certain number of messages are fetched every time this command is
called. Response data will be available in the messageReceived event.

Example

oMyPlugin.command('WebChatService.fetchHistory")

Resolutions

Status
resolved
rejected

rejected

rejected

registerTypingPreviewlnput

When
Old messages are retrieved.
Request fails.

Asynchronous mode is not
enabled.

All messages are received.

Returns
(AJAX Response Object)
(AJAX Response Object)

Fetching history messages
applies only to Asynchronous
chat.

No more messages to fetch.

Selects an HTML input to watch for key events. Used to trigger startTyping and stopTyping

automatically.

Example

oMyPlugin.command('WebChatService.registerTypingPreviewInput', {input: $('input')

}) .done(function(e){

// WebChatService registered input area successfully

}).fail(function(e){

// WebChatService failed to register typing preview

1)
Options
Option
input
Resolutions
Status
resolved
rejected

Type
HTML Reference

When

Valid HTML input reference is
provided.

Invalid or missing HTML input
reference.

Description

An HTML reference to a text or
textarea input.

Returns
n/a

Invalid value provided for the
input property. An HTML element
reference to a textarea or text
input is required.

Widgets Developer Resources

79

WebChatService

registerPreProcessor

Registers a function that receives the message object, allowing you to manipulate the values before
it is rendered in the transcript.

Example

oMyPlugin.command('WebChatService.registerPreProcessor', {preprocessor: function(message){
message.text = message.text + ' some preprocessing text';
return message;
} }).done(function(e){
// WebChatService registered preprocessor function
// e == function that was registered
}).fail(function(e){
// WebChatService failed to register function

s
Options
Option Type Description
. The preprocessor function you
preprocessor function want to register.
Resolutions
Status When Returns
resolved A valid preprocessor function is The registered preprocessor
provided and is registered. function.
reiected An invalid preprocessor function No preprocessor function
J is provided. provided. Type provided was .

verifySession
Checks for existing WebChat session before triggering a proactive invite.
Example
oMyPlugin.command('WebChatService.verifySession').done(function(e){

if(e.sessionActive) {

// dont show chat invite
} else if(!e.sessionActive) {
if(oMyPlugin.data('WebChat.open') == false){
// show chat invite
} else {

// dont trigger chat invite

Widgets Developer Resources 80

WebChatService

}
}
1)
Resolutions
Status When Returns
, . A boolean sessionActive which
resolved A session exists or not. T e s ey
APl events

Once you've registered your plugin on the bus, you can subscribe to and listen
for published events. Here's how to use the global bus object to register a new
plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('WebChatService.ready', function(e){});

Name Description Data Introduced/updated
Chat session has (AJAX Response
S successfully started. containing session data) LI

Chat session restoration
attempted was denied
after user navigated
restoreTimeout away from originating N/A 9.0.008.04
website for longer than
the time limit: default
60 seconds.

Could not restore chat
restoreFailed session after page N/A 9.0.008.04
navigation or refresh.

Chat session has been
restored restored after page N/A 9.0.008.04
navigation or refresh.

Connection restored.

ECOMEE R This event is only

N/A 9.0.008.04

Widgets Developer Resources 81

WebChatService

Name Description Data Introduced/updated
published after
disconnected.
WebChatService is
ready initialized and ready to N/A 9.0.008.04
accept commands.
A new message has {originalMessages:
been received from the [- es.'
] server. Includes text ! ’ SSages:
messageReceived messages, status (array of objects), 9.0.008.04
’ ; restoring: (boolean),
(Ttﬁsesrargmzss"s Qgte'i(;;'ei_nd sessionData: (object)}
An error occurred
error between the client and (AJAX Response) 9.0.008.04
the server.
Chat session has
e successfully ended. e LI
Cannot reach servers.
: No connection. Either
disconnected the user is offline or the N/A 9.0.008.04
server is offline.
After a user stops
typing, a countdown
. . begins. When the
clientTypingStopped countdown completes, N/A 9.0.008.04
the typing notification
will clear for the agent.
The user has started
clientTypingStarted typing. Sends an event N/A 9.0.008.04
to the agent.
Indicates the user has érlistss?%gg.(gg)ed)'
clientDisconnected been disconnected form 9 ’) ! . 9.0.008.04
the chat session. numAgentsConnected:
(number)}
Indicates the user has gn;istssalag(ggt:)_(:ftj)ect),
clientConnected been connected to the 9 A ' ¢ JC ! ted: 9.0.008.04
chat session. numAgentsConnected:
(number)}
.) Agent typing event has
agentTypingTimeout been timed out (AJAX Response) 9.0.008.04
. Agent has stopped
agentTypingStopped typing (AJAX Response) 9.0.008.04
agentTypingStarted Q/gpeir?gsah?év%t%;escslage (AJAX Response) 9.0.008.04
Indicates an agent has gmeists:%gi).(:g)ed)'
agentDisconnected disconnected from the 9 A ' JC ! d: 9.0.008.04
chat. numAgentsConnected:
(number)}
Indicates an agent has {message: (object),
e connected to the chat. agents: (object), SO
Widgets Developer Resources 82

WebChatService

Name Description Data Introduced/updated
numAgentsConnected:
(number)}
Widgets Developer Resources 83

CallUs

CallUs

Contents

e 1 Overview
e 1.1 Usage
* 1.2 Customization
* 1.3 Namespace
* 1.4 Mobile support
* 1.5 Screenshots
¢ 2 Configuration
* 2.1 Example
* 2.2 Options
* 3 Localization
* 3.1 Usage
* 3.2 Example i18n JSON

4 APl commands
* 4.1 open
e 4.2 close

e 4.3 configure

5 API events

Widgets Developer Resources

84

CallUs

Learn how to display an overlay screen showing one or more phone numbers for customer service,
as well as the hours that this service is available in Genesys Cloud CX.

Related documentation:

Overview

The CallUs Widget provides an overlay screen showing one or more phone
numbers for customer service, as well as the hours that this service is available.
The arrangement of numbers in this layout starts with a main phone number,
which can be followed by alternative or additional phone numbers. Each number
can be named, and there is no limit to the number of phone numbers you can
include. If the list of numbers doesn't fit in the widget, the user can scroll down
to see the rest.

A user can tap the phone numbers specified in the CallUs Widget in mobile browsers.
Once the user taps any of the phone numbers, the mobile device will allow the user to
dial the number through the mobile voice network.

Widgets Developer Resources 85

CallUs

You can reach us at any of the following numbers...

Payments 1888 436 3797

Bpm Mon - Fr

Local 202 5550134
International 1 202 555 01 62

Usage
Launch CallUs manually by using the following methods:

e Call the CallUs.open command
¢ Configure ChannelSelector to show CallUs as a channel

e Create your own custom button or link to open CallUs (using the "CallUs.open" command

By default, a user has no way of launching the CallUs Widget. You must choose a
suitable method for launching this widget.

Customization

You can customize and localize all the text, titles, names, and numbers shown in
the CallUs Widget by adding entries into your configuration and localization
options. There are no formatting requirements. Text will appear as you entered it.

Widgets Developer Resources 86

/File:CallUs_Dark_Desktop.png
/File:CallUs_Dark_Desktop.png

CallUs

If you do not configure the CallUs Widget it will appear as an empty overlay. You must
configure this Widget before using it.

CallUs supports themes. You can create and register your own themes for
Genesys Widgets.

Namespace

The CallUs plugin has the following namespaces tied up with each of the following types:

Type Namespace
Configuration callus
i18n - Localization callus
CXBus - APl commands & API events CallUs
CSS .cx-call-us

Mobile support

CallUs supports both desktop and mobile devices. Like all Genesys Widgets, there are two main
modes: Desktop & Mobile. Desktop is employed for monitors, laptops, and tablets, and Mobile is
employed for smartphones. When a smartphone is detected, CallUs switches to special full-screen
templates that are optimized for both portrait and landscape orientations.

Switching between desktop and mobile mode is done automatically by default. You may configure
Genesys Widgets to switch between Desktop and Mobile mode manually if necessary.

Screenshots

Dark theme

Light theme

Widgets Developer Resources 87

/File:CallUs_Main.png
/File:CallUs_Main.png
/File:CallUs_Dark02.png
/File:CallUs_Dark02.png
/File:CallUs_Dark_Mobile_Landscape.png
/File:CallUs_Dark_Mobile_Landscape.png

CallUs

Piryrherits
1 BAA 436 3THT

o
1T T

Paymaenis 1 888 436 3797

HZSRNM
m— T

Configuration

CallUs uses the _genesys.widgets.callus configuration property. You must specify all the numbers
and labels that appear in the CallUs Ul.

Example

window. genesys.widgets.callus = {

contacts: [

{
displayName: 'Payments',
i18n: 'Number00l',
number: 'l 202 555 0162'
T
{
displayName: 'Local',
i18n: 'Number002',
number: '202 555 0134'
T
{
displayName: 'International',
i18n: 'Number003',
number: '0647 555 0131'
)
]I
hours: [

'8am - 8pm Mon - Fri',
"10am - 6pm Sat - Sun'

+
Options
Name Type Description Default Required
contacts array (U ELIEY O ENREE [1 true

that represent

Widgets Developer Resources

/File:CallUs_Light01.png
/File:CallUs_Light01.png
/File:CallUs_Light05.png
/File:CallUs_Light05.png
/File:CallUs_Light_Mobile_Landscape.png
/File:CallUs_Light_Mobile_Landscape.png

CallUs

Name Type

hours array

Localization

Description Default

phone numbers
and their labels.
The first number in
this list displays as
the larger, main
number. Phone
labels can be set
directly using the
'displayName'
property or you
can use String
Names from your
localization file by
setting the String
Name in the 'i18n'
property. 'il8n'
overrides
'displayName'.

Example

{

"displayName":

"Payments",
"i18n":

"Numberool",

"number": "1
202 555 0162"
}

Array of strings to
appear stacked in

the business hours
section. Strings [1
here are free-form.
See screenshots

for ideas.

Required

For information on how to set up localization, please refer to the Localize widgets and

services guide.

Widgets Developer Resources

89

CallUs

Usage

Use the callus namespace when defining localization strings for the CallUs plugin in your i18n JSON
file.

The following example shows how to define new strings for the en (English) language. You can use
any language codes you wish; there is no standard format. When selecting the active language in
your configuration, you must match one of the language codes defined in your i18n JSON file. Please
note that you must only define a language code once in your i18n JSON file. Inside each language
object you should define new strings for each widget.

Example i18n JSON

{
"en": {
"callus": {
"CallUsTitle": "Call Us",
"SubTitle": "You can reach us at any of the following NUMBERS...",
"CancelButtonText": "Cancel",
"AriaWindowLabel": "Call Us Window",
"AriaCallUsClose": "Call Us Close",
"AriaBusinessHours": "Business Hours",
"AriaCallUsPhoneApp": "Opens the phone application",
"AriaCancelButtonText": "Call Us Cancel"
}
b
}

APl commands

Once you've registered your plugin on the bus, you can call commands on other
registered plugins. Here's how to use the global bus object to register a new
plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');
oMyPlugin.command('CallUs.open');

open

Opens the CallUs Ul.

Widgets Developer Resources 90

CallUs

Example

oMyPlugin.command('CallUs.open').done(function(e){
// CallUs opened successfully
}).fail(function(e){

// CallUs failed to open

1)
Resolutions
Status When
resolved CallUs is successfully opened
rejected CallUs is already open
close

Closes the CallUs UlI.

Example

oMyPlugin.command('CallUs.close"').done(function(e){
// CallUs closed successfully
}).fail(function(e){

// CallUs failed to close

1)
Resolutions
Status When
resolved CallUs successfully closed
rejected CallUs is already closed
configure

Returns
n/a
'Already opened'

Returns
n/a
'Already closed'

Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling

configure again after startup may result in unpredictable behavior.

Example

oMyPlugin.command('CallUs.configure', {

contacts: [
{
displayName: 'Payments',
i18n: 'Number00l',
number: 'l 888 436 3797

Widgets Developer Resources

91

CallUs

}
]

}) .done(function(e){

héurs: ['8am - 8pm Mon -

Fri']

// CallUs configured successfully

}).fail(function(e){

// CallUs failed to configure

3
Options

Option

contacts

hours

Resolutions

Status
resolved

rejected

APl events

Type

Array

Array

When
CallUs configuration is provided
No configuration provided

Description

An array of objects that represent
phone numbers and their labels.
The first number in this list will
display as the larger, main
number.

Array of strings to appear
stacked in the business hours
section. Strings here are free-
form.

Returns
n/a
'Invalid Configuration'

Once you've registered your plugin on the bus, you can subscribe to and listen
for published events. Here's how to use the global bus object to register a new

plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('CallUs.ready', function(e){});

Widgets Developer Resources

92

CallUs

Name
ready

opened
closed

Description

CallUs is initialized and ready to
accept commands

CallUs Ul has been opened
CallUs Ul has been closed

Data

Widgets Developer Resources

93

ChannelSelector

ChannelSelector

Contents

e 1 Overview
e 1.1 Usage
* 1.2 Customization
* 1.3 Namespace
* 1.4 Mobile support
* 1.5 Screenshots
¢ 2 Configuration
* 2.1 Example
* 2.2 Options
* 3 Localization
* 3.1 Usage
* 3.2 Example i18n JSON

4 APl commands
e 4.1 close
* 4.2 open

e 4.3 configure

5 API events

Widgets Developer Resources

94

ChannelSelector

Learn how to provide your customers with a configurable list of channels as an entry point for
contacting customer service in Genesys Cloud CX.

Related documentation:

Overview

The ChannelSelector Widget displays a configurable list of channels, as an entry point for customers
to contact customer service. Channels are not limited to Genesys Widgets; you can add your own
custom channels to open applications or open new windows as necessary.

Usage

Use the following methods to open ChannelSelector manually:

¢ Call the ChannelSelector.open command

e Create your own custom button, or link to open ChannelSelector (using the ChannelSelector.open
command)

By default, ChannelSelector has no channels configured. If not configured, the Ul
appears empty. See the configuration for examples and information on how to set up
your own custom channels.

Widgets Developer Resources 95

/File:Channelselector1.jpg
/File:Channelselector1.jpg

ChannelSelector

Customization

You can customize and localize the static text shown in the ChannelSelector Widget by adding entries
into your configuration and localization options.

ChannelSelector supports themes. You can create and register your own themes for Genesys
Widgets.

Namespace

The Channel Selector plugin has the following namespaces tied to each of the following types:

Type Namespace
Configuration channelselector
il8n—Localization channelselector
CXBus—API commands & API events ChannelSelector
CSS .cx-channel-selector

Mobile support

ChannelSelector supports both desktop and mobile devices. Like all Genesys Widgets, there are two
main modes: Desktop and Mobile. Desktop is employed for monitors, laptops, and tablets. Mobile is
employed for mobile devices. When ChannelSelector detects a mobile device, ChannelSelector
switches to special full-screen templates, optimized for both portrait and landscape orientations.

Switching between Desktop and Mobile modes is automatic, by default. If necessary, configure
Genesys Widgets to switch between Desktop and Mobile modes manually.

Screenshots

Dark theme

Widgets Developer Resources 96

/File:Channelselector1.jpg
/File:Channelselector1.jpg
/File:GC_ChannelSelector_Disabled_Dark_Main.jpg
/File:GC_ChannelSelector_Disabled_Dark_Main.jpg
/File:GC_CS_Available_Mobile_landscape_Dark.png
/File:GC_CS_Available_Mobile_landscape_Dark.png
/File:GC_CS_disabled_Mobile_landscape_Dark.png
/File:GC_CS_disabled_Mobile_landscape_Dark.png

ChannelSelector

Light theme

o e e s B i o iz k] e W e et i B!

Weh Chat L= F ik Chast

Configuration

ChannelSelector shares the _genesys.widgets.channelselector configuration namespace.
ChannelSelector has Ul options to enable and disable channels, hide channels, add new channels. All

Widgets Developer Resources 97

/File:GC_CS_Available_Mobile_portrait_Dark.png
/File:GC_CS_Available_Mobile_portrait_Dark.png
/File:GC_CS_disabled_Mobile_portrait_Dark.png
/File:GC_CS_disabled_Mobile_portrait_Dark.png
/File:GC_ChannelSelector_Disabled_light_Main.jpg
/File:GC_ChannelSelector_Disabled_light_Main.jpg
/File:GC_ChannelSelector_light_Main.jpg
/File:GC_ChannelSelector_light_Main.jpg
/File:GC_CS_Available_Mobile_landscape_Light.png
/File:GC_CS_Available_Mobile_landscape_Light.png
/File:GC_CS_disabled_Mobile_landscape_Light.png
/File:GC_CS_disabled_Mobile_landscape_Light.png
/File:GC_CS_Available_Mobile_portrait_Light.png
/File:GC_CS_Available_Mobile_portrait_Light.png
/File:GC_CS_disabled_Mobile_portrait_Light.png
/File:GC_CS_disabled_Mobile_portrait_Light.png

ChannelSelector

the channels are displayed based on the array of objects order defined in the channel's configuration.

To hide a particular channel, simply remove the corresponding array object.

Example

window. genesys.widgets.channelselector = {
channels: [{

enable: true,

clickCommand: 'CallUs.open',
displayName: 'Call Us',
i18n: 'CallusTitle',

icon: 'call-outgoing',

html: '"',

}I

enable: true,

clickCommand: 'WebChat.open',
displayName: 'Web Chat',
i18n: 'ChatTitle',

icon: 'chat',

html: '"',
1]
}i

Options

Name Type

channels[].enable boolean

channels[].clickCommsimishg

channels[].displayNams&ing

channels[].i18n string

channels[].icon string

Description

Enable/disable a
channel.

The CXBus
command name
for opening a
particular widget
when this channel
is clicked.

A channel name to
display on the
ChannelSelector
Widget.

To support
localization of the
channel display
name, this takes a
key parameter of
the
channelselector
section in the
language pack file.
Overrides above
displayName.

Select from one of
the Genesys
Widgets icons by
specifying icon css
class name.

true

none

none

none

none

Default

Required

N/A

Always

Always

N/A

Always

Widgets Developer Resources

98

ChannelSelector

Name Type Description Default Required

Overrides and
replaces the icon
section of a

channels[].html string channel with the none N/A
html (image tag)
defined here.

Localization

For information on how to set up localization, refer to the Localize widgets and
services guide.

Usage

Use the channelselector namespace when you define localization strings for the ChannelSelector
plugin in your i18n JSON file.

The following example shows how to define new strings for the en (English) language. You can use
any language codes you wish; there is no standard format. When selecting the active language in
your configuration, you must match one of the language codes defined in your i18n JSON file. You
must only define a language code once in your i18n JSON file. Inside each language object, you must
define new strings for each widget.

Example i18n JSON

{
"en": {
"channelselector": {
"Title": "Live Assistance",
"SubTitle": "How would you like to get in touch?",
"UnavailableTitle": "Unavailable", "AriaClose": "Live
Assistance Close",
"AriaWindowLabel": "Live Assistance Window"

}

APl commands

Once you've registered your plugin on the bus, you can call commands on other
registered plugins. Here's how to use the global bus object to register a new

Widgets Developer Resources 99

ChannelSelector

plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('ChannelSelector.open');

close

Closes the ChannelSelector Ul.

Example

oMyPlugin.command('ChannelSelector.close').done(function(e){
// ChannelSelector closed successfully
}).fail(function(e){

// ChannelSelector failed to close

3
Resolutions
Status When
resallias SlgzggeISelector is successfully
rejected ChannelSelector is already closed
open

Opens the ChannelSelector UI.

Example

oMyPlugin.command('ChannelSelector.open').done(function(e){
// ChannelSelector opened successfully
}).fail(function(e){

// ChannelSelector failed to open
)

Returns
N/A

Already closed

Widgets Developer Resources

100

ChannelSelector

Resolutions

Status

resolved

rejected

configure

When

ChannelSelector Widget is
successfully opened

ChannelSelector Widget is
already open

Modifies the ChannelSelector configuration.

Example

oMyPlugin.command('ChannelSelector.configure', {

channels: [

enable: true,

clickCommand: 'CallUs.open',
readyEvent: 'CallUs.ready',
displayName: 'Call Us',

{
i18n:
icon:
html:
}

]

}) .done(function(e){

"CallusTitle',
"call-outgoing',

// ChannelSelector configured successfully

}).fail(function(e){

// ChannelSelector failed to configure

1)
Options

Option

channels

channels[].enable

channels[].clickCommand

channels[].readyEvent

channels[].displayName

Type

array

boolean

string

string

string

Returns

N/A

'Already open'

Description

Array containing each channel
configuration object. The order of
channels is displayed based on
the order defined here.

Enable/disable chat channel.

The CXBus command name for
opening a particular widget when
this channel is clicked.

Subscribes to this ready event
published by a plugin and
enables the channel when that
plugin is ready.

A channel name to display in the

Widgets Developer Resources

101

ChannelSelector

Option Type Description
ChannelSelector Widget.

To support localization of channel
display name, this takes a key
channels[].i18n string parameter of the channelselector
section in the language pack file.
Overrides above displayName.

Select from one of the Genesys
channels[].icon string Widgets icons by specifying icon
css class name.

Overrides and replaces the icon
channels[].html string section of a channel with the
html (image tag) defined here.

Resolutions
Status When Returns
Configuration options are
resolved provided and set e
. No configuration options are . .) -
rejected provided Invalid configuration
APl events

Once you've registered your plugin on the bus, you can subscribe to and listen
for published events. Here's how to use the global bus object to register a new
plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('ChannelSelector.ready', function(e){});

Name Description Data
ChannelSelector plugin is
ready initialized and ready to accept N/A
commands
opened ChannelSelector Widget has N/A

appeared on screen

Widgets Developer Resources 102

ChannelSelector

Name Description Data

ChannelSelector Widget has

been removed from the screen b

closed

Widgets Developer Resources 103

Console

Console

Contents

e 1 Overview
* 1.1 Usage

* 2 Configuration
e 2.1 Description
* 2.2 Example
* 2.3 Options

* 3 Localization

e 4 Strings

¢ 5 APl commands
* 5.1 open
* 5.2 close
* 5.3 configure

¢ 6 APl events

Widgets Developer Resources 104

Console

e Developer
Learn how to debug commands and events on the widget bus.

Related documentation:

Overview

Use the Console Widget to debug commands and events on the widget bus. You can use dynamically
populated lists to test, debug, or demo all of the commands. You can also create event watch lists
that alert you when an event has fired.

)
§
:
5

{ Hore": { “firstname” : "Fiest', "lastnama’
“frst last@geresys com’, “sublect” - “subje:

Evems Subscriber
I O

PFlugniame Evert
WeliThat closed
Weblhal.opered

Console provides an easy-to-use interface for debugging the widget bus that complements the
standard command line methods. You can drag and drop the console anywhere on your screen, and
when you refresh the page or move to another one, Console reappears right where you left it, as you
left it. It is a great tool for getting to know the widget bus, the API for each widget, and debugging
issues.

Usage

Launch WebChat manually by using the following methods:

Widgets Developer Resources 105

/File:Console_Main.png
/File:Console_Main.png

Console

¢ Call the Console.open command

¢ Configure the settings to show Console when the browser window is opened.

e Create your own custom button or link to open Console (using the Console.open command)

Configuration

Description

Console option to open on initial loading.

Example

window. genesys.widgets.console = {open:

Options
Name Type
open boolean
Localization

true};

Description

Set to true for
console to open at
start.

false

Default

false

For information on how to set up localization, please refer to Localize widgets and

services.

sStrings

{
"ConsoleTitle": "CXBus Console",
"Commands": "Commands",
"Plugin": "Plugin",
"ConsoleErrorButton": "OK",
"Execute": "Execute",
"Event": "Event",
"SubscribeTo": "Subscribe to",
"Unsubscribe": "Unsubscribe",
"ReturnData": "Return Data",
"EventsSubscriber": "Events Subscriber",

Required

Widgets Developer Resources

106

Console

"Watch": "Watch",

"pluginNameEvent": "PluginName.Event",

"ClearAll": "Clear Al11",

"OptionsSample": "JSON Formatted Options {'option': value}"

APl commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.

Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Console.open');

open
Opens the Console Ul.

Example

oMyPlugin.command('Console.open').done(function(e){
// Console opened successfully
}).fail(function(e){

// Console failed to open

1)
Resolutions
Status When Returns
resolved Console is successfully opened n/a
rejected Console is already open 'Already opened'

Widgets Developer Resources

107

Console

close

Closes the Console Ul.

Example
oMyPlugin.command('Console.close').done(function(e){

// Console closed successfully
}).fail(function(e){

// Console failed to close

1)
Resolutions
Status When Returns
resolved Console successfully closed n/a
rejected Console is already closed 'Already closed'
configure

Modifies the Console configuration options. See the Console configuration page.

Example

oMyPlugin.command('Console.configure', {
open: false
}) .done(function(e){
// Console configured successfully
}).fail(function(e){

// Console failed to configure

1)
Options
Option Type Description
If setting is open: true, the
open . console will automatically be

open when Widgets is launched
and the console is ready.

Widgets Developer Resources 108

Console

Resolutions
Status When Returns
resolved Console configuration is provided n/a
rejected No configuration is provided 'Invalid Configuration'
APl events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');
oMyPlugin.subscribe('Console.ready', function(e){});

Name Description Data

Console is initialized and ready to

ready accept commands. e
The Console Widget has

opened appeared on screen. n/a

closed The Console Widget has been /A

removed from the screen.

Widgets Developer Resources 109

SideBar

SideBar

Contents

e 1 Overview
e 1.1 Usage
e 1.2 Dependency
* 1.3 Customization
* 1.4 Namespace
e 1.5 Mobile support
* 1.6 Screenshots

e 2 Configuration
* 2.1 Example
e 2.2 Options

¢ 3 Localization

* 3.1 Strings

4 APl commands
* 4.1 configure
* 5 APl events
* 5.1 Resolutions
* 5.2 open
* 5.3 close
* 5.4 expand

e 5.5 contract

Widgets Developer Resources 110

SideBar

Learn about the Sidebar widget, which customers use to launch other widgets with a single click.

Related documentation:

Overview

Use the SideBar to launch other widgets with a single click. By default, SideBar is displayed on the
right side of the screen, and you can configure any launchable widgets onto SideBar, including your
custom extension widgets. The SideBar Ul expands when you hover your cursor over it, and contracts
when you move the cursor away. Other features include configurable positioning and mobile support.
You can also add new configurations on the fly, which automatically re-renders the SideBar.

The image on the left shows SideBar when it is initially loaded, while the one on the right shows what
it looks like when it's expanded.

Usage
Use the following methods to launch SideBar manually:

e Call the SideBar.open command

e Configure SideBar to show and launch custom widgets

Widgets Developer Resources 111

/File:GC_Sidebar_DesktopContracted.jpg
/File:GC_Sidebar_DesktopContracted.jpg
/File:GC_Sidebar_DesktopExpanded.jpg
/File:GC_Sidebar_DesktopExpanded.jpg

SideBar

Dependency

You must configure at least one customer-facing Ul widget in order to use the SideBar Widget.

Customization

You can customize and localize all the text shown in the SideBar Widget by adding entries to your
configuration and localization options.

SideBar also supports themes. You can create and register your own themes for Genesys Widgets.

Namespace

The SideBar plugin has the following namespaces tied to each of the following types:

Type Namespace
Configuration sidebar
i18n - Localization sidebar
CXBus -API commands & APl events SideBar
CSSs .cx-sidebar

Mobile support

SideBar supports both desktop and mobile devices. In mobile mode, the SideBar launcher button
displays at the bottom of the screen. When triggered, it expands to the full screen of the mobile
device and shows all channels configured with a scrollbar when necessary. Like all Genesys Widgets,
there are two main modes: desktop and mobile. Desktop is for monitors, laptops, and tablets, and
mobile is for smartphones. When a smartphone is detected, SideBar switches to special full-screen
templates that are optimized for both portrait and landscape orientations.

Switching between desktop and mobile mode is done automatically by default. You may configure
Genesys Widgets to switch between desktop and mobile mode manually if necessary.

Screenshots

Dark theme

Widgets Developer Resources 112

SideBar

Light theme

— - —
| | Fa) ATaY0
e H._f,_-/ LIV \rl 1L
I !
S
T Y1 B R e e Il T
pr—3 g i = FPoalaldal 1o
S, i - — - - P | =
L
)
~ (2 ¢ e
-‘-\\ '\.\\"‘--. e et
N .
; & .
o Eruerarad bu S 2E R Vi
= Powered L; a GEMESYS

00,

Widgets Developer Resources

113

/File:GC_Sidebar_DesktopContracted.jpg
/File:GC_Sidebar_DesktopContracted.jpg
/File:GC_Sidebar_DesktopExpanded.jpg
/File:GC_Sidebar_DesktopExpanded.jpg
/File:GC_Sidebar_MobileExpanded.jpg
/File:GC_Sidebar_MobileExpanded.jpg
/File:GC_Sidebar_MobileExpandedLandscape.jpg
/File:GC_Sidebar_MobileExpandedLandscape.jpg
/File:GC_Sidebar_DesktopContractedLight.jpg
/File:GC_Sidebar_DesktopContractedLight.jpg
/File:Cloud_Sidebar_DesktopExpanded_LightMode_10032020_.png
/File:Cloud_Sidebar_DesktopExpanded_LightMode_10032020_.png
/File:Sidebar_MobileNeedHelpLight_28022020.jpg
/File:Sidebar_MobileNeedHelpLight_28022020.jpg
/File:GC_Sidebar_MobileExpanded_Light.jpg
/File:GC_Sidebar_MobileExpanded_Light.jpg
/File:GC_Sidebar_MobileExpandedLandscape_light.jpg
/File:GC_Sidebar_MobileExpandedLandscape_light.jpg

SideBar

Configuration

SideBar shares the _genesys.widgets.sidebar configuration namespace. SideBar has Ul options to
handle its position on the screen, disable the expand feature, hide SideBar, and add new channels on
the fly. The order of channels that display is based on the order defined in the channel's configuration

array.

Example

window. genesys.widgets.sidebar = {

showOnStartup: true,

position:

'left',

expandOnHover: true,

channels:

display properties

}i
Options

Name

channels[index].click&Ginmgand

channels[index].click@bjiects

channels[|ndex].d|splac¥uery

name: 'ChannelSelector',

clickCommand: 'ChannelSelector.open',

clickOptions: {},

//use your own static string or i18n query string for the below two

displayName: 'Live Assist',
displayTitle: 'Get live help',

icon: 'agent'

name: 'WebChat'

Type Description Default Required

Change the default
command that is
triggered when
clicked.

n/a false

Pass valid
command options
that are used in
above click
command
execution.

n/a n/a

Change the default
ing or il8n display name for
Nagn%tring this channel with
your own static

n/a false

Widgets Developer Resources 114

SideBar

. . string or i18n
Channels['ndex]'d'Splacf/uétr%string

channels[index].icon string

channels[index].namestring

channels[index].onCli¢knction

channels[index].readydtviemt

string or to
achieve
localization, use
i18n query string.
Syntax: @il8n:.

Change the default
tooltip content for
this channel with
your own static
string or to
achieve
localization, use
i18n query string.
Syntax: @i18n:.

Change the default
icon for this
channel. For the
list of icon names
see Customize
icons in
Customize
appearance.

Name of the
channel. It can be
found in the
namespace
section
documentation of
each widget. Used
to identify official
channels vs
custom channels.
If a reserved name
is used here,
SideBar will apply
default values for
that channel. A
plugin name
defined in the new
custom plugin can
also be given here.
To override the
default values or
when defining a
new custom
channel/plugin,
use the below
following
properties.

Define a custom
onclick function;
this overrides
clickCommand and
clickOptions.

Subscribes to this

n/a

n/a

n/a

n/a

n/a

false

false

true

false

false

Widgets Developer Resources

115

SideBar

ready event
published by a
plugin.

Enables the
expand (slide-out)
expandOnHover boolean or contract (slide- true false
in) behavior of
SideBar.

Defines the
position of SideBar
position string on the screen. right false
Acceptable values
are left or right.

Shows the SideBar
on the screen
when Widgets is
launched.

showOnStartup boolean true false

Localization

For your custom plugins, you can define string key names and values for Name
and Title (tooltip) to display on SideBar. The key format requires the plugin name,
followed by "Title" or "Name". For example, a plugin named "MyPlugin" will have
keys called "MyPluginName" and "MyPluginTitle".

For information on how to set up localization, refer to the Localize widgets and
services guide.

Strings
{
"SidebarTitle": "Need help?",
"ChannelSelectorName": "Live Assistance",
"ChannelSelectorTitle": "Get assistance from one of our agents right away",

"CallUsName": "Call Us",

"CallUsTitle": "Call Us details",
"WebChatName": "Live Chat",
"WebChatTitle": "Live Chat",
"AriaClose": "Close the menu Need help"

APl commands

Widgets Developer Resources 116

SideBar

Once you've registered your plugin on the bus, you can call commands on other
registered plugins. Here's how to use the global bus object to register a new
plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('SideBar.open');

configure

Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The SideBar Widget has to be configured at minimum with one channel. The
configure command can also be called at runtime with a new configuration, which will override the
existing configuration, showing new channels on screen.

Example

oMyPlugin.command('SideBar.configure', {

showOnStartup: false,

position: 'left',

expandOnHover: false,

channels: [

{

name: 'ChannelSelector’,
clickCommand: 'ChannelSelector.open',
clickOptions: {},

/* use your own static string or i18n query string for the below
two display properties. Example for i18n query string: '@il8n:sidebar.ChannelSelectorName'
where 'sidebar' refers to plugin namespace and ChannelSelectorName' name refers to the
property key containing the actual text.*/

displayName: '@il8n:sidebar.ChannelSelectorName',

displayTitle: 'Get assistance from one of our agents right away', //
Your own static string

readyEvent: 'ChannelSelector.ready',

icon: 'agent',

onClick: function($, CXBus, Common) {

_genesys.widgets.bus.command('MyPlugin.open');
}

]
}) .done(function(e){

// Sidebar configured successfully

Widgets Developer Resources 117

SideBar

}).fail(function(e){

// Sidebar failed to configure properly

1)

Options

Option

showOnStartup
position

expandOnHover

channels

channels[index].name

channels[index].clickCommand

channels[index].clickOptions

channels[index].displayName

channels[index].displayTitle

channels[index].readyEvent

channels[index].icon

Type

boolean
string

boolean

array

string

string

object

string or i18n query string

string or i18n query string

string

string

Description

Shows SideBar on the screen
when Widgets is launched.

Defines the position of SideBar
on the screen.

Enables the expand or contract
behavior of SideBar.

Array containing each channel
configuration object. The order of
channels is displayed based on
the order defined here.

Name of the channel. It can be
found in the Namespace section
documentation of each widget.
Used to identify official channels
vs custom channels. If a reserved
name is used here, SideBar will
apply default values for that
channel. To override the default
values or when defining a new
custom channel, use the below
following properties.

Change the default command
that is triggered when clicked.

Pass valid command options that
are used in above click command
execution.

Change the default display name
for this channel with your own
static string or to achieve
localization, use i18n query
string. Syntax: @i18n:..

Change the default tooltip
content for this channel with
your own static string or to
achieve localization, use i18n
query string. Syntax: @il18n:..

Subscribes to this ready event
published by a plugin.

Change the default icon for this
channel. For the list of icon
names, see Customize icons in
the Customize appearance guide.

Widgets Developer Resources

118

SideBar

channels[index].onClick

APl events

function

Define a custom onclick function,
which overrides clickCommand
and clickOptions.

Once you've registered your plugin on the bus, you can subscribe to and listen
for published events. Here's how to use the global bus object to register a new

plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('SideBar.ready', function(e){ /* sample code */ });

Name

ready

opened

closed
expanded

contracted

Resolutions

Status

resolved

rejected

Description

SideBar is initialized and ready to
accept commands.

SideBar Widget has appeared on
screen. For desktop, it displays
on the sides of the screen, and in
mobile, at the bottom corner as a
button.

SideBar Widget has been
removed from the screen.

SideBar Widget has expanded,
showing channel icon and name.

SideBar Widget has contracted,
showing channel icons only.

When

Configuration options are
provided and set

No configuration options are
provided

Data

n/a

n/a

n/a
n/a

n/a

Returns
n/a
'Invalid configuration. Please

ensure at least one channel is
configured.'

Widgets Developer Resources

119

SideBar

open

Opens the SideBar Ul. In desktop mode, it opens as an actual SideBar and shows the configured

channels, whereas in mobile it opens as a button at the bottom to start.

Example

oMyPlugin.command('SideBar.open');

Resolutions
Status When
resolved SideBar is successfully opened
rejected SideBar is already opened
close

Closes the Sidebar Ul.

Example

oMyPlugin.command('SideBar.close');

Resolutions
Status When
resolved SideBar is successfully closed
rejected SideBar is already closed
expand

Returns
n/a
'Already opened'

Returns
n/a
'already closed'

To show more details about the channels, SideBar slides out from the sides of the screen on desktop

machines, but expands to full screen in mobile devices.

Example

oMyPlugin.command('SideBar.expand');

Resolutions
Status When
rejected SideBar is already expanded
resolved SideBar is successfully expanded

Returns
'sidebar already expanded'

n/a

Widgets Developer Resources

120

SideBar

contract

Retracts the expanded version of SideBar, showing only the channel buttons on desktop machines
and the SideBar launcher button on mobile devices.

Example

oMyPlugin.command('SideBar.contract');

Resolutions
Status When Returns
SideBar is successfully
resolved contracted n/a
rejected SideBar is already contracted sidebar already contracted

Widgets Developer Resources 121

WebChat

WebChat

Contents

e 1 Overview
e 1.1 Usage
* 1.2 Customization
* 1.3 Namespace
* 1.4 Mobile support

e 1.5 Screenshots

¢ 2 Configuration
* 2.1 Options
* 3 Localization
* 3.1 Special values for localization
* 3.2 Error handling
* 3.3 Usage
* 3.4 Default i18n JSON

* 4 APl commands

* 4.1 configure

* 4.2 open

* 4.3 close

* 4.4 minimize

* 4.5 endChat

* 4.6 invite

* 4.7 relnvite

* 4.8 injectMessage

* 4.9 showChatButton
4.10 hideChatButton

e 4.11 showOverlay
* 4.12 hideOverlay
* 5 APl events
* 6 Metadata

Widgets Developer Resources 122

WebChat

* 6.1 Interaction Lifecycle
* 6.2 Lifecycle scenarios
* 6.3 Metadata
e 7 Customizable chat registration form
* 7.1 Default example
e 7.2 Properties
* 7.3 Labels
* 7.4 Wrappers
» 7.5 Validation
* 7.6 Form submit
¢ 8 Customizable emoji menu
* 8.1 Introduction
» 8.2 Differences between v1 and v2
* 8.3 Configuring the emoji menu

e 8.4 Localization

Widgets Developer Resources

123

WebChat

Learn how to enable live chats between customers and agents in Genesys Cloud CX.

Related documentation:

Feature coming soon: Web messaging

If you are a Genesys Cloud CX customer, we encourage you to use the new web messaging feature to
replace web chat. To use web messaging, you configure tracking through the Messenger JavaScript
SDK instead of deploying a tracking snippet.

Overview

The WebChat Widget allows a customer to start a live chat with a customer service agent. The Ul
appears within the page and follows the customer as she explores your website. Other features
include minimize/maximize, auto-reconnect, and a built-in invite feature.

Usage

You can launch WebChat manually by using the following methods:

¢ Call the WebChat.open command
¢ Configure ChannelSelector to show WebChat as a channel
¢ Enable the built-in launcher button for WebChat that appears on the right side of the screen

e Create your own custom button or link to open WebChat (using the WebChat.open command)

Customization

You can customize and localize all of the static text shown in the WebChat Widget by adding entries
to your configuration and localization options.

WebChat also supports themes. You can create and register your own themes for Genesys Widgets.

Namespace

The WebChat plugin has the following namespaces:

Type Namespace

Configuration webchat

Widgets Developer Resources 124

WebChat

Type Namespace
i18n - Localization webchat
CXBus - APl commands & API events WebChat
CSsS .cx-webchat

Mobile support

WebChat supports both desktop and mobile devices. Like all Genesys Widgets, there are two main
modes: desktop and mobile. Desktop is employed for monitors, laptops, and tablets, and mobile is
employed for smartphones. When a smartphone is detected, WebChat switches to special full-screen
templates that are optimized for both portrait and landscape orientations.

Switching between desktop and mobile mode is done automatically by default. You may configure
Genesys Widgets to switch between desktop and mobile mode manually if necessary.

Screenshots

Dark theme

WebChat forms

Widgets Developer Resources 125

/File:WebChat_Form_Desktop_Dark.png
/File:WebChat_Form_Desktop_Dark.png
/File:WebChat_Form_Portrait_Dark.png
/File:WebChat_Form_Portrait_Dark.png

WebChat

Widgets Developer Resources 126

/File:WebChat_Form_Landscape_Dark.png
/File:WebChat_Form_Landscape_Dark.png
/File:WebChat_Transcript_Desktop_Dark-without-file-upload.png
/File:WebChat_Transcript_Desktop_Dark-without-file-upload.png
/File:WebChat_Transcript_Landscape_Dark_without-upload.png
/File:WebChat_Transcript_Landscape_Dark_without-upload.png

WebChat

Light theme

WebChat forms

First Mame | Fequin
Last Hame
Ermeail

Suibget

Fest Hama | |

Lt M

Widgets Developer Resources

127

/File:WebChat_Transcript_Portrait_Dark-without-upload.png
/File:WebChat_Transcript_Portrait_Dark-without-upload.png
/File:WebChat_Form_Desktop_Light.png
/File:WebChat_Form_Desktop_Light.png
/File:WebChat_Form_Portrait_light.png
/File:WebChat_Form_Portrait_light.png

WebChat

& Live Chat

Pessiams | Piecuieed

Lawi e | Fcpuiend

tmat | Optional

Baget | Optionsl
=1

Powra by S MESTS

WebChat transcripts

& Live Chat!

Today
Chat Sarted®
1254 PM

Jane Doe Correcied
1254 P

[Tyt your messsge bere and hil retum

8 =

& Live Chat!
e Saane
1P

s Do Corwwciod
[FITCT]

TP your miasssg hans and ke ratum

&= Live Chat! - X

Chat Startede
1254 P

e Do Corracted
1254 P

Tyisie yoousl ivessage here and bl rum

@ = ‘a‘

Widgets Developer Resources

128

/File:WebChat_Form_Landscape_light.png
/File:WebChat_Form_Landscape_light.png
/File:WebChat_Transcript_Desktop_Light-without-file-upload.png
/File:WebChat_Transcript_Desktop_Light-without-file-upload.png
/File:WebChat_Transcript_Portrait_Light_without_upload.png
/File:WebChat_Transcript_Portrait_Light_without_upload.png
/File:WebChat_Transcript_Landscape_Light_without_upload.png
/File:WebChat_Transcript_Landscape_Light_without_upload.png

WebChat

The dark theme is active by default. You may also change colors/themes for widgets

by following the instructions on the Customize appearance page.

Configuration

WebChat and WebChatService share the _genesys.widgets.webchat configuration namespace.
WebChat has Ul options while WebChatService has connection options.

Options

Name Type

emojis boolean

form object

confirmFormCloseBoakdad

Description

Enable/disable
emoji menu
inside chat

message input.

Emojis are
supported
using Unicode
characters.

A JSON object
containing a
custom
registration

form definition.

The JSON
definition
placed here
becomes the
default
registration
form layout for
WebChat. See
Customizable
chat
registration
form.

Enable or
disable
displaying a
confirmation
message

Default

false

A basic
registration
form is defined
internally by
default

true

Required

N/A

N/A

N/A

Introduced/
updated

Widgets Developer Resources

129

WebChat

Name Type

timeFormat number/string

maxMessagelengtiumber

charCountEnabledboolean

autolnvite.enabledoolean

autolnvite.timeTolnuitelSeconds

Description

before closing
WebChat if
information
has been
entered into
the registration
form.

This sets the
time format for
the
timestamps in
this widget. It
can be 12 or
24.

Set a character
limit that the
user can input
into the
message area
during a chat.
When the max
is reached,
user cannot
type any more.

Show/hide the
number of
characters
remaining in
the input
message area
while the user

is typing.

Enable/disable
auto-invite
feature.
Automatically
invites user to
chat after user
idles on page
for preset time.

When running
Widgets in lazy
load mode, this
option requires
that you pre-
load the
WebChat plugin.

Number of
seconds of idle
time before
inviting

Default

12

500

false

false

5

Required

false

N/A

N/A

N/A

N/A

Introduced/
updated

Widgets Developer Resources

130

WebChat

Name Type

autolnvite.inviteTimeobeSeconds

chatButton.enableldoolean

chatButton.templatiing

chatButton.effect string

chatButton.openDaelayber

Description Default Required

customer to
chat.

Number of
seconds to
wait, after
showing invite,
before closing
chat invite.

When the focus
is on the Invite
window, the
chat invite will
not auto close
upon the
specified
timeout. In this 30 N/A
scenario, you
must click the
Close button to
manually close
the Invite
window. This
behavior is
implemented to
support the
logical and
predictable
focus order as
recommended
by the WCAG
2.4.3:Focus
Order.

Enable/disable
chat button on
screen.

When running
Widgets in lazy
load mode, this
option requires
that you pre-
load the
WebChat plugin.

false N/A

Custom HTML
string template N/A
for chat button.

Type of
animation
effect when
revealing chat
button: slide
or fade.

Number of 1000 N/A

fade N/A

Introduced/
updated

Widgets Developer Resources

131

WebChat

Name Type

chatButton.effect Dunartien

chatButton.hideD Wwaoddrwvite

minimizeOnMobilePaskeda

markdown boolean

ariaCharRemainingimbsribalslean

Description

milliseconds
before
displaying chat
button on
screen.

Length of
animation
effect in
milliseconds.

When the auto-
invite feature is
activated, the
chat button
hides. When
invite is
dismissed, the
chat button
reveals again.

Enable/disable
the minimized
state of
WebChat on
chat restore.
Note: This
option is only
for mobile
mode.

Enable/disable
the markdown
feature for chat
messages.

An array
containing the
intervals as a
percentage at
which the
screen reader
will announce
the remaining
characters
when the user
inputs text into
the message
area. By
default, it is
enabled with
the following
intervals, and it
is customizable
according to
user needs.
Configuring a

Default

300

true

false

false

[50, 25, 10]

Required

N/A

N/A

N/A

N/A

N/A

Introduced/
updated

9.0.014.02

9.0.016.11

Widgets Developer Resources

132

WebChat

Introduced/

Name Type Description Default Required updated

value of false
will let the
screen reader
call out
remaining
characters for
every change.

Enable or
disable
WebChat
MetaData.

metaDataEnabledboolean true n/a 9.0.017.26

Localization

You can define string key names and values to match the system messages that are received from
the chat server. If a customer system message is received as SYS001 in the message body, WebChat
checks to determine if any keys match in the language pack, and then replaces the message body
accordingly. SYS001 is an example format. There are no format restrictions on custom message

keys. The purpose of this feature is to allow localization for the user interface and server to be kept in
the same file.

Special values for localization

You can inject the special value. When used, the agent's name is rendered in its place at runtime.

Error handling

Customers can define their own error messages in the Errors section found in
the above WebChat localization. If no error messages are defined, default error
messages are used.

For information on how to set up localization, refer to Localize widgets and services.

Usage

You must use the webchat namespace for defining localization strings for the WebChat plugin in your
i18n JSON file.

The following example shows how to define new strings for the en (English) language. You can use
any language codes you wish; there is no standard format. When selecting the active language in
your configuration, you must match one of the language codes defined in your i18n JSON file. Please

Widgets Developer Resources 133

WebChat

note that you must only define a language code once in your i18n JSON file. Inside each language

object you should define new strings for each widget.

Default i18n JSON
{

"en": {
"webchat": {

"ChatButton": "Chat",
"ChatStarted": "Chat Started",
"ChatEnded": "Chat Ended",
"AgentNameDefault": "Agent",
"AgentConnected": " Connected",
"AgentDisconnected": " Disconnected",
"BotNameDefault": "Bot",
"BotConnected": " Connected",
"BotDisconnected": " Disconnected",
"AgentTyping": "...",
"AriaAgentTyping": "Agent is typing",

"AgentUnavailable": "Sorry. There are no agents available. Please

try later.",
"ChatTitle": "Live Chat",
"ChatEnd": "X",
"ChatClose": "X",
"ChatMinimize": "Min",
"ChatFormFirstName": "First Name",
"ChatFormLastName": "Last Name",
"ChatFormNickname": "Nickname",
"ChatFormEmail": "Email",
"ChatFormSubject": "Subject",
"ChatFormPlaceholderFirstName": "Required",
"ChatFormPlaceholderLastName": "Required",
"ChatFormPlaceholderNickname": "Optional",
"ChatFormPlaceholderEmail": "Optional",
"ChatFormPlaceholderSubject": "Optional",
"ChatFormSubmit": "Start Chat",
"AriaChatFormSubmit": "Start Chat",
"ChatFormCancel": "Cancel",
"AriaChatFormCancel": "Cancel Chat",
"ChatFormClose": "Close",
"ChatInputPlaceholder": "Type your message here",
"ChatInputSend": "Send",
"AriaChatInputSend": "Send",

"ChatEndQuestion": "Are you sure you want to end this chat session?",

"ChatEndCancel": "Cancel",

"ChatEndConfirm": "End chat",

"AriaChatEndCancel": "Cancel",

"AriaChatEndConfirm": "End",

"ConfirmCloseWindow": "Are you sure you want to close chat?",

"ConfirmCloseCancel": "Cancel",

"ConfirmCloseConfirm": "Close",

"AriaConfirmCloseCancel": "Cancel",

"AriaConfirmCloseConfirm": "Close",

"ActionsDownload": "Download transcript",

"ActionsEmoji": "Send Emoji",

"ActionsTransfer": "Transfer",

"ActionsInvite": "Invite",

"InstructionsTransfer": "Open this link on another device to
transfer your chat session>",

"InstructionsInvite": "Share this link with another person to
them to this chat session",

add

Widgets Developer Resources

134

WebChat

retry.",

"InviteTitle": "Need help?",
"InviteBody": "Let us know if we can help out.",
"InviteReject": "No thanks",
"InviteAccept": "Start chat",

"AriaInviteAccept": "Accept invite and start chat",
"AriaInviteReject": "Reject invite",
"ChatError": "There was a problem starting the chat session. Please

"ChatErrorButton": "OK",
"AriaChatErrorButton": "OK",

Would you like to start a new one?",

"ChatErrorPrimaryButton": "Yes",
"ChatErrorDefaultButton": "No",
"AriaChatErrorPrimaryButton": "Yes",
"AriaChatErrorDefaultButton": "No",
"RestoreTimeoutTitle": "Chat ended",
"RestoreTimeoutBody": "Your previous chat session has timed out.
"RestoreTimeoutReject": "No thanks",
"RestoreTimeoutAccept": "Start chat",
"AriaRestoreTimeoutAccept": "Accept invite and start chat",
"AriaRestoreTimeoutReject": "Reject invite",
"EndConfirmBody": "Would you really like to end your chat session?",
"EndConfirmAccept": "End chat",
"EndConfirmReject": "Cancel",
"AriaEndConfirmAccept": "End chat",
"AriaEndConfirmReject": "Cancel",
"SurveyOfferQuestion": "Would you like to participate in a survey?",
"ShowSurveyAccept": "Yes",
"ShowSurveyReject": "No",
"AriaShowSurveyAccept": "Yes",
"AriaShowSurveyReject": "No",
"UnreadMessagesTitle": "unread",
"AriaYouSaid": "You said",
"AriaSaid": "said",
"AriaSystemSaid": "System said",
"AriaWindowLabel": "Live Chat Window",
"AriaMinimize": "Live Chat Minimize",
"AriaMaximize": "Live Chat Maximize",
"AriaClose": "Live Chat Close",
"AriaEmojiStatusOpen": "Emoji picker dialog is opened",
"AriaEmojiStatusClose": "Emoji picker dialog is closed",
"AriaEmoji": "emoji",
"AriaEmojiPicker": "Emoji Picker",
"AriaCharRemaining": "Characters remaining",
"AriaMessagelInput": "Message box",
"DayLabels": [

||Sun|| E

IIMonII)

IITueII)

"Wed",

"Thur",

"Fri",

"Sat"
]I
"MonthLabels": [

"Jan",

"Feb",

"Mar",

"Apr",

"May"I

"Jun",

"Jul",

"Aug" ’

Widgets Developer Resources

135

WebChat

IISeptII)
Iloctll)
"Nov"
"Dec"
]’
"todayLabel": "Today",

"Errors": {

"204": "We're sorry but your message is too long. Please
write a shorter message.",

"240": "We're sorry but we cannot start a new chat at this
time. Please try again later.",

"401": "We're sorry but we are not able to authorize the chat
session. Would you like to start a new chat?",

"404": "We're sorry but we cannot find your previous chat
session. Would you like to start a new chat?",

"500": "We're sorry, an unexpected error occurred with the
service. Would you like to close and start a new Chat?",

"503": "We're sorry, the service is currently unavailable or
busy. Would you like to close and start a new Chat again?",

"ChatUnavailable": "We're sorry but we cannot start a new
chat at this time. Please try again later.",

"CriticalFault": "Your chat session has ended unexpectedly
due to an unknown issue. We apologize for the inconvenience.",

"StartFailed": "There was an issue starting your chat

session. Please verify your connection and that you submitted all required information
properly, then try again.",

"MessageFailed": "Your message was not received successfully.
Please try again.",

"RestoreFailed": "We're sorry but we were unable to restore
your chat session due to an unknown error.",

"InviteFailed": "Unable to generate invite at this time.
Please try again later.",

"Disconnected": "

Connection lost

"Reconnected": "
Connection restored

"Generic": "
An unexpected error occurred.

"purecloud-v2-sockets-400": "Sorry, something went wrong.
Please verify your connection and that you submitted all required information properly, then
try again.",

"purecloud-v2-sockets-500": "We're are sorry, an unexpected
error occurred with the service.",

"purecloud-v2-sockets-503": "We're sorry, the service is
currently unavailable."

Fr}rd

APl commands

Once you've registered your plugin on the bus, you can call commands on other
registered plugins. Here's how to use the global bus object to register a new
plugin on the bus.

Widgets Developer Resources 136

WebChat

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('WebChat.open');

configure

Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling
configure again after startup may result in unpredictable behavior.

open
Opens the WebChat UlI.

Example

oMyPlugin.command('WebChat.open', {

userData: {},
form: {

autoSubmit: false,
firstname: 'John',
lastname: 'Smith',
email: 'John@mail.com',
subject: 'Customer Satisfaction'
b
formJSON: {...}
}) .done(function(e){
// WebChat opened successfully
}).fail(function(e){

// WebChat isn't open or no active chat session

3
Options
Option Type Description
Object containing form data to
form object prefill in the chat entry form and
optionally auto-submit the form.
form.autoSubmit boolean Automatically submit the form.

Useful for bypassing the entry

Widgets Developer Resources 137

WebChat

Option

form.firstname

form.lastname

form.email
form.subject

formJSON

userData

Resolutions

Status
resolved

rejected

close

Type

string

string

string
string

object

object

When
WebChat is successfully opened
WebChat is already open

Closes the WebChat UlI.

Example
oMyPlugin.command('WebChat.close').done(function(e){
// WebChat closed successfully
}).fail(function(e){

// WebChat is already closed or no active chat session

s
Resolutions
Status When
resolved WebChat is successfully closed
rejected WebChat is already closed
minimize

Minimizes or un-minimizes the WebChat UI.

Description
form step.

Value for the first name entry
field.

Value for the last name entry
field.

Value for the email entry field.
Value for the subject entry field.

An object containing a custom
registration form definition. See
Customizable chat registration
form.

Object containing arbitrary data
that gets sent to the server.
Overrides userData set in the
webchat configuration object.

Returns
N/A

already opened

Returns
N/A
already closed

Widgets Developer Resources

138

WebChat

Example

oMyPlugin.command('WebChat.minimize').done(function(e){

// WebChat minimized successfully

}).fail(function(e){

// WebChat ignores command

1)

Options

Option

minimized

Resolutions

Status
resolved
rejected

endChat

Starts the end chat procedure. User may be prompted to confirm.

Example

Type
boolean

When
Always
Never

oMyPlugin.command('WebChat.endChat"').done(function(e){

// WebChat ended a chat successfully

}).fail(function(e){

// WebChat has no active chat session

1)

Resolutions

Status

resolved

rejected

When

There is an active chat session to
end

There is no active chat session to
end

Description

Rather than toggling the current
minimized state, you can specify
the minimized state directly: true
= minimized, false = un-
minimized.

Returns
N/A
Invalid configuration

Returns
N/A

There is no active chat session to
end

Widgets Developer Resources

139

WebChat

invite

Shows an invitation to chat using the toaster popup element. The text shown in the invitation can be

edited in the localization file.

Example
oMyPlugin.command('WebChat.invite').done(function(e){
// WebChat invited successfully
}).fail(function(e){

// WebChat is already open and will be ignored

1)
Resolutions
Status When Returns
resolved WebChat is closed and the toast N/A

element is created successfully

WebChat is already open
rejected (prevents inviting a user that is
already in a chat)

Chat is already open. Ignoring
invite command.

relnvite

When an active chat session cannot be restored, this invitation offers to start a new chat for the user.

The text shown in the invitation can be edited in the localization file.

Example
oMyPlugin.command('WebChat.relInvite').done(function(e){
// WebChat reinvited successfully
}).fail(function(e){

// WebChat is already open and will be ignored

1
Resolutions
Status When Returns
WebChat is closed, the config
item
resolved webchat.inviteOnRestoreTimeoult/A

is set, and the toast element is
created successfully

WebChat is already open
rejected (prevents inviting a user that is
already in a chat)

Chat is already open. Ignoring
invite command.

Widgets Developer Resources

140

WebChat

injectMessage

Injects a custom message into the chat transcript. Useful for extending WebChat functionality with
other Genesys products.

Example

oMyPlugin.command('WebChat.injectMessage', {

type: 'text',
name: 'person',
text: 'hello',
custom: false,
bubble:{

fill: '#00FF00',
radius: '4px',
time: false,

name: false,
direction: 'right',
avatar:{

custom:
word

icon: 'email!’
}
}) .done(function(e){

// WebChat injected a message successfully
// e.data == The message HTML reference (jQuery wrapped set)

}).fail(function(e){

// WebChat isn't open or no active chat

I
Options
Option Type Description
Switch the rendering type of the
type string injected message between text
and HTML.
Specify a name label for the
. message to identify what service
name string or widget has injected the
message.
text string The content of the message.

Either plain text or HTML.

If set to true, the default
message template will not be
custom boolean used, allowing you to inject a
highly customized HTML block
unconstrained by the normal

Widgets Developer Resources 141

WebChat

Option

bubble.fill
bubble.radius
bubble.time
bubble.name

bubble.direction

bubble.avatar.custom

bubble.avatar.icon

Resolutions
Status

resolved

rejected

showChatButton

Type

string of valid CSS color value

string of valid CSS border radius
vale

boolean
boolean

string

string or HTML reference

class name

When

WebChat is open and there is an
active chat session

WebChat is not open and/or there
was no active chat session

Description
message template.

The content of the message.
Either plain text or HTML.

The border radius you'd like for
the bubble.

If you'd like to show the
timestamp for the bubble.

If you'd like to show the name for
the bubble.

Which direction you want the
message bubble to come from.

Change the content of the HTML
that would be the avatar for the
chat bubble.

Generated common library
provided for icon name.

Returns

An HTML reference (jQuery
wrapped set) to the new injected
message.

No chat session to inject into.

Displays the standalone chat button using either the default template and CSS, or customer-defined

ones.

Example

oMyPlugin.command('WebChat.showChatButton', {

openDelay: 1000,
duration: 1500

}) .done(function(e){

// WebChat shows chat button successfully

}).fail(function(e){

// WebChat button is already visible, side bar is active and overrides the chat
button, or chat button is disabled in configuration

1}

Widgets Developer Resources

142

WebChat

Options
Option

openDelay
duration

Resolutions

Status

resolved

rejected

rejected

hideChatButton

Hides the standalone chat button.

Example

oMyPlugin.command('WebChat.hideChatButton', {duration:

Type

number

number

When

The chat button is enabled in the
configuration, is currently not
visible, and the SideBar plugin is
not initialized

The chat button is not enabled in
the configuration, or it's already
visible, or the SideBar plugin is
initialized

The SideBar plugin is active, the
standalone chat button will be
disabled automatically

// WebChat hid chat button successfully

}).fail(function(e){

// WebChat button is already hidden

1)
Options
Option
duration
Resolutions
Status
resolved

Type

number

When
The chat button is currently

Description

Duration in milliseconds to delay
showing the chat button on the

page.
Duration in milliseconds for the

show and hide animation.

Returns

N/A

Chat button is already visible.
Ignoring command.

SideBar is active and overrides
the default chat button

1500}) .done(function(e){

Description

Duration in milliseconds for the
show and hide animation.

Returns
N/A

Widgets Developer Resources

143

WebChat

Status When Returns
visible

Chat button is already hidden.

rejected The chat button is already hidden Ignoring command.

showOverlay

Opens a slide-down overlay over WebChat's content. You can fill this overlay with content such as
disclaimers, articles, and other information.

Example

oMyPlugin.command('WebChat.showOverlay', {

html: '
Example text

hideFooter: false
}) .done(function(e){

// WebChat successfully shows overlay
}).fail(function(e){

// WebChat isn't open
s

Options

Option Type Description

The HTML content you want to
display in the overlay.

. The id attribute value of the HTML
html string or HTML reference content can be set to
cx_chat_information. This
supports a screen reader's ability
to announce the overlay's content
to the user, as recommended by
WCAG.

Normally the overlay appears
between the title bar and footer
bar. Set this to true to have the
overlay overlap the footer to gain
a bit more vertical space. This
should only be used in special
cases. For general use, don't set
this value.

hideFooter boolean

Widgets Developer Resources 144

WebChat

Resolutions
Status When Returns
WebChat is open and the overlay
resolved opens N/A
rejected WebChat is not currently open }/gglggg;tclgrggfacnt&rrently open.
hideOverlay

Hides the slide-down overlay.

Example

oMyPlugin.command('WebChat.hideOverlay').done(function(e){
// WebChat hid overlay successfully
}).fail(function(e){

// WebChat isn't open

3
Resolutions
Status When Returns
resolved z\llgséjshat is open and the overlay N/A
rejected WebChat is not currently open }/ggsgg;tclgggfacnlgrently open.
APl events

Once you've registered your plugin on the bus, you can subscribe to and listen
for published events. Here's how to use the global bus object to register a new
plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');
oMyPlugin.subscribe('WebChat.ready', function(e){});

Widgets Developer Resources 145

WebChat

Name

ready
opened

started

submitted

rejected

completed

cancelled

closed
minimized

unminimized

messageAdded

Metadata

Interaction Lifecycle

Description

WebChat is initialized and ready
to accept commands.

The WebChat widget has
appeared on screen.

The WebChat has successfully
started.

The user has submitted the form.

When the chat session fails to
start. Typically due to form
validation or network errors.

The chat session ended after the
agent is successfully connected
to WebChat.

The chat session ended before
the agent is connected to
WebChat.

The WebChat Widget has been
removed from the screen.

The WebChat Widget has been
changed to a minimized state.

The WebChat Widget has been
restored from a minimized state
to the standard view.

When a message is added to the
transcript, this event will fire.

Data

N/A
N/A

Metadata

Metadata

Metadata

Metadata

Metadata

Metadata

N/A

N/A

Returns an object containing two
properties: data and html; data
contains the JSON data for the
message, while html contains a
reference to the visible message
inside the chat transcript.

Every WebChat interaction has a sequence of events we call the Interaction Lifecycle. This is a
sequence of events that tracks progress and choices from the beginning of an interaction (opening

WebChat), to the end (closing WebChat), and every step in between.

The following events are part of the Interaction Lifecycle:

ready
opened
started
cancelled
submitted
rejected
completed

Widgets Developer Resources

146

WebChat

closed

Lifecycle scenarios

An Interaction Lifecycle can vary based on each user's intent and experience with WebChat. Here are
several sequences of events in the lifecycle that correspond to different scenarios.

The user opened WebChat but changed their mind and closed it without starting a chat session:
ready -> opened -> cancelled -> closed

The user started a chat session but ended it before an agent connected. Perhaps it was taking too
long to reach someone:

ready -> opened -> started -> cancelled -> closed

The user started a chat, but the chat fails to start:

ready -> opened -> started -> submitted -> rejected

The user started a chat, met with an agent, and the session ended normally:

ready -> opened -> started -> submitted -> completed -> closed

Tip

For a list of all WebChat events, see API events.

Metadata

Each event in the Interaction Lifecycle includes the following block of metadata. By default, all values
are set to false. As the user progresses through the lifecycle of a WebChat interaction, these values
will be updated.

The metadata block contains boolean state flags, counters, timestamps, and elapsed times. These
values can be used to track and identify trends or issues with chat interactions. During run-time, the
metadata can help you offer a smart and dynamic experience to your users.

Reference

Name Type Description

Indicates this chat session was

proactive boolean started proactively.

Indicates the registration form
prefilled boolean was prefilled with info
automatically.

Indicates the registration form
autoSubmitted boolean was submitted automatically,
usually after being prefilled.

Widgets Developer Resources 147

WebChat

Name

numAgents

userMessages
agentMessages

systemMessages

errors

form

opened

started

cancelled

rejected

completed

closed

agentReached

elapsed

waitingForAgent

Type

integer

integer
integer

integer

array/boolean

object

integer (timestamp)

integer (timestamp)

integer (timestamp)

integer (timestamp)

integer (timestamp)

integer (timestamp)

integer (timestamp)

integer (milliseconds)

integer (milliseconds)

string

Description

Current number of agents that
have connected to the chat
session.

Current number of messages
sent by user.

Current number of messages
sent by agents.

Current number of system
messages received.

An array of error codes
encountered during a chat
session. If no errors, this value
will be false.

An object containing the form
parameters when the form is
submitted.

Timestamp indicating when
WebChat was opened.

Timestamp indicating when chat
session started.

Timestamp indicating when the
chat session was cancelled.
Cancelled refers to when a user
ends a chat session before an
agent connects.

Timestamp indicating when the
chat session was rejected.
Rejected refers to when a chat
session fails to start.

Timestamp indicating when the
chat session ended normally.
Completed refers to when a user
or agent ends a chat after an
agent connected.

Timestamp indicating when
WebChat was closed.

Timestamp indicating when the
first agent was reached, if any.

Total elapsed time in milliseconds
from when the user started the
chat session to when the chat
session ended.

Total time in milliseconds waiting
for an agent from when the user
started the chat session to when
an agent connected to the
session.

A unique identifier of a chat

Widgets Developer Resources

148

WebChat

Name Type Description

session that helps to identify the
instance of that session and its
associated events.

Customizable chat registration form

WebChat allows you to customize the registration form shown to users prior to starting a session. The
following form inputs are currently supported:

* Text

e Select

* Hidden
Checkbox

¢ Textarea

Customization is done through a JSON object structure that defines the layout, input type, label, and
attributes for each input. You can set the default registration form definition in the
_genesys.widgets.webchat.form configuration option. Alternately, you can pass a new
registration form definition through the WebChat.open command:

_genesys.widgets.bus.command("WebChat.open", {formJSON: oRegFormDef});

Inputs are rendered as stacked rows with one input and one optional label per row.

Default example

The following example is the default JSON object used to render WebChat’s registration form. This is a
very simple definition that does not use many properties.

{
wrapper: "
inputs: [
{
id: "cx _webchat form firstname",
name: "firstname",
maxlength: "100",
placeholder: "@il8n:webchat.ChatFormPlaceholderFirstName",
label: "@il8n:webchat.ChatFormFirstName"
}I
{
id: "cx_webchat form lastname",
name: "lastname",
maxlength: "100",
placeholder: "@il8n:webchat.ChatFormPlaceholderLastName",
label: "@il8n:webchat.ChatFormLastName"
I

Widgets Developer Resources 149

WebChat

}

id: "cx_webchat form email”,

name: "email",

maxlength: "100",

placeholder: "@il8n:webchat.ChatFormPlaceholderEmail",
label: "@il8n:webchat.ChatFormEmail"

id: "cx_webchat form subject",

name: "subject",

maxlength: "100",

placeholder: "@il8n:webchat.ChatFormPlaceholderSubject",
label: "@il8n:webchat.ChatFormSubject"

This JSON definition generates the following output:

& Live Chat

First Name
Last Name
Email

Subject

Properties

Each input definition can contain any number of properties. These are categorized in two groups:
"Special Properties", which are custom properties used internally to handle rendering logic, and
"HTML Attributes" which are properties that are applied directly as HTML attributes on the input

element.

Required

Required

Optional

Optional

Widgets Developer Resources

150

/File:WebChat_CustomForm_001.png
/File:WebChat_CustomForm_001.png

WebChat

Special properties

Property Type
type string
label string
wrapper HTML string
validate function

"text"

N/A

N/A

Default

Description

Sets the type of input to
render. Possible values
are currently "text",
"hidden", "select",
"checkbox", and
"textarea".

Set the text for the
label. If no value
provided, no label will
be shown. You may use
localization query
strings to enable
custom localization (for
example, label:
"@il8n:namespace.StringName").
Localization query
strings allow you to use
strings from any widget
namespace or to create
your own namespace in
the localization file
(i18n.json) and use
strings from there (for
example, label:
"@i18n:myCustomNamespace.myCustc
For more information,
see the Labels section.

Each input exists in its
own row in the form. By
default this is a table-
row with the label in the
left cell and the input in
the right cell. You can
redefine this wrapper
and layout by specifying
a new HTML row
structure. See the
Wrappers section for
more info.

The default wrapper for an
input is "

Define a validation
function for the input
that executes when the
input loses focus (blur)
or changes value. Your
function must return
true or false. True to
indicate it passed, false
to indicate it failed. If
your validation fails, the

Widgets Developer Resources

151

WebChat

Property Type Default Description

form will not submit and
the invalid input will be
highlighted in red. See
the Validation section
for more details and
examples.

Execute validation on
keypress in addition to
blur and change. This
ignores non-character
keys like shift, ctrl, and
alt.

When ‘type’ is set to
‘select’, you can
populate the select by
adding options to this
array. Each option is an
options array (1 object (for example,
{text: ‘Option 1’, value:
‘1'} for a selectable
option, and {text:
"Group 1", group: true}
for an option group).

validateWhileTyping boolean false

HTML attributes

With the exception of special properties, all properties will be added as HTML attributes on the input
element. You can use standard HTML attributes or make your own.

Example

{
id: "cx webchat form firstname",
name: "firstname",
maxlength: "100",
placeholder: "@il8n:webchat.ChatFormPlaceholderFirstName",
label: "@il8n:webchat.ChatFormFirstName"
}

In this example, id, name, maxlength, and placeholder are all standard HTML
attributes for the text input element. Whatever values are set here will be
applied to the input as HTML attributes.

The default input type is "text", so type does not need to be defined if you intend to
make a text input.

HTML output

Widgets Developer Resources 152

WebChat

Disabling autocomplete

Since the custom form feature supports adding any HTML attributes to your inputs, you can control
standard HTML features like disabling autocomplete. To disable autocomplete, add autocomplete:
"off" to your input definition.

Example

{
id: "cx webchat form firstname",
name: "firstname",
maxlength: "100",
placeholder: "@il8n:webchat.ChatFormPlaceholderFirstName",
label: "@il8n:webchat.ChatFormFirstName",
autocomplete: "off"

Labels

A label tag will be generated for your input if you specify label text and if your custom input wrapper
includes a ‘{label}’ designation. If you have added an ID attribute for your input, the label will
automatically be linked to your input so that clicking on the label selects the input or, for checkboxes,
toggles it.

Labels can be defined as static strings or localization queries.

Wrappers

Wrappers are HTML string templates that define a layout. There are two kinds of wrappers: form
wrappers and input wrappers.

Form wrapper

You can specify the parent wrapper for the overall form in the top-level "wrapper" property. The
following example specifies this value as “

". This is the default wrapper for the WebChat form:
{

wrapper:

, /* form wrapper */
inputs: []
}

Input wrapper

Each input is rendered as a table row inside the form wrapper. You can change this by defining a new
wrapper template for your input row. Inside your template, you can specify where you want the input
and label to be by adding the identifiers label and input to your wrapper value. See the example
below:

Widgets Developer Resources 153

WebChat

id: "cx _webchat form firstname",
name: "firstname",
maxlength: "100",
placeholder: "@il8n:webchat.ChatFormPlaceholderFirstName",
label: "@il8n:webchat.ChatFormFirstName",
wrapper: "{label}{input}" /* input row wrapper */
}

The label identifier is optional. Omitting it will allow the input to fill the row. If you decide to keep the
label, you can move it to any location within the wrapper, such as putting the label on the right, or
stacking the label on top of the input. You can control the layout of each row independently,
depending on your needs.

You are not restricted to using a table for your form. You can change the form wrapper to "

"and then change the individual input wrappers from a table-row to your own
specification. Be aware though that when you move away from the default table
wrappers, you are responsible for styling and aligning your layout. Only the
default table-row wrapper is supported by default themes and CSS.

Validation

You can apply a validation function to each input that lets you check the value after a change has
been made and/or the user has moved to a different input (on change and on blur). You can enable
validation on key press by setting validateWhileTyping to true in your input definition.

Here is how to define a validation function:

{
id: "cx _webchat form firstname",
name: "firstname",
maxlength: "100",
placeholder: "@il8n:webchat.ChatFormPlaceholderFirstName",
label: "@il8n:webchat.ChatFormFirstName",

validateWhileTyping: true, // default is false
validate: function(event, form, input, label, $, CXBus, Common){
return true; // or false

}

You must return true or false to indicate that validation has passed or failed, respectively. If you
return false, the WebChat form will not submit, and the input will be highlighted in red. This is
achieved by adding the CSS class cx-error to the input. The image below displays the the field where
a user input validation error has occurred, with the field highlighted in red.

Widgets Developer Resources 154

WebChat

@ Live Chat

FirstName Required

Validation function arguments

Argument Type Description

The input event reference object
related to the form input field.
This event data can be helpful to

SUE: lavascHpRerentablect perform actions like active
validation on an input field while
the user is typing.

A jquery reference to the form
form HTML reference wrapper element.

input HTML reference A jquery ref_erencg to the input
element being validated.

label HTML reference A jquery reference to the label

for the input being validated.

Widget’s internal jquery instance.
$ jquery instance Use this to help you write your
validation logic, if needed.

Widget’'s internal CXBus
CXBus CXBus instance reference. Use this to call
commands on the bus, if needed.

Widget's internal Common library
Common Function Library of functions and utilities. Use if
needed.

Form submit

Custom input field form values are submitted to the server as key value pairs
under the userData section of the form submit request, where input field names
will be the property keys. During the submit, this data is merged along with the
userData defined in the WebChat open command.

Widgets Developer Resources 155

/File:Validation_failure.png
/File:Validation_failure.png

WebChat

Depending on the API used (PureEnagage V2 API or PureCloud) the payload structure
in the request can vary for each, but the section below explains how the form data is
submitted by the WebChat Ul plugin when using custom forms. Below is the internal
form data object defined in the WebChat plugin by default. Since firstname, lastname,
nickname, email, and subject are reserved keywords, users are not allowed to have
custom fields with the same name.

{

firstname:
lastname:
nickname: '',
email: '',
subject: '',
userData: {}

}

Example

The example below shows how the custom form data given in the WebChat form fields have been
mapped as form data object.

The form fields with reserved keywords like firstname, lastname, and email will be sent as top
level, and the rest of the fields will be sent under userData to the WebChatService plugin.

Once the form data object is sent to the WebChatService plugin, it will parse and send in the payload
request.

{
firstname: 'John',
lastname: 'Smith',
email: 'john.smith@company.com',
userData: {
phonenumber: '9256328346"',
enquirytype: 'Sales' //value selected from the dropdown
)
}

Customizable emoji menu

Introduction

WebChat offers a v2 emoji menu that lets you choose which emojis to include in the emoji menu.

Widgets Developer Resources 156

WebChat

V1 Emoji Menu V2 Emoji Menu

0000 @l
QOVLOOCO
OORLAASR P

oUr MsSEAge her

& 2

Differences between v1 and v2

¢ v1 shows as a tooltip-style overlay; v2 shows as a new block between the transcript and the message
input.

* vl closes when you select an emoji or click outside the menu; v2 lets you choose multiple emojis and
only closes if you click the emoji menu button again.

¢ v1 has three fixed emojis to choose from; v2 can show hundreds of customizable emojis in a grid layout.

¢ v1 menu appears in mobile mode; v2 menu is not available in mobile mode (when v2 is configured, no
emoji menu button is present in mobile mode).

¢ v1 menu has default emojis; v2 menu does not have default emojis. It must be explicitly configured with
a list of emojis.

Configuring the emoji menu

Click the emoji menu icon at the bottom-left corner of the WebChat Ul to open the v2 emoji menu.
The transcript will be resized to fit the emoji menu, which can vary in height depending on the
number of emojis configured:

¢ When 1-8 emojis are configured, the menu has one row, and no scrollbar appears.

* When 9-16 emojis are configured, the menu has two rows, and no scrollbar appears.

* When 17-24 emojis are configured, the menu has three rows, and no scrollbar appears.

Widgets Developer Resources 157

/File:WebChat_New_Emoji_without_file_upload.png
/File:WebChat_New_Emoji_without_file_upload.png

WebChat

¢ When 25 or more emojis are configured, the menu has three rows, and a scrollbar appears.

Chat X

@ Live Cha =

Today

Chat Started

PO @®

Type

Sl et X

&) Live Chat
Today

Chat Started

PO @®
QoYL OOCO

Type your message

@ o0

X

at -—

Today

Chat Started

EllclcR R 1)
QOVLEOOEO
oonAaAwE S

Today

Chat Started

e @ol
QYL ot ®
ooaABIRS

Type your message here

@ 10 g

Configure the v2 emoji menu by passing a string containing emoji into the
WebChat configuration or through localization.

If you define an emoiji list in the WebChat configuration, it will override any emoji lists
defined in localization files.

You configure the emoji list by specifying a string of emoji characters, like
OO Q" WebChat will parse this string and arrange them in the emoji menu.

// Configure a flat list of emoji characters

_genesys.widgets.webchat.emoj

iList =

"OOOOOODODOVODDOOVOODDDOVODODDODOVOODDOOOOOOOY
QOVOOOVOVDVVOVODVOOVODDDVOOOODOOVOOODVCORKDOOOOOOO";

Add emoji display names

You can also add names to emojis so that their names will appear when you hover over them. To add
a name to an emoji, simply add a colon after the question mark symbol, and then type the name.
Separate each name with a semicolon.

The format is ;®:name;

You can only add one name to an emoji. The following sample shows the format
for configuring several emojis.

// Configure an emoji list with emoji names
_genesys.widgets.webchat.emojiList = "&:Star-Struck;®:Zany Face;®:Face With Hand Over
Mouth;<®:Shushing Face;<®:Face With Raised Eyebrow;<®:Bitcoin;<®:Face Vomiting;
&®:Exploding Head;<®:Face With Monocle;®:Face With Symbols on Mouth;<®:0range Heart;
&:Love-You Gesture;®:Palms Up Together;<®:Brain;<®:Child;®:Person;<®:Man: Beard;
&:0lder Person;<®:Woman With Headscarf;<®:Breast-Feeding;<®:Mage;<®:Fairy;<®:Vampire;
&:Merperson;®:Elf;®:Genie;®:Zombie;®:Person in Steamy Room;<®:Person Climbing;
&:Person in Lotus Position;<®:Zebra;®:Giraffe;<®:Hedgehog;®:Sauropod;<®:T-Rex;<®:Cricket;

Widgets Developer Resources

158

/File:WebChat_Emoji_Menu_Resizing_without_file_upload.png
/File:WebChat_Emoji_Menu_Resizing_without_file_upload.png

WebChat

&:Coconut;®:Broccoli;®:Pretzel;®:Cut of Meat;®<®:Australia Day;®<®:Bastille
Day;®:Birthday;®:Black Friday;®<®:Canada Day;®<®:Carnival;<®:Chinese New Year;<®:Christmas;
&&®:Cinco de Mayo;<®:Diwali;®<®:Dragon Boat Festival;<®:Easter;®:Emoji Movie;<®:Fall/Autumn;
&:Father’s Day;®:Festivus;<®:Graduation;®:Guy Fawkes;<®:Halloween;<® :Hanukkah;
&:Hearts;®:Holi;®®:Independence Day;<®:Mother’s Day;®:New Year’s Eve;®:0lympics;
&@:Pride;®:Queen’s Birthday;CG:Ramadan;<®:Spring;+:St Patrick’s Day;#*:Summer;
&:SuperBowl;®:Thanksgiving;®:Valentine'’s Day;<®:Wedding / Marriage;<®:Winter;®:Winter
Olympics;®:World Cup;<®:World Emoji Day;";

Partially named lists

You don't have to add names for every emoji. You can add titles to only a select
few.

// Configure an emoji list with only a few emoji names
_genesys.widgets.webchat.emojiList = "®QOOOOOOOORY ;& :Palms Up Together;
QOOVOVODOOVOOVRDRDVOOVDOOOOOOOROOOOY ;¥ :Black Friday;
QSOOROOVODOVODOVDODODODODOODOODOOOOOCOMKOOOY ;& 1Snowman; &OS";

Localization

Emojis can be localized so that each language has a preferred set of emojis and
emoji titles.

If you define an emoji list in the WebChat configuration, it will override any emoji lists
defined in localization files.

The key name for defining an emoji list is "EmojiList". Emoji lists are defined in a
localization file using the same syntax as the WebChat configuration.

{
"en": {
"webchat": {
"EmojilList": "<&:Star-Struck;<®:Zany Face;®:Face With Hand Over Mouth;<®:Shushing
Face;"

}

}

Widgets Developer Resources 159

Engage

Engage

Contents

e 1 Overview
e 1.1 Usage
* 1.2 Namespaces
* 1.3 Screenshots
e 2 Configuration

¢ 3 Localization

4 APl commands
* 4.1 invite
* 4.2 Example
e 4.3 Options
* 4.4 Resolutions
* 4.5 offer
e 4.6 Example
* 4.7 Options
* 5 APl events
* 5.1 Interaction Lifecycle
e 5.2 Lifecycle scenarios
¢ 6 Metadata

¢ 6.1 Reference

Widgets Developer Resources 160

Engage

* Developer

Learn how to use the Genesys Multicloud CX plugin to integrate any Engage solution with Genesys
Widgets.

Related documentation:

Overview

GENESYS
Moments connected

For delivering the best customer experience, 65

of the world's top 100 brands choose Genesys.
See how these brands are connecting with
customers to build relationships and loyalty.

The Genesys Multicloud CX plugin is generic and contains commands that automate customer
engagement within Genesys Widgets. Starting with version 9.0.015.11, the Engage plugin includes
Offers, which allows a customer to view a product or promotion on a page. It comes with many
display modes and rendering options, such as overlay/toaster mode with text or image-only layouts,
or both.

Widgets Developer Resources 161

/File:Desktop_Engage_Offer_Overlay_View_with_Text_on_left_v1.png
/File:Desktop_Engage_Offer_Overlay_View_with_Text_on_left_v1.png

Engage

Need Help?

Connect with an agent today

No, Thanks

Usage
Use the Engage plugin to show either an invite or an offer via the following methods:
e Calling the Engage.invite command

e Calling the Engage.offer command

Namespaces

The Engage plugin uses the following namespaces.

Type Namespace
i18n - Localization Engage
CXBus - APl commands & API events Engage
CSS .CX-engage

Screenshots

Engage Invite

Widgets Developer Resources 162

/File:Engage_Invite_Dark_v2.png
/File:Engage_Invite_Dark_v2.png

Engage

| GENESYS i GENESYS

Engage Offer

clenter

Configuration

The Genesys Multicloud CX plugin doesn't have any configuration options.

Localization

Widgets Developer Resources 163

/File:Engage_Invite_Mobile_Dark_theme_v1.png
/File:Engage_Invite_Mobile_Dark_theme_v1.png
/File:Engage_Invite_Mobile_Light_theme_v1.png
/File:Engage_Invite_Mobile_Light_theme_v1.png
/File:Desktop_Engage_Offer_toaster_mode.png
/File:Desktop_Engage_Offer_toaster_mode.png
/File:Desktop_Engage_Offer_modal_overlay_view_with_text_on_top.png
/File:Desktop_Engage_Offer_modal_overlay_view_with_text_on_top.png
/File:Desktop_Engage_Offer_overlay_view_with_text_at_bottom.png
/File:Desktop_Engage_Offer_overlay_view_with_text_at_bottom.png
/File:Desktop_Engage_Offer_Toast_view_with_text_content_on_right.png
/File:Desktop_Engage_Offer_Toast_view_with_text_content_on_right.png
/File:Desktop_Engage_Offer_Toast_view_with_text_content_on_left.png
/File:Desktop_Engage_Offer_Toast_view_with_text_content_on_left.png
/File:Desktop_Engage_Offer_overlay_view_-_Right_text_v1.png
/File:Desktop_Engage_Offer_overlay_view_-_Right_text_v1.png
/File:Desktop_Engage_Offer_modal_Overlay_View_with_Text_on_left.png
/File:Desktop_Engage_Offer_modal_Overlay_View_with_Text_on_left.png
/File:Mobile_Engage_Offer_inserted_onto_the_top_of_a_webpage.png
/File:Mobile_Engage_Offer_inserted_onto_the_top_of_a_webpage.png
/File:Mobile_mode_Engage_Offer_view_in_modal_overlay_with_background_greyed_out_v1.png
/File:Mobile_mode_Engage_Offer_view_in_modal_overlay_with_background_greyed_out_v1.png
/File:Mobile_mode_Engage_Offer_view_in_modal_overlay_v1.png
/File:Mobile_mode_Engage_Offer_view_in_modal_overlay_v1.png

Engage

The Genesys Multicloud CX plugin doesn't have any localization options.

APl commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Engage.invite');
invite

Opens the Engage Widget and renders the text based on the options provided. If no options are
provided, the widget doesn't open.

Example

oMyPlugin.command('Engage.invite', {
"type':'toast’,
'timeout':3000,
'title':'Engage Title',
'ariaTitle':'Engage Invite',
'body':'Engage invite body content',
‘accept':'Yes',
'decline':'No, thanks',
'ariaAccept':'Yes',
'ariaDecline':'No, thanks',
'ariaClose':'Close’,
‘command': 'WebChat.open',
'options':{'proactive': true, 'userData': {'category': 'shoes'}}

3

oMyPlugin.command('Engage.invite',{
"type':'toast’,
'timeout':3000,
'force': true,
'title':'Engage Title',
'ariaTitle':'Engage Invite',
'body':'Engage invite body content',
‘accept':'Yes',
'decline':'No, thanks',
'ariaAccept':'Yes',
'ariaDecline': 'No, thanks',
'ariaClose':'Close’

Widgets Developer Resources 164

Engage

}) .done(function(response){

// Act upon the received response code

switch(response){
case 'accepted':oMyPlugin.command('WebChat.open');

break;
case 'declined': break;
case 'closed': break;
case 'timeout': break;
}
1)
Options
. - Accepted Introduced/
Option Type Description T Default updated
. Widget display
type string type. toast
Timeout
timeout number integer in n/a
milliseconds.
. . String for
title string widget title. n/a
Aria label text
ariaTitle string for the Engage n/a 9.0.015.04
invite window.
. String for offer
body string body text. n/a
String for
accept string Accept button n/a
text.
Aria label text
ariaAccept string for the Accept n/a 9.0.016.10
button.
String for
decline string Decline button n/a
text.
Aria label text
ariaDecline string for the Decline n/a 9.0.016.10
button.
Aria label text
ariaClose string for the Engage n/a 9.0.016.10
Close button.
command string COmTEE & n/a
execute.
Options related
. . to the
options object command n/a
provided.
Widgets Developer Resources 165

Engage

Introduced/
updated

Accepted

e Default

Option Type Description
Replace the
active lower
priority Engage
invite with the
higher priority
Engage invite.

priority number n/a 0 9.0.015.11

Replace the
active Engage
invite with the
force boolean new Engage n/a false 9.0.015.11
invite
irrespective of
priorities.

Resolutions

Status When Returns

Engage invite is accepted by

resolv
solives user.

accepted

resolved Engage invite is declined by user. declined

Engage invite widget is closed by
user.

resolved closed
Engage invite widget closes due

to timeout. timeout

resolved

offer

Opens a widget for a product offer using the data sent through the command options provided below.
The widget can include both rendering options and the actual data that needs to be displayed in the
Offer Widget. If no options are provided, the widget will not open.

Example

oMyPlugin.command('Engage.offer', {

mode: 'overlay',

modal:true,

layout: 'leftText',

title: 'GRAB WHAT YOU NEED!!',
ariaTitle: 'Offers',

headline: 'We Got All!',

description:'Get free NextDay delivery on orders of $35 or more. Start shopping

now!"',
cta:{
text:'Join',
url:'https://www.genesys.com',
target:' blank'
}I

Widgets Developer Resources 166

Engage

image:{
src:'https://picsum.photos/id/237/300/300",
alt:'Alternate Text for Image'

}I

styles:{

closeButton:{
'color':'red'
}

ariaCTA:'Join',
ariaClose: 'Close Offer'

1)

Options

Introduced/
updated

Accepted

T Default

Option Type Description
The display
type of the

Offer widget.

Applicable only
when mode is
'‘overlay'. A
smokescreen
will be shown
in the
background of
overlay modal
window. This
window can be
dismissed by
clicking
anywhere in
the
smokescreen
area.

overlay,

toaster 9.0.015.04

mode string toaster

modal boolean n/a false 9.0.015.04

Additional minimal,

layout

headline

ariaTitle

description

cta

string

string

string

string

object

layout options
are supported
for all modes.

The Offer title
header text.

Aria label text
for the Offer
window.

The Offer body
description
text.

An object
containing
HTML
attributes and/

leftText,
rightText,
topText,
bottomText

n/a

n/a

n/a

n/a

leftText

n/a

n/a

n/a

n/a

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

Widgets Developer Resources

167

Engage

Option

cta.text

cta.url

cta.target

cta.command

Type

string

string

string

string

cta.commandOptishi€ng

image

image.src

image.alt

image.title

insertAfter

object

string

string

string

string

Description

or CXBus

commands for
the CTA (call to
action) button.

The CTA button

text.

The URL string

for the CTA
button.

Note: The URL

must be properly
defined with the

complete Protocol
URL Address. For

example,

Accepted
values

n/a

_blank,
_parent, _self,
_top,
framename

https://www.genesys.com.

Specifies

where the URL

is opened.

A CXBus
command to
execute.

Options related

to CXBUs
command.

An object

containing
image tag
attributes.

The URL of the

image.

Alternate text
for the image.

To indicate the
screen reader
user whether

the image

opens the URL

in a new
window.

Applicable only

in mobile

mode. An ID or
class name of

an HTML

selector from
the host page.
The offer will

be inserted
after this

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

Default

Introduced/

updated

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.016.10

9.0.015.04

Widgets Developer Resources

168

Engage

Option Type

insertBefore string

insertinto string

styles object

styles.closeButtonobject

Description

element.
Precede the
value
mentioned
here with the
standard Class
(".") and ID
selector ('#')
character.

Applicable only
in mobile
mode. An ID or
class name of
an HTML
selector from
the host page.
The offer will
be inserted
before this
element.
Precede the
value
mentioned
here with the
standard Class
(*.') and ID
selector ('#')
character.

Applicable only
in mobile
mode. An ID or
class name of
an HTML
selector from
the host page.
The offer will
be appended
inside this
element.
Precede the
value
mentioned
here with the
standard Class
(".") and ID
selector ('#')
character.

An object
containing
styles for the
offer content.

An object
containing

Accepted
values

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

Default

Introduced/
updated

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

Widgets Developer Resources

169

Engage

Introduced/
updated

Accepted

e Default

Option Type Description
styles for the
close button.

The color of
styles.closeButtonstoiiog the close n/a n/a 9.0.015.04
button.

The CSS
'opacity’
styles.closeButtonmpabity property for n/a n/a 9.0.015.04
the close
button.

An object
containing
styles.overlay object styles for the n/a n/a 9.0.015.04
overlay
container.

The CSS 'top'
property for
the overlay
container.

The CSS 'right’
property for
the overlay
container.

The CSS
'‘bottom’
styles.overlay.bottstring property for n/a n/a 9.0.015.04
the overlay
container.

The CSS 'left'
property for
the overlay
container.

styles.overlay.top string n/a n/a 9.0.015.04

styles.overlay.righktring n/a n/a 9.0.015.04

styles.overlay.left string Note: When allthe n/a n/a 9.0.015.04
position values are
provided, the order
of precedence will
be top, right,
bottom, and left.

Aligns the
overlay
styles.overlay.centerolean container to n/a true 9.0.015.04
the center of
the screen.

An object
containing
styles for the
Offer window.

The
background

styles.offer object n/a n/a 9.0.015.04

styles.offer.backgrstrimdColor n/a n/a 9.0.015.04

Widgets Developer Resources 170

Engage

Option Type

styles.offer.color string
styles.offer.paddingtring
styles.title

object

styles.title.font string

styles.title.textAligtring

styles.headline object

styles.headline.forstring

styles.headline.texstAilingn

styles.description object

styles.description.sbrihg

styles.description.sérbign

styles.ctaButton object

Description

color of the
offer.

The text color
of the offer.

The padding
for the offer
container.

An object
containing
styles for the
title.

The CSS ‘font'
property for
the title.

The CSS 'text-
align' property
for the title.

An object
containing
styles for the
header text.

The CSS 'font'
property for
the header
text.

The CSS 'text-
align' property
for the header
text.

An object
containing
styles for the
offer
description
text.

The CSS ‘font'
property for
the description
text.

The CSS 'text-
align' property
for the
description
text.

An object
containing
styles for call
to action
button in the

Accepted

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

values

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

Default

Introduced/
updated

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

Widgets Developer Resources

171

Engage

Accepted
values

Introduced/

Default updated

Option Type Description

offer window.

The CSS 'font
property for
the text in CTA
button.

The CSS 'text-
align' property
for the text in

CTA button.

The CSS
'background'
property for
the CTA button.

The CSS 'color!
property for
the text in CTA
button.

The CSS 'font-
size' property
for the text in
CTA button.

Aria label text
ariaCTA string for the Offer n/a n/a 9.0.016.10
CTA button.

Aria label text
ariaClose string for the Offer n/a n/a 9.0.016.10
Close button.

styles.ctaButton.fatiting n/a n/a 9.0.015.04

styles.ctaButton.testtixiggn n/a n/a 9.0.015.04

styles.ctaButton.batrkiggound n/a n/a 9.0.015.04

styles.ctaButton.cstoing n/a n/a 9.0.015.04

styles.ctaButton.fattBige n/a n/a 9.0.015.04

Replace the
active lower
priority Engage
Offer with the
higher priority
Engage Offer.

priority number n/a 0 9.0.015.11

Replace the
active Engage
Offer with the
force boolean new Engage n/a false 9.0.015.11
Offer
irrespective of
priorities.

APl events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

Widgets Developer Resources 172

Engage

The global bus object is a debugging tool. When implementing widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin =

window. genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('Engage.ready', function(e){});

Name

ready

opened

CTA

hover

dismissed

closed

Description

The Engage widget is
initialized and ready to
accept commands on
the bus.

The Engage widget
opens.

Note: Applicable
only to Engage.offer
command

When the user clicks the
CTA button in the
Engage widget.

Note: Applicable
only to Engage.offer
command

When the user first
hovers over the Engage
widget.

Note: Applicable
only to Engage.offer
command

When the user closes
the Engage widget by
clicking the Close
button.

Note: Applicable
only to Engage.offer
command

The Engage widget
closes.

Note: Applicable
only to Engage.offer
command

n/a

Metadata

Metadata

Metadata

Metadata

Metadata

Introduced/updated

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

Widgets Developer Resources

173

Engage

Applicable only for Engage.offer command.

Interaction Lifecycle

Every offer interaction has a sequence of events we describe as the Interaction Lifecycle. These
events track progress and user choices from the beginning of an interaction (opening Offers), to the
end (closing Offers), and every step in between.

The following events comprise the Interaction Lifecycle:

ready
opened
CTA

hover
dismissed
closed

Lifecycle scenarios

An Interaction Lifecycle can vary based on each user's intent and experience with the Offer widget.
Here are several sequences of events in the lifecycle that correspond to different scenarios.

The user opened the Offer widget but changed their mind and closed it without seeing the offer
details:

ready -> opened -> dismissed -> closed

The user opened the Offer widget, hovered over the offer details, and then closed it:
ready -> opened -> hover -> dismissed -> closed

The user opened the Offer widget and clicked on the button, which triggers CTA:

ready -> opened -> CTA -> closed

Tip

For a list of all Offer events, see API events.

Metadata

Each event in the Interaction Lifecycle includes the following block of metadata. By default, all values
are set to false. As the user progresses through the lifecycle of an Offer Engage interaction, these
values are updated.

Widgets Developer Resources 174

Engage

The metadata block contains Boolean state flags, timestamps, and elapsed times. These values can

be used to track and identify trends or issues with interactions. During runtime, the metadata can

help you offer a smart and dynamic experience to your users.

Reference

Name

opened

closed

dismissed

triggeredCTA

timeBeforeCTA

timeFirstHover

timeBeforeHover

timeElapsedHover

elementClicked

Type

integer (timestamp)

integer (timestamp)

integer (timestamp)

integer (timestamp)

integer (milliseconds)

integer (timestamp)

integer (milliseconds)

integer (milliseconds)

string

Description

Timestamp indicating
when the offer was
opened.

Timestamp indicating
when the offer was
closed.

Timestamp indicating
when the user
dismissed the offer by
clicking the close
button.

Timestamp indicating
when the CTA was
triggered.

Total time in
milliseconds from when
the user opened the
offer to when the CTA is
triggered.

Timestamp indicating
when the user first
hovered over the offer.

Total time in
milliseconds from when
the user opened the
offer to when the user
first hovered over the
offer.

Total time in
milliseconds when the
user hovered over the
offer.

Name of CTA element
that was clicked.

Introduced/updated

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

9.0.015.04

Widgets Developer Resources

175

	Widgets Developer Resources
	Table of Contents
	App
	Common
	Overlay
	Toaster
	WindowManager
	WebChatService
	CallUs
	ChannelSelector
	Console
	SideBar
	WebChat
	Engage

