
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Widgets Developer Resources

6/29/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
API Reference

App 4
Common 21
Overlay 44
Toaster 49
WindowManager 54
WebChatService 59
CallUs 84
ChannelSelector 94
Console 104
SideBar 110
WebChat 122
Engage 160

Widgets Bus API overview
Genesys Widgets Extensions

Search the table of all articles in this guide, listed in alphabetical order, to find the article you need.

Related documentation:
•

Related documentation:
•

Widgets Developer Resources 3

App

Contents

• 1 Overview
• 1.1 Usage
• 1.2 Customization
• 1.3 Mobile support

• 2 Configuration
• 2.1 Description
• 2.2 Example
• 2.3 Options

• 3 Localization
• 4 API commands

• 4.1 setTheme
• 4.2 getTheme
• 4.3 reTheme
• 4.4 themeDemo
• 4.5 setLanguage
• 4.6 closeAll
• 4.7 updateAJAXHeader
• 4.8 removeAJAXHeader
• 4.9 registerExtension
• 4.10 registerAutoLoad
• 4.11 deregisterAutoLoad

• 5 API events

App

Widgets Developer Resources 4

Learn how to control your widgets.

Related documentation:
•

Overview

App is the main controller for Genesys Widgets and has no UI. It controls all startup routines, global
configurations, and extensions, and it executes the onReady event and distributes changes to
theme, language, mobile mode, and other application-wide effects.

Usage
App's main interface is its configuration. You set all global defaults using the
window._genesys.widgets.main property. App also has a few commands you can use to change
the language and theme.

Customization
App itself cannot be customized, but its configuration options affect all widgets.

Mobile support
App has built-in mobile detection and can automatically notify all widgets to switch to mobile mode.
You can also control this manually.

Configuration

Description
App uses the configuration property '_genesys.widgets.main'. App controls the Genesys Widgets
product as a whole, handling themes, languages, and mobile devices.

Example
window._genesys.widgets = {

main: {
theme: 'dark',
themes: {

App

Widgets Developer Resources 5

dark: 'cx-theme-dark',
light: 'cx-theme-light',
blue: 'cx-theme-blue',
red: 'cx-theme-red'

},
lang: 'en',
i18n: 'i18n.json',
mobileMode: 'auto',
mobileModeBreakpoint: 600,
debug: true,
header: {'Authorization': 'value'},
cookieOptions: {

secure: true,
domain: 'genesys.com',
path: '/',
sameSite: 'Strict'

}
},
onReady: function(){

// Do something on Widgets ready
}

}

Options

Name Type Description Default Required Introduced/
updated

main.themes object

An object list
containing the
CSS classname
for each
theme. The
property
names are
used to select
the theme in
the 'theme'
property, for
example
{dark:cx-
theme-dark,
light:cx-theme-
light, red:cx-
theme-red,
blue:cx-theme-
blue}. Where
dark and light
are the built-in
themes
provided in
Genesys
Widgets, red
and blue are
example
custom theme

{dark: cx-
theme-dark,
light: cx-
theme-light}

n/a

App

Widgets Developer Resources 6

Name Type Description Default Required Introduced/
updated

names you
may create on
your own.

Important
It is not
necessary to
define the dark
and light theme
as shown in this
example. It is
included to help
show how the
formatting
works.
Whatever you
put in this
object will be
merged with the
default themes
object internally.

main.theme string

Selects the
theme to apply
to Genesys
Widgets from
the themes
object. Uses
the property
name of the
theme. For
example using
the example
from themes
above, possible
values for this
could be dark,
light, red,
blue.

dark n/a

main.lang string

Select the
language to
use from the
'i18n' language
pack.
Language
codes are
selected by the
customer. Any
language code
format can be
used as long as
this property
matches one of
the language
codes in your
i18n language
pack. For more

en n/a

App

Widgets Developer Resources 7

Name Type Description Default Required Introduced/
updated

information
about
localization,
see
localization.

main.i18n URL string or
JSON

Either a path to
a remote
i18n.json
language pack
file or an inline
JSON language
pack definition.
For more
information
about
language
packs, see
localization.

en

Default English
language
strings are
built into each
widget and are
displayed by
default.
Defining this
i18n language
pack overrides
the built-in
strings.

n/a

main.header object

An object
containing a
key value pair
for the
authorization
header.

n/a n/a 9.0.002.06

main.preload array

For use with
lazy loading
only. A list of
plugins you
want pre-
loaded at
startup. You
may want
certain plugins,
such as
SideBar, to be
shown on
screen as soon
as possible; to
do so, you may
add sidebar to
this preload
plugins array
so it will be
loaded after
Widgets starts
up. The names
you add to the
list must match
the first part of
the plugin
filename you
wish to load.
Example:

none
When lazy
loading
Widgets

App

Widgets Developer Resources 8

Name Type Description Default Required Introduced/
updated

sidebar will
load
sidebar.min.js
from the
plugins/
folder. All
filenames are
lowercase.

Important
This preload
array is
intended for use
when running
widgets in lazy
loading mode.
You may also
use this to pre-
load your own
custom-made
plugins.

main.mobileMode boolean/string

Mobile Mode
setting.
true = Force
Mobile Mode on all
devices. false =
Disable Mobile
Mode completely.
auto = Genesys
Widgets
Automatically
switches between
mobile and
desktop modes
using the
mobileModeBreakpoint
property and
UserAgent
detection.

auto n/a

main.timeFormat number/string

This sets the
time format for
the
timestamps. It
can be 12 or
24.

12 n/a

main.mobileModeBreakpointnumber

The breakpoint
width in pixels
where Genesys
Widgets will
switch to
Mobile Mode.
Breakpoint
checked at
startup only.

600 n/a

main.debug boolean Enable debug
logging from false n/a

App

Widgets Developer Resources 9

Name Type Description Default Required Introduced/
updated

the bus to
appear in the
browser
console.

main.customStylesheetIDstring The HTML ID of
a n/a n/a

main.downloadGoogleFontboolean true n/a

main.deploymentIDstring

The string used
to customize
cookie names
so that
multiple
Widgets
deployments
can run in the
same domain.

n/a n/a 9.0.006.02

main.cookieOptionsobject

An object
containing
cookie
attributes that
applies globally
to all Widgets.
The following
cookie
attributes are
supported:

1. secure -
Either true
or false,
indicating if
the cookie
transmission
requires a
secure
protocol
(https).

2. domain - A
string
indicating a
valid
domain
where the
cookie
should be
visible.

3. path - A
string
indicating
the path
where the

n/a {sameSite:'Strict'}9.0.017.01

App

Widgets Developer Resources 10

Name Type Description Default Required Introduced/
updated

cookie is
visible.

4. expires -
Specifies
the number
of days,
either from
time of
creation or
from a date
instance,
until the
cookie is to
be
removed.
'domain'
and 'path'
can be
used to
make
cookies
compatible
with
environments
that use a
non FQDN
URL, such
as an
intranet
hostname.
However,
the domain
should only
be
manually
set in
production
if the
automated
values are
causing
problems.
Otherwise,
rely on the
automated
domain and
path.

5. sameSite -
This maps
to the
cookie
SameSite

App

Widgets Developer Resources 11

Name Type Description Default Required Introduced/
updated

attribute
allowing
the cookie
to be
restricted
to a first-
party or
same-site
context. It
can take
any of the
supported
values that
SameSite
attribute
takes.

Important
The values
are
automatically
set by
Widgets to
support
cross-sub-
domain
cookies.
Modifying
these
options
overrides
the
automated
values and
might break
cross-sub-
domain
cookie
support if
not properly
set. For
usage,
please refer
to the above
example.

onReady function

A callback
function that is
invoked when
the Widgets
are ready and
initialized with
the
configuration

none n/a

App

Widgets Developer Resources 12

Name Type Description Default Required Introduced/
updated

provided.

Localization

No localization options.

API commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('App.themeDemo');

setTheme
Sets the theme for Genesys Widgets from the list of registered themes. Default themes are 'light' and
'dark'. You can register as many new themes as you need.

Example
oMyPlugin.command('App.setTheme', {theme: 'light'}).done(function(e){

// App set theme successfully

}).fail(function(e){

// App failed to set theme
});

App

Widgets Developer Resources 13

Options

Option Type Description

theme string

Name of the theme you want to
use. This name is specified in
window._genesys.main.themes.
Default themes are light and
dark.

Resolutions

Status When Returns

resolved Theme exists and is successfully
changed.

The name of the theme that was
chosen, for example light.

rejected Theme does not exist. Invalid theme specified.

getTheme
Get the CSS classname for the currently selected theme.

Example
oMyPlugin.command('App.getTheme').done(function(e){

// App got theme successfully
// e == CSS classname for current theme

}).fail(function(e){

// App failed to get theme
});

Resolutions

Status When Returns

resolved Always
CSS classname for the currently
selected theme. For example: cx-
theme-light

rejected Never n/a

reTheme
Accepts an HTML reference (either string or jQuery wrapped set) and applies the proper CSS Theme
Classname to that HTML and returns it back. When widgets receive the 'theme' event from App, they
pass-in their UI containers into App.reTheme to have the old theme classname stripped and new
classname applied.

App

Widgets Developer Resources 14

Example
oMyPlugin.command('App.reTheme', {html: '
Test Theme
'}).done(function(e){

// App set theme successfully

}).fail(function(e){

// App failed to set theme
});

Options

Option Type Description

html string or jQuery Wrapped Set HTML string or jQuery Wrapped
Set you want to have modified.

Resolutions

Status When Returns

resolved HTML is provided and theme is
updated.

HTML that was passed-in and
modified

rejected No HTML is provided. No HTML provided by [plugin
name]

themeDemo
Start an automated demo of each theme. All registered themes will be applied with a default delay
between themes of 2 seconds. You can override this delay. This command is useful for comparing
themes or testing themes with official or custom widgets.

Example
oMyPlugin.command('App.themeDemo', {delay: 1000}).done(function(e){

// App demo successfully started

}).fail(function(e){

// App failed to start demo
});

Options

Option Type Description

delay number
Number of milliseconds between
theme changes. Default value is
2000 milliseconds.

App

Widgets Developer Resources 15

Resolutions

Status When Returns
resolved Always n/a
rejected Never n/a

setLanguage
Changes the language

Example
oMyPlugin.command('App.setLanguage', {lang: 'eng'}).done(function(e){

// App set language successfully started

}).fail(function(e){

// App failed to set language
});

Options

Option Type Description

lang string
Change the language of Genesys
Widgets. Switches all strings in
Widgets to selected language.

Resolutions

Status When Returns

resolved Language is successfully
changed. n/a

rejected No language code is provided. No language code provided.

rejected No matching language code is
specified in your language pack.

No matching language code
found in language pack.

closeAll
Publishes the App.closeAll event that requests all widgets to close.

Example
oMyPlugin.command('App.closeAll').done(function(e){

// App closed all successfully

}).fail(function(e){

App

Widgets Developer Resources 16

// App failed to close all
});

Resolutions

Status When Returns
resolved Always n/a
rejected Never n/a

updateAJAXHeader
Introduced: 9.0.002.06

Updates the Authorization header.

Example
_genesys.widgets.bus.command('App.updateAJAXHeader', {header:

{'Authorization': 'value'}

});

Resolutions

Status When Returns
resolved Header is updated n/a
rejected Never No request header found

removeAJAXHeader
Introduced: 9.0.002.06

Removes the set Authorization header.

Example
_genesys.widgets.bus.command('App.removeAJAXHeader');

Resolutions

Status When Returns
resolved Always n/a

registerExtension
Introduced: 9.0.002.06

Allows you to register and initialize new extensions at runtime instead of predefining extensions

App

Widgets Developer Resources 17

before Genesys Widgets starts up.

Options

Option Type Description

undefined function
Your extension function. Receives
the following arguments: $
(jQuery), CXBus, Common.

Resolutions

Status When Returns
resolved Valid extension object provided. n/a

rejected Invalid extension option
provided. n/a

registerAutoLoad
(For use with lazy loading only) Allows you to register a plugin into the preload
plugins array so that it can be pre-loaded at the startup rather than lazy loading
later. This can be useful when there is an active session maintained by your
Widget and you would like to show it immediately at startup during page refresh
or navigating across pages.

Important
This command is intended for use when running widgets in lazy loading mode. You
may also use this to register and pre-load your own custom-made plugins.

Options

Option Type Description

name string
The name of the plugin that
needs to be registered for auto
loading.

Resolutions

Status When Returns

resolved A plugin is added into the
preload list. n/a

rejected Never n/a

App

Widgets Developer Resources 18

deregisterAutoLoad
(For use with lazy loading only) Allows you to de-register a plugin from the preload plugins array so
that it will not be pre-loaded at startup. This can be useful when there is no more active session
maintained by your Widget and you don't want to show it on the screen immediately at startup.

Note: This command is intended for use when running widgets in lazy loading mode.
You may also use this to de-register your own custom-made plugins.

Options

Option Type Description

name string
The name of the plugin that
needs to be de-registered from
auto loading.

Resolutions

Status When Returns

resolved A plugin is removed from the
preload list. n/a

rejected Never n/a

API events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('App.ready', function(e){});

Name Description Data

ready CallUs is initialized and ready to
accept commands.

i18n Published when the language for '(language code)'

App

Widgets Developer Resources 19

Name Description Data
Genesys Widgets is changed or is
being set for the first time.

theme
Published when the theme for
Genesys Widgets is changed or is
being set for the first time.

{theme: '(theme CSS
classname)'}

timeFormat
Published when the time format
for Genesys Widgets is changed
or is being set for the first time.

{timeFormat: iTimeFormat}

App

Widgets Developer Resources 20

Common

Contents

• 1 Common.Generate.Container({options})
• 1.1 Example
• 1.2 Arguments

• 2 Common.Generate.Buttons({options})
• 2.1 Example
• 2.2 Arguments

• 3 Common.Generate.Icon(name)
• 3.1 Example
• 3.2 Arguments

• 4 Common.Generate.Scrollbar(element, {options})
• 4.1 Example
• 4.2 Arguments

• 5 Common.config(object)
• 5.1 Example
• 5.2 Arguments

• 6 Common.checkPath(object, path)
• 6.1 Example
• 6.2 Arguments

• 7 Common.createPath(object, path, value)
• 7.1 Example
• 7.2 Arguments

• 8 Common.linkify(string, options)
• 8.1 Example
• 8.2 Arguments

• 9 Common.log(mixed, type)
• 9.1 Example
• 9.2 Arguments

Common

Widgets Developer Resources 21

• 10 Common.sanitizeHTML(string)
• 10.1 Example
• 10.2 Arguments

• 11 Common.updateTemplateI18n(element, object)
• 11.1 Example
• 11.2 Arguments

• 12 Common.debugIcons
• 12.1 Example

• 13 Common.debug
• 13.1 Example
• 13.2 Arguments

• 14 Common.error
• 14.1 Example
• 14.2 Arguments

• 15 Common.populateAllPlaceholders
• 15.1 Example
• 15.2 Arguments

• 16 Common.populateLanguageStrings
• 16.1 Example
• 16.2 Arguments

• 17 Common.populateIcons
• 17.1 Example
• 17.2 Arguments

• 18 Common.insertIcon
• 18.1 Example
• 18.2 Arguments

• 19 Common.injectScript
• 19.1 Example
• 19.2 Arguments

• 20 Common.mobileScreenScale
• 20.1 Example
• 20.2 Arguments

• 21 Common.showLoading

Common

Widgets Developer Resources 22

• 21.1 Example
• 21.2 Arguments

• 22 Common.hideLoading
• 22.1 Example
• 22.2 Arguments

• 23 Common.showWaiting
• 23.1 Example
• 23.2 Arguments

• 24 Common.hideWaiting
• 24.1 Example
• 24.2 Arguments

• 25 Common.watch
• 25.1 Example
• 25.2 Arguments

• 26 Common.addDialog
• 26.1 Example
• 26.2 Arguments

• 27 Common.showDialog
• 27.1 Example
• 27.2 Arguments

• 28 Common.hideDialog
• 28.1 Example
• 28.2 Arguments

• 29 Common.hideDialogs
• 29.1 Example
• 29.2 Arguments

• 30 Common.showAlert
• 30.1 Example
• 30.2 Arguments

• 31 Common.bytesToSize
• 31.1 Example
• 31.2 Arguments

• 32 Common.getFormattedTime

Common

Widgets Developer Resources 23

• 32.1 Example
• 32.2 Arguments

Common

Widgets Developer Resources 24

• Developer

Learn how to access Widgets utility functions and dynamically generate the common HTML
containers used throughout Genesys Widgets.

Related documentation:
•

Common is a utility object available for import into Plugins/Widgets and Extensions. It is also
accessible directly from the path window._genesys.widgets.common.

Common provides utility functions and dynamically generates common HTML Containers used
throughout Genesys Widgets.

For all examples below, assume that _genesys.widgets.common has been stored in a local
variable named Common.

var Common = _genesys.widgets.common;

Common.Generate.Container({options})

Dynamically generates a new HTML Container in matching the style of Genesys Widgets with the
selected components you request in your options object. Returns the generated container HTML as a
jQuery wrapped set.

Example
'Generate an Overlay Container'

var ndContainer = Common.Generate.Container({

type: 'overlay',
title: 'My Overlay',body: 'Some HTML here as a string or jQuery wrapped set',
icon: 'call-outgoing',
controls: 'close',
buttons: false

}),

'Generate a Toast Container'

var ndContainer = Common.Generate.Container({

type: 'generic',
title: 'My Toast',body: 'Some HTML here as a string or jQuery wrapped set',
icon: 'chat',
controls: '',
buttons: {

Common

Widgets Developer Resources 25

type:'binary',
primary: 'OK',
secondary:'cancel'

}
}),

Arguments
Argument Type Description

options object An object containing options to
apply to the generated container.

options.type string

generic or overlay. Overlay
containers have special CSS
properties for appearing inside
the Overlay widget. Default is
generic.

options.title string Title to apply to the container's
titlebar area.

options.body string or jQuery wrapped set The HTML body you want the
container to wrap.

options.icon string CSS Classname of icon to use.

options.controls string

Select from a set of window
control buttons to show at the
top right. close = Show only the
close button. minimize = Show
only the minimize button. all =
Show both close and minimize
buttons.

options.buttons object
Options for displaying action
buttons at the bottom of the
container, such as OK and
Cancel buttons.

options.buttons.type string

Currently, binary is the only
supported button set at this time.
Additional sets and
arrangements will be available in
a later release. Pass binary as the
type here if you wish to show
typical accept and dismiss
buttons.

options.buttons.primary string
Display name on the primary
button. (for example OK, Yes,
Accept, Continue, etc.)

options.buttons.secondary string
Display name on the secondary
button. (for example Cancel,
No, Dismiss, Reject, etc.)

Common

Widgets Developer Resources 26

Common.Generate.Buttons({options})

Dynamically generates a new HTML Binary Button set in matching the style of Genesys Widgets with
the selected options in your options object. Returns the buttons as a jQuery wrapped set.

Example
'Generate Binary Buttons'

var ndButtons = Common.Generate.Buttons({

type: 'binary',
primary: 'OK',
secondary: 'Cancel'

}),

Arguments
Argument Type Description

options object Options for generating buttons,
such as OK and Cancel buttons.

options.type string

Currently binary is the only
supported button set at this time.
Additional sets and
arrangements will be available in
a later release. Please pass
binary as the type here if you
wish to show typical accept and
dismiss buttons.

options.primary string
Display name on the primary
button. (for example OK, Yes,
Accept, Continue, etc.)

options.secondary string
Display name on the secondary
button. (for example Cancel,
No, Dismiss, Reject, etc.)

Common.Generate.Icon(name)

Dynamically generates an icon from the included icon set. Icons are in SVG format.

Example
'Generate Chat Icon'

var ndChatIcon = Common.Generate.Icon('chat');

Common

Widgets Developer Resources 27

'Insert Chat Icon'

$('#your_icon_container').append(Common.Generate.Icon('chat'));

Arguments
Argument Type Description

name string
Select the icon you want to
generate by name. See the icon
reference page for icon names.

Common.Generate.Scrollbar(element, {options})

Dynamically generates a widget scrollbar for selected DOM element.

Example
'Generate Scrollbar for a container'

var scrollContainer = Common.Generate.Scrollbar($('#your_container'))

Arguments
Argument Type Description

element DOM element or jQuery selector Select the element to which you
would like to apply scrollbar.

options object

This is an iScroll component. So,
all the options that iScroll
supports can be passed here. For
more details, refer to:
http://iscrolljs.com/#configuring

Common.config(object)

Configure some debug options for Common at runtime.

Common

Widgets Developer Resources 28

Example
'Enable full debug logging'

Common.config({debug: true, debugTimestamps: true});

Arguments
Argument Type Description

object object

Supported options are debug
and debugTimestamps. Setting
debug to true will enable debug
messages created by
Common.log(). Setting
debugTimestamps to true will
add timestamps to the front of
each debug message created by
Common.log(). Default value
for both is false.

Common.checkPath(object, path)

Check for the existence of a sub-property of an object at any depth. Returns the value of that
property; if found otherwise it returns undefined. Useful for checking configuration object paths
without having to check each sub-property level individually.

Example
'Check for window._genesys.main'

var oMainConfig = false;

if(oMainConfig = Common.checkPath(window, '_genesys.main')){
//... Utilize oMainConfig

}

Arguments
Argument Type Description

object object
An object you want checked for a
particular sub-property at any
depth.

path string The object path in dot notation
you wish to search for.

Common

Widgets Developer Resources 29

Common.createPath(object, path, value)

Related to checkPath, createPath lets you specify a target object and path string but lets you create
the path and set a value for it. This saves you the pain of defining each node in the path individually.
All nodes in your path will be created as objects. Your final node, the property you are trying to
create, will be whatever value you assign it.

Example
'Create window._genesys.main'

var oMainConfig = false;

if(oMainConfig = Common.createPath(window, '_genesys.main', {debug:true})){
//... Utilize oMainConfig

}

Arguments
Argument Type Description

object object An object you want to add your
new path to.

path string The object path in dot notation
you wish to create.

value any
The value you want to assign to
the final node (property) in your
path.

Common.linkify(string, options)

Search for and convert URLs within a string into HTML links. Returns transformed string.

Example
'Check for window._genesys.main'

var sString = 'Please visit www.genesys.com';
sString = Common.linkify(sString, {target: 'self'});
// sString == 'Please visit www.genesys.com

Common

Widgets Developer Resources 30

/u01/app/apache/html/extensions/PrincePDF/pdf/www.genesys.com

Arguments
Argument Type Description

string string Any string you want to check for
URLs and have them converted.

options object A list of options to apply to the
linkify operation.

options.target string

Choose the HTML TARGET
attribute to apply to the
generated links. Default is
_blank. Set this option to self to
apply the target _self to the
generated links.

Common.log(mixed, type)

Log something to the browser's console. When using Common.log, _genesys.main.debug must be set
to true to see your logs. This allows you to add debug logging to your code without worrying about
unwanted debug messages in production. If timestamps are enabled, they will be prefixed to all
messages printed through Common.log.

Example
'Check the contents of window._genesys.main'

var Common = _genesys.widgets.common;
Common.log(window._genesys.main);

if(!window._genesys.main){
Common.log('window._genesys.main is not defined', 'error');

}

Arguments
Argument Type Description

mixed Any Any value or message you'd like
to log.

type string

You can specify the log type,
such as log, debug and error.
Default type is log. Note, if your
browser doesn't support the
debug or error log type, use log
instead.

Common

Widgets Developer Resources 31

Common.sanitizeHTML(string)

Search for and escape characters within a string. Returns transformed string. Useful for escaping
HTML.

Example
'Check for window._genesys.main'

var sString = 'Please visit www.genesys.com';

sString = Common.sanitizeHTML(sString);

// sString == 'Please visit www.genesys.com''

Arguments
Argument Type Description

string string Any string you want to be
transformed.

Common.updateTemplateI18n(element, object)

Searches through an element's contents for i18n string elements to update with new strings. Used
when updating the language in real-time. Works by searching for elements with the CSS classname
'i18n' and reading the custom attribute 'data-message' to match the string name in the language
object. See example below.

Example
'Check for window._genesys.main'

var ndContainer = $('

');

Common.updateTemplateI18n(ndContainer, {CustomButton001: 'Accept'});

// ndContainer ==
Accept

Common

Widgets Developer Resources 32

/u01/app/apache/html/extensions/PrincePDF/pdf/www.genesys.com

Arguments
Argument Type Description

element jQuery wrapped set Element you want to search
within to replace i18n strings.

object Object of i18n Strings

The list of languages strings you
want to update your UI with. This
object comes from the App.i18n
event or you can define your own
custom object inline or using
some other system. Object
format is a simple name:value
pair format. The data-message
attribute on your HTML element
must match one of these
property names to be updated.

Common.debugIcons

Returns the list of all the Icons with their names that Widgets support.

Example
'Fetch and Display list of icons present in Widgets'

Common.debugIcons()

Common.debug

Adds debug logs in to the browser's console. When using Common.debug, _genesys.main.debug
must be set to true to see your logs. This allows you to add debug logging to your code without
worrying about unwanted debug messages in production. If timestamps are enabled, they will be
prefixed to all messages printed through Common.debug.

Example
'Check the File upload limits in WebChatService'

Common.debug(data_server_returned_file_limits);

Common

Widgets Developer Resources 33

Arguments
Argument Type Description

mixed Any
Any value or message you'd like
to add debug log. Note: This is
only supported if your browser
supports debug log type.

Common.error

Adds error logs in to the browser's console. When using Common.error, _genesys.main.debug
must be set to true to see your logs. This allows you to add error logging to your code without
worrying about unwanted error messages in production.

Example
'Logging error messages'

Common.error('A widget plugin did not receive the following config:');

Arguments
Argument Type Description

mixed Any
Any value or message you'd like
to add error log. Note: This is
only supported if your browser
supports error log type.

Common.populateAllPlaceholders

Adds place holder content to the input elements in a form with the given text strings.

Example
'Show placeholders strings in a form'

Common.populateAllPlaceholders($('#your_form'), {strings})

Common

Widgets Developer Resources 34

Arguments
Argument Type Description

Form Selector jQuery DOM selector for a form

Form containing input elements.
Note: Input elements should
contain i18n class name and data
attribute data-message-type
with value placeholder for the
place holder details to appear.

Key/Value pairs object

Placeholder messages that needs
to be displayed. This is an object
with key-value pairs where key
should be equal to the data-
message attribute value of an
input element and value can be
any text that you would like to
display.

Common.populateLanguageStrings

Adds the preferred language place holder text to the given input elements in a form.

Example
'Show placeholders strings in a form'

Common.populateLanguageStrings($('#your_form'), {strings})

Arguments
Argument Type Description

Form Selector jQuery DOM selector for a form

Form containing input elements.
Note: Input elements should
contain i18n class name and data
attribute data-message-type
with value placeholder for the
place holder details to appear.

Key/Value pairs object

Placeholder messages that needs
to be displayed. This is an object
with key-value pairs where key
should be equal to the data-
message attribute value of an
input element and value can be
any text that you would like to
display.

Common

Widgets Developer Resources 35

Common.populateIcons

Show all the Icons on a Widget.

Example
'Populate all Widget Icons'

Common.populateIcons($('#your_continer'));

Arguments
Argument Type Description

element jQuery DOM selector
Specify the widget container for
which all the icons have to be
displayed.

Common.insertIcon

Adds an icon before the selected element.

Example
'Insert a check mark icon to an element you desire.'

Common.insertIcon($('#your_element'), 'alert-checkmark', 'alert')

Arguments
Argument Type Description

element jQuery DOM selector An html element to which icon is
to be displayed.

icon name string

Name of the icon that you would
like to display. Note: Refer to
Common.debugIcons method
to find out all the icon names
that widgets support.

icon Aria Name string Name for the icon to be read by
screen readers.

Common

Widgets Developer Resources 36

Common.injectScript

Injects javascript code dynamically into widgets with the help of a script tag.

Example
'Inject your Widget WebChat extension plugin.'

Common.injectScript('path/to/LoadWebChat.ext.js')

Arguments
Argument Type Description

Script file name string path to JavaScript file JavaScript file name that needs
to be injected into widgets.

Common.mobileScreenScale

Re-sizes and fits widget to any mobile screen.

Example
'Fit your widget to any mobile screen.'

var mobileScaledWidget = Common.mobileScreenScale($('#your_widget'));

Arguments
Argument Type Description

element jQuery DOM Selector

Your main widget wrapper
container selector that contains
the entire widget with cx-
titlebar, cx-body, cx-footer,
cx-button-container and cx-
message-container classes in
it.

Common.showLoading

Show loading spinner Icon.

Common

Widgets Developer Resources 37

Example
'Show loading spinner during an Ajax request'

Common.showLoading($('#your_container'))

Arguments
Argument Type Description

element jQuery DOM Selector
An html container where loading
spinner should appear. This adds
a class name cx-loading.

Common.hideLoading

Remove loading spinner Icon.

Example
'Remove loading spinner after the Ajax request'

Common.hideLoading($('#your_container'))

Arguments
Argument Type Description

element jQuery DOM Selector An html container that contains
the loading spinner.

Common.showWaiting

Show waiting icon.

Example
'Show waiting Icon when uploading a file.'

Common.showWaiting($('#your_container'),'waiting'))

Common

Widgets Developer Resources 38

Arguments
Argument Type Description

element jQuery DOM Selector
An html container where waiting
symbol should appear. This adds
a class name cx-waiting.

Aria Label string
The value of the aria-label
attribute for the loading screen
icon. The default value is
waiting.

Common.hideWaiting

Remove waiting icon.

Example
'Remove waiting icon after file upload is done.'

Common.hideWaiting($('#your_container'))

Arguments
Argument Type Description

element jQuery DOM Selector An html container that contains
the waiting symbol.

Common.watch

Repeat your function execution for every 'x' milliseconds (default 1 second) up to a maximum
number of times (default - infinite) or till your function returns true.

Example
'Make Request Notifications until none are pending.'

Common.watch(function(iteration, maxIterations){

if(bRequestNotificationsPending){
// ..POST Request

}
return !bRequestNotificationsPending;

}, 3000, 30)

Common

Widgets Developer Resources 39

Arguments
Argument Type Description

function name function
The function that you would like
to execute. It should return true/
false.

frequency milliseconds Execute the function for every x
milliseconds until it returns true.

limit number The maximum number of times
function is executed.

Common.addDialog

Create your own dialog box and append it in to the widget.

Example
'Add a dialog box on your preferred container div

Common.addDialog($('#your_container'), $('#your_dialog_box'), 'my_warning')

Arguments
Argument Type Description

element jQuery selector The parent container that holds
the dialog box.

element jQuery selector

The actual dialog box that you
would like to display. This should
contain the data-dialog
attribute with the value equal to
the dialog box name.

name string Dialog box name.

Common.showDialog

Show the dialog box that you prefer, using the dialog box name created with Common.addDialog().

Common

Widgets Developer Resources 40

Example
'Show the dialog box created using Common.addDialog()'

Common.showDialog($('#your_container'), 'your_dialog_box_name');

Arguments
Argument Type Description

element jQuery Selector The parent container which has
the dialog box appended in to it.

name string The actual dialog box name.

Common.hideDialog

Hide the dialog box that you showed using Common.showDialog().

Example
'Hide dialog box'

Common.hideDialog($('#your_container'), 'your_dialog_box_name);

Arguments
Argument Type Description

element jQuery Selector The parent container that is
showing the dialog box.

name string The actual dialog box name.

Common.hideDialogs

Hide all the dialog boxes. Dialog box name is not needed here.

Example
'Hide all dialog boxes.'

Common.hideDialogs($('#your_container'));

Common

Widgets Developer Resources 41

Arguments
Argument Type Description

element jQuery Selector The parent container that is
showing all the dialog boxes.

Common.showAlert

Show a native alert dialog box on the widget you prefer with your own text message. By default, a
primary button is added to dismiss the alert dialog.

Example
Show an alert dialog box on the Widget you prefer. But default it adds the
dismiss button.
Common.showAlert($('.cx-widget.cx-webchat'), {text: 'your alert message', buttonText: 'Ok'})

Arguments
Argument Type Description

element jQuery selector

The widget plugin container that
should display the alert dialog.
This should be the top level
container wrapper holding the
widget.

options object
The data options containing the
text to be shown on the Alert
dialog box.

options.text string Display text on the Alert dialog
box.

options.buttonText string Display text on the primary
button (for example: OK).

Common.bytesToSize

Convert any number in bytes to Kilobytes, Megabytes, Gigabytes and Terabytes.

Example
'bytes to KB, MB, GB or TB.'

Common

Widgets Developer Resources 42

var fileSize = Common.bytesToSize(parseInt(fileSizeInBytes));

Arguments
Argument Type Description

bytes number Number in bytes size.

Common.getFormattedTime

Returns time in 12-hour or 24-hour format from the actual date timestamp. If no timestamp is
provided, it uses current time.

Example
'convert date timestamp to return time in 12 hrs format'

var formattedTime = Common.getFormattedTime(timestamp, 12);

Arguments
Argument Type Description

timestamp Date JavaScript Date timestamp
object.

format number Time format with value 12 or 24.

Common

Widgets Developer Resources 43

Overlay

Contents

• 1 Overview
• 1.1 Usage
• 1.2 Customization
• 1.3 Mobile support

• 2 Configuration
• 3 Localization
• 4 API commands

• 4.1 open
• 4.2 close

• 5 API events

Overlay

Widgets Developer Resources 44

• Developer

Learn how to use an overlay window control that widgets can inject their UI into.

Related documentation:
•

Overview

The Overlay plugin provides an overlay window control that widgets can inject their UI into, accepting
the HTML UI, placing it inside an overlay control, and displaying the UI onscreen in a uniform overlay
window fashion. This prevents individual widgets from managing the overlay themselves. It also
means that each widget's UI can be moved between different container types.

Overlay provides these benefits:

• Shows the UI in the center of the window.
• Open and close transition animations.
• No overlapping overlays. Only one at a time. Automatically managed by the Overlay plugin.
• Auto-recenter as the browser window size is changed.
• Automatic application of mobile styles when running in mobile mode.

Usage
Overlay is easy to use; you simply open and close it. When you call Overlay.open, you pass in the
HTML content you want to show. If you call Overlay.open again while an overlay is already open, it
will automatically close the previous overlay before showing yours (unless the previous overlay has
reserved the overlay to prevent new overlays).

Important
By default, the overlay has no visible styles or content. You must pass in the HTML you
want to show inside the Overlay area. Typically you should create an overlay-type
container using Common.Generate.Container, put your content inside that, then
send the whole thing into Overlay.open.

Customization
Overlay does not have customization options.

Overlay

Widgets Developer Resources 45

Mobile support
Overlay automatically applies mobile CSS styles to its outer container to affect the content within the
overlay view. It is up to the content inside the overlay view to dynamically change when the Genesys
Widgets .cx-mobile CSS classname is applied to an outer container.

Configuration

Overlay does not have configuration options.

Localization

Overlay does not have localization options.

API commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Overlay.close');

open
Opens the provided HTML in an Overlay View. When successful, it returns back the HTML and a
custom close event for you to subscribe to. This alerts you when your overlay instance has been
closed. You can also make your overlay immutable so that new overlay instances don't close yours.
Only your widget can close its overlay when immutable is set to true.

Example
oMyPlugin.command('Overlay.open', {

html: '
Template
',

Overlay

Widgets Developer Resources 46

immutable: false,
group: false

}).done(function(e){

// Overlay opens successfully

}).fail(function(e){

// Overlay failed to open
});

Options

Option Type Description

html string HTML string template for overlay
window.

immutable boolean When set to true, overlay cannot
be closed by other plugins.

group string
The name of the overlay window
group you want to add a new
overlay view into.

Resolutions

Status When Returns
resolved Overlay is successfully opened. {html: , events: , group: }

rejected No html template is passed.
No HTML content was provided.
Overlay has ignored your
command.

rejected Overlay is already opened. Overlay view is currently
reserved.

close
Closes the Overlay UI. Publishes the appropriate custom close event for current overlay being closed.

Example
oMyPlugin.command('Overlay.close').done(function(e){

// Overlay closed successfully

}).fail(function(e){

// Overlay failed to close
});

Overlay

Widgets Developer Resources 47

Resolutions

Status When Returns
resolved Overlay is successfully closed. n/a
rejected Overlay is already closed. Overlay view is already closed.

rejected Overlay view is immutable. Overlay view is currently
reserved.

API events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('Overlay.ready', function(e){});

Name Description Data

ready The Overlay plugin is initialized
and ready to accept commands n/a

Overlay

Widgets Developer Resources 48

Toaster

Contents

• 1 Overview
• 1.1 Usage
• 1.2 Namespace
• 1.3 Customization
• 1.4 Mobile support

• 2 Configuration
• 3 Localization
• 4 API commands

• 4.1 open
• 4.2 close

• 5 API events

Toaster

Widgets Developer Resources 49

• Developer

Learn how to use a toast view control into which widgets can inject their UI.

Related documentation:
•

Overview

The Toaster plugin provides a toast view control that widgets can inject their UI into, accepting the
HTML UI, placing it inside a toast view, and displaying the UI onscreen in the lower-bottom-right of
the screen. When it is opened, it slides up from the bottom. When it is closed, it slides down until it is
offscreen.

Toaster provides these benefits:

• Shows UI as a slide-up toast view in the lower-bottom-right of the screen.
• Open and close transition animations.
• No overlapping toasts; only one at a time. Automatically managed by the Toaster plugin.

Usage
Toaster is easy to use; you simply open and close it. When you call Toaster.open, you pass in the
HTML content you want to show. If you call Toaster.open again while a toast is already open, it will
automatically close the previous toast before showing yours (unless the previous toast has reserved
the view to prevent new toasts).

Namespace
The Toaster plugin has the following namespaces tied to each of the following types.

Type Namespace
CXBus—API commands & API events Toaster
CSS .cx-toaster

Customization
Toaster does not have customization options.

Toaster

Widgets Developer Resources 50

Mobile support
Toaster does not have mobile-specific styles at this time.

Configuration

Toaster does not have configuration options.

Localization

Toaster does not have localization options.

API commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Toaster.close');

open
Opens the Toaster UI.

Example
oMyPlugin.command('Toaster.open', {

type: 'generic',
title: 'Toaster Title',
body: 'Toaster Body',
icon: 'chat',
controls: 'close',
immutable: false,
buttons:{

Toaster

Widgets Developer Resources 51

type: 'binary',
primary: 'Accept',
secondary: 'Decline'

}

}).done(function(e){

// Toaster opened successfully

}).fail(function(e){

// Toaster failed to open properly
});

Options

Option Type Description

type string

Specifies the type of body
content that can be provided to
Toaster window. Generic type
shows the default body content
and custom type overrides the
default html body content.

title string Heading title to display on the
Toaster window.

body string
Holds text value for Generic
Toaster type and html string
template for Custom Toaster
type.

icon string The CSS class name for an icon.

controls string Show close and minimize
controls on Toaster window.

buttons object Define the type of buttons.

buttons.type string Shows two buttons on the Toaster
.

buttons.primary string Text to be shown on primary
button.

buttons.secondary string Text to be shown on secondary
button.

immutable boolean When set to true, Toaster cannot
be closed by other plugins.

Resolutions

Status When Returns
resolved Toaster is successfully opened. n/a

rejected No Toaster type is specified. No content was provided. Toaster
has ignored your command.

rejected Toaster is already opened. Toaster view is currently
reserved.

Toaster

Widgets Developer Resources 52

close
Closes the Toaster UI.

Example
oMyPlugin.command('Toaster.close').done(function(e){

// Toaster closed successfully

}).fail(function(e){

// Toaster failed to close
});

Resolutions

Status When Returns
resolved Toaster is successfully closed. n/a
rejected Toaster is already closed. Toaster view is already closed.

rejected Toaster view is immutable. Toaster view is currently
reserved.

API events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('Toaster.ready', function(e){});

Name Description Data

ready The Toaster plugin is initialized
and ready to accept commands. n/a

closed The Toaster plugin has been
removed from the screen. n/a

Toaster

Widgets Developer Resources 53

WindowManager

Contents

• 1 Overview
• 1.1 Usage
• 1.2 Customization

• 2 Configuration
• 3 Localization
• 4 API commands

• 4.1 registerDockView
• 4.2 registerSideButton

• 5 API events

WindowManager

Widgets Developer Resources 54

• Developer

Learn how to use the WindowManager plugin, which provides a controller for several different types
of window groups in Genesys Cloud CX.

Related documentation:
•

Overview

The WindowManager plugin provides a controller for several types of window groups. HTML UIs added
to these WindowManager groups are arranged and managed in accordance with each group's
purpose.

One group type is Dock View. WebChat utilizes this group to show the toast-like UI docked in the
lower-bottom-right of the screen. This group automatically stacks the widgets horizontally. When
one of the widgets closes, the stack collapses toward the right. Widgets can register themselves into
this WindowManager group and let it do all the work.

Another group type is Side Button. WebChat uses this group to show the launcher button on the right
side of the screen. Like the Dock View, buttons are stacked, but in this case they are stacked
vertically. As buttons are added and removed from the group, the button stack collapses to fill in the
gaps.

Usage
WindowManager has "register" commands for registering your UI into different groups. They all
accept one argument, the HTML you want to be handled by WindowManager. You can use
'registerDockView' or 'registerSideButton' at this time. More window management groups will be
added in upcoming releases.

Customization
WindowManager does not have customization options.

Configuration

WindowManager does not have configuration options.

Localization

WindowManager

Widgets Developer Resources 55

WindowManager does not have localization options.

API commands
Once you've registered your plugin on the bus, you can call commands on other
registered plugins. Here's how to use the global bus object to register a new
plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('WindowManager.registerDockView', {html: '
HTML
'});

registerDockView
Creates a docked view container to show a widget on the bottom right corner. Its position is adjusted
(stacked) to appear beside another widget if already present and is indexed with a tabindex.

Example
oMyPlugin.command('WindowManager.registerDockView', {html: '
Template
'}).done(function(e){

// WindowManager registered a dockView successfully

}).fail(function(e){

// WindowManager failed to register a dock view
});

Options

Option Type Description

html string
A Widget HTML string template
that needs to be shown in dock
view.

WindowManager

Widgets Developer Resources 56

Resolutions

Status When Returns

resolved
The html template is successfully
opened and registered in dock
view.

n/a

rejected No HTML template is found. No html content

registerSideButton
Registers a button to show on the right side of the screen for a particular plugin. Its position is based
on the respective plugin order defined in the array configuration. Currently, this is not supported for
external plugins.

Example
oMyPlugin.command('WindowManager.registerSideButton', {template: '
Button Text
'}).done(function(e){

// WindowManager registered a side button successfully

}).fail(function(e){

// WindowManager failed to register a side button
});

Options

Option Type Description

template string Custom HTML string template for
a button.

Resolutions

Status When Returns

resolved The HTML button is successfully
registered. n/a

rejected No HTML template is found. No button template found to
register

API events
Once you've registered your plugin on the bus, you can subscribe to and listen
for published events. Here's how to use the global bus object to register a new
plugin on the bus.

WindowManager

Widgets Developer Resources 57

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('WindowManager.ready', function(e){});

Name Description Data

ready WindowManager is initialized and
ready to accept commands. n/a

changed
WindowManager publishes this
event when there is any change
in the position of widgets on the
screen.

{registry: (object)}

WindowManager

Widgets Developer Resources 58

WebChatService

Contents

• 1 Overview
• 1.1 Usage
• 1.2 Namespace
• 1.3 Customization

• 2 Configuration
• 2.1 Example

• 3 Localization
• 4 API commands

• 4.1 configure
• 4.2 startChat
• 4.3 endChat
• 4.4 sendMessage
• 4.5 sendCustomNotice
• 4.6 sendTyping
• 4.7 sendFilteredMessage
• 4.8 addPrefilter
• 4.9 updateUserData
• 4.10 poll
• 4.11 startPoll
• 4.12 stopPoll
• 4.13 resetPollExceptions
• 4.14 restore
• 4.15 getTranscript
• 4.16 getAgents
• 4.17 getStats
• 4.18 sendFile
• 4.19 downloadFile
• 4.20 getSessionData

WebChatService

Widgets Developer Resources 59

• 4.21 fetchHistory
• 4.22 registerTypingPreviewInput
• 4.23 registerPreProcessor
• 4.24 verifySession

• 5 API events

WebChatService

Widgets Developer Resources 60

Learn how to use Genesys chat services in Genesys Cloud CX.

Related documentation:
•

Feature coming soon: Web messaging

If you are a Genesys Cloud CX customer, we encourage you to use the new web messaging feature to
replace web chat. To use web messaging, you configure tracking through the Messenger JavaScript
SDK instead of deploying a tracking snippet.

Overview

WebChatService exposes high-level API access to Genesys chat services, so you can monitor and
modify a chat session on the front end, or develop your own custom WebChat Widget. Compared to
developing a custom chat UI and using the chat REST API, WebChatService dramatically simplifies
integration—improving the reliability, feature set, and compatibility of every widget on the bus.

Usage
WebChatService and the matching WebChat Widget work together right out of the box and they
share the same configuration object. Using WebChat uses WebChatService.

You can also use WebChatService as a high-level API using bus commands and events to build your
own WebChat Widget or other UI features based on WebChatService events.

Namespace
The WebChatService plugin has the following namespaces tied to each of the following types:

Type Namespace
Configuration webchat
CXBus— API commands & API events WebChatService

Customization
WebChatService has many configuration options but no customization options. It is a plug-and-play
plugin and works as is.

WebChatService

Widgets Developer Resources 61

Configuration
WebChat and WebChatService share the _genesys.widgets.webchat
configuration namespace. WebChat contains the UI options and WebChatService
contains the connection options.

Important
Starting with version 9.0.008.04, WebChatService allows you to choose between the
types of chat services available in Genesys via the transport section configuration
options.

For Genesys Cloud CX, the transport.type property should always be set to
purecloud-v2-sockets.
Example

• Applicable to Genesys Cloud CX - Guest Chat APIs

window._genesys.widgets.webchat = { transport: {
type: 'purecloud-v2-sockets',
dataURL: 'https://api.mypurecloud.com', // replace with API URL matching your region
deploymentKey : 'YOUR_DEPLOYMENTKEY_HERE', // replace with your Deployment ID
orgGuid : 'YOUR_ORGGUID_HERE', // replace with your Organization ID
interactionData: {

routing: {
targetType: 'QUEUE',
targetAddress: 'YOUR_QUEUENAME_HERE',
priority: 2
}

}
},
userData: {

addressStreet: '64472 Brown Street',
addressCity: 'Lindgrenmouth',
addressPostalCode: '50163-2735',
addressState: 'FL',
phoneNumber: '1-916-892-2045 x293',
phoneType: 'Cell',
customerId: '59606'

}
}

Options

Name Type Description Default Required Introduced/
updated

transport object

Object
containing the
transport
service
configuration

N/A Yes 9.0.008.04

WebChatService

Widgets Developer Resources 62

Name Type Description Default Required Introduced/
updated

options.

transport.type string

Always set to
purecloud-
v2-sockets for
use with
Genesys Cloud
CX.
For more details
see Widget -
Version 2 in
Genesys Cloud CX
Developer Center.

N/A Yes 9.0.008.04

transport.dataURLstring (URL)

The Genesys
Cloud CX
WebChatService
URL for your
region. A list of
API URLs per
region is
available in the
Platform API
section.
For more details
see Widget -
Version 2 in
Genesys Cloud CX
Developer Center.

N/A Yes 9.0.008.04

transport.deploymentKeystring

Genesys Cloud
CX widget
deployment
key. Identifies
the widget on
your web page
as the one you
created in the
previous task
(Create a
widget
configuration
object).
For more details
see Widget -
Version 2 in
Genesys Cloud CX
Developer Center.

N/A Yes 9.0.008.04

transport.orgGuid string

Genesys Cloud
CX
organization
ID; a unique
GUID.

N/A Yes 9.0.008.04

WebChatService

Widgets Developer Resources 63

Name Type Description Default Required Introduced/
updated

For more details
see Widget -
Version 2 in
Genesys Cloud CX
Developer Center.

transport.paginationboolean

Enable/disable
pagination
capability to
restore the
chat messages
based on
transport.maxMessagePageSize
option. If set to
false, chat
messages will
be restored all
at once.

true No 9.0.008.04

transport.maxMessagePageSizenumber

Number of
messages to
be received per
page during
chat restore.

100 No 9.0.008.04

transport.interactionData.routing.targetTypestring
Always set to
'QUEUE' to
route to a
queue.

N/A Yes 9.0.008.04

transport.interactionData.routing.targetAddressstring

The queue
name that
receives chat
messages.
Example:
Support.
For more details
see Widget -
Version 2 in
Genesys Cloud CX
Developer Center.

N/A Yes 9.0.008.04

transport.interactionData.routing.priorityinteger

Priority level
from 0 (lowest)
to 10 (highest).
For more details
see Widget -
Version 2 in
Genesys Cloud CX
Developer Center.

N/A No 9.0.008.04

transport.interactionData.routing.skillsarray
List of skills.
Example:
[Computers,
Printers].

N/A No 9.0.008.04

WebChatService

Widgets Developer Resources 64

Name Type Description Default Required Introduced/
updated

For more details
see Widget -
Version 2 in
Genesys Cloud CX
Developer Center.

transport.interactionData.routing.languagestring

Requested
agent
language skill.
Example:
English -
Written.
For more details
see Widget -
Version 2 in
Genesys Cloud CX
Developer Center.

N/A No 9.0.008.04

userData object

An object of
key/value pairs
of arbitrary
custom data.
For more details
see Widget -
Version 2 in
Genesys Cloud CX
Developer Center.

N/A No 9.0.008.04

Localization

WebChatService doesn't have any localization options.

API commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

WebChatService

Widgets Developer Resources 65

oMyPlugin.command('WebChatService.getAgents');

Important
Starting with version 9.0.008.04, WebChatService allows you to choose between the
types of chat API services available in Genesys via the transport section configuration
options. For more information, see the Options table in configuration.

configure
Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling
configure again after startup may result in unpredictable behavior.

startChat
Initiates a new chat session with the chat server via GES or with the service configured under the
transport section.

Example
oMyPlugin.command('WebChatService.startChat', {

nickname: 'Jonny',
firstname: 'Johnathan',
lastname: 'Smith',
email: 'jon.smith@mail.com',
subject: 'product questions',
userData: {}

}).done(function(e){

// WebChatService started a chat successfully

}).fail(function(e){

// WebChatService failed to start chat
});

Options

Option Type Description

nickname string Chat Entry Form Data:
'nickname'.

firstname string Chat Entry Form Data:
'firstname'.

lastname string Chat Entry Form Data:
'lastname'.

email string Chat Entry Form Data: 'email'.

WebChatService

Widgets Developer Resources 66

Option Type Description
subject string Chat Entry Form Data: 'subject'.

userData object

Arbitrary data to attach to the
chat session (AKA attachedData).
Properties defined here will be
merged with default userData set
in the configuration object.

Resolutions

Status When Returns
resolved Server confirms session started. (AJAX Response Object)

rejected A chat session is already active. There is already an active chat
session.

rejected AJAX exception occurs. (AJAX Response Object)
rejected Server exception occurs. (AJAX Response Object)

rejected userData is invalid. malformed data object provided
in userData property.

endChat
Ends the chat session with the chat server via GES or with the service configured under transport
section.

Example
oMyPlugin.command('WebChatService.endChat').done(function(e){

// WebChatService ended a chat successfully

}).fail(function(e){

// WebChatService failed to end chat
});

Resolutions

Status When Returns

resolved Active session is ended
successfully. (AJAX Response Object)

rejected No chat session is currently
active. There is no active chat session.

sendMessage
Sends a message from the client to the chat session.

WebChatService

Widgets Developer Resources 67

Example
oMyPlugin.command('WebChatService.sendMessage', {message: 'hi'}).done(function(e){

// WebChatService sent a message successfully

}).fail(function(e){

// WebChatService failed to send a message
});

Options

Option Type Description
message string The message you want to send.

Resolutions

Status When Returns
resolved Message is successfully sent. (AJAX Response Object)
rejected No message text provided. No message text provided.

rejected No chat session is currently
active. There is no active chat session.

rejected AJAX exception occurs. (AJAX Response Object)

sendCustomNotice
Sends a custom notice from the client to the chat server. This request is used to deliver any custom
notification between a custom client application and a custom agent desktop. Neither Genesys
Widgets, nor Workspace, uses this out of the box.

Example
oMyPlugin.command('WebChatService.sendCustomNotice', {message: 'bye'}).done(function(e){

// WebChatService sent a custom message successfully

}).fail(function(e){

// WebChatService failed to send a custom message
});

Options

Option Type Description

message string A message you want to send
along with the custom notice.

WebChatService

Widgets Developer Resources 68

Resolutions

Status When Returns Introduced/updated

resolved Message is successfully
sent. (AJAX Response Object)

rejected AJAX exception occurs. (AJAX Response Object)

rejected
The server doesn't
support receiving
custom notices.

This transport doesn't
support
sendCustomNotice
command.

9.0.008.04

sendTyping
Sends a "Customer typing" notification to the chat session. A visual indication will be shown to the
agent.

Example
oMyPlugin.command('WebChatService.sendTyping').done(function(e){

// WebChatService sent typing successfully

}).fail(function(e){

// WebChatService failed to send typing
});

Options

Option Type Description

Message String The message you want to send
along with the typing notification.

Resolutions

Status When Returns
resolved AJAX request is successful. (AJAX Response Object)
rejected AJAX exception occurs. (AJAX Response Object)

rejected No chat session is currently
active. There is no active chat session.

sendFilteredMessage
Sends a message along with a regular expression to match the message and hide it from the client.
Useful for sending codes and tokens through the WebChat interface to the Agent Workspace.

WebChatService

Widgets Developer Resources 69

Important
Filters are now automatically stored and recalled on chat restore for the duration of
the session.

Example
oMyPlugin.command('WebChatService.sendFilteredMessage', {

message: 'filtered message',
regex: /[a-zA-Z]/

}).done(function(e){

// WebChatService sent filtered message successfully

}).fail(function(e){

// WebChatService failed to send filtered message
});

Options

Option Type Description

message string
Message you want to send but
don't want to appear in the
transcript.

regex RegExp Regular expression to match the
message.

Resolutions

Status When Returns
resolved There is an active session. n/a

rejected No chat session is currently
active. No active chat session.

addPrefilter
Adds a new pre-filter regular expression to the pre-filter list. Any messages matched using the pre-
filters will not be shown in the transcript

Important
Filters are now automatically stored and recalled on chat restore for the duration of
the session.

WebChatService

Widgets Developer Resources 70

Example
oMyPlugin.command('WebChatService.addPrefilter', {filters: /[a-zA-Z]/}).done(function(e){

// WebChatService added filter successfully
// e == Object of registered prefilters

}).fail(function(e){

// WebChatService failed to add filter
});

Options

Option Type Description

filters RegExp or Array of RegExp Regular Expression(s) to add to
the prefilter list.

Resolutions

Status When Returns
resolved Valid filters are provided. Array of all registered prefilters.

rejected Invalid or missing filters
provided.

Missing or invalid filters provided.
Please provide a regular
expression or an array of regular
expressions.

updateUserData
Updates the userData properties associated with the chat session. If this command is called before a
chat session starts, it will update the internal userData object and will be sent when a chat session
starts. If this command is called after a chat session starts, a request to the server will be made to
update the userData on the server associated with the chat session.

Example
oMyPlugin.command('WebChatService.updateUserData', {firstname: 'Joe'}).done(function(e){

// WebChatService updated user data successfully

}).fail(function(e){

// WebChatService failed to update user data
});

Options

Option Type Description

n/a object
userData object you want to send
to the server for this active
session.

WebChatService

Widgets Developer Resources 71

Resolutions

Status When Returns Introduced/updated

resolved
Session is active and
userData is successfully
sent.

(AJAX Response Object)

rejected Session is active and
AJAX exception occurs. (AJAX Response Object)

resolved

Session is not active
and internal userData
object is merged with
new userData properties
provided.

The internal userData
object that will be sent
to the server.

rejected
Session is active and
the server doesn't
support updating
userData.

This transport doesn't
support updating
userData during an
active chat session.

9.0.008.04

poll
Internal use only. Starts polling for new messages.

Example
oMyPlugin.command('WebChatService.poll').done(function(e){

// WebChatService started polling successfully

}).fail(function(e){

// WebChatService failed to start polling
});

Resolutions

Status When Returns Introduced/updated

resolved There is an active
session. n/a

rejected WebChatService isn't
calling this command.

Access Denied to
private command. Only
WebChatService is
allowed to invoke this
command.

rejected No chat session is
currently active.

previous poll has not
finished.

rejected The server doesn't
support polling.

This transport doesn't
support polling. 9.0.008.04

WebChatService

Widgets Developer Resources 72

startPoll
Starts automatic polling for new messages.

Example
oMyPlugin.command('WebChatService.startPoll').done(function(e){

// WebChatService started polling successfully

}).fail(function(e){

// WebChatService failed to start polling
});

Resolutions

Status When Returns Introduced/updated

resolved There is an active
session. n/a

rejected No chat session is
currently active. No active chat session.

rejected The server doesn't
support polling.

This transport doesn't
support polling. 9.0.008.04

stopPoll
Stops automatic polling for new messages.

Example
oMyPlugin.command('WebChatService.stopPoll').done(function(e){

// WebChatService stopped polling successfully

}).fail(function(e){

// WebChatService failed to stop polling
});

Resolutions

Status When Returns Introduced/updated

resolved There is an active
session. n/a

rejected No chat session is
currently active. No active chat session.

rejected The server doesn't
support polling.

This transport doesn't
support polling. 9.0.008.04

WebChatService

Widgets Developer Resources 73

resetPollExceptions
Resets the poll exception count to 0. pollExceptionLimit is set in the configuration.

Example
oMyPlugin.command('WebChatService.resetPollExceptions').done(function(e){

// WebChatService reset polling successfully

}).fail(function(e){

// WebChatService failed to reset polling
});

Resolutions

Status When Returns Introduced/updated
resolved Always. n/a

rejected The server doesn't
support polling.

This transport doesn't
support
resetPollExceptions
command.

9.0.008.04

restore
Internal use only. You should not invoke this manually unless you are using Async mode.

Example
oMyPlugin.command('WebChatService.restore').done(function(e){

// WebChatService restored successfully

}).fail(function(e){

// WebChatService failed to restore
});

Options

Option Type Description Accepted values Introduced/
updated

sessionData string

The session data
that is needed to
restore the
WebChat in Async
mode. It is a JWT
token string value.
Applicable only
when using
WebChat with
Genesys
Multicloud CX v3

(JWT string token) 9.0.008.04

WebChatService

Widgets Developer Resources 74

Option Type Description Accepted values Introduced/
updated

API. For more
information, see
the Genesys
Multicloud CX v3
tab in the Options
table in
configuration.

Resolutions

Status When Returns Introduced/updated
resolved Session has been found. n/a

rejected Session cannot be
found. n/a

rejected Restoring chat session is
in progress.

Already restoring.
Ignoring request. 9.0.002.06

rejected Chat session is already
active.

Chat session is already
active, ignoring restore
command.

9.0.002.06

rejected Trying restore chat
session manually.

Access Denied to
private command. Only
WebChatService is
allowed to invoke this
command in Non-Async
mode.

9.0.002.06

getTranscript
Fetches an array of all messages in the chat session.

Important
For more information on the fields included in JSON response, see Digital Channels
Chat V2 Response Format.

Example
oMyPlugin.command('WebChatService.getTranscript').done(function(e){

// WebChatService got transcript successfully
// e == Object with an array of messages

}).fail(function(e){

// WebChatService failed to get transcript
});

WebChatService

Widgets Developer Resources 75

Resolutions

Status When Returns

resolved Always Object with an array of
messages.

getAgents
Return a list of agents that have participated in the chat. Includes agent metadata.

Example
oMyPlugin.command('WebChatService.getAgents').done(function(e){

// WebChatService got agents successfully
// e == Object with agents information in chat

}).fail(function(e){

// WebChatService failed to get agents
});

Resolutions

Status When Returns

resolved Always

(Object List) {name: (String),
connected: (Boolean), supervisor:
(Boolean), connectedTime: (int
time),disconnectedTime: (int
time)}

getStats
Returns stats on chat session including start time, end time, duration, and list of agents.

Example
oMyPlugin.command('WebChatService.getStats').done(function(e){

// WebChatService got stats successfully
// e == Object with chat session stats

}).fail(function(e){

// WebChatService failed to get stats
});

Resolutions

Status When Returns

resolved Always {agents: (Object), startTime: (int
time), endTime: (int time),

WebChatService

Widgets Developer Resources 76

Status When Returns
duration: (int time)}

sendFile
[Introduced: 9.0.008.04]

Sends the file from the client machine to the agent.

Example
oMyPlugin.command('WebChatService.sendFile', {files: $('').attr('type', 'file') /* Only works
on UI, can not dynamically change */ }).done(function(e){

// WebChatService sent file successfully

}).fail(function(e){

// WebChatService failed to send file
});

Options

Option Type Description

files File A reference to a file input
element (for example)

Resolutions

Status When Returns

resolved The file sent is a valid type and
size. (AJAX Response Object)

rejected The file sent is an invalid type. (AJAX Response Object)

rejected The number of uploads is
exceeded. (AJAX Response Object)

rejected The file size exceeds the limit. (AJAX Response Object)

rejected The file size is too large or an
unknown error occurs. (AJAX Response Object)

rejected The server doesn't support file
uploads.

This transport doesn't support
file uploads.

downloadFile
Downloads the file to the client machine. Example
oMyPlugin.command('WebChatService.downloadFile', {fileId: '1', fileName:
'myfile.txt'}).done(function(e){

// WebChatService sent file successfully

WebChatService

Widgets Developer Resources 77

}).fail(function(e){

// WebChatService failed to send file
});

Options

Option Type Description

fileId string This is the ID of the file to be
downloaded from the session.

Resolutions

Status When Returns

resolved The file is downloaded
successfully. n/a

getSessionData
[Introduced: 9.0.002.06]

Retrieves the active session data at any time.

Example
oMyPlugin.command('WebChatService.getSessionData')

Resolutions

Status When Returns Introduced/updated

resolved

Always, when using
Chat via GMS API. For
more information, see
the GMS tab in the
Options table in
configuration.

{secureKey: (string),
sessionID: (number/
string), alias: (number/
string), userId: (number/
string)}

resolved

Always, when using
Chat via Genesys
Multicloud CX v3 API.
For more information,
see the Genesys
Multicloud CX v3 tab
in the Options table in
configuration.

{participantId: (string),
sessionId: {string),
token: (string),
transportId: (string)}

9.0.008.04

rejected Never undefined

fetchHistory
[Introduced: 9.0.008.04]

This applies only in Asynchronous mode to fetch older chat messages. It does not fetch all of the

WebChatService

Widgets Developer Resources 78

messages at once; rather a certain number of messages are fetched every time this command is
called. Response data will be available in the messageReceived event.

Example
oMyPlugin.command('WebChatService.fetchHistory')

Resolutions

Status When Returns
resolved Old messages are retrieved. (AJAX Response Object)
rejected Request fails. (AJAX Response Object)

rejected Asynchronous mode is not
enabled.

Fetching history messages
applies only to Asynchronous
chat.

rejected All messages are received. No more messages to fetch.

registerTypingPreviewInput
Selects an HTML input to watch for key events. Used to trigger startTyping and stopTyping
automatically.

Example
oMyPlugin.command('WebChatService.registerTypingPreviewInput', {input: $('input')
}).done(function(e){

// WebChatService registered input area successfully

}).fail(function(e){

// WebChatService failed to register typing preview
});

Options

Option Type Description

input HTML Reference An HTML reference to a text or
textarea input.

Resolutions

Status When Returns

resolved Valid HTML input reference is
provided. n/a

rejected Invalid or missing HTML input
reference.

Invalid value provided for the
input property. An HTML element
reference to a textarea or text
input is required.

WebChatService

Widgets Developer Resources 79

registerPreProcessor
Registers a function that receives the message object, allowing you to manipulate the values before
it is rendered in the transcript.

Example
oMyPlugin.command('WebChatService.registerPreProcessor', {preprocessor: function(message){

message.text = message.text + ' some preprocessing text';
return message;

} }).done(function(e){
// WebChatService registered preprocessor function
// e == function that was registered

}).fail(function(e){
// WebChatService failed to register function

});

Options

Option Type Description

preprocessor function The preprocessor function you
want to register.

Resolutions

Status When Returns

resolved A valid preprocessor function is
provided and is registered.

The registered preprocessor
function.

rejected An invalid preprocessor function
is provided.

No preprocessor function
provided. Type provided was ''.

verifySession
Checks for existing WebChat session before triggering a proactive invite.

Example
oMyPlugin.command('WebChatService.verifySession').done(function(e){

if(e.sessionActive) {

// dont show chat invite

} else if(!e.sessionActive) {

if(oMyPlugin.data('WebChat.open') == false){

// show chat invite

} else {

// dont trigger chat invite

WebChatService

Widgets Developer Resources 80

}

}

});

Resolutions

Status When Returns

resolved A session exists or not. A boolean sessionActive which
holds the session state.

API events
Once you've registered your plugin on the bus, you can subscribe to and listen
for published events. Here's how to use the global bus object to register a new
plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('WebChatService.ready', function(e){});

Name Description Data Introduced/updated

Started Chat session has
successfully started.

(AJAX Response
containing session data) 9.0.008.04

restoreTimeout

Chat session restoration
attempted was denied
after user navigated
away from originating
website for longer than
the time limit: default
60 seconds.

N/A 9.0.008.04

restoreFailed
Could not restore chat
session after page
navigation or refresh.

N/A 9.0.008.04

restored
Chat session has been
restored after page
navigation or refresh.

N/A 9.0.008.04

reconnected Connection restored.
This event is only N/A 9.0.008.04

WebChatService

Widgets Developer Resources 81

Name Description Data Introduced/updated
published after
disconnected.

ready
WebChatService is
initialized and ready to
accept commands.

N/A 9.0.008.04

messageReceived

A new message has
been received from the
server. Includes text
messages, status
messages, notices, and
other message types.

{originalMessages:
(object), messages:
(array of objects),
restoring: (boolean),
sessionData: (object)}

9.0.008.04

error
An error occurred
between the client and
the server.

(AJAX Response) 9.0.008.04

ended Chat session has
successfully ended. N/A 9.0.008.04

disconnected
Cannot reach servers.
No connection. Either
the user is offline or the
server is offline.

N/A 9.0.008.04

clientTypingStopped

After a user stops
typing, a countdown
begins. When the
countdown completes,
the typing notification
will clear for the agent.

N/A 9.0.008.04

clientTypingStarted
The user has started
typing. Sends an event
to the agent.

N/A 9.0.008.04

clientDisconnected
Indicates the user has
been disconnected form
the chat session.

{message: (object),
agents: (object),
numAgentsConnected:
(number)}

9.0.008.04

clientConnected
Indicates the user has
been connected to the
chat session.

{message: (object),
agents: (object),
numAgentsConnected:
(number)}

9.0.008.04

agentTypingTimeout Agent typing event has
been timed out. (AJAX Response) 9.0.008.04

agentTypingStopped Agent has stopped
typing. (AJAX Response) 9.0.008.04

agentTypingStarted Agents has started
typing a new message. (AJAX Response) 9.0.008.04

agentDisconnected
Indicates an agent has
disconnected from the
chat.

{message: (object),
agents: (object),
numAgentsConnected:
(number)}

9.0.008.04

agentConnected Indicates an agent has
connected to the chat.

{message: (object),
agents: (object), 9.0.008.04

WebChatService

Widgets Developer Resources 82

Name Description Data Introduced/updated
numAgentsConnected:
(number)}

WebChatService

Widgets Developer Resources 83

CallUs

Contents

• 1 Overview
• 1.1 Usage
• 1.2 Customization
• 1.3 Namespace
• 1.4 Mobile support
• 1.5 Screenshots

• 2 Configuration
• 2.1 Example
• 2.2 Options

• 3 Localization
• 3.1 Usage
• 3.2 Example i18n JSON

• 4 API commands
• 4.1 open
• 4.2 close
• 4.3 configure

• 5 API events

CallUs

Widgets Developer Resources 84

Learn how to display an overlay screen showing one or more phone numbers for customer service,
as well as the hours that this service is available in Genesys Cloud CX.

Related documentation:
•

Overview
The CallUs Widget provides an overlay screen showing one or more phone
numbers for customer service, as well as the hours that this service is available.
The arrangement of numbers in this layout starts with a main phone number,
which can be followed by alternative or additional phone numbers. Each number
can be named, and there is no limit to the number of phone numbers you can
include. If the list of numbers doesn't fit in the widget, the user can scroll down
to see the rest.

Important
A user can tap the phone numbers specified in the CallUs Widget in mobile browsers.
Once the user taps any of the phone numbers, the mobile device will allow the user to
dial the number through the mobile voice network.

CallUs

Widgets Developer Resources 85

Usage
Launch CallUs manually by using the following methods:

• Call the CallUs.open command
• Configure ChannelSelector to show CallUs as a channel
• Create your own custom button or link to open CallUs (using the "CallUs.open" command

Important
By default, a user has no way of launching the CallUs Widget. You must choose a
suitable method for launching this widget.

Customization
You can customize and localize all the text, titles, names, and numbers shown in
the CallUs Widget by adding entries into your configuration and localization
options. There are no formatting requirements. Text will appear as you entered it.

CallUs

Widgets Developer Resources 86

/File:CallUs_Dark_Desktop.png
/File:CallUs_Dark_Desktop.png

Important
If you do not configure the CallUs Widget it will appear as an empty overlay. You must
configure this Widget before using it.

CallUs supports themes. You can create and register your own themes for
Genesys Widgets.

Namespace
The CallUs plugin has the following namespaces tied up with each of the following types:

Type Namespace
Configuration callus
i18n - Localization callus
CXBus - API commands & API events CallUs
CSS .cx-call-us

Mobile support
CallUs supports both desktop and mobile devices. Like all Genesys Widgets, there are two main
modes: Desktop & Mobile. Desktop is employed for monitors, laptops, and tablets, and Mobile is
employed for smartphones. When a smartphone is detected, CallUs switches to special full-screen
templates that are optimized for both portrait and landscape orientations.

Switching between desktop and mobile mode is done automatically by default. You may configure
Genesys Widgets to switch between Desktop and Mobile mode manually if necessary.

Screenshots
Dark theme

Light theme

CallUs

Widgets Developer Resources 87

/File:CallUs_Main.png
/File:CallUs_Main.png
/File:CallUs_Dark02.png
/File:CallUs_Dark02.png
/File:CallUs_Dark_Mobile_Landscape.png
/File:CallUs_Dark_Mobile_Landscape.png

Configuration

CallUs uses the _genesys.widgets.callus configuration property. You must specify all the numbers
and labels that appear in the CallUs UI.

Example
window._genesys.widgets.callus = {

contacts: [

{
displayName: 'Payments',
i18n: 'Number001',
number: '1 202 555 0162'

},
{

displayName: 'Local',
i18n: 'Number002',
number: '202 555 0134'

},
{

displayName: 'International',
i18n: 'Number003',
number: '0647 555 0131'

}
],

hours: [

'8am - 8pm Mon - Fri',
'10am - 6pm Sat - Sun'

]
};

Options
Name Type Description Default Required

contacts array An array of objects
that represent [] true

CallUs

Widgets Developer Resources 88

/File:CallUs_Light01.png
/File:CallUs_Light01.png
/File:CallUs_Light05.png
/File:CallUs_Light05.png
/File:CallUs_Light_Mobile_Landscape.png
/File:CallUs_Light_Mobile_Landscape.png

Name Type Description Default Required
phone numbers
and their labels.
The first number in
this list displays as
the larger, main
number. Phone
labels can be set
directly using the
'displayName'
property or you
can use String
Names from your
localization file by
setting the String
Name in the 'i18n'
property. 'i18n'
overrides
'displayName'.

Example
{

"displayName":
"Payments",

"i18n":
"Number001",

"number": "1
202 555 0162"
}

hours array

Array of strings to
appear stacked in
the business hours
section. Strings
here are free-form.
See screenshots
for ideas.

[]

Localization

Important
For information on how to set up localization, please refer to the Localize widgets and
services guide.

CallUs

Widgets Developer Resources 89

Usage
Use the callus namespace when defining localization strings for the CallUs plugin in your i18n JSON
file.

The following example shows how to define new strings for the en (English) language. You can use
any language codes you wish; there is no standard format. When selecting the active language in
your configuration, you must match one of the language codes defined in your i18n JSON file. Please
note that you must only define a language code once in your i18n JSON file. Inside each language
object you should define new strings for each widget.

Example i18n JSON

{
"en": {

"callus": {
"CallUsTitle": "Call Us",
"SubTitle": "You can reach us at any of the following NUMBERS...",
"CancelButtonText": "Cancel",
"AriaWindowLabel": "Call Us Window",
"AriaCallUsClose": "Call Us Close",
"AriaBusinessHours": "Business Hours",
"AriaCallUsPhoneApp": "Opens the phone application",
"AriaCancelButtonText": "Call Us Cancel"

}
}

}

API commands
Once you've registered your plugin on the bus, you can call commands on other
registered plugins. Here's how to use the global bus object to register a new
plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('CallUs.open');

open
Opens the CallUs UI.

CallUs

Widgets Developer Resources 90

Example
oMyPlugin.command('CallUs.open').done(function(e){

// CallUs opened successfully

}).fail(function(e){

// CallUs failed to open
});

Resolutions

Status When Returns
resolved CallUs is successfully opened n/a
rejected CallUs is already open 'Already opened'

close
Closes the CallUs UI.

Example
oMyPlugin.command('CallUs.close').done(function(e){

// CallUs closed successfully

}).fail(function(e){

// CallUs failed to close
});

Resolutions

Status When Returns
resolved CallUs successfully closed n/a
rejected CallUs is already closed 'Already closed'

configure
Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling
configure again after startup may result in unpredictable behavior.

Example
oMyPlugin.command('CallUs.configure', {

contacts: [
{

displayName: 'Payments',
i18n: 'Number001',
number: '1 888 436 3797'

CallUs

Widgets Developer Resources 91

}
],
hours: ['8am - 8pm Mon - Fri']

}).done(function(e){

// CallUs configured successfully

}).fail(function(e){

// CallUs failed to configure
});

Options

Option Type Description

contacts Array

An array of objects that represent
phone numbers and their labels.
The first number in this list will
display as the larger, main
number.

hours Array
Array of strings to appear
stacked in the business hours
section. Strings here are free-
form.

Resolutions

Status When Returns
resolved CallUs configuration is provided n/a
rejected No configuration provided 'Invalid Configuration'

API events
Once you've registered your plugin on the bus, you can subscribe to and listen
for published events. Here's how to use the global bus object to register a new
plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('CallUs.ready', function(e){});

CallUs

Widgets Developer Resources 92

Name Description Data

ready CallUs is initialized and ready to
accept commands

opened CallUs UI has been opened
closed CallUs UI has been closed

CallUs

Widgets Developer Resources 93

ChannelSelector

Contents

• 1 Overview
• 1.1 Usage
• 1.2 Customization
• 1.3 Namespace
• 1.4 Mobile support
• 1.5 Screenshots

• 2 Configuration
• 2.1 Example
• 2.2 Options

• 3 Localization
• 3.1 Usage
• 3.2 Example i18n JSON

• 4 API commands
• 4.1 close
• 4.2 open
• 4.3 configure

• 5 API events

ChannelSelector

Widgets Developer Resources 94

Learn how to provide your customers with a configurable list of channels as an entry point for
contacting customer service in Genesys Cloud CX.

Related documentation:
•

Overview

The ChannelSelector Widget displays a configurable list of channels, as an entry point for customers
to contact customer service. Channels are not limited to Genesys Widgets; you can add your own
custom channels to open applications or open new windows as necessary.

Usage
Use the following methods to open ChannelSelector manually:

• Call the ChannelSelector.open command
• Create your own custom button, or link to open ChannelSelector (using the ChannelSelector.open

command)

Important
By default, ChannelSelector has no channels configured. If not configured, the UI
appears empty. See the configuration for examples and information on how to set up
your own custom channels.

ChannelSelector

Widgets Developer Resources 95

/File:Channelselector1.jpg
/File:Channelselector1.jpg

Customization
You can customize and localize the static text shown in the ChannelSelector Widget by adding entries
into your configuration and localization options.

ChannelSelector supports themes. You can create and register your own themes for Genesys
Widgets.

Namespace
The Channel Selector plugin has the following namespaces tied to each of the following types:

Type Namespace
Configuration channelselector
i18n—Localization channelselector
CXBus—API commands & API events ChannelSelector
CSS .cx-channel-selector

Mobile support
ChannelSelector supports both desktop and mobile devices. Like all Genesys Widgets, there are two
main modes: Desktop and Mobile. Desktop is employed for monitors, laptops, and tablets. Mobile is
employed for mobile devices. When ChannelSelector detects a mobile device, ChannelSelector
switches to special full-screen templates, optimized for both portrait and landscape orientations.

Switching between Desktop and Mobile modes is automatic, by default. If necessary, configure
Genesys Widgets to switch between Desktop and Mobile modes manually.

Screenshots
Dark theme

ChannelSelector

Widgets Developer Resources 96

/File:Channelselector1.jpg
/File:Channelselector1.jpg
/File:GC_ChannelSelector_Disabled_Dark_Main.jpg
/File:GC_ChannelSelector_Disabled_Dark_Main.jpg
/File:GC_CS_Available_Mobile_landscape_Dark.png
/File:GC_CS_Available_Mobile_landscape_Dark.png
/File:GC_CS_disabled_Mobile_landscape_Dark.png
/File:GC_CS_disabled_Mobile_landscape_Dark.png

Light theme

Configuration

ChannelSelector shares the _genesys.widgets.channelselector configuration namespace.
ChannelSelector has UI options to enable and disable channels, hide channels, add new channels. All

ChannelSelector

Widgets Developer Resources 97

/File:GC_CS_Available_Mobile_portrait_Dark.png
/File:GC_CS_Available_Mobile_portrait_Dark.png
/File:GC_CS_disabled_Mobile_portrait_Dark.png
/File:GC_CS_disabled_Mobile_portrait_Dark.png
/File:GC_ChannelSelector_Disabled_light_Main.jpg
/File:GC_ChannelSelector_Disabled_light_Main.jpg
/File:GC_ChannelSelector_light_Main.jpg
/File:GC_ChannelSelector_light_Main.jpg
/File:GC_CS_Available_Mobile_landscape_Light.png
/File:GC_CS_Available_Mobile_landscape_Light.png
/File:GC_CS_disabled_Mobile_landscape_Light.png
/File:GC_CS_disabled_Mobile_landscape_Light.png
/File:GC_CS_Available_Mobile_portrait_Light.png
/File:GC_CS_Available_Mobile_portrait_Light.png
/File:GC_CS_disabled_Mobile_portrait_Light.png
/File:GC_CS_disabled_Mobile_portrait_Light.png

the channels are displayed based on the array of objects order defined in the channel's configuration.
To hide a particular channel, simply remove the corresponding array object.

Example
window._genesys.widgets.channelselector = {

channels: [{

enable: true,
clickCommand: 'CallUs.open',
displayName: 'Call Us',
i18n: 'CallusTitle',
icon: 'call-outgoing',
html: '',
},

{
enable: true,
clickCommand: 'WebChat.open',
displayName: 'Web Chat',
i18n: 'ChatTitle',
icon: 'chat',
html: '',
}]

};

Options

Name Type Description Default Required

channels[].enable boolean Enable/disable a
channel. true N/A

channels[].clickCommandstring

The CXBus
command name
for opening a
particular widget
when this channel
is clicked.

none Always

channels[].displayNamestring
A channel name to
display on the
ChannelSelector
Widget.

none Always

channels[].i18n string

To support
localization of the
channel display
name, this takes a
key parameter of
the
channelselector
section in the
language pack file.
Overrides above
displayName.

none N/A

channels[].icon string

Select from one of
the Genesys
Widgets icons by
specifying icon css
class name.

none Always

ChannelSelector

Widgets Developer Resources 98

Name Type Description Default Required

channels[].html string

Overrides and
replaces the icon
section of a
channel with the
html (image tag)
defined here.

none N/A

Localization

Important
For information on how to set up localization, refer to the Localize widgets and
services guide.

Usage

Use the channelselector namespace when you define localization strings for the ChannelSelector
plugin in your i18n JSON file.

The following example shows how to define new strings for the en (English) language. You can use
any language codes you wish; there is no standard format. When selecting the active language in
your configuration, you must match one of the language codes defined in your i18n JSON file. You
must only define a language code once in your i18n JSON file. Inside each language object, you must
define new strings for each widget.

Example i18n JSON

{
"en": {

"channelselector": {
"Title": "Live Assistance",
"SubTitle": "How would you like to get in touch?",
"UnavailableTitle": "Unavailable", "AriaClose": "Live

Assistance Close",
"AriaWindowLabel": "Live Assistance Window"

}
}

}

API commands
Once you've registered your plugin on the bus, you can call commands on other
registered plugins. Here's how to use the global bus object to register a new

ChannelSelector

Widgets Developer Resources 99

plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');
oMyPlugin.command('ChannelSelector.open');

close
Closes the ChannelSelector UI.

Example
oMyPlugin.command('ChannelSelector.close').done(function(e){

// ChannelSelector closed successfully

}).fail(function(e){

// ChannelSelector failed to close
});

Resolutions

Status When Returns

resolved ChannelSelector is successfully
closed N/A

rejected ChannelSelector is already closed Already closed

open
Opens the ChannelSelector UI.

Example
oMyPlugin.command('ChannelSelector.open').done(function(e){

// ChannelSelector opened successfully

}).fail(function(e){

// ChannelSelector failed to open
});

ChannelSelector

Widgets Developer Resources 100

Resolutions

Status When Returns

resolved ChannelSelector Widget is
successfully opened N/A

rejected ChannelSelector Widget is
already open 'Already open'

configure
Modifies the ChannelSelector configuration.

Example
oMyPlugin.command('ChannelSelector.configure', {

channels: [
{

enable: true,
clickCommand: 'CallUs.open',
readyEvent: 'CallUs.ready',
displayName: 'Call Us',
i18n: 'CallusTitle',
icon: 'call-outgoing',
html: ''

}
]

}).done(function(e){

// ChannelSelector configured successfully

}).fail(function(e){

// ChannelSelector failed to configure
});

Options

Option Type Description

channels array
Array containing each channel
configuration object. The order of
channels is displayed based on
the order defined here.

channels[].enable boolean Enable/disable chat channel.

channels[].clickCommand string
The CXBus command name for
opening a particular widget when
this channel is clicked.

channels[].readyEvent string
Subscribes to this ready event
published by a plugin and
enables the channel when that
plugin is ready.

channels[].displayName string A channel name to display in the

ChannelSelector

Widgets Developer Resources 101

Option Type Description
ChannelSelector Widget.

channels[].i18n string

To support localization of channel
display name, this takes a key
parameter of the channelselector
section in the language pack file.
Overrides above displayName.

channels[].icon string
Select from one of the Genesys
Widgets icons by specifying icon
css class name.

channels[].html string
Overrides and replaces the icon
section of a channel with the
html (image tag) defined here.

Resolutions

Status When Returns

resolved Configuration options are
provided and set N/A

rejected No configuration options are
provided 'Invalid configuration'

API events
Once you've registered your plugin on the bus, you can subscribe to and listen
for published events. Here's how to use the global bus object to register a new
plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('ChannelSelector.ready', function(e){});

Name Description Data

ready
ChannelSelector plugin is
initialized and ready to accept
commands

N/A

opened ChannelSelector Widget has
appeared on screen N/A

ChannelSelector

Widgets Developer Resources 102

Name Description Data

closed ChannelSelector Widget has
been removed from the screen N/A

ChannelSelector

Widgets Developer Resources 103

Console

Contents

• 1 Overview
• 1.1 Usage

• 2 Configuration
• 2.1 Description
• 2.2 Example
• 2.3 Options

• 3 Localization
• 4 Strings
• 5 API commands

• 5.1 open
• 5.2 close
• 5.3 configure

• 6 API events

Console

Widgets Developer Resources 104

• Developer

Learn how to debug commands and events on the widget bus.

Related documentation:
•

Overview

Use the Console Widget to debug commands and events on the widget bus. You can use dynamically
populated lists to test, debug, or demo all of the commands. You can also create event watch lists
that alert you when an event has fired.

Console provides an easy-to-use interface for debugging the widget bus that complements the
standard command line methods. You can drag and drop the console anywhere on your screen, and
when you refresh the page or move to another one, Console reappears right where you left it, as you
left it. It is a great tool for getting to know the widget bus, the API for each widget, and debugging
issues.

Usage
Launch WebChat manually by using the following methods:

Console

Widgets Developer Resources 105

/File:Console_Main.png
/File:Console_Main.png

• Call the Console.open command
• Configure the settings to show Console when the browser window is opened.
• Create your own custom button or link to open Console (using the Console.open command)

Configuration

Description
Console option to open on initial loading.

Example
window._genesys.widgets.console = {open: true};

Options
Name Type Description Default Required

open boolean
Set to true for
console to open at
start.

false false

Localization

Important
For information on how to set up localization, please refer to Localize widgets and
services.

Strings
{

"ConsoleTitle": "CXBus Console",
"Commands": "Commands",
"Plugin": "Plugin",
"ConsoleErrorButton": "OK",
"Execute": "Execute",
"Event": "Event",
"SubscribeTo": "Subscribe to",
"Unsubscribe": "Unsubscribe",
"ReturnData": "Return Data",
"EventsSubscriber": "Events Subscriber",

Console

Widgets Developer Resources 106

"Watch": "Watch",
"pluginNameEvent": "PluginName.Event",
"ClearAll": "Clear All",
"OptionsSample": "JSON Formatted Options {'option': value}"

}

API commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Console.open');

open
Opens the Console UI.

Example
oMyPlugin.command('Console.open').done(function(e){

// Console opened successfully

}).fail(function(e){

// Console failed to open
});

Resolutions

Status When Returns
resolved Console is successfully opened n/a
rejected Console is already open 'Already opened'

Console

Widgets Developer Resources 107

close
Closes the Console UI.

Example
oMyPlugin.command('Console.close').done(function(e){

// Console closed successfully

}).fail(function(e){

// Console failed to close
});

Resolutions

Status When Returns
resolved Console successfully closed n/a
rejected Console is already closed 'Already closed'

configure
Modifies the Console configuration options. See the Console configuration page.

Example
oMyPlugin.command('Console.configure', {

open: false

}).done(function(e){

// Console configured successfully

}).fail(function(e){

// Console failed to configure
});

Options

Option Type Description

open boolean
If setting is open: true, the
console will automatically be
open when Widgets is launched
and the console is ready.

Console

Widgets Developer Resources 108

Resolutions

Status When Returns
resolved Console configuration is provided n/a
rejected No configuration is provided 'Invalid Configuration'

API events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('Console.ready', function(e){});

Name Description Data

ready Console is initialized and ready to
accept commands. n/a

opened The Console Widget has
appeared on screen. n/a

closed The Console Widget has been
removed from the screen. n/a

Console

Widgets Developer Resources 109

SideBar

Contents

• 1 Overview
• 1.1 Usage
• 1.2 Dependency
• 1.3 Customization
• 1.4 Namespace
• 1.5 Mobile support
• 1.6 Screenshots

• 2 Configuration
• 2.1 Example
• 2.2 Options

• 3 Localization
• 3.1 Strings

• 4 API commands
• 4.1 configure

• 5 API events
• 5.1 Resolutions
• 5.2 open
• 5.3 close
• 5.4 expand
• 5.5 contract

SideBar

Widgets Developer Resources 110

Learn about the Sidebar widget, which customers use to launch other widgets with a single click.

Related documentation:
•

Overview

Use the SideBar to launch other widgets with a single click. By default, SideBar is displayed on the
right side of the screen, and you can configure any launchable widgets onto SideBar, including your
custom extension widgets. The SideBar UI expands when you hover your cursor over it, and contracts
when you move the cursor away. Other features include configurable positioning and mobile support.
You can also add new configurations on the fly, which automatically re-renders the SideBar.

The image on the left shows SideBar when it is initially loaded, while the one on the right shows what
it looks like when it's expanded.

Usage
Use the following methods to launch SideBar manually:

• Call the SideBar.open command
• Configure SideBar to show and launch custom widgets

SideBar

Widgets Developer Resources 111

/File:GC_Sidebar_DesktopContracted.jpg
/File:GC_Sidebar_DesktopContracted.jpg
/File:GC_Sidebar_DesktopExpanded.jpg
/File:GC_Sidebar_DesktopExpanded.jpg

Dependency
You must configure at least one customer-facing UI widget in order to use the SideBar Widget.

Customization
You can customize and localize all the text shown in the SideBar Widget by adding entries to your
configuration and localization options.

SideBar also supports themes. You can create and register your own themes for Genesys Widgets.

Namespace
The SideBar plugin has the following namespaces tied to each of the following types:

Type Namespace
Configuration sidebar
i18n - Localization sidebar
CXBus -API commands & API events SideBar
CSS .cx-sidebar

Mobile support
SideBar supports both desktop and mobile devices. In mobile mode, the SideBar launcher button
displays at the bottom of the screen. When triggered, it expands to the full screen of the mobile
device and shows all channels configured with a scrollbar when necessary. Like all Genesys Widgets,
there are two main modes: desktop and mobile. Desktop is for monitors, laptops, and tablets, and
mobile is for smartphones. When a smartphone is detected, SideBar switches to special full-screen
templates that are optimized for both portrait and landscape orientations.

Switching between desktop and mobile mode is done automatically by default. You may configure
Genesys Widgets to switch between desktop and mobile mode manually if necessary.

Screenshots
Dark theme

SideBar

Widgets Developer Resources 112

Light theme

SideBar

Widgets Developer Resources 113

/File:GC_Sidebar_DesktopContracted.jpg
/File:GC_Sidebar_DesktopContracted.jpg
/File:GC_Sidebar_DesktopExpanded.jpg
/File:GC_Sidebar_DesktopExpanded.jpg
/File:GC_Sidebar_MobileExpanded.jpg
/File:GC_Sidebar_MobileExpanded.jpg
/File:GC_Sidebar_MobileExpandedLandscape.jpg
/File:GC_Sidebar_MobileExpandedLandscape.jpg
/File:GC_Sidebar_DesktopContractedLight.jpg
/File:GC_Sidebar_DesktopContractedLight.jpg
/File:Cloud_Sidebar_DesktopExpanded_LightMode_10032020_.png
/File:Cloud_Sidebar_DesktopExpanded_LightMode_10032020_.png
/File:Sidebar_MobileNeedHelpLight_28022020.jpg
/File:Sidebar_MobileNeedHelpLight_28022020.jpg
/File:GC_Sidebar_MobileExpanded_Light.jpg
/File:GC_Sidebar_MobileExpanded_Light.jpg
/File:GC_Sidebar_MobileExpandedLandscape_light.jpg
/File:GC_Sidebar_MobileExpandedLandscape_light.jpg

Configuration

SideBar shares the _genesys.widgets.sidebar configuration namespace. SideBar has UI options to
handle its position on the screen, disable the expand feature, hide SideBar, and add new channels on
the fly. The order of channels that display is based on the order defined in the channel's configuration
array.

Example
window._genesys.widgets.sidebar = {

showOnStartup: true,

position: 'left',

expandOnHover: true,

channels: [{

name: 'ChannelSelector',
clickCommand: 'ChannelSelector.open',
clickOptions: {},

//use your own static string or i18n query string for the below two
display properties

displayName: 'Live Assist',
displayTitle: 'Get live help',

icon: 'agent'
},

{
name: 'WebChat'

}
]

};

Options

Name Type Description Default Required

channels[index].clickCommandstring
Change the default
command that is
triggered when
clicked.

n/a false

channels[index].clickOptionsobject

Pass valid
command options
that are used in
above click
command
execution.

n/a n/a

channels[index].displayNamestring or i18n
query string

Change the default
display name for
this channel with
your own static

n/a false

SideBar

Widgets Developer Resources 114

string or to
achieve
localization, use
i18n query string.
Syntax: @i18n:.

channels[index].displayTitlestring or i18n
query string

Change the default
tooltip content for
this channel with
your own static
string or to
achieve
localization, use
i18n query string.
Syntax: @i18n:.

n/a false

channels[index].icon string

Change the default
icon for this
channel. For the
list of icon names
see Customize
icons in
Customize
appearance.

n/a false

channels[index].namestring

Name of the
channel. It can be
found in the
namespace
section
documentation of
each widget. Used
to identify official
channels vs
custom channels.
If a reserved name
is used here,
SideBar will apply
default values for
that channel. A
plugin name
defined in the new
custom plugin can
also be given here.
To override the
default values or
when defining a
new custom
channel/plugin,
use the below
following
properties.

n/a true

channels[index].onClickfunction

Define a custom
onclick function;
this overrides
clickCommand and
clickOptions.

n/a false

channels[index].readyEventstring Subscribes to this n/a false

SideBar

Widgets Developer Resources 115

ready event
published by a
plugin.

expandOnHover boolean

Enables the
expand (slide-out)
or contract (slide-
in) behavior of
SideBar.

true false

position string

Defines the
position of SideBar
on the screen.
Acceptable values
are left or right.

right false

showOnStartup boolean
Shows the SideBar
on the screen
when Widgets is
launched.

true false

Localization
For your custom plugins, you can define string key names and values for Name
and Title (tooltip) to display on SideBar. The key format requires the plugin name,
followed by "Title" or "Name". For example, a plugin named "MyPlugin" will have
keys called "MyPluginName" and "MyPluginTitle".

Important
For information on how to set up localization, refer to the Localize widgets and
services guide.

Strings
{

"SidebarTitle": "Need help?",
"ChannelSelectorName": "Live Assistance",
"ChannelSelectorTitle": "Get assistance from one of our agents right away",
"CallUsName": "Call Us",
"CallUsTitle": "Call Us details",
"WebChatName": "Live Chat",
"WebChatTitle": "Live Chat",
"AriaClose": "Close the menu Need help"

}

API commands

SideBar

Widgets Developer Resources 116

Once you've registered your plugin on the bus, you can call commands on other
registered plugins. Here's how to use the global bus object to register a new
plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('SideBar.open');

configure
Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The SideBar Widget has to be configured at minimum with one channel. The
configure command can also be called at runtime with a new configuration, which will override the
existing configuration, showing new channels on screen.

Example
oMyPlugin.command('SideBar.configure', {

showOnStartup: false,
position: 'left',
expandOnHover: false,
channels: [

{
name: 'ChannelSelector',
clickCommand: 'ChannelSelector.open',
clickOptions: {},

/* use your own static string or i18n query string for the below
two display properties. Example for i18n query string: '@i18n:sidebar.ChannelSelectorName'
where 'sidebar' refers to plugin namespace and ChannelSelectorName' name refers to the
property key containing the actual text.*/

displayName: '@i18n:sidebar.ChannelSelectorName',
displayTitle: 'Get assistance from one of our agents right away', //

Your own static string
readyEvent: 'ChannelSelector.ready',
icon: 'agent',
onClick: function($, CXBus, Common) {

_genesys.widgets.bus.command('MyPlugin.open');
}

}
...

]

}).done(function(e){

// Sidebar configured successfully

SideBar

Widgets Developer Resources 117

}).fail(function(e){

// Sidebar failed to configure properly
});

Options

Option Type Description

showOnStartup boolean Shows SideBar on the screen
when Widgets is launched.

position string Defines the position of SideBar
on the screen.

expandOnHover boolean Enables the expand or contract
behavior of SideBar.

channels array
Array containing each channel
configuration object. The order of
channels is displayed based on
the order defined here.

channels[index].name string

Name of the channel. It can be
found in the Namespace section
documentation of each widget.
Used to identify official channels
vs custom channels. If a reserved
name is used here, SideBar will
apply default values for that
channel. To override the default
values or when defining a new
custom channel, use the below
following properties.

channels[index].clickCommand string Change the default command
that is triggered when clicked.

channels[index].clickOptions object
Pass valid command options that
are used in above click command
execution.

channels[index].displayName string or i18n query string

Change the default display name
for this channel with your own
static string or to achieve
localization, use i18n query
string. Syntax: @i18n:..

channels[index].displayTitle string or i18n query string

Change the default tooltip
content for this channel with
your own static string or to
achieve localization, use i18n
query string. Syntax: @i18n:..

channels[index].readyEvent string Subscribes to this ready event
published by a plugin.

channels[index].icon string
Change the default icon for this
channel. For the list of icon
names, see Customize icons in
the Customize appearance guide.

SideBar

Widgets Developer Resources 118

channels[index].onClick function
Define a custom onclick function,
which overrides clickCommand
and clickOptions.

API events
Once you've registered your plugin on the bus, you can subscribe to and listen
for published events. Here's how to use the global bus object to register a new
plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('SideBar.ready', function(e){ /* sample code */ });

Name Description Data

ready SideBar is initialized and ready to
accept commands. n/a

opened

SideBar Widget has appeared on
screen. For desktop, it displays
on the sides of the screen, and in
mobile, at the bottom corner as a
button.

n/a

closed SideBar Widget has been
removed from the screen. n/a

expanded SideBar Widget has expanded,
showing channel icon and name. n/a

contracted SideBar Widget has contracted,
showing channel icons only. n/a

Resolutions

Status When Returns

resolved Configuration options are
provided and set n/a

rejected No configuration options are
provided

'Invalid configuration. Please
ensure at least one channel is
configured.'

SideBar

Widgets Developer Resources 119

open
Opens the SideBar UI. In desktop mode, it opens as an actual SideBar and shows the configured
channels, whereas in mobile it opens as a button at the bottom to start.

Example
oMyPlugin.command('SideBar.open');

Resolutions

Status When Returns
resolved SideBar is successfully opened n/a
rejected SideBar is already opened 'Already opened'

close
Closes the Sidebar UI.

Example
oMyPlugin.command('SideBar.close');

Resolutions

Status When Returns
resolved SideBar is successfully closed n/a
rejected SideBar is already closed 'already closed'

expand
To show more details about the channels, SideBar slides out from the sides of the screen on desktop
machines, but expands to full screen in mobile devices.

Example
oMyPlugin.command('SideBar.expand');

Resolutions

Status When Returns
rejected SideBar is already expanded 'sidebar already expanded'
resolved SideBar is successfully expanded n/a

SideBar

Widgets Developer Resources 120

contract
Retracts the expanded version of SideBar, showing only the channel buttons on desktop machines
and the SideBar launcher button on mobile devices.

Example
oMyPlugin.command('SideBar.contract');

Resolutions

Status When Returns

resolved SideBar is successfully
contracted n/a

rejected SideBar is already contracted sidebar already contracted

SideBar

Widgets Developer Resources 121

WebChat

Contents

• 1 Overview
• 1.1 Usage
• 1.2 Customization
• 1.3 Namespace
• 1.4 Mobile support
• 1.5 Screenshots

• 2 Configuration
• 2.1 Options

• 3 Localization
• 3.1 Special values for localization
• 3.2 Error handling
• 3.3 Usage
• 3.4 Default i18n JSON

• 4 API commands
• 4.1 configure
• 4.2 open
• 4.3 close
• 4.4 minimize
• 4.5 endChat
• 4.6 invite
• 4.7 reInvite
• 4.8 injectMessage
• 4.9 showChatButton
• 4.10 hideChatButton
• 4.11 showOverlay
• 4.12 hideOverlay

• 5 API events
• 6 Metadata

WebChat

Widgets Developer Resources 122

• 6.1 Interaction Lifecycle
• 6.2 Lifecycle scenarios
• 6.3 Metadata

• 7 Customizable chat registration form
• 7.1 Default example
• 7.2 Properties
• 7.3 Labels
• 7.4 Wrappers
• 7.5 Validation
• 7.6 Form submit

• 8 Customizable emoji menu
• 8.1 Introduction
• 8.2 Differences between v1 and v2
• 8.3 Configuring the emoji menu
• 8.4 Localization

WebChat

Widgets Developer Resources 123

Learn how to enable live chats between customers and agents in Genesys Cloud CX.

Related documentation:
•

Feature coming soon: Web messaging

If you are a Genesys Cloud CX customer, we encourage you to use the new web messaging feature to
replace web chat. To use web messaging, you configure tracking through the Messenger JavaScript
SDK instead of deploying a tracking snippet.

Overview

The WebChat Widget allows a customer to start a live chat with a customer service agent. The UI
appears within the page and follows the customer as she explores your website. Other features
include minimize/maximize, auto-reconnect, and a built-in invite feature.

Usage
You can launch WebChat manually by using the following methods:

• Call the WebChat.open command
• Configure ChannelSelector to show WebChat as a channel
• Enable the built-in launcher button for WebChat that appears on the right side of the screen
• Create your own custom button or link to open WebChat (using the WebChat.open command)

Customization
You can customize and localize all of the static text shown in the WebChat Widget by adding entries
to your configuration and localization options.

WebChat also supports themes. You can create and register your own themes for Genesys Widgets.

Namespace
The WebChat plugin has the following namespaces:

Type Namespace
Configuration webchat

WebChat

Widgets Developer Resources 124

Type Namespace
i18n - Localization webchat
CXBus - API commands & API events WebChat
CSS .cx-webchat

Mobile support
WebChat supports both desktop and mobile devices. Like all Genesys Widgets, there are two main
modes: desktop and mobile. Desktop is employed for monitors, laptops, and tablets, and mobile is
employed for smartphones. When a smartphone is detected, WebChat switches to special full-screen
templates that are optimized for both portrait and landscape orientations.

Switching between desktop and mobile mode is done automatically by default. You may configure
Genesys Widgets to switch between desktop and mobile mode manually if necessary.

Screenshots
Dark theme

WebChat forms

WebChat

Widgets Developer Resources 125

/File:WebChat_Form_Desktop_Dark.png
/File:WebChat_Form_Desktop_Dark.png
/File:WebChat_Form_Portrait_Dark.png
/File:WebChat_Form_Portrait_Dark.png

WebChat transcripts

WebChat

Widgets Developer Resources 126

/File:WebChat_Form_Landscape_Dark.png
/File:WebChat_Form_Landscape_Dark.png
/File:WebChat_Transcript_Desktop_Dark-without-file-upload.png
/File:WebChat_Transcript_Desktop_Dark-without-file-upload.png
/File:WebChat_Transcript_Landscape_Dark_without-upload.png
/File:WebChat_Transcript_Landscape_Dark_without-upload.png

Light theme

WebChat forms

WebChat

Widgets Developer Resources 127

/File:WebChat_Transcript_Portrait_Dark-without-upload.png
/File:WebChat_Transcript_Portrait_Dark-without-upload.png
/File:WebChat_Form_Desktop_Light.png
/File:WebChat_Form_Desktop_Light.png
/File:WebChat_Form_Portrait_light.png
/File:WebChat_Form_Portrait_light.png

WebChat transcripts

WebChat

Widgets Developer Resources 128

/File:WebChat_Form_Landscape_light.png
/File:WebChat_Form_Landscape_light.png
/File:WebChat_Transcript_Desktop_Light-without-file-upload.png
/File:WebChat_Transcript_Desktop_Light-without-file-upload.png
/File:WebChat_Transcript_Portrait_Light_without_upload.png
/File:WebChat_Transcript_Portrait_Light_without_upload.png
/File:WebChat_Transcript_Landscape_Light_without_upload.png
/File:WebChat_Transcript_Landscape_Light_without_upload.png

Important
The dark theme is active by default. You may also change colors/themes for widgets
by following the instructions on the Customize appearance page.

Configuration

WebChat and WebChatService share the _genesys.widgets.webchat configuration namespace.
WebChat has UI options while WebChatService has connection options.

Options

Name Type Description Default Required Introduced/
updated

emojis boolean

Enable/disable
emoji menu
inside chat
message input.
Emojis are
supported
using Unicode
characters.

false N/A

form object

A JSON object
containing a
custom
registration
form definition.
The JSON
definition
placed here
becomes the
default
registration
form layout for
WebChat. See
Customizable
chat
registration
form.

A basic
registration
form is defined
internally by
default

N/A

confirmFormCloseEnabledboolean

Enable or
disable
displaying a
confirmation
message

true N/A

WebChat

Widgets Developer Resources 129

Name Type Description Default Required Introduced/
updated

before closing
WebChat if
information
has been
entered into
the registration
form.

timeFormat number/string

This sets the
time format for
the
timestamps in
this widget. It
can be 12 or
24.

12 false

maxMessageLengthnumber

Set a character
limit that the
user can input
into the
message area
during a chat.
When the max
is reached,
user cannot
type any more.

500 N/A

charCountEnabledboolean

Show/hide the
number of
characters
remaining in
the input
message area
while the user
is typing.

false N/A

autoInvite.enabledboolean

Enable/disable
auto-invite
feature.
Automatically
invites user to
chat after user
idles on page
for preset time.

Important
When running
Widgets in lazy
load mode, this
option requires
that you pre-
load the
WebChat plugin.

false N/A

autoInvite.timeToInviteSecondsnumber
Number of
seconds of idle
time before
inviting

5 N/A

WebChat

Widgets Developer Resources 130

Name Type Description Default Required Introduced/
updated

customer to
chat.

autoInvite.inviteTimeoutSecondsnumber

Number of
seconds to
wait, after
showing invite,
before closing
chat invite.

Important
When the focus
is on the Invite
window, the
chat invite will
not auto close
upon the
specified
timeout. In this
scenario, you
must click the
Close button to
manually close
the Invite
window. This
behavior is
implemented to
support the
logical and
predictable
focus order as
recommended
by the WCAG
2.4.3:Focus
Order.

30 N/A

chatButton.enabledboolean

Enable/disable
chat button on
screen.

Important
When running
Widgets in lazy
load mode, this
option requires
that you pre-
load the
WebChat plugin.

false N/A

chatButton.templatestring
Custom HTML
string template
for chat button.

N/A

chatButton.effect string

Type of
animation
effect when
revealing chat
button: slide
or fade.

fade N/A

chatButton.openDelaynumber Number of 1000 N/A

WebChat

Widgets Developer Resources 131

Name Type Description Default Required Introduced/
updated

milliseconds
before
displaying chat
button on
screen.

chatButton.effectDurationnumber
Length of
animation
effect in
milliseconds.

300 N/A

chatButton.hideDuringInviteboolean

When the auto-
invite feature is
activated, the
chat button
hides. When
invite is
dismissed, the
chat button
reveals again.

true N/A

minimizeOnMobileRestoreboolean

Enable/disable
the minimized
state of
WebChat on
chat restore.
Note: This
option is only
for mobile
mode.

false N/A

markdown boolean
Enable/disable
the markdown
feature for chat
messages.

false N/A 9.0.014.02

ariaCharRemainingIntervalsarray/boolean

An array
containing the
intervals as a
percentage at
which the
screen reader
will announce
the remaining
characters
when the user
inputs text into
the message
area. By
default, it is
enabled with
the following
intervals, and it
is customizable
according to
user needs.
Configuring a

[50, 25, 10] N/A 9.0.016.11

WebChat

Widgets Developer Resources 132

Name Type Description Default Required Introduced/
updated

value of false
will let the
screen reader
call out
remaining
characters for
every change.

metaDataEnabledboolean
Enable or
disable
WebChat
MetaData.

true n/a 9.0.017.26

Localization

You can define string key names and values to match the system messages that are received from
the chat server. If a customer system message is received as SYS001 in the message body, WebChat
checks to determine if any keys match in the language pack, and then replaces the message body
accordingly. SYS001 is an example format. There are no format restrictions on custom message
keys. The purpose of this feature is to allow localization for the user interface and server to be kept in
the same file.

Special values for localization
You can inject the special value. When used, the agent's name is rendered in its place at runtime.

Error handling
Customers can define their own error messages in the Errors section found in
the above WebChat localization. If no error messages are defined, default error
messages are used.

Important
For information on how to set up localization, refer to Localize widgets and services.

Usage
You must use the webchat namespace for defining localization strings for the WebChat plugin in your
i18n JSON file.

The following example shows how to define new strings for the en (English) language. You can use
any language codes you wish; there is no standard format. When selecting the active language in
your configuration, you must match one of the language codes defined in your i18n JSON file. Please

WebChat

Widgets Developer Resources 133

note that you must only define a language code once in your i18n JSON file. Inside each language
object you should define new strings for each widget.

Default i18n JSON
{

"en": {
"webchat": {

"ChatButton": "Chat",
"ChatStarted": "Chat Started",
"ChatEnded": "Chat Ended",
"AgentNameDefault": "Agent",
"AgentConnected": " Connected",
"AgentDisconnected": " Disconnected",
"BotNameDefault": "Bot",
"BotConnected": " Connected",
"BotDisconnected": " Disconnected",
"AgentTyping": "...",
"AriaAgentTyping": "Agent is typing",
"AgentUnavailable": "Sorry. There are no agents available. Please

try later.",
"ChatTitle": "Live Chat",
"ChatEnd": "X",
"ChatClose": "X",
"ChatMinimize": "Min",
"ChatFormFirstName": "First Name",
"ChatFormLastName": "Last Name",
"ChatFormNickname": "Nickname",
"ChatFormEmail": "Email",
"ChatFormSubject": "Subject",
"ChatFormPlaceholderFirstName": "Required",
"ChatFormPlaceholderLastName": "Required",
"ChatFormPlaceholderNickname": "Optional",
"ChatFormPlaceholderEmail": "Optional",
"ChatFormPlaceholderSubject": "Optional",
"ChatFormSubmit": "Start Chat",
"AriaChatFormSubmit": "Start Chat",
"ChatFormCancel": "Cancel",
"AriaChatFormCancel": "Cancel Chat",
"ChatFormClose": "Close",
"ChatInputPlaceholder": "Type your message here",
"ChatInputSend": "Send",
"AriaChatInputSend": "Send",
"ChatEndQuestion": "Are you sure you want to end this chat session?",
"ChatEndCancel": "Cancel",
"ChatEndConfirm": "End chat",
"AriaChatEndCancel": "Cancel",
"AriaChatEndConfirm": "End",
"ConfirmCloseWindow": "Are you sure you want to close chat?",
"ConfirmCloseCancel": "Cancel",
"ConfirmCloseConfirm": "Close",
"AriaConfirmCloseCancel": "Cancel",
"AriaConfirmCloseConfirm": "Close",
"ActionsDownload": "Download transcript",
"ActionsEmoji": "Send Emoji",
"ActionsTransfer": "Transfer",
"ActionsInvite": "Invite",
"InstructionsTransfer": "Open this link on another device to

transfer your chat session>",
"InstructionsInvite": "Share this link with another person to add

them to this chat session",

WebChat

Widgets Developer Resources 134

"InviteTitle": "Need help?",
"InviteBody": "Let us know if we can help out.",
"InviteReject": "No thanks",
"InviteAccept": "Start chat",
"AriaInviteAccept": "Accept invite and start chat",
"AriaInviteReject": "Reject invite",
"ChatError": "There was a problem starting the chat session. Please

retry.",
"ChatErrorButton": "OK",
"AriaChatErrorButton": "OK",
"ChatErrorPrimaryButton": "Yes",
"ChatErrorDefaultButton": "No",
"AriaChatErrorPrimaryButton": "Yes",
"AriaChatErrorDefaultButton": "No",
"RestoreTimeoutTitle": "Chat ended",
"RestoreTimeoutBody": "Your previous chat session has timed out.

Would you like to start a new one?",
"RestoreTimeoutReject": "No thanks",
"RestoreTimeoutAccept": "Start chat",
"AriaRestoreTimeoutAccept": "Accept invite and start chat",
"AriaRestoreTimeoutReject": "Reject invite",
"EndConfirmBody": "Would you really like to end your chat session?",
"EndConfirmAccept": "End chat",
"EndConfirmReject": "Cancel",
"AriaEndConfirmAccept": "End chat",
"AriaEndConfirmReject": "Cancel",
"SurveyOfferQuestion": "Would you like to participate in a survey?",
"ShowSurveyAccept": "Yes",
"ShowSurveyReject": "No",
"AriaShowSurveyAccept": "Yes",
"AriaShowSurveyReject": "No",
"UnreadMessagesTitle": "unread",
"AriaYouSaid": "You said",
"AriaSaid": "said",
"AriaSystemSaid": "System said",
"AriaWindowLabel": "Live Chat Window",
"AriaMinimize": "Live Chat Minimize",
"AriaMaximize": "Live Chat Maximize",
"AriaClose": "Live Chat Close",
"AriaEmojiStatusOpen": "Emoji picker dialog is opened",
"AriaEmojiStatusClose": "Emoji picker dialog is closed",
"AriaEmoji": "emoji",
"AriaEmojiPicker": "Emoji Picker",
"AriaCharRemaining": "Characters remaining",
"AriaMessageInput": "Message box",
"DayLabels": [

"Sun",
"Mon",
"Tue",
"Wed",
"Thur",
"Fri",
"Sat"

],
"MonthLabels": [

"Jan",
"Feb",
"Mar",
"Apr",
"May",
"Jun",
"Jul",
"Aug",

WebChat

Widgets Developer Resources 135

"Sept",
"Oct",
"Nov",
"Dec"

],
"todayLabel": "Today",
"Errors": {

"204": "We're sorry but your message is too long. Please
write a shorter message.",

"240": "We're sorry but we cannot start a new chat at this
time. Please try again later.",

"401": "We're sorry but we are not able to authorize the chat
session. Would you like to start a new chat?",

"404": "We're sorry but we cannot find your previous chat
session. Would you like to start a new chat?",

"500": "We're sorry, an unexpected error occurred with the
service. Would you like to close and start a new Chat?",

"503": "We're sorry, the service is currently unavailable or
busy. Would you like to close and start a new Chat again?",

"ChatUnavailable": "We're sorry but we cannot start a new
chat at this time. Please try again later.",

"CriticalFault": "Your chat session has ended unexpectedly
due to an unknown issue. We apologize for the inconvenience.",

"StartFailed": "There was an issue starting your chat
session. Please verify your connection and that you submitted all required information
properly, then try again.",

"MessageFailed": "Your message was not received successfully.
Please try again.",

"RestoreFailed": "We're sorry but we were unable to restore
your chat session due to an unknown error.",

"InviteFailed": "Unable to generate invite at this time.
Please try again later.",

"Disconnected": "
Connection lost

",
"Reconnected": "

Connection restored
",

"Generic": "
An unexpected error occurred.

",
"purecloud-v2-sockets-400": "Sorry, something went wrong.

Please verify your connection and that you submitted all required information properly, then
try again.",

"purecloud-v2-sockets-500": "We're are sorry, an unexpected
error occurred with the service.",

"purecloud-v2-sockets-503": "We're sorry, the service is
currently unavailable."
} } } }

API commands
Once you've registered your plugin on the bus, you can call commands on other
registered plugins. Here's how to use the global bus object to register a new
plugin on the bus.

WebChat

Widgets Developer Resources 136

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('WebChat.open');

configure
Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling
configure again after startup may result in unpredictable behavior.

open
Opens the WebChat UI.

Example
oMyPlugin.command('WebChat.open', {

userData: {},
form: {

autoSubmit: false,
firstname: 'John',
lastname: 'Smith',
email: 'John@mail.com',
subject: 'Customer Satisfaction'

}
formJSON: {...}

}).done(function(e){

// WebChat opened successfully

}).fail(function(e){

// WebChat isn't open or no active chat session
});

Options

Option Type Description

form object
Object containing form data to
prefill in the chat entry form and
optionally auto-submit the form.

form.autoSubmit boolean Automatically submit the form.
Useful for bypassing the entry

WebChat

Widgets Developer Resources 137

Option Type Description
form step.

form.firstname string Value for the first name entry
field.

form.lastname string Value for the last name entry
field.

form.email string Value for the email entry field.
form.subject string Value for the subject entry field.

formJSON object
An object containing a custom
registration form definition. See
Customizable chat registration
form.

userData object
Object containing arbitrary data
that gets sent to the server.
Overrides userData set in the
webchat configuration object.

Resolutions

Status When Returns
resolved WebChat is successfully opened N/A
rejected WebChat is already open already opened

close
Closes the WebChat UI.

Example
oMyPlugin.command('WebChat.close').done(function(e){

// WebChat closed successfully

}).fail(function(e){

// WebChat is already closed or no active chat session
});

Resolutions

Status When Returns
resolved WebChat is successfully closed N/A
rejected WebChat is already closed already closed

minimize
Minimizes or un-minimizes the WebChat UI.

WebChat

Widgets Developer Resources 138

Example
oMyPlugin.command('WebChat.minimize').done(function(e){

// WebChat minimized successfully

}).fail(function(e){

// WebChat ignores command
});

Options

Option Type Description

minimized boolean

Rather than toggling the current
minimized state, you can specify
the minimized state directly: true
= minimized, false = un-
minimized.

Resolutions

Status When Returns
resolved Always N/A
rejected Never Invalid configuration

endChat
Starts the end chat procedure. User may be prompted to confirm.

Example
oMyPlugin.command('WebChat.endChat').done(function(e){

// WebChat ended a chat successfully

}).fail(function(e){

// WebChat has no active chat session
});

Resolutions

Status When Returns

resolved There is an active chat session to
end N/A

rejected There is no active chat session to
end

There is no active chat session to
end

WebChat

Widgets Developer Resources 139

invite
Shows an invitation to chat using the toaster popup element. The text shown in the invitation can be
edited in the localization file.

Example
oMyPlugin.command('WebChat.invite').done(function(e){

// WebChat invited successfully

}).fail(function(e){

// WebChat is already open and will be ignored
});

Resolutions

Status When Returns

resolved WebChat is closed and the toast
element is created successfully N/A

rejected
WebChat is already open
(prevents inviting a user that is
already in a chat)

Chat is already open. Ignoring
invite command.

reInvite
When an active chat session cannot be restored, this invitation offers to start a new chat for the user.
The text shown in the invitation can be edited in the localization file.

Example
oMyPlugin.command('WebChat.reInvite').done(function(e){

// WebChat reinvited successfully

}).fail(function(e){

// WebChat is already open and will be ignored
});

Resolutions

Status When Returns

resolved

WebChat is closed, the config
item
webchat.inviteOnRestoreTimeout
is set, and the toast element is
created successfully

N/A

rejected
WebChat is already open
(prevents inviting a user that is
already in a chat)

Chat is already open. Ignoring
invite command.

WebChat

Widgets Developer Resources 140

injectMessage
Injects a custom message into the chat transcript. Useful for extending WebChat functionality with
other Genesys products.

Example
oMyPlugin.command('WebChat.injectMessage', {

type: 'text',
name: 'person',
text: 'hello',
custom: false,
bubble:{

fill: '#00FF00',
radius: '4px',
time: false,
name: false,
direction: 'right',
avatar:{

custom: '
word
',

icon: 'email'
}

}

}).done(function(e){

// WebChat injected a message successfully
// e.data == The message HTML reference (jQuery wrapped set)

}).fail(function(e){

// WebChat isn't open or no active chat
});

Options

Option Type Description

type string
Switch the rendering type of the
injected message between text
and HTML.

name string
Specify a name label for the
message to identify what service
or widget has injected the
message.

text string The content of the message.
Either plain text or HTML.

custom boolean

If set to true, the default
message template will not be
used, allowing you to inject a
highly customized HTML block
unconstrained by the normal

WebChat

Widgets Developer Resources 141

Option Type Description
message template.

bubble.fill string of valid CSS color value The content of the message.
Either plain text or HTML.

bubble.radius string of valid CSS border radius
vale

The border radius you'd like for
the bubble.

bubble.time boolean If you'd like to show the
timestamp for the bubble.

bubble.name boolean If you'd like to show the name for
the bubble.

bubble.direction string Which direction you want the
message bubble to come from.

bubble.avatar.custom string or HTML reference
Change the content of the HTML
that would be the avatar for the
chat bubble.

bubble.avatar.icon class name Generated common library
provided for icon name.

Resolutions

Status When Returns

resolved WebChat is open and there is an
active chat session

An HTML reference (jQuery
wrapped set) to the new injected
message.

rejected WebChat is not open and/or there
was no active chat session No chat session to inject into.

showChatButton
Displays the standalone chat button using either the default template and CSS, or customer-defined
ones.

Example
oMyPlugin.command('WebChat.showChatButton', {

openDelay: 1000,
duration: 1500

}).done(function(e){

// WebChat shows chat button successfully

}).fail(function(e){

// WebChat button is already visible, side bar is active and overrides the chat
button, or chat button is disabled in configuration
});

WebChat

Widgets Developer Resources 142

Options

Option Type Description

openDelay number
Duration in milliseconds to delay
showing the chat button on the
page.

duration number Duration in milliseconds for the
show and hide animation.

Resolutions

Status When Returns

resolved
The chat button is enabled in the
configuration, is currently not
visible, and the SideBar plugin is
not initialized

N/A

rejected
The chat button is not enabled in
the configuration, or it's already
visible, or the SideBar plugin is
initialized

Chat button is already visible.
Ignoring command.

rejected
The SideBar plugin is active, the
standalone chat button will be
disabled automatically

SideBar is active and overrides
the default chat button

hideChatButton
Hides the standalone chat button.

Example
oMyPlugin.command('WebChat.hideChatButton', {duration: 1500}).done(function(e){

// WebChat hid chat button successfully

}).fail(function(e){

// WebChat button is already hidden
});

Options

Option Type Description

duration number Duration in milliseconds for the
show and hide animation.

Resolutions

Status When Returns
resolved The chat button is currently N/A

WebChat

Widgets Developer Resources 143

Status When Returns
visible

rejected The chat button is already hidden Chat button is already hidden.
Ignoring command.

showOverlay
Opens a slide-down overlay over WebChat's content. You can fill this overlay with content such as
disclaimers, articles, and other information.

Example
oMyPlugin.command('WebChat.showOverlay', {

html: '
Example text
',

hideFooter: false

}).done(function(e){

// WebChat successfully shows overlay

}).fail(function(e){

// WebChat isn't open
});

Options

Option Type Description

html string or HTML reference

The HTML content you want to
display in the overlay.

Important
The id attribute value of the HTML
content can be set to
cx_chat_information. This
supports a screen reader's ability
to announce the overlay's content
to the user, as recommended by
WCAG.

hideFooter boolean

Normally the overlay appears
between the title bar and footer
bar. Set this to true to have the
overlay overlap the footer to gain
a bit more vertical space. This
should only be used in special
cases. For general use, don't set
this value.

WebChat

Widgets Developer Resources 144

Resolutions

Status When Returns

resolved WebChat is open and the overlay
opens N/A

rejected WebChat is not currently open WebChat is not currently open.
Ignoring command.

hideOverlay
Hides the slide-down overlay.

Example
oMyPlugin.command('WebChat.hideOverlay').done(function(e){

// WebChat hid overlay successfully

}).fail(function(e){

// WebChat isn't open
});

Resolutions

Status When Returns

resolved WebChat is open and the overlay
closes N/A

rejected WebChat is not currently open WebChat is not currently open.
Ignoring command.

API events
Once you've registered your plugin on the bus, you can subscribe to and listen
for published events. Here's how to use the global bus object to register a new
plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');
oMyPlugin.subscribe('WebChat.ready', function(e){});

WebChat

Widgets Developer Resources 145

Name Description Data

ready WebChat is initialized and ready
to accept commands. N/A

opened The WebChat widget has
appeared on screen. N/A

started The WebChat has successfully
started. Metadata

submitted The user has submitted the form. Metadata

rejected
When the chat session fails to
start. Typically due to form
validation or network errors.

Metadata

completed
The chat session ended after the
agent is successfully connected
to WebChat.

Metadata

cancelled
The chat session ended before
the agent is connected to
WebChat.

Metadata

closed The WebChat Widget has been
removed from the screen. Metadata

minimized The WebChat Widget has been
changed to a minimized state. N/A

unminimized
The WebChat Widget has been
restored from a minimized state
to the standard view.

N/A

messageAdded When a message is added to the
transcript, this event will fire.

Returns an object containing two
properties: data and html; data
contains the JSON data for the
message, while html contains a
reference to the visible message
inside the chat transcript.

Metadata

Interaction Lifecycle
Every WebChat interaction has a sequence of events we call the Interaction Lifecycle. This is a
sequence of events that tracks progress and choices from the beginning of an interaction (opening
WebChat), to the end (closing WebChat), and every step in between.

The following events are part of the Interaction Lifecycle:

ready
opened
started
cancelled
submitted
rejected
completed

WebChat

Widgets Developer Resources 146

closed

Lifecycle scenarios
An Interaction Lifecycle can vary based on each user's intent and experience with WebChat. Here are
several sequences of events in the lifecycle that correspond to different scenarios.

The user opened WebChat but changed their mind and closed it without starting a chat session:

ready -> opened -> cancelled -> closed

The user started a chat session but ended it before an agent connected. Perhaps it was taking too
long to reach someone:

ready -> opened -> started -> cancelled -> closed

The user started a chat, but the chat fails to start:

ready -> opened -> started -> submitted -> rejected

The user started a chat, met with an agent, and the session ended normally:

ready -> opened -> started -> submitted -> completed -> closed

Tip
For a list of all WebChat events, see API events.

Metadata
Each event in the Interaction Lifecycle includes the following block of metadata. By default, all values
are set to false. As the user progresses through the lifecycle of a WebChat interaction, these values
will be updated.

The metadata block contains boolean state flags, counters, timestamps, and elapsed times. These
values can be used to track and identify trends or issues with chat interactions. During run-time, the
metadata can help you offer a smart and dynamic experience to your users.

Reference

Name Type Description

proactive boolean Indicates this chat session was
started proactively.

prefilled boolean
Indicates the registration form
was prefilled with info
automatically.

autoSubmitted boolean
Indicates the registration form
was submitted automatically,
usually after being prefilled.

WebChat

Widgets Developer Resources 147

Name Type Description

numAgents integer
Current number of agents that
have connected to the chat
session.

userMessages integer Current number of messages
sent by user.

agentMessages integer Current number of messages
sent by agents.

systemMessages integer Current number of system
messages received.

errors array/boolean
An array of error codes
encountered during a chat
session. If no errors, this value
will be false.

form object
An object containing the form
parameters when the form is
submitted.

opened integer (timestamp) Timestamp indicating when
WebChat was opened.

started integer (timestamp) Timestamp indicating when chat
session started.

cancelled integer (timestamp)

Timestamp indicating when the
chat session was cancelled.
Cancelled refers to when a user
ends a chat session before an
agent connects.

rejected integer (timestamp)
Timestamp indicating when the
chat session was rejected.
Rejected refers to when a chat
session fails to start.

completed integer (timestamp)

Timestamp indicating when the
chat session ended normally.
Completed refers to when a user
or agent ends a chat after an
agent connected.

closed integer (timestamp) Timestamp indicating when
WebChat was closed.

agentReached integer (timestamp) Timestamp indicating when the
first agent was reached, if any.

elapsed integer (milliseconds)
Total elapsed time in milliseconds
from when the user started the
chat session to when the chat
session ended.

waitingForAgent integer (milliseconds)

Total time in milliseconds waiting
for an agent from when the user
started the chat session to when
an agent connected to the
session.

id string A unique identifier of a chat

WebChat

Widgets Developer Resources 148

Name Type Description
session that helps to identify the
instance of that session and its
associated events.

Customizable chat registration form

WebChat allows you to customize the registration form shown to users prior to starting a session. The
following form inputs are currently supported:

• Text
• Select
• Hidden
• Checkbox
• Textarea

Customization is done through a JSON object structure that defines the layout, input type, label, and
attributes for each input. You can set the default registration form definition in the
_genesys.widgets.webchat.form configuration option. Alternately, you can pass a new
registration form definition through the WebChat.open command:

_genesys.widgets.bus.command("WebChat.open", {formJSON: oRegFormDef});

Inputs are rendered as stacked rows with one input and one optional label per row.

Default example
The following example is the default JSON object used to render WebChat’s registration form. This is a
very simple definition that does not use many properties.

{
wrapper: "

",
inputs: [

{
id: "cx_webchat_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderFirstName",
label: "@i18n:webchat.ChatFormFirstName"

},

{
id: "cx_webchat_form_lastname",
name: "lastname",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderLastName",
label: "@i18n:webchat.ChatFormLastName"

},

WebChat

Widgets Developer Resources 149

{
id: "cx_webchat_form_email",
name: "email",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderEmail",
label: "@i18n:webchat.ChatFormEmail"

},

{
id: "cx_webchat_form_subject",
name: "subject",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderSubject",
label: "@i18n:webchat.ChatFormSubject"

}
]

}

This JSON definition generates the following output:

Properties
Each input definition can contain any number of properties. These are categorized in two groups:
"Special Properties", which are custom properties used internally to handle rendering logic, and
"HTML Attributes" which are properties that are applied directly as HTML attributes on the input
element.

WebChat

Widgets Developer Resources 150

/File:WebChat_CustomForm_001.png
/File:WebChat_CustomForm_001.png

Special properties

Property Type Default Description

type string "text"

Sets the type of input to
render. Possible values
are currently "text",
"hidden", "select",
"checkbox", and
"textarea".

label string N/A

Set the text for the
label. If no value
provided, no label will
be shown. You may use
localization query
strings to enable
custom localization (for
example, label:
"@i18n:namespace.StringName").
Localization query
strings allow you to use
strings from any widget
namespace or to create
your own namespace in
the localization file
(i18n.json) and use
strings from there (for
example, label:
"@i18n:myCustomNamespace.myCustomString001").
For more information,
see the Labels section.

wrapper HTML string “
"

Each input exists in its
own row in the form. By
default this is a table-
row with the label in the
left cell and the input in
the right cell. You can
redefine this wrapper
and layout by specifying
a new HTML row
structure. See the
Wrappers section for
more info.
The default wrapper for an
input is "

validate function N/A

Define a validation
function for the input
that executes when the
input loses focus (blur)
or changes value. Your
function must return
true or false. True to
indicate it passed, false
to indicate it failed. If
your validation fails, the

WebChat

Widgets Developer Resources 151

Property Type Default Description
form will not submit and
the invalid input will be
highlighted in red. See
the Validation section
for more details and
examples.

validateWhileTyping boolean false

Execute validation on
keypress in addition to
blur and change. This
ignores non-character
keys like shift, ctrl, and
alt.

options array []

When ‘type’ is set to
‘select’, you can
populate the select by
adding options to this
array. Each option is an
object (for example,
{text: ‘Option 1’, value:
‘1’} for a selectable
option, and {text:
"Group 1", group: true}
for an option group).

HTML attributes

With the exception of special properties, all properties will be added as HTML attributes on the input
element. You can use standard HTML attributes or make your own.

Example

{
id: "cx_webchat_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderFirstName",
label: "@i18n:webchat.ChatFormFirstName"

}

In this example, id, name, maxlength, and placeholder are all standard HTML
attributes for the text input element. Whatever values are set here will be
applied to the input as HTML attributes.

Important
The default input type is "text", so type does not need to be defined if you intend to
make a text input.

HTML output

WebChat

Widgets Developer Resources 152

Disabling autocomplete

Since the custom form feature supports adding any HTML attributes to your inputs, you can control
standard HTML features like disabling autocomplete. To disable autocomplete, add autocomplete:
"off" to your input definition.

Example

{
id: "cx_webchat_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderFirstName",
label: "@i18n:webchat.ChatFormFirstName",
autocomplete: "off"

}

Labels
A label tag will be generated for your input if you specify label text and if your custom input wrapper
includes a ‘{label}’ designation. If you have added an ID attribute for your input, the label will
automatically be linked to your input so that clicking on the label selects the input or, for checkboxes,
toggles it.

Labels can be defined as static strings or localization queries.

Wrappers
Wrappers are HTML string templates that define a layout. There are two kinds of wrappers: form
wrappers and input wrappers.

Form wrapper

You can specify the parent wrapper for the overall form in the top-level "wrapper" property. The
following example specifies this value as “

". This is the default wrapper for the WebChat form:
{

wrapper: "
", /* form wrapper */

inputs: []
}

Input wrapper

Each input is rendered as a table row inside the form wrapper. You can change this by defining a new
wrapper template for your input row. Inside your template, you can specify where you want the input
and label to be by adding the identifiers label and input to your wrapper value. See the example
below:

WebChat

Widgets Developer Resources 153

{
id: "cx_webchat_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderFirstName",
label: "@i18n:webchat.ChatFormFirstName",
wrapper: "{label}{input}" /* input row wrapper */

}

The label identifier is optional. Omitting it will allow the input to fill the row. If you decide to keep the
label, you can move it to any location within the wrapper, such as putting the label on the right, or
stacking the label on top of the input. You can control the layout of each row independently,
depending on your needs.

You are not restricted to using a table for your form. You can change the form wrapper to "

" and then change the individual input wrappers from a table-row to your own
specification. Be aware though that when you move away from the default table
wrappers, you are responsible for styling and aligning your layout. Only the
default table-row wrapper is supported by default themes and CSS.

Validation
You can apply a validation function to each input that lets you check the value after a change has
been made and/or the user has moved to a different input (on change and on blur). You can enable
validation on key press by setting validateWhileTyping to true in your input definition.

Here is how to define a validation function:

{
id: "cx_webchat_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderFirstName",
label: "@i18n:webchat.ChatFormFirstName",

validateWhileTyping: true, // default is false

validate: function(event, form, input, label, $, CXBus, Common){

return true; // or false
}

}

You must return true or false to indicate that validation has passed or failed, respectively. If you
return false, the WebChat form will not submit, and the input will be highlighted in red. This is
achieved by adding the CSS class cx-error to the input. The image below displays the the field where
a user input validation error has occurred, with the field highlighted in red.

WebChat

Widgets Developer Resources 154

Validation function arguments

Argument Type Description

event JavaScript event object

The input event reference object
related to the form input field.
This event data can be helpful to
perform actions like active
validation on an input field while
the user is typing.

form HTML reference A jquery reference to the form
wrapper element.

input HTML reference A jquery reference to the input
element being validated.

label HTML reference A jquery reference to the label
for the input being validated.

$ jquery instance
Widget’s internal jquery instance.
Use this to help you write your
validation logic, if needed.

CXBus CXBus instance
Widget’s internal CXBus
reference. Use this to call
commands on the bus, if needed.

Common Function Library
Widget’s internal Common library
of functions and utilities. Use if
needed.

Form submit
Custom input field form values are submitted to the server as key value pairs
under the userData section of the form submit request, where input field names
will be the property keys. During the submit, this data is merged along with the
userData defined in the WebChat open command.

WebChat

Widgets Developer Resources 155

/File:Validation_failure.png
/File:Validation_failure.png

Important
Depending on the API used (PureEnagage V2 API or PureCloud) the payload structure
in the request can vary for each, but the section below explains how the form data is
submitted by the WebChat UI plugin when using custom forms. Below is the internal
form data object defined in the WebChat plugin by default. Since firstname, lastname,
nickname, email, and subject are reserved keywords, users are not allowed to have
custom fields with the same name.

{
firstname: '',

lastname: '',
nickname: '',
email: '',
subject: '',
userData: {}

}

Example

The example below shows how the custom form data given in the WebChat form fields have been
mapped as form data object.

The form fields with reserved keywords like firstname, lastname, and email will be sent as top
level, and the rest of the fields will be sent under userData to the WebChatService plugin.

Once the form data object is sent to the WebChatService plugin, it will parse and send in the payload
request.

{
firstname: 'John',
lastname: 'Smith',
email: 'john.smith@company.com',
userData: {

phonenumber: '9256328346',
enquirytype: 'Sales' //value selected from the dropdown

}
}

Customizable emoji menu

Introduction
WebChat offers a v2 emoji menu that lets you choose which emojis to include in the emoji menu.

WebChat

Widgets Developer Resources 156

Differences between v1 and v2

• v1 shows as a tooltip-style overlay; v2 shows as a new block between the transcript and the message
input.

• v1 closes when you select an emoji or click outside the menu; v2 lets you choose multiple emojis and
only closes if you click the emoji menu button again.

• v1 has three fixed emojis to choose from; v2 can show hundreds of customizable emojis in a grid layout.
• v1 menu appears in mobile mode; v2 menu is not available in mobile mode (when v2 is configured, no

emoji menu button is present in mobile mode).
• v1 menu has default emojis; v2 menu does not have default emojis. It must be explicitly configured with

a list of emojis.

Configuring the emoji menu
Click the emoji menu icon at the bottom-left corner of the WebChat UI to open the v2 emoji menu.
The transcript will be resized to fit the emoji menu, which can vary in height depending on the
number of emojis configured:

• When 1-8 emojis are configured, the menu has one row, and no scrollbar appears.
• When 9-16 emojis are configured, the menu has two rows, and no scrollbar appears.
• When 17-24 emojis are configured, the menu has three rows, and no scrollbar appears.

WebChat

Widgets Developer Resources 157

/File:WebChat_New_Emoji_without_file_upload.png
/File:WebChat_New_Emoji_without_file_upload.png

• When 25 or more emojis are configured, the menu has three rows, and a scrollbar appears.

Configure the v2 emoji menu by passing a string containing emoji into the
WebChat configuration or through localization.

Important
If you define an emoji list in the WebChat configuration, it will override any emoji lists
defined in localization files.

You configure the emoji list by specifying a string of emoji characters, like
"⯑⯑⯑⯑". WebChat will parse this string and arrange them in the emoji menu.
// Configure a flat list of emoji characters
_genesys.widgets.webchat.emojiList =
"⯑⯑⯑
⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑☪⯑☘☀⯑⯑⯑⯑⯑⯑⯑⯑";

Add emoji display names

You can also add names to emojis so that their names will appear when you hover over them. To add
a name to an emoji, simply add a colon after the question mark symbol, and then type the name.
Separate each name with a semicolon.

The format is ;⯑:name;

You can only add one name to an emoji. The following sample shows the format
for configuring several emojis.
// Configure an emoji list with emoji names
_genesys.widgets.webchat.emojiList = "⯑:Star-Struck;⯑:Zany Face;⯑:Face With Hand Over
Mouth;⯑:Shushing Face;⯑:Face With Raised Eyebrow;⯑:Bitcoin;⯑:Face Vomiting;
⯑:Exploding Head;⯑:Face With Monocle;⯑:Face With Symbols on Mouth;⯑:Orange Heart;
⯑:Love-You Gesture;⯑:Palms Up Together;⯑:Brain;⯑:Child;⯑:Person;⯑:Man: Beard;
⯑:Older Person;⯑:Woman With Headscarf;⯑:Breast-Feeding;⯑:Mage;⯑:Fairy;⯑:Vampire;
⯑:Merperson;⯑:Elf;⯑:Genie;⯑:Zombie;⯑:Person in Steamy Room;⯑:Person Climbing;
⯑:Person in Lotus Position;⯑:Zebra;⯑:Giraffe;⯑:Hedgehog;⯑:Sauropod;⯑:T-Rex;⯑:Cricket;

WebChat

Widgets Developer Resources 158

/File:WebChat_Emoji_Menu_Resizing_without_file_upload.png
/File:WebChat_Emoji_Menu_Resizing_without_file_upload.png

⯑:Coconut;⯑:Broccoli;⯑:Pretzel;⯑:Cut of Meat;⯑⯑:Australia Day;⯑⯑:Bastille
Day;⯑:Birthday;⯑:Black Friday;⯑⯑:Canada Day;⯑⯑:Carnival;⯑:Chinese New Year;⯑:Christmas;
⯑⯑:Cinco de Mayo;⯑:Diwali;⯑⯑:Dragon Boat Festival;⯑:Easter;⯑:Emoji Movie;⯑:Fall/Autumn;
⯑:Father’s Day;⯑:Festivus;⯑:Graduation;⯑:Guy Fawkes;⯑:Halloween;⯑:Hanukkah;
⯑:Hearts;⯑:Holi;⯑⯑:Independence Day;⯑:Mother’s Day;⯑:New Year’s Eve;⯑:Olympics;
⯑⯑:Pride;⯑:Queen’s Birthday;☪:Ramadan;⯑:Spring;☘:St Patrick’s Day;☀:Summer;
⯑:SuperBowl;⯑:Thanksgiving;⯑:Valentine’s Day;⯑:Wedding / Marriage;⯑:Winter;⯑:Winter
Olympics;⯑:World Cup;⯑:World Emoji Day;";

Partially named lists

You don't have to add names for every emoji. You can add titles to only a select
few.
// Configure an emoji list with only a few emoji names
_genesys.widgets.webchat.emojiList = "⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑;⯑:Palms Up Together;
⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑;⯑:Black Friday;
⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑☪⯑☘☀⯑⯑⯑⯑;⯑:Snowman;⯑⯑⯑";

Localization
Emojis can be localized so that each language has a preferred set of emojis and
emoji titles.

Important
If you define an emoji list in the WebChat configuration, it will override any emoji lists
defined in localization files.

The key name for defining an emoji list is "EmojiList". Emoji lists are defined in a
localization file using the same syntax as the WebChat configuration.
{

"en": {
"webchat": {

"EmojiList": "⯑:Star-Struck;⯑:Zany Face;⯑:Face With Hand Over Mouth;⯑:Shushing
Face;"

}
}

}

WebChat

Widgets Developer Resources 159

Engage

Contents

• 1 Overview
• 1.1 Usage
• 1.2 Namespaces
• 1.3 Screenshots

• 2 Configuration
• 3 Localization
• 4 API commands

• 4.1 invite
• 4.2 Example
• 4.3 Options
• 4.4 Resolutions
• 4.5 offer
• 4.6 Example
• 4.7 Options

• 5 API events
• 5.1 Interaction Lifecycle
• 5.2 Lifecycle scenarios

• 6 Metadata
• 6.1 Reference

Engage

Widgets Developer Resources 160

• Developer

Learn how to use the Genesys Multicloud CX plugin to integrate any Engage solution with Genesys
Widgets.

Related documentation:
•

Overview

The Genesys Multicloud CX plugin is generic and contains commands that automate customer
engagement within Genesys Widgets. Starting with version 9.0.015.11, the Engage plugin includes
Offers, which allows a customer to view a product or promotion on a page. It comes with many
display modes and rendering options, such as overlay/toaster mode with text or image-only layouts,
or both.

Engage

Widgets Developer Resources 161

/File:Desktop_Engage_Offer_Overlay_View_with_Text_on_left_v1.png
/File:Desktop_Engage_Offer_Overlay_View_with_Text_on_left_v1.png

Usage
Use the Engage plugin to show either an invite or an offer via the following methods:

• Calling the Engage.invite command
• Calling the Engage.offer command

Namespaces
The Engage plugin uses the following namespaces.

Type Namespace
i18n - Localization Engage
CXBus - API commands & API events Engage
CSS .cx-engage

Screenshots
Engage Invite

Engage

Widgets Developer Resources 162

/File:Engage_Invite_Dark_v2.png
/File:Engage_Invite_Dark_v2.png

Engage Offer

Configuration

The Genesys Multicloud CX plugin doesn't have any configuration options.

Localization

Engage

Widgets Developer Resources 163

/File:Engage_Invite_Mobile_Dark_theme_v1.png
/File:Engage_Invite_Mobile_Dark_theme_v1.png
/File:Engage_Invite_Mobile_Light_theme_v1.png
/File:Engage_Invite_Mobile_Light_theme_v1.png
/File:Desktop_Engage_Offer_toaster_mode.png
/File:Desktop_Engage_Offer_toaster_mode.png
/File:Desktop_Engage_Offer_modal_overlay_view_with_text_on_top.png
/File:Desktop_Engage_Offer_modal_overlay_view_with_text_on_top.png
/File:Desktop_Engage_Offer_overlay_view_with_text_at_bottom.png
/File:Desktop_Engage_Offer_overlay_view_with_text_at_bottom.png
/File:Desktop_Engage_Offer_Toast_view_with_text_content_on_right.png
/File:Desktop_Engage_Offer_Toast_view_with_text_content_on_right.png
/File:Desktop_Engage_Offer_Toast_view_with_text_content_on_left.png
/File:Desktop_Engage_Offer_Toast_view_with_text_content_on_left.png
/File:Desktop_Engage_Offer_overlay_view_-_Right_text_v1.png
/File:Desktop_Engage_Offer_overlay_view_-_Right_text_v1.png
/File:Desktop_Engage_Offer_modal_Overlay_View_with_Text_on_left.png
/File:Desktop_Engage_Offer_modal_Overlay_View_with_Text_on_left.png
/File:Mobile_Engage_Offer_inserted_onto_the_top_of_a_webpage.png
/File:Mobile_Engage_Offer_inserted_onto_the_top_of_a_webpage.png
/File:Mobile_mode_Engage_Offer_view_in_modal_overlay_with_background_greyed_out_v1.png
/File:Mobile_mode_Engage_Offer_view_in_modal_overlay_with_background_greyed_out_v1.png
/File:Mobile_mode_Engage_Offer_view_in_modal_overlay_v1.png
/File:Mobile_mode_Engage_Offer_view_in_modal_overlay_v1.png

The Genesys Multicloud CX plugin doesn't have any localization options.

API commands

Once you've registered your plugin on the bus, you can call commands on other registered plugins.
Here's how to use the global bus object to register a new plugin on the bus.

Important
The global bus object is a debugging tool. When implementing Widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Engage.invite');

invite
Opens the Engage Widget and renders the text based on the options provided. If no options are
provided, the widget doesn't open.

Example
oMyPlugin.command('Engage.invite', {

'type':'toast',
'timeout':3000,
'title':'Engage Title',
'ariaTitle':'Engage Invite',
'body':'Engage invite body content',
'accept':'Yes',
'decline':'No, thanks',
'ariaAccept':'Yes',
'ariaDecline':'No, thanks',
'ariaClose':'Close',
'command': 'WebChat.open',
'options':{'proactive': true, 'userData': {'category': 'shoes'}}

});

oMyPlugin.command('Engage.invite',{
'type':'toast',
'timeout':3000,
'force': true,
'title':'Engage Title',
'ariaTitle':'Engage Invite',
'body':'Engage invite body content',
'accept':'Yes',
'decline':'No, thanks',
'ariaAccept':'Yes',
'ariaDecline':'No, thanks',
'ariaClose':'Close'

Engage

Widgets Developer Resources 164

}).done(function(response){

// Act upon the received response code

switch(response){
case 'accepted':oMyPlugin.command('WebChat.open');

break;
case 'declined': break;
case 'closed': break;
case 'timeout': break;

}

});

Options

Option Type Description Accepted
values Default Introduced/

updated

type string Widget display
type. toast

timeout number
Timeout
integer in
milliseconds.

n/a

title string String for
widget title. n/a

ariaTitle string
Aria label text
for the Engage
invite window.

n/a 9.0.015.04

body string String for offer
body text. n/a

accept string
String for
Accept button
text.

n/a

ariaAccept string
Aria label text
for the Accept
button.

n/a 9.0.016.10

decline string
String for
Decline button
text.

n/a

ariaDecline string
Aria label text
for the Decline
button.

n/a 9.0.016.10

ariaClose string
Aria label text
for the Engage
Close button.

n/a 9.0.016.10

command string Command to
execute. n/a

options object
Options related
to the
command
provided.

n/a

Engage

Widgets Developer Resources 165

Option Type Description Accepted
values Default Introduced/

updated

priority number

Replace the
active lower
priority Engage
invite with the
higher priority
Engage invite.

n/a 0 9.0.015.11

force boolean

Replace the
active Engage
invite with the
new Engage
invite
irrespective of
priorities.

n/a false 9.0.015.11

Resolutions
Status When Returns

resolved Engage invite is accepted by
user. accepted

resolved Engage invite is declined by user. declined

resolved Engage invite widget is closed by
user. closed

resolved Engage invite widget closes due
to timeout. timeout

offer
Opens a widget for a product offer using the data sent through the command options provided below.
The widget can include both rendering options and the actual data that needs to be displayed in the
Offer Widget. If no options are provided, the widget will not open.

Example
oMyPlugin.command('Engage.offer', {

mode:'overlay',
modal:true,
layout:'leftText',
title: 'GRAB WHAT YOU NEED!!',

ariaTitle: 'Offers',
headline:'We Got All!',
description:'Get free NextDay delivery on orders of $35 or more. Start shopping

now!',

cta:{
text:'Join',
url:'https://www.genesys.com',
target:'_blank'

},

Engage

Widgets Developer Resources 166

image:{
src:'https://picsum.photos/id/237/300/300',
alt:'Alternate Text for Image'

},

styles:{
closeButton:{

'color':'red'
}

},
ariaCTA:'Join',
ariaClose:'Close Offer'

});

Options

Option Type Description Accepted
values Default Introduced/

updated

mode string
The display
type of the
Offer widget.

overlay,
toaster toaster 9.0.015.04

modal boolean

Applicable only
when mode is
'overlay'. A
smokescreen
will be shown
in the
background of
overlay modal
window. This
window can be
dismissed by
clicking
anywhere in
the
smokescreen
area.

n/a false 9.0.015.04

layout string
Additional
layout options
are supported
for all modes.

minimal,
leftText,
rightText,
topText,
bottomText

leftText 9.0.015.04

headline string The Offer title
header text. n/a n/a 9.0.015.04

ariaTitle string
Aria label text
for the Offer
window.

n/a n/a 9.0.015.04

description string
The Offer body
description
text.

n/a n/a 9.0.015.04

cta object
An object
containing
HTML
attributes and/

n/a n/a 9.0.015.04

Engage

Widgets Developer Resources 167

Option Type Description Accepted
values Default Introduced/

updated
or CXBus
commands for
the CTA (call to
action) button.

cta.text string The CTA button
text. n/a n/a 9.0.015.04

cta.url string

The URL string
for the CTA
button.
Note: The URL
must be properly
defined with the
complete Protocol
URL Address. For
example,
https://www.genesys.com.

_blank,
_parent, _self,
_top,
framename

n/a 9.0.015.04

cta.target string
Specifies
where the URL
is opened.

n/a n/a 9.0.015.04

cta.command string
A CXBus
command to
execute.

n/a n/a 9.0.015.04

cta.commandOptionsstring
Options related
to CXBUs
command.

n/a n/a 9.0.015.04

image object
An object
containing
image tag
attributes.

n/a n/a 9.0.015.04

image.src string The URL of the
image. n/a n/a 9.0.015.04

image.alt string Alternate text
for the image. n/a n/a 9.0.015.04

image.title string

To indicate the
screen reader
user whether
the image
opens the URL
in a new
window.

n/a n/a 9.0.016.10

insertAfter string

Applicable only
in mobile
mode. An ID or
class name of
an HTML
selector from
the host page.
The offer will
be inserted
after this

n/a n/a 9.0.015.04

Engage

Widgets Developer Resources 168

Option Type Description Accepted
values Default Introduced/

updated
element.
Precede the
value
mentioned
here with the
standard Class
('.') and ID
selector ('#')
character.

insertBefore string

Applicable only
in mobile
mode. An ID or
class name of
an HTML
selector from
the host page.
The offer will
be inserted
before this
element.
Precede the
value
mentioned
here with the
standard Class
('.') and ID
selector ('#')
character.

n/a n/a 9.0.015.04

insertInto string

Applicable only
in mobile
mode. An ID or
class name of
an HTML
selector from
the host page.
The offer will
be appended
inside this
element.
Precede the
value
mentioned
here with the
standard Class
('.') and ID
selector ('#')
character.

n/a n/a 9.0.015.04

styles object
An object
containing
styles for the
offer content.

n/a n/a 9.0.015.04

styles.closeButtonobject An object
containing n/a n/a 9.0.015.04

Engage

Widgets Developer Resources 169

Option Type Description Accepted
values Default Introduced/

updated
styles for the
close button.

styles.closeButton.colorstring
The color of
the close
button.

n/a n/a 9.0.015.04

styles.closeButton.opacitynumber

The CSS
'opacity'
property for
the close
button.

n/a n/a 9.0.015.04

styles.overlay object

An object
containing
styles for the
overlay
container.

n/a n/a 9.0.015.04

styles.overlay.top string
The CSS 'top'
property for
the overlay
container.

n/a n/a 9.0.015.04

styles.overlay.rightstring
The CSS 'right'
property for
the overlay
container.

n/a n/a 9.0.015.04

styles.overlay.bottomstring

The CSS
'bottom'
property for
the overlay
container.

n/a n/a 9.0.015.04

styles.overlay.left string

The CSS 'left'
property for
the overlay
container.
Note: When all the
position values are
provided, the order
of precedence will
be top, right,
bottom, and left.

n/a n/a 9.0.015.04

styles.overlay.centerboolean

Aligns the
overlay
container to
the center of
the screen.

n/a true 9.0.015.04

styles.offer object
An object
containing
styles for the
Offer window.

n/a n/a 9.0.015.04

styles.offer.backgroundColorstring The
background n/a n/a 9.0.015.04

Engage

Widgets Developer Resources 170

Option Type Description Accepted
values Default Introduced/

updated
color of the
offer.

styles.offer.color string The text color
of the offer. n/a n/a 9.0.015.04

styles.offer.paddingstring
The padding
for the offer
container.

n/a 0 9.0.015.04

styles.title object
An object
containing
styles for the
title.

n/a n/a 9.0.015.04

styles.title.font string
The CSS 'font'
property for
the title.

n/a n/a 9.0.015.04

styles.title.textAlignstring
The CSS 'text-
align' property
for the title.

n/a n/a 9.0.015.04

styles.headline object
An object
containing
styles for the
header text.

n/a n/a 9.0.015.04

styles.headline.fontstring
The CSS 'font'
property for
the header
text.

n/a n/a 9.0.015.04

styles.headline.textAlignstring
The CSS 'text-
align' property
for the header
text.

n/a n/a 9.0.015.04

styles.description object

An object
containing
styles for the
offer
description
text.

n/a n/a 9.0.015.04

styles.description.fontstring
The CSS 'font'
property for
the description
text.

n/a n/a 9.0.015.04

styles.description.textAlignstring

The CSS 'text-
align' property
for the
description
text.

n/a n/a 9.0.015.04

styles.ctaButton object

An object
containing
styles for call
to action
button in the

n/a n/a 9.0.015.04

Engage

Widgets Developer Resources 171

Option Type Description Accepted
values Default Introduced/

updated
offer window.

styles.ctaButton.fontstring
The CSS 'font'
property for
the text in CTA
button.

n/a n/a 9.0.015.04

styles.ctaButton.textAlignstring
The CSS 'text-
align' property
for the text in
CTA button.

n/a n/a 9.0.015.04

styles.ctaButton.backgroundstring
The CSS
'background'
property for
the CTA button.

n/a n/a 9.0.015.04

styles.ctaButton.colorstring
The CSS 'color'
property for
the text in CTA
button.

n/a n/a 9.0.015.04

styles.ctaButton.fontSizestring
The CSS 'font-
size' property
for the text in
CTA button.

n/a n/a 9.0.015.04

ariaCTA string
Aria label text
for the Offer
CTA button.

n/a n/a 9.0.016.10

ariaClose string
Aria label text
for the Offer
Close button.

n/a n/a 9.0.016.10

priority number

Replace the
active lower
priority Engage
Offer with the
higher priority
Engage Offer.

n/a 0 9.0.015.11

force boolean

Replace the
active Engage
Offer with the
new Engage
Offer
irrespective of
priorities.

n/a false 9.0.015.11

API events

Once you've registered your plugin on the bus, you can subscribe to and listen for published events.
Here's how to use the global bus object to register a new plugin on the bus.

Engage

Widgets Developer Resources 172

Important
The global bus object is a debugging tool. When implementing widgets on your own
site, do not use the global bus object to register your custom plugins. Instead, see
Genesys Widgets Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('Engage.ready', function(e){});

Name Description Data Introduced/updated

ready
The Engage widget is
initialized and ready to
accept commands on
the bus.

n/a

opened

The Engage widget
opens.
Note: Applicable
only to Engage.offer
command

Metadata 9.0.015.04

CTA

When the user clicks the
CTA button in the
Engage widget.
Note: Applicable
only to Engage.offer
command

Metadata 9.0.015.04

hover

When the user first
hovers over the Engage
widget.
Note: Applicable
only to Engage.offer
command

Metadata 9.0.015.04

dismissed

When the user closes
the Engage widget by
clicking the Close
button.
Note: Applicable
only to Engage.offer
command

Metadata 9.0.015.04

closed

The Engage widget
closes.
Note: Applicable
only to Engage.offer
command

Metadata 9.0.015.04

Engage

Widgets Developer Resources 173

Important
Applicable only for Engage.offer command.

Interaction Lifecycle
Every offer interaction has a sequence of events we describe as the Interaction Lifecycle. These
events track progress and user choices from the beginning of an interaction (opening Offers), to the
end (closing Offers), and every step in between.

The following events comprise the Interaction Lifecycle:

ready
opened
CTA
hover
dismissed
closed

Lifecycle scenarios
An Interaction Lifecycle can vary based on each user's intent and experience with the Offer widget.
Here are several sequences of events in the lifecycle that correspond to different scenarios.

The user opened the Offer widget but changed their mind and closed it without seeing the offer
details:

ready -> opened -> dismissed -> closed

The user opened the Offer widget, hovered over the offer details, and then closed it:

ready -> opened -> hover -> dismissed -> closed

The user opened the Offer widget and clicked on the button, which triggers CTA:

ready -> opened -> CTA -> closed

Tip
For a list of all Offer events, see API events.

Metadata

Each event in the Interaction Lifecycle includes the following block of metadata. By default, all values
are set to false. As the user progresses through the lifecycle of an Offer Engage interaction, these
values are updated.

Engage

Widgets Developer Resources 174

The metadata block contains Boolean state flags, timestamps, and elapsed times. These values can
be used to track and identify trends or issues with interactions. During runtime, the metadata can
help you offer a smart and dynamic experience to your users.

Reference
Name Type Description Introduced/updated

opened integer (timestamp)
Timestamp indicating
when the offer was
opened.

9.0.015.04

closed integer (timestamp)
Timestamp indicating
when the offer was
closed.

9.0.015.04

dismissed integer (timestamp)

Timestamp indicating
when the user
dismissed the offer by
clicking the close
button.

9.0.015.04

triggeredCTA integer (timestamp)
Timestamp indicating
when the CTA was
triggered.

9.0.015.04

timeBeforeCTA integer (milliseconds)

Total time in
milliseconds from when
the user opened the
offer to when the CTA is
triggered.

9.0.015.04

timeFirstHover integer (timestamp)
Timestamp indicating
when the user first
hovered over the offer.

9.0.015.04

timeBeforeHover integer (milliseconds)

Total time in
milliseconds from when
the user opened the
offer to when the user
first hovered over the
offer.

9.0.015.04

timeElapsedHover integer (milliseconds)
Total time in
milliseconds when the
user hovered over the
offer.

9.0.015.04

elementClicked string Name of CTA element
that was clicked. 9.0.015.04

Engage

Widgets Developer Resources 175

	Widgets Developer Resources
	Table of Contents
	App
	Common
	Overlay
	Toaster
	WindowManager
	WebChatService
	CallUs
	ChannelSelector
	Console
	SideBar
	WebChat
	Engage

