
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Customize appearance

Widgets Developer's Guide

7/16/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

• 1 Set the active theme
• 2 Create a custom theme

• 2.1 Theme templates
• 2.2 Name a theme
• 2.3 Customization guidelines

• 3 Register a theme with Genesys Widgets
• 4 Change the appearance of a specific widget
• 5 Change the layout and structure of a widget
• 6 Change fonts

• 6.1 Disable Roboto font download
• 6.2 Change font size

• 7 Icons
• 7.1 How to use icons
• 7.2 Multi-tone icon set
• 7.3 Outline icon set

Widgets Developer's Guide 2

• Developer

Use themes to change the appearance of Genesys Widgets. Themes allow you to apply colors and
fonts to all of your widgets in a single operation.

Related documentation:
•

Genesys Widgets includes two built-in themes: dark and light.

Note: The dark theme is active by default.

Dark theme

Widgets Developer's Guide 3

/File:Darktheme.png
/File:Darktheme.png

Light theme

Set the active theme

There are two ways to set the active theme:

Configuration

window._genesys.widgets.main.theme = "light"; // or "dark"

Widget Bus Command

window._genesys.widgets.bus.command("App.setTheme", {theme: "light"}); // or "dark"

Create a custom theme

Widgets Developer's Guide 4

/File:Lighttheme.png
/File:Lighttheme.png

Theme templates
Genesys Widgets uses special LESS files called theme templates to define themes. Use a theme
template to create a new color palette and add custom styles. Everything is laid out clearly in the
template file.

LESS syntax defines local variables that allow you to create a clear color palette consisting of no less
than 28 separate color variables, which are grouped by their usage:

• Background colors
• Text colors
• Icon colors
• Border colors
• Outline colors

At a bare minimum, you can create a new style by simply changing the color values in the color
palette. You can also add or remove colors from this palette.

Color palette example

/* Color Palette */

@bg_color_1: #33383D; // Main Background Color
@bg_color_2: #444A52; // Form Inputs
@bg_color_3: #222529; // Button default
@bg_color_4: #5081E1; // Button primary gradient 1
@bg_color_5: #4375D6; // Button primary gradient 2
@bg_color_6: #CCCCCC; // Button disabled / scrollbar color
@bg_color_7: #212529; // Native scrollbar track color
@bg_color_8: #A3A8AE; // Scrollbar color

@txt_color_1: #FDFDFD; // Main text color
@txt_color_2: #98A7B8; // footer text
@txt_color_3: #FDFDFD; // Button default & primary / autocomplete text hover
color
@txt_color_4: #FDFDFD; // Hyperlink color
@txt_color_5: #C5CCD6; // Placeholder color
@txt_color_6: #F53131; // Alert/error color

@icon_color_1: #FDFDFD; // Base icon color
@icon_color_2: #8C8C8C; // Secondary icon color (multitone only)
@icon_color_3: #000000; // Icon shadow color (multitone only)
@icon_color_4: #000000; // Icon secondary shadow color (multitone only)
@icon_color_5: #98A7B8; // Window control icon color
@icon_color_6: #98A7B8; // Form input icon overlay color (e.g. "clear" icon)
@icon_color_7: #5081E1; // Interactive icon color 1 (attach files, delete
file, etc)
@icon_color_8: #4AC764; // Positive Color (confirmation, availability,
usually green)
@icon_color_9: #F53131; // Negative Color (error, exception, usually red)
@icon_color_10: #F8A740; // Warning Color (warning, pending, offline, usually yellow
or orange)
@icon_color_11: #FDFDFD; // Icon color for primary buttons

@border_color_1: #222529; // Main border color
@border_color_2: #2E69DB; // Button primary
@border_color_3: transparent; // Button default

Widgets Developer's Guide 5

@border_color_4: transparent; // Button disabled
@border_color_5: #F53131; // Alert/error color
@border_color_6: #758384; // Form controls default state

@outline_color_1: #75A8FF; // Form input focus outline / autocomplete hover
background color
@outline_color_2: #DAE6FC; // Outline color for primary buttons

Sample theme template files

Click the following links to automatically download the sample template files:

theme-template-dark.less

theme-template-light.less

Important
Theme templates are LESS files, which must be converted to CSS before being used
on a website. Use a website or tool to convert them when you're ready to test and
implement them on your site.

Important
By default, theme templates override the styles of all of your Genesys Widgets—but
you can also make changes that only affect a specific widget, as described below.

Name a theme
In the dark theme template file, the first class selector is defined as:

.cx-widget.cx-theme-dark

.cx-widget is the base class for the entire Genesys Widgets UI. The outermost container of every
widget or standalone UI element has this class and is used to identify UI elements that belong to
Genesys Widgets.

.cx-theme-dark is the class name created for the dark theme. Themes are applied by searching for
all elements with the .cx-widget class and appending the theme's classname to it. Thus, the
combined class selector indicates styles that will be applied only when your custom theme is active
in the configuration object.

Name your theme's classname anything you wish. There are no restrictions or limitations.

In a later step, you will register this theme classname in your configuration.

Widgets Developer's Guide 6

Customization guidelines
When you create your own themes, you can only use the following CSS properties:

• color
• background
• font-family
• font-style
• border-color
• border-style
• and other non-structural properties

Warning
Widgets primarily relies on classnames for CSS selectors, rather than fixed node path
selectors. Using classnames allows for the HTML structure to be changed without
breaking selectors. For example, the selector ".cx-webchat .cx-message" is all that is
needed to target message bubbles inside WebChat. Using a fixed node path
equivalent, like "div.cx-webchat > div.cx-body > div.cx-transcript > div.cx-message-
group > div.cx-message" creates a dependency on the HTML node type and structure.
If any changes are made to WebChat's HTML structure, this CSS selector will break.
Use the smallest necessary specificity in your selectors and try to use classnames
only.

Be careful not to modify the structure and functionality of the CSS when you make
changes. Otherwise, it won't work properly. In particular, avoid setting the following
CSS properties: height, width, thickness, size, and visibility, or any other properties
that change the structure of widgets. These properties are not supported, and
changing them can break widget stability and usability.

Important
By default, the Widgets CSS uses the Roboto font, available at
https://fonts.google.com.

Register a theme with Genesys Widgets

The following example shows how to register themes in the Genesys Widgets configuration.

window._genesys.widgets.main.themes = {
"blue": "cx-theme-blue"

Widgets Developer's Guide 7

};

The name:value pair used here consists of a key ("blue") and the theme's CSS classname ("cx-theme-
blue"). You can add as many themes to this list as you need.

Use a theme's key to make it the active theme:

window._genesys.widgets.main.theme = "blue";
// OR
window._genesys.widgets.bus.command("App.setTheme", {theme: "blue"});

Change the appearance of a specific widget

You can specify specific widgets—and even specific elements within a widget—by appending the
widget's CSS classname to the theme classname.

The following example shows how to extend the cx-theme-blue class with a widget-specific entry
that makes the WebChat widget's background color a darker shade.

.cx-widget.cx-theme-blue, .cx-widget .cx-container{

color: #FDFDFD;
background: #1e5799;

}

.cx-widget.cx-theme-blue *{

border-color: #7DB9E8;
}

.cx-widget.cx-theme-blue.cx-webchat, .cx-widget.cx-theme-blue .cx-webchat{

background: #225897;
}

Widgets Developer's Guide 8

/File:GWCCustomize_SpecificTheme01.png
/File:GWCCustomize_SpecificTheme01.png

Important
Notice the dual CSS selector used when specifying the widget. This is required to
make sure your styles always apply properly.

Widget-Specific and Element-Specific

The next example shows how to extend the "cx-theme-blue" class with a widget- and element-
specific entry that changes the background color of the input fields within the WebChat widget to a
light shade of blue.

.cx-widget.cx-theme-blue, .cx-widget .cx-container{

color: #FDFDFD;
background: #1e5799;

}

.cx-widget.cx-theme-blue *{

border-color: #7DB9E8;
}

.cx-widget.cx-theme-blue.cx-webchat, .cx-widget.cx-theme-blue .cx-webchat{

background: #225897; // Darker Shade
}

.cx-widget.cx-theme-blue.cx-webchat .form input, .cx-widget.cx-theme-blue .cx-webchat .form
input{

background: #DCF5FF; // Lighter Shade
}

Widgets Developer's Guide 9

/File:GWCCustomize_SpecificTheme02.png
/File:GWCCustomize_SpecificTheme02.png

Change the layout and structure of a widget

You can only use themes to customize a limited set of styles for your version of Genesys Widgets. To
create an alternate layout of your own design, disable the widget you want to customize and use the
provided service plugins to build your own replacement.

Choosing Which Plugins to Load

Refer to the plugins configuration option here: app configuration

Service Plugins

Service plugins provide a high-level API for quickly integrating a UI with backend services. Each
widget is matched with a corresponding service plugin. This separation allows for advanced
integrations.

• WebChatService
• CallbackService

Warning
Genesys does not support changes to the layout of the official Genesys Widgets, as
your changes can be overwritten when you upgrade to a newer version of Genesys
Widgets.

Change fonts

By default, Genesys Widgets downloads and uses Google's Roboto font. Use the following CSS to
specify a different font:

.cx-widget{ font-family: name-of-font-here; }

The font you choose here will be applied to all of the Genesys Widgets.

Disable Roboto font download
To prevent Google's Roboto font file from being downloaded at startup, set the
main.downloadGoogleFont configuration option to false:

_genesys.widgets.main.downloadGoogleFont = false;

If this option is set to true, Google's Roboto font will be downloaded. The default value is true.

Widgets Developer's Guide 10

Important
Use this configuration option if you have security concerns about including fonts from
third-party sources, to optimize your page load time, or if you already include Roboto
on your website.

Change font size
By default, the font size in Genesys Widgets content is in em units. This is to
support accessibility guidelines allowing font size to scale as needed when
zoomed in or out based on the screen size. For normal text, the font size value is
0.75em and can vary for other text contents.

Important
Since these are relative units, the actual value is derived from the font size of the
parent page body. A base font size can be defined on the .cx-widget class in em units
to change font size, which allows Widgets to calculate internal font size using this
value.

Icons

Genesys Widgets are provided in SVG format, which means you can apply color fills and other SVG
CSS properties when you use them. SVG also supports the highest possible rendering quality on all
devices, regardless of the zoom level or resolution. You can scale the icons to fit any container; use
them either inline or as blocks; and animate their orientation, colors, and other styling.

You can also use the Genesys icons in your own custom extensions, which allows them to match the
look and feel of the default Genesys widgets. Here are some of the things you can do with them:

• Create a custom launcher button for chat, using the chat icon
• Create a custom widget with your choice of icon in the title bar
• Mix icons right in with your text, so you can refer to your widgets graphically

Genesys Widgets includes two sets of icons:

• The Multi-tone icon set uses several layers and colors per icon
• The Outline icon set takes a minimalist approach to both design and color

You can use these icons in any way that works for you, but please note that you can't customize or

Widgets Developer's Guide 11

replace the icons.

How to use icons
Automatic HTML injection

Specify which icons you want and where you want them by applying the CSS cx-icon class and data-
icon attribute to the appropriate elements:

...SVG icon will be inserted here

When you pass the element into the CXCommon.populateAllPlaceholders($("#your-element")
) function—as a jQuery-wrapped set or an HTML string—Genesys Widgets inserts the appropriate SVG
icons and returns the HTML to you.

Fetching SVG icon markup

You can also fetch the markup for each SVG icon manually:

$("#your-element").append(CXCommon.Generate.Icon("chat"));

Multi-tone icon set

Widgets Developer's Guide 12

/File:Multi-icon-set1.png
/File:Multi-icon-set1.png

Outline icon set

Widgets Developer's Guide 13

/File:Multi-icon-set2.png
/File:Multi-icon-set2.png
/File:Multi-icon-set3.png
/File:Multi-icon-set3.png
/File:Outline-icon-set1.png
/File:Outline-icon-set1.png

Widgets Developer's Guide 14

/File:Outline-icon-set2.png
/File:Outline-icon-set2.png
/File:Outline-icon-set3.png
/File:Outline-icon-set3.png

	Widgets Developer's Guide

