
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Widgets Developer's Guide

11/20/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
Contents

Genesys Widgets deployment guide 5
Supported browsers 13
Cookies 15
Configure widgets and services 21
Localize widgets and services 25
Customize appearance 30
Rich Media 43
Accessibility 46

Contents

• 1 Related resources

Widgets Developer's Guide 3

The Genesys Widgets Developer's Guide covers how to get started with Widgets.

Related documentation:
•

This manual includes the following topics:

• Configure widgets and services
• Customize appearance
• Supported browsers
• Cookies
• Localize widgets and services
• Rich Media
• Accessibility

Related resources

• How Genesys Widgets works
• Widgets API Reference

Widgets Developer's Guide 4

Genesys Widgets deployment guide

Contents

• 1 Audience
• 2 How can I deploy Genesys Widgets?
• 3 Deploying Genesys Widgets (lazy loading)

• 3.1 Files used
• 3.2 On-demand lazy loading
• 3.3 Preloading plugins

• 4 Deploying Genesys Widgets (all-in-one)
• 4.1 Files Used

• 5 Alternative deployment script
• 6 Releases hosted on Content Delivery Network (CDN)

• 6.1
• 6.2
• 6.3 Choose region
• 6.4 Using Genesys Widgets CDN with versions
• 6.5 Versioning examples with scenarios
• 6.6 Deployment methods

• 7 Checking Widgets version
• 8 Genesys Web Fonts

Genesys Widgets deployment guide

Widgets Developer's Guide 5

• Developer

This guide provides the steps required to instrument your website with Genesys Widgets.

Related documentation:
•

Audience

This document is for website developers who are in charge of website code. You must have
knowledge of HTML, JavaScript, and CSS.

How can I deploy Genesys Widgets?

There are two deployment methods available:

• Lazy loading— The recommended method, lazy loading breaks the JavaScript bundle apart into
individual plugin files and loads them into the page only as you need them. This is the preferred
method of deploying Genesys Widgets.

• All-in-one (deprecated) —The all-in-one method is the "classic" method of deploying Genesys Widgets.
In this method, you have one JavaScript file and one CSS file that contain all plugins and resources.

Deploying Genesys Widgets (lazy loading)

Important
Lazy loading is the recommended method for Widgets. The (all-in-one) method is
deprecated.

Files used

• widgets/cxbus.min.js
• widgets/plugins/widgets-core.min.js
• widgets/plugins/*.*

Genesys Widgets deployment guide

Widgets Developer's Guide 6

A good starting point is the following script:

This script does the following:

1. Loads cxbus.min.js. This makes the global CXBus instance available.
2. Configures CXBus to turn on debug logging and set the path to the Widgets plugin folder.
3. Loads your configuration file, widgets.config.js. (This is an imaginary file. You must create it).
4. Loads widgets-core, the core Genesys Widgets library.

Use this script as a starting point and customize it as needed.

Remember that your configuration can be defined inline on the page or loaded in as a separate file
(as shown in this script).

Important
Whichever method you choose, you must ensure your configuration is in the page
before you load widgets-core. Otherwise, widgets-core cannot read the
configuration.

Important
Refer to Configuring Genesys Widgets for help.

On-demand lazy loading
Genesys Widgets is designed to load plugins into the page on-demand as you use the product. For
example, if you call the command WebChat.open, CXBus fetches the webchat.min.js plugin from
the plugins/ folder and loads it into the page. Any WebChat command triggers it to load. Likewise,
WebChat calls WebChatService commands, thus CXBus loads webchatservice.min.js into the page
as well.

Preloading plugins
In some cases, you might not want to load plugins on-demand, or the demand is to load them at
startup. A good example is SideBar. You probably want this plugin to appear on the screen
immediately so the customer can use it. To make this possible, you can specify which plugins you
want to preload at startup in your configuration.

_genesys.widgets.main.preload = [

"sidebar"
];

You may specify as many plugins as you want in the preload list. The plugins load in order after you

Genesys Widgets deployment guide

Widgets Developer's Guide 7

load Widgets Core.

All plugin names are lower-case. Please refer to the file names in the plugins/ folder. For example, to
preload webchat.min.js, specify webchat, the first part of the file name.

You may find other plugins or features of plugins that necessitate preloading.

Deploying Genesys Widgets (all-in-one)

Important
Lazy loading is the recommended method for Widgets. The (all-in-one) method is
deprecated.

Files Used

• widgets/widgets.min.css
• widgets/widgets.min.js

A good starting point is the following script:

First, you must define your configuration for Genesys Widgets. You can do this inline on the page by
using a script tag, or you can store it in a separate file and load it in before widgets.min.js. In the
script example above, we assume your configuration is stored in another file. You must create the
widgets.config.js file for this script to function properly.

Important
Whichever method you choose, you must ensure your configuration is in the page
before you load widgets.min.js. Otherwise, widgets.min.js cannot read the
configuration.

Important
Refer to Configuring Genesys Widgets for help.

Alternative deployment script

To simplify the deployment process while using tools like Google Tag Manager, you can use the below

Genesys Widgets deployment guide

Widgets Developer's Guide 8

script to embed Widgets.

Releases hosted on Content Delivery Network (CDN)

Genesys Widgets is now available over CDN, providing optimized load times and instant access to
new releases.

https://apps.mypurecloud.com/widgets//

Note that and are placeholders.

This value varies based on the deployment method you choose.

Tip
In the case where a CDN URL that you are trying to access is not found, it means
that either the release or the file you are looking for is not yet available.

version can take one of the following 3 values.

• 9.0 - (Major) - A version that is company-wide or
• 9.0.xxx - (Major).(Minor) - Minor version is product specific and is tied to each widget’s iteration or
• 9.0.xxx.xx - (Major).(Minor).(Release candidate) - Specific release version

For all the available released versions, refer to the Widgets Release Notes.

Choose region
Widgets is available in a number of regions worldwide, as shown below. Choose the nearest or
appropriate region URL based on where you are located.

Region URL

North America (East) https://apps.mypurecloud.com/
widgets/{version}/{path/to/file}

North America (West) https://apps.usw2.pure.cloud/
widgets/{version}/{path/to/file}

North America (Canada) https://apps.cac1.pure.cloud/
widgets/{version}/{path/to/file}

Australia or New Zealand https://apps.mypurecloud.com.au/
widgets/{version}/{path/to/file}

EU (Ireland) https://apps.mypurecloud.ie/
widgets/{version}/{path/to/file}

EU (Frankfurt) https://apps.mypurecloud.de/
widgets/{version}/{path/to/file}

Genesys Widgets deployment guide

Widgets Developer's Guide 9

Region URL

UK (London) https://apps.euw2.pure.cloud/
widgets/{version}/{path/to/file}

Japan https://apps.mypurecloud.jp/
widgets/{version}/{path/to/file}

Mumbai https://apps.aps1.pure.cloud/
widgets/{version}/{path/to/file}

Seoul https://apps.apne2.pure.cloud/
widgets/{version}/{path/to/file}

Using Genesys Widgets CDN with versions
Starting in the 9.0.006.02 release, all the released versions are accessible from the Genesys CDN
URL. The sections below explain how to access the latest available released version or a specific
released version using Genesys CDN.

To get the latest released version under the 9.0 family: https://apps.mypurecloud.com/widgets/9.0/
widgets.min.js

To get the last available released version under a specific (Major).(Minor) version (this also includes
any hot fixes for that release): https://apps.mypurecloud.com/widgets/9.0.xxx/widgets.min.js

Example: https://apps.mypurecloud.com/widgets/9.0.006/widgets.min.js

To get a specific release/hot-fix version: https://apps.mypurecloud.com/
widgets/9.0.xxx.xx/widgets.min.js

Example: https://apps.mypurecloud.com/widgets/9.0.006.02/widgets.min.js

Important
Note that all older versions of Genesys Widgets may not be available in the CDN. All
the released versions are available only starting with the 9.0.006.02 version.

Versioning examples with scenarios
When a new release version comes out, it is available under all the 3 different CDN URLs below. In
this example, if 9.0.006.01 is the first ever release announced, then it is available under the following
CDN URLs.

• /9.0/
• /9.0.006/
• /9.0.006.01/

When 9.0.007.04 is released, it is available under /9.0/ but not under /9.0.006/ or /9.0.006.01/.
Instead, /9.0.007/ and /9.0.007.04/ CDN URLs are created and this release is available under them:

Genesys Widgets deployment guide

Widgets Developer's Guide 10

• /9.0/
• /9.0.007/
• /9.0.007.04/

If a hot fix (such as 9.0.006.02) is released after 9.0.007.04 is released, then the hot fix is available
under the following CDN URLs:

• /9.0.006/
• /9.0.006.02/

If a hot fix (such as 9.0.007.05) is released before announcing any new release, then it is available
under the following CDN URLs:

• /9.0/
• /9.0.007/
• /9.0.007.05/

Deployment methods
Lazy loading

Recommended approach: When using the lazy loading method, the base Genesys CDN URL must
be prefixed in the lazy loading deployment script. The value is not needed in this scenario because
they are auto-loaded from the base CDN configured. Here is what the deployment script looks like
when using 9.0.006.02 release:

All-in-one

Legacy approach (deprecated): When using the all-in-one deployment method, the values are the
files mentioned in the all-in-one section. For example, if you would like to use widgets.min.js and
widgets.min.css under 9.0.006.02 release, CDN URLs will look like this:

https://apps.mypurecloud.com/widgets/9.0.006.02/widgets.min.js
https://apps.mypurecloud.com/widgets/9.0.006.02/widgets.min.css

Checking Widgets version

CXBus.command("App.info");

Prints out the debug header with version information.

window._genesys.widgets.common.data("version");

Returns the version number directly, as a string.

Genesys Widgets deployment guide

Widgets Developer's Guide 11

Genesys Web Fonts

Google Fonts are now hosted in Genesys Infrastructure. Please Choose the nearest or appropriate
region URL based on where you are located and configure it through the googleFontUrl option.

Important
By default, Genesys web fonts are loaded from the North America (East) region.

Region URL
North America (East) https://apps.mypurecloud.com/webfonts/roboto.css
North America (West) https://apps.usw2.pure.cloud/webfonts/roboto.css
North America (Canada) https://apps.cac1.pure.cloud/webfonts/roboto.css

Australia or New Zealand https://apps.mypurecloud.com.au/webfonts/
roboto.css

EU (Ireland) https://apps.mypurecloud.ie/webfonts/roboto.css
EU (Frankfurt) https://apps.mypurecloud.de/webfonts/roboto.css
UK (London) https://apps.euw2.pure.cloud/webfonts/roboto.css
Japan https://apps.mypurecloud.jp/webfonts/roboto.css
Mumbai https://apps.aps1.pure.cloud/webfonts/roboto.css
Seoul https://apps.apne2.pure.cloud/webfonts/roboto.css

Genesys Widgets deployment guide

Widgets Developer's Guide 12

Supported browsers

Contents

• 1 Desktop browsers
• 1.1 Windows
• 1.2 Mac OS

• 2 Mobile Browsers

Supported browsers

Widgets Developer's Guide 13

• Administrator
• Developer

Genesys has tested the following desktop and mobile browsers.

Related documentation:
•

Important
Support for the device/OS/browser combinations listed below will only be available for
as long as Genesys can properly reproduce the issue. Please report any issues you
encounter with any of our tested browsers.

Desktop browsers

Windows

• Google Chrome — Current release or one version previous
• Microsoft Edge — Current release or one version previous
• Mozilla Firefox — Current release or one version previous

Mac OS

• Google Chrome — Current release or one version previous
• Microsoft Edge — Current release or one version previous
• Mozilla Firefox — Current release or one version previous
• Safari — Current release or one version previous

Mobile Browsers

• Google Chrome — Current release or one version previous
• Safari — Current release or one version previous

Supported browsers

Widgets Developer's Guide 14

Cookies

Contents

• 1 Overview
• 1.1 Purpose
• 1.2 Cookie creation
• 1.3 Duration
• 1.4 Sub-domains
• 1.5 Cookie support in test environments

• 2 App
• 3 Console
• 4 WebChat
• 5 Local storage

Cookies

Widgets Developer's Guide 15

• Administrator
• Developer

Learn which session cookies are used by Genesys Widgets to restore chat sessions, track the state of
the UI, store a customer's decisions, and more.

Related documentation:
•

Overview

Purpose
Genesys Widgets uses cookies to store non-sensitive data in the browser. The end-user's browser
must allow cookies for Genesys Widgets to operate properly. Each cookie is required, and without the
ability to read and write these cookies, Genesys Widgets features will not function properly.

Cookie creation
All cookies start with the prefix "_genesys.widgets" to easily identify them. By
default, Genesys Widgets cookies are created in a way that allows the cookies to
be read across sub-domains by setting the "domain" attribute in the cookie
options. We derive the proper domain value by parsing the host site's domain
and extracting it.

Important
Genesys Widgets never stores Personally Identifiable Information (PII) in its cookies.

Duration
All cookies used by Genesys Widgets are created as session cookies and will be deleted when the
user's browser is fully closed.

Sub-domains
Normally, cookies cannot be transferred between sub-domains of a website unless they are
configured to do so. Genesys Widgets automatically detects the domain of the host site and
configures all cookies to be transferable between sub-domains. For example, you could start a chat
on www.testsite.com and restore that chat session on store.testsite.com,

Cookies

Widgets Developer's Guide 16

support.testsite.com, or portal.testsite.com.

Cookie support in test environments
Genesys Widgets uses special cookies that persist across sub-domains. This is a critical feature for
plugins like WebChat that need to restore an active chat session while navigating around a website.
The side effect of using this type of cookie is they won't work when using test environment domain
names such as "localhost" or an IP address. You must use a fully-qualified domain name (FQDN) such
as "localhost.com" or any other variant that can be identified as a domain name. Cookies will also fail
to work if you run the test site as an HTML file path directly in the browser.

One workaround is to update your system's hosts file to create an FQDN alias for "localhost", your
test environment's name, or an IP address.

Example

127.0.0.1 localhost
127.0.0.1 localhost.com

A fully-qualified domain name (FQDN) such as "localhost.com" or any other variant that can be
identified as a domain name is not mandatory, but it is recommended. This way, the cookies will also
work when using test environment domain names such as "localhost" or an IP address.

The following is a list of cookies used by Genesys Widgets.

App

Cookie Name Purpose

_genesys.widgets.app.autoLoadList

Contains a list of active plugin names that are
updated based on the usage of widgets during the
lazy loading deployment method. This is to ensure
that a widget is auto-loaded during a page refresh
or page navigation when there is an active session
associated with it.

Console

Cookie Name Purpose

_genesys.widgets.console.session Contains the active Console plugin open/close
state.

_genesys.widgets.console.commandPlugin Contains the selected plugin name from the
Commands section.

Cookies

Widgets Developer's Guide 17

Cookie Name Purpose

_genesys.widgets.console.command Contains the selected command to run from the
Commands section.

_genesys.widgets.console.eventPlugin Contains the selected plugin from the Events
section to listen for events.

_genesys.widgets.console.event Contains the selected event type to listen against,
from the Events section.

_genesys.widgets.console.optionsArea Contains the command options to send when
executing a command.

_genesys.widgets.console.activeSubscriptions Contains the list of all active event subscriptions
listening via the Console plugin.

_genesys.widgets.console.windowPosition Contains the position of the Console plugin on the
screen.

WebChat

Cookie Name Purpose

_genesys.widgets.webchat.state.open Contains the WebChat Widget open or close state
for internal tracking purposes.

_genesys.widgets.webchat.state.keys Can contain encrypted keys related to the current
active chat session.

_genesys.widgets.webchat.state.ping Contains the time at which the last successful
request was made to the server.

_genesys.widgets.webchat.metaData Contains all the Metadata details related to the
current active chat session.

_genesys.widgets.webchat.state.index Contains the last unique Message ID for internal
tracking purposes.

_genesys.widgets.webchat.state.filters
Contains any prefilters that were added using
WebChatService plugin commands addPrefilter or
sendFilteredMessage.

_genesys.widgets.webchat.state.session
Contains the unique Session ID related to the
current active chat session. It is used to restore the
active chat session during scenarios like page
refresh or page navigation.

_genesys.widgets.webchat.state.minimized Contains the WebChat Widget minimized or
maximized state for internal tracking purposes.

_genesys.widgets.webchat.autoInvite.disabled
Contains a value that disables or enables the
WebChat autoInvite feature. It is dynamically
updated based on the user's response to the initial
WebChat invite.

_genesys.widgets.webchat.state.unreadMessages
Tracks the number of unread messages during an
active chat session, when WebChat is minimized. It
is cleared whenever the WebChat Widget is

Cookies

Widgets Developer's Guide 18

Cookie Name Purpose
maximized by the user to read the new messages.

_genesys.widgets.webchat.state.lastMessageCountRead

Contains the number of messages that are read
during an active chat session that calculates the
number of unread messages when WebChat is
minimized. It is automatically cleared whenever the
WebChat Widget is maximized or closed/ended.

_genesys.widgets.webchat.state.asyncUnreadMessageCount

Keeps track of the number of unread messages
related to an Async Chat, when WebChat is
minimized. It is cleared whenever the WebChat
Widget is maximized by the user to read the new
messages.

_genesys.widgets.webchat.state.pureengage-
v3-rest.session

Used only with Genesys Engage V3 API. It contains
the Session ID related to the current active chat
session. It is used to restore the active chat session
during scenarios like page refresh or page
navigation.

_genesys.widgets.webchat.state.pureengage-
v3-rest.keys

Used only with Genesys Engage V3 API, containing
the encrypted keys related to the current active
chat session.

_genesys.widgets.webchat.state.pureengage-
v3-rest.index

Used only with Genesys Engage V3 API, containing
the last unique message ID for internal tracking
purposes.

_genesys.widgets.webchat.state.pureengage-
v3-rest.open

Used only with Genesys Engage V3 API, containing
the WebChat Widget open or close state for
internal tracking purposes.

_genesys.widgets.webchat.state.purecloud-
v2-sockets.JWtoken

Used only with Genesys Cloud CX V2 API,
containing the JWT token related to the current
active chat session.

_genesys.widgets.webchat.state.purecloud-
v2-sockets.ConversationID

Used only with Genesys Cloud CX V2 API,
containing the active conversation ID related to the
current chat session.

_genesys.widgets.webchat.state.purecloud-
v2-sockets.MemberID

Used only with Genesys Cloud CX V2 API,
containing the user ID of the WebChat Widget
related to the current active chat session.

_genesys.widgets.webchat.state.purecloud-
v2-sockets.WS_URL

Used only with Genesys Cloud CX V2 API,
containing the WebSocket event stream URI for
listening to new incoming messages.

_genesys.widgets.webchat.state.purecloud-
v2-sockets.LastMsgId

Used only with Genesys Cloud CX V2 API,
containing the last unique ID of the message sent
in the WebChat Widget.

Local storage

Genesys Widgets uses local storage to store non-sensitive data in the the browser with no expiration
date.

Cookies

Widgets Developer's Guide 19

Key name Purpose

_genesys.widgets.inFocus
A globally unique identifier (GUID) to identify the
current active chat session browser tab/window,
when the WebChat Widget opens in multiple
browser tabs/windows.

Cookies

Widgets Developer's Guide 20

Configure widgets and services

Contents

• 1 Main Configuration
• 2 Widget Configuration Options
• 3 Launcher

• 3.1 How to use Launcher

Configure widgets and services

Widgets Developer's Guide 21

• Developer

Learn how to configure widgets and services.

Related documentation:
•

Depending on your product, you can use Genesys Widgets for functionality such as WebChat or
Callback. You can configure all widgets and services in the same configuration object. When you add
new Genesys products and services, you must update your Genesys Widgets configuration to enable
those widgets.

After you deploy Genesys Widgets on your website, configure the CX Widget by defining the global
window._genesys Javascript object.

To include the JavaScript script, you can choose one of the following options:

• Place the script inline on your website
• Place it in a separate JavaScript file, and include the file on your page

The following example is a basic view of the global Genesys Widgets configuration object:

// include widgets.min.js after defining your configuration options

The following example is a populated Widget configuration that includes configuration options for
WebChat.

Important
You must define your configuration options on the page before widgets.min.js is
loaded.

Main Configuration

Genesys Widgets is a hub for multiple Genesys products and services. Some configuration options are
set globally and therefore apply to all products and services running on the CX Widget platform. In
the main application configuration you can configure options such as visual theme, language, and
mobile support.

For detailed information on configuration options, see app configuration options.

Configure widgets and services

Widgets Developer's Guide 22

Widget Configuration Options

• WebChat configuation
• WebChatService configuration
• ChannelSelector configuration

For a complete catalogue of Widgets configuration options, see Genesys Widgets API Reference.

Launcher

Launcher is a sample page that shows how Genesys Widgets are displayed on any host website. Use
this page to:

• View Genesys Widgets with your own configuration.
• Copy the Configuration Script; for example, using the details you entered on the form, the configuration

script is generated in the Need Configuration Script section. You can copy this script and use it in
your website to launch Widgets.

• Starting in the 9.0.008.03 version, use the Launcher tool to test and configure between the different API
services available in Genesys, namely under Genesys Multicloud CX, GenesysEngage-cloud and
Genesys Cloud CX.

How to use Launcher
Sidebar
To enable the Sidebar plugin, select this check box in Launcher. By default, Sidebar will be shown on
the right side of the screen on Widgets startup. You can configure SideBar by using the options shown
under this section. Provide the sidebar channel configuration in the corresponding text area according
to the Sidebar documentation or use the provided sample configuration links to pre-fill the sample
data in the text area. Ensure that the channels defined here are enabled and configured as well.

Enable Live Assist (EWT)
Select the check box next to Enable Live Assist (EWT) to enable the ChannelSelector plugin. Enter
the Stats URL followed by the virtual queue names to fetch the Estimated Wait Time details. Refer to
the Channel Selector documentation for more information. To show Chat, SendMessage and CallUs
channels in this plugin, please make sure that you select these plugins in this Launcher page.

WebChat
Select the WebChat check box to enable WebChat. You must enter a URL. Other
values are optional and self-explanatory.

Important

Configure widgets and services

Widgets Developer's Guide 23

Starting in the 9.0.008.03 version, WebChat supports Genesys Multicloud CX v3 API
via the transports configuration section. You can test this in the Launcher tool using
the WebChat [with Transport only] section under the GenesysEngage-cloud tab.

CallUs
Select the check box next to Call Us and provide the configuration data. Note that you can select the
Edit/Use Sample Config option to use sample configuration data, which you can edit it with your
own detail data. Ideally, Call Us is shown in the Live Assist widget. It can also be launched with the
CallUs.open bus command.

Callback
Select the check box next to Callback to include the Callback and Calendar plugins. Enter the
callback service provider URL field and other details as required. Ensure Enable Sidebar with Live
Assist is selected.

Lazy Loading
Select the check box next to Enable Lazy loading to launch Widgets in the lazy-load mode.
Otherwise they will be launched on startup. At the minimum, Sidebar plugin must be enabled and
configured with the required channels to load it on Widgets startup.

Once you have entered all of the necessary configuration details, click the Launch button to launch
Widgets.

Configure widgets and services

Widgets Developer's Guide 24

Localize widgets and services

Contents

• 1 Master localization file
• 2 Multiple translated language packs

• 2.1 Example

• 3 Configuration options
• 4 Language pack JSON format
• 5 Localization namespaces
• 6 Language codes
• 7 Plugin localization options

Localize widgets and services

Widgets Developer's Guide 25

• Developer

Localize your Genesys Widgets user messages and prompts by creating and hosting a Language
Pack that Genesys Widgets can access.

Related documentation:
•

The Language Pack is a special file written in JSON format.

You also have to specify your Language Pack file in the window_genesys.widgets.main section of
your Genesys Widgets configuration options, as shown in this example:

Master localization file

The widgets-en.i18n.json file provides the latest i18n localization content containing all the language
codes and strings of all Widgets. This acts as a centralized master file that you can use as a reference
to create your own modified localization file and host it. In this way, you can use this to override the
language content.

Important
The English language pack file provided in the above URL is just for reference. Do not
load this file into Widgets because it is already built into Widgets by default.

Multiple translated language packs

Multiple i18n language pack files are available as individual JSON files in the /i18n folder. You can
select the desired language pack file and then set the i18n and lang properties in the
window._genesys.widgets.main configuration option. Each language pack file is named using the
language code to identify easily. The same language code is also used inside the language pack file
to construct the i18n JSON. This language code must be specified in the main.lang configuration
option.

Example
The French language pack file is available as widgets-fr.i18n.json. To use this language pack file,
follow this example:

window._genesys.widgets = {

Localize widgets and services

Widgets Developer's Guide 26

main: {

lang: "fr",
i18n: "/relative/path/to/i18n/widgets-fr.i18n.json"

// OR using the CDN URL
i18n: "https://apps.mypurecloud.com/widgets//i18n/widgets-fr.i18n.json"

}
};

Language code mapping examples:

Language Code
Brazilian Portuguese pt-BR
Chinese Simplified zh-CN
Chinese Traditional zh-TW
Danish da
Dutch nl
English en
Finnish fi
French fr
German de
Italian it
Japanese ja
Korean ko
Norwegian no
Polish pl
Spanish es
Swedish sv
Thai th
Turkish tr

Important
You may use any language code you wish. The above table is for reference only.

Configuration options

main.lang
Type: string
Default: "en"

Localize widgets and services

Widgets Developer's Guide 27

Requirement: Optional
Description: A language code to specify which language to display in the Widgets. Language codes
are set by the customer.

main.i18n (external file)
Type: string
Default: built-in English words and phrases
Requirement: Required when using main.lang option.
Description: A URL that the Widgets use to fetch the Language Pack file upon startup.Can be partial
or complete. Unspecified strings will use default values.

main.i18n (inline object)
Type: object
Default: built-in English words and phrases
Requirement: Required when using main.lang option.
Description: An inline JSON object. Can be partial or complete. Unspecified strings will use default
values.

Language pack JSON format

The language pack is written in JSON format.

// Root
{

// Language Code
"en": {

// Widget name
"webchat": {

// Localized strings
"ChatStarted": "Chat Started",
"ChatEnded": "Chat Ended",
"ChatFailed": "There was a problem starting the chat session. Please Retry.",

// Customer Defined Strings - Match & Replace messages received from chat server
"SYS0001": "An Agent will be with you shortly"

},

"sendmessage": {

// Localized strings
"SendMessageButton": "Send Message",
"EmailFormFirstname": "First Name",
"EmailFormLastname": "Last Name",

//Errors
"ErrorServerNotAvailable": "Unable to reach server. Please try again.",
"ErrorAttachfileSizeMax": "Total size of attachments exceeds limit: "

}
}

}

Localize widgets and services

Widgets Developer's Guide 28

Localization namespaces
Plugin Namespace

Calendar calendar
CallBack callback
CallUs callus
ChannelSelector channelselector
Offers offers
WebChat webchat

Language codes

To allow flexibility in the way your website handles multiple languages and language codes, there are
no rules for language codes other than that they must be strings. This means that you can use any
language code system.

However, the language code that you set in window._genesys.widgets.main.lang must
correspond to a language code in the Language Pack File.

Important
When using one of the available pre-translated language packs, ensure the language
code maps with the one included in the language pack file.

Plugin localization options

• ChannelSelector
• CallUs
• Calendar
• Callback
• SideBar
• WebChat

Localize widgets and services

Widgets Developer's Guide 29

Customize appearance

Contents

• 1 Set the active theme
• 2 Create a custom theme

• 2.1 Theme templates
• 2.2 Name a theme
• 2.3 Customization guidelines

• 3 Register a theme with Genesys Widgets
• 4 Change the appearance of a specific widget
• 5 Change the layout and structure of a widget
• 6 Change fonts

• 6.1 Disable Roboto font download
• 6.2 Change font size

• 7 Icons
• 7.1 How to use icons
• 7.2 Multi-tone icon set
• 7.3 Outline icon set

Customize appearance

Widgets Developer's Guide 30

• Developer

Use themes to change the appearance of Genesys Widgets. Themes allow you to apply colors and
fonts to all of your widgets in a single operation.

Related documentation:
•

Genesys Widgets includes two built-in themes: dark and light.

Note: The dark theme is active by default.

Dark theme

Customize appearance

Widgets Developer's Guide 31

/File:Darktheme.png
/File:Darktheme.png

Light theme

Set the active theme

There are two ways to set the active theme:

Configuration

window._genesys.widgets.main.theme = "light"; // or "dark"

Widget Bus Command

window._genesys.widgets.bus.command("App.setTheme", {theme: "light"}); // or "dark"

Create a custom theme

Customize appearance

Widgets Developer's Guide 32

/File:Lighttheme.png
/File:Lighttheme.png

Theme templates
Genesys Widgets uses special LESS files called theme templates to define themes. Use a theme
template to create a new color palette and add custom styles. Everything is laid out clearly in the
template file.

LESS syntax defines local variables that allow you to create a clear color palette consisting of no less
than 28 separate color variables, which are grouped by their usage:

• Background colors
• Text colors
• Icon colors
• Border colors
• Outline colors

At a bare minimum, you can create a new style by simply changing the color values in the color
palette. You can also add or remove colors from this palette.

Color palette example

/* Color Palette */

@bg_color_1: #33383D; // Main Background Color
@bg_color_2: #444A52; // Form Inputs
@bg_color_3: #222529; // Button default
@bg_color_4: #5081E1; // Button primary gradient 1
@bg_color_5: #4375D6; // Button primary gradient 2
@bg_color_6: #CCCCCC; // Button disabled / scrollbar color
@bg_color_7: #212529; // Native scrollbar track color
@bg_color_8: #A3A8AE; // Scrollbar color

@txt_color_1: #FDFDFD; // Main text color
@txt_color_2: #98A7B8; // footer text
@txt_color_3: #FDFDFD; // Button default & primary / autocomplete text hover
color
@txt_color_4: #FDFDFD; // Hyperlink color
@txt_color_5: #C5CCD6; // Placeholder color
@txt_color_6: #F53131; // Alert/error color

@icon_color_1: #FDFDFD; // Base icon color
@icon_color_2: #8C8C8C; // Secondary icon color (multitone only)
@icon_color_3: #000000; // Icon shadow color (multitone only)
@icon_color_4: #000000; // Icon secondary shadow color (multitone only)
@icon_color_5: #98A7B8; // Window control icon color
@icon_color_6: #98A7B8; // Form input icon overlay color (e.g. "clear" icon)
@icon_color_7: #5081E1; // Interactive icon color 1 (attach files, delete
file, etc)
@icon_color_8: #4AC764; // Positive Color (confirmation, availability,
usually green)
@icon_color_9: #F53131; // Negative Color (error, exception, usually red)
@icon_color_10: #F8A740; // Warning Color (warning, pending, offline, usually yellow
or orange)
@icon_color_11: #FDFDFD; // Icon color for primary buttons

@border_color_1: #222529; // Main border color
@border_color_2: #2E69DB; // Button primary
@border_color_3: transparent; // Button default

Customize appearance

Widgets Developer's Guide 33

@border_color_4: transparent; // Button disabled
@border_color_5: #F53131; // Alert/error color
@border_color_6: #758384; // Form controls default state

@outline_color_1: #75A8FF; // Form input focus outline / autocomplete hover
background color
@outline_color_2: #DAE6FC; // Outline color for primary buttons

Sample theme template files

Click the following links to automatically download the sample template files:

theme-template-dark.less

theme-template-light.less

Important
Theme templates are LESS files, which must be converted to CSS before being used
on a website. Use a website or tool to convert them when you're ready to test and
implement them on your site.

Important
By default, theme templates override the styles of all of your Genesys Widgets—but
you can also make changes that only affect a specific widget, as described below.

Name a theme
In the dark theme template file, the first class selector is defined as:

.cx-widget.cx-theme-dark

.cx-widget is the base class for the entire Genesys Widgets UI. The outermost container of every
widget or standalone UI element has this class and is used to identify UI elements that belong to
Genesys Widgets.

.cx-theme-dark is the class name created for the dark theme. Themes are applied by searching for
all elements with the .cx-widget class and appending the theme's classname to it. Thus, the
combined class selector indicates styles that will be applied only when your custom theme is active
in the configuration object.

Name your theme's classname anything you wish. There are no restrictions or limitations.

In a later step, you will register this theme classname in your configuration.

Customize appearance

Widgets Developer's Guide 34

Customization guidelines
When you create your own themes, you can only use the following CSS properties:

• color
• background
• font-family
• font-style
• border-color
• border-style
• and other non-structural properties

Warning
Widgets primarily relies on classnames for CSS selectors, rather than fixed node path
selectors. Using classnames allows for the HTML structure to be changed without
breaking selectors. For example, the selector ".cx-webchat .cx-message" is all that is
needed to target message bubbles inside WebChat. Using a fixed node path
equivalent, like "div.cx-webchat > div.cx-body > div.cx-transcript > div.cx-message-
group > div.cx-message" creates a dependency on the HTML node type and structure.
If any changes are made to WebChat's HTML structure, this CSS selector will break.
Use the smallest necessary specificity in your selectors and try to use classnames
only.

Be careful not to modify the structure and functionality of the CSS when you make
changes. Otherwise, it won't work properly. In particular, avoid setting the following
CSS properties: height, width, thickness, size, and visibility, or any other properties
that change the structure of widgets. These properties are not supported, and
changing them can break widget stability and usability.

Important
By default, the Widgets CSS uses the Roboto font, available at
https://fonts.google.com.

Register a theme with Genesys Widgets

The following example shows how to register themes in the Genesys Widgets configuration.

window._genesys.widgets.main.themes = {
"blue": "cx-theme-blue"

Customize appearance

Widgets Developer's Guide 35

};

The name:value pair used here consists of a key ("blue") and the theme's CSS classname ("cx-theme-
blue"). You can add as many themes to this list as you need.

Use a theme's key to make it the active theme:

window._genesys.widgets.main.theme = "blue";
// OR
window._genesys.widgets.bus.command("App.setTheme", {theme: "blue"});

Change the appearance of a specific widget

You can specify specific widgets—and even specific elements within a widget—by appending the
widget's CSS classname to the theme classname.

The following example shows how to extend the cx-theme-blue class with a widget-specific entry
that makes the WebChat widget's background color a darker shade.

.cx-widget.cx-theme-blue, .cx-widget .cx-container{

color: #FDFDFD;
background: #1e5799;

}

.cx-widget.cx-theme-blue *{

border-color: #7DB9E8;
}

.cx-widget.cx-theme-blue.cx-webchat, .cx-widget.cx-theme-blue .cx-webchat{

background: #225897;
}

Customize appearance

Widgets Developer's Guide 36

/File:GWCCustomize_SpecificTheme01.png
/File:GWCCustomize_SpecificTheme01.png

Important
Notice the dual CSS selector used when specifying the widget. This is required to
make sure your styles always apply properly.

Widget-Specific and Element-Specific

The next example shows how to extend the "cx-theme-blue" class with a widget- and element-
specific entry that changes the background color of the input fields within the WebChat widget to a
light shade of blue.

.cx-widget.cx-theme-blue, .cx-widget .cx-container{

color: #FDFDFD;
background: #1e5799;

}

.cx-widget.cx-theme-blue *{

border-color: #7DB9E8;
}

.cx-widget.cx-theme-blue.cx-webchat, .cx-widget.cx-theme-blue .cx-webchat{

background: #225897; // Darker Shade
}

.cx-widget.cx-theme-blue.cx-webchat .form input, .cx-widget.cx-theme-blue .cx-webchat .form
input{

background: #DCF5FF; // Lighter Shade
}

Customize appearance

Widgets Developer's Guide 37

/File:GWCCustomize_SpecificTheme02.png
/File:GWCCustomize_SpecificTheme02.png

Change the layout and structure of a widget

You can only use themes to customize a limited set of styles for your version of Genesys Widgets. To
create an alternate layout of your own design, disable the widget you want to customize and use the
provided service plugins to build your own replacement.

Choosing Which Plugins to Load

Refer to the plugins configuration option here: app configuration

Service Plugins

Service plugins provide a high-level API for quickly integrating a UI with backend services. Each
widget is matched with a corresponding service plugin. This separation allows for advanced
integrations.

• WebChatService
• CallbackService

Warning
Genesys does not support changes to the layout of the official Genesys Widgets, as
your changes can be overwritten when you upgrade to a newer version of Genesys
Widgets.

Change fonts

By default, Genesys Widgets downloads and uses Google's Roboto font. Use the following CSS to
specify a different font:

.cx-widget{ font-family: name-of-font-here; }

The font you choose here will be applied to all of the Genesys Widgets.

Disable Roboto font download
To prevent Google's Roboto font file from being downloaded at startup, set the
main.downloadGoogleFont configuration option to false:

_genesys.widgets.main.downloadGoogleFont = false;

If this option is set to true, Google's Roboto font will be downloaded. The default value is true.

Customize appearance

Widgets Developer's Guide 38

Important
Use this configuration option if you have security concerns about including fonts from
third-party sources, to optimize your page load time, or if you already include Roboto
on your website.

Change font size
By default, the font size in Genesys Widgets content is in em units. This is to
support accessibility guidelines allowing font size to scale as needed when
zoomed in or out based on the screen size. For normal text, the font size value is
0.75em and can vary for other text contents.

Important
Since these are relative units, the actual value is derived from the font size of the
parent page body. A base font size can be defined on the .cx-widget class in em units
to change font size, which allows Widgets to calculate internal font size using this
value.

Icons

Genesys Widgets are provided in SVG format, which means you can apply color fills and other SVG
CSS properties when you use them. SVG also supports the highest possible rendering quality on all
devices, regardless of the zoom level or resolution. You can scale the icons to fit any container; use
them either inline or as blocks; and animate their orientation, colors, and other styling.

You can also use the Genesys icons in your own custom extensions, which allows them to match the
look and feel of the default Genesys widgets. Here are some of the things you can do with them:

• Create a custom launcher button for chat, using the chat icon
• Create a custom widget with your choice of icon in the title bar
• Mix icons right in with your text, so you can refer to your widgets graphically

Genesys Widgets includes two sets of icons:

• The Multi-tone icon set uses several layers and colors per icon
• The Outline icon set takes a minimalist approach to both design and color

You can use these icons in any way that works for you, but please note that you can't customize or

Customize appearance

Widgets Developer's Guide 39

replace the icons.

How to use icons
Automatic HTML injection

Specify which icons you want and where you want them by applying the CSS cx-icon class and data-
icon attribute to the appropriate elements:

...SVG icon will be inserted here

When you pass the element into the CXCommon.populateAllPlaceholders($("#your-element")
) function—as a jQuery-wrapped set or an HTML string—Genesys Widgets inserts the appropriate SVG
icons and returns the HTML to you.

Fetching SVG icon markup

You can also fetch the markup for each SVG icon manually:

$("#your-element").append(CXCommon.Generate.Icon("chat"));

Multi-tone icon set

Customize appearance

Widgets Developer's Guide 40

/File:Multi-icon-set1.png
/File:Multi-icon-set1.png

Outline icon set

Customize appearance

Widgets Developer's Guide 41

/File:Multi-icon-set2.png
/File:Multi-icon-set2.png
/File:Multi-icon-set3.png
/File:Multi-icon-set3.png
/File:Outline-icon-set1.png
/File:Outline-icon-set1.png

Customize appearance

Widgets Developer's Guide 42

/File:Outline-icon-set2.png
/File:Outline-icon-set2.png
/File:Outline-icon-set3.png
/File:Outline-icon-set3.png

Rich Media

Contents

• 1 Quick Replies

Rich Media

Widgets Developer's Guide 43

• Developer

WebChat can display rich messages, which enable a more interactive digital experience with your
customers. Quick replies help your customers quickly respond without having to type.

Related documentation:
•

Quick Replies

Important
Quick Replies in Genesys Multicloud CX are only supported in bots. Agents cannot
currently use them.

The WebChat Widget displays the DTMF Key prompts as quick reply buttons.
Quick Replies offer the customer a choice of responses to the last chatbot
message in the transcript. Tapping or clicking one of these Quick Replies posts
that reply to the bot as a text message, which saves the customer from having to
type a response manually.
Quick Replies are flexible. A chatbot can provide context-sensitive replies that aid in making a
selection. Examples include polite responses (such as OK, No, thank you, or Booking or Cancel),
numeric responses, or the ability to choose a set of preset time slots. For more information, refer to
Menu Block in the Designer User's Guide.

Rich Media

Widgets Developer's Guide 44

Rich Media

Widgets Developer's Guide 45

/File:Quick_replies_screenshot.png
/File:Quick_replies_screenshot.png

Accessibility

Contents

• 1 Overview
• 2 What is WCAG?
• 3 Support

• 3.1 Web Content Accessibility Guidelines (WCAG) 2.1, Level AA Plugin Support by Platform

• 4 Screen reader support
• 5 Keyboard accessibility
• 6 Focus trap
• 7 Color contrast
• 8 Browser zoom and text resizing
• 9 Customization

• 9.1 Localization
• 9.2 Configuration options

• 10 Resources and tools used
• 10.1 Online
• 10.2 Screen readers

Accessibility

Widgets Developer's Guide 46

• Administrator
• Developer

Learn how Widgets aligns with the Web Content Accessibility Guidelines (WCAG) 2.1, Level AA.

Related documentation:
•

Overview

Genesys provides a Voluntary Product Accessibility Template® - VPAT® report from ITI, to document
conformance of Widgets to WCAG 2.1 specification. The VPAT® report is a standardized template for
documenting conformance to various accessibility specifications. The VPAT® report provided by
Genesys follows the W3C/WAI’s WCAG 2.1 specification, as this is an international standard adopted
and recognized by our customers worldwide. The Genesys VPAT® can be downloaded here: Genesys
Widgets WCAG 2.1 AA VPAT®.

What is WCAG?

Web Content Accessibility Guidelines (WCAG) 2.1 covers a wide range of recommendations for
making Web content more accessible. Following these guidelines will make content more accessible
to a wider range of people with disabilities and will also often make Web content more usable to
users in general. WCAG relies on four guiding principles for building accessible UIs:

1. Perceivable: Information and user interface components must be presentable to users in ways they can
perceive.

2. Operable: User interface components and navigation must be operable.
3. Understandable: Information and the operation of user interface must be understandable.
4. Robust: Content must be robust enough that it can be interpreted by a wide variety of user agents,

including assistive technologies.

Support

Widgets provides support for WCAG 2.1 Level AA for desktop and mobile web browsers. However, not
all Widgets meet these guidelines. The table below lists the Widgets that address and meet the
standard accessibility requirements to help assist users with vision, hearing, or mobility impairments
in gaining greater access to the customer support.

Accessibility

Widgets Developer's Guide 47

Web Content Accessibility Guidelines (WCAG) 2.1, Level AA Plugin Support by Platform

Plugin Genesys Cloud CX
WebChat Level AA
CallUs Level AA
ChannelSelector Level AA
Engage Level AA
SideBar Level AA
Callback Level AA

Widgets supports all the WCAG 2.1 Level AA accessibility guidelines for both mobile and desktop.
Some of the high-level features are listed below.

Screen reader support

Supported widgets are accessible via screen readers, which announce the following: all the textual
and non-textual content on the Widgets window elements, new chat messages sent by the agent to
the user, outgoing messages sent by the user to the agent, and error messages. To achieve a
consistent reading behavior of live data across all the screen readers and the browsers,
recommended ARIA live regions have been implemented in WebChat for reading new messages.

Genesys Widgets is built and maintained following WCAG A/AA accessibility standards. These
standards are supported by popular screen readers, such as JAWS, VoiceOver (MacOS, iOS), TalkBack,
and others.

Genesys supports compatibility with most commonly used screen readers in the following cases:

• PC Windows OS: JAWS with Chrome and Internet Explorer 11 or Edge
• Mac OS: VoiceOver with Chrome and Safari
• iOS: VoiceOver with Safari
• Android: TalkBack with Chrome

Important
Not all screen readers may read all the textual and non-textual window functionality.
There are known issues around Firefox and Internet Explorer with some screen
readers. The content is read as long as the screen reader model is supported on that
particular browser.

Keyboard accessibility

Accessibility

Widgets Developer's Guide 48

Supported Widgets are accessible via the keyboard. Users may navigate to and within any widget
using the tab key or shift+tab key combo. For dropdowns and the date picker, the user can
highlight a selection using the arrow keys. The enter or space key can then be used to make a
selection, send a message, or activate a button.

• tab - step forward to the next element
• shift+tab - step backward to the previous element
• arrow keys - move between options within a dropdown or date picker
• enter - make a selection or submit
• space - make a selection or activate a button

Important
In macOS, Safari Browser's accessibility settings must be enabled to allow for proper
keyboard navigation in Widgets.

Focus trap

In desktop browsers, when the Engage Offer Widget is rendered in an overlay modal dialog with the
background disabled, the focus is trapped within the content until it is closed. In mobile devices, all
the widget layouts are expanded to full screen modal dialog. These mobile layouts contain the aria-
modal property as recommended in the W3C ARIA Dialog modal best practices.

Important
Widgets does not add the "aria-hidden" attribute on the customer page html
elements. Due to this limitation, when using screen reader gestures in some Android
devices, the focus may not be trapped within the widget. To trap the focus, a custom
event handling script needs to be added subscribing to the widget opened event.
Also, add the "aria-hidden" attribute on the host page html elements, and remove
them from subscribing to the corresponding closed/minimized events.

Accessibility

Widgets Developer's Guide 49

/File:Screen-Recording-2020-03-25-at-1.gif
/File:Screen-Recording-2020-03-25-at-1.gif

Color contrast

Text and background colors and buttons now meet WCAG 2.1 Level AA accessibility contrast
guidelines. This allows text to be read clearly. There are changes in the default Widgets themes to
increase color contrast in our Dark and Light themes. Changes include border, button, link, text, and
background color adjustments to meet the contrast requirements while maintaining the same look
and feel. In addition, there is an outline to indicate which element or section of each widget is in
focus.

The following table details some examples of the changes included as part of WCAG implementation.
The changes apply to both the light and dark themes, and the light theme is used in the table
examples.

Description Before After
As per the “1.4.11 Non-text
contrast” success criterion, icon
color has been modified to meet
the contrast requirement of at
least 3:1 ratio against the
adjacent/background color.
As per the “1.4.3 Contrast
(minimum)” success criterion,
background color of the primary
button has been modified to
ensure that the contrast ratio of
at least 4.5:1 exists between text
and background.
As per the “1.4.3 Contrast
(minimum)” success criterion,
placeholder text color has been
modified to ensure that the
contrast ratio of at least 4.5:1
exists between text and
background.

As per the “2.4.7 Focus visible &
1.4.11 Non-text contrast”
success criterion, borders with
3:1 contrast ratio have been
added to highlight the focused
state of the menu items.

Browser zoom and text resizing

Genesys Widgets supports zooming in and out, or resizing text using the browser's built-in controls.
This makes it easier for some viewers to read text on the screen.

Accessibility

Widgets Developer's Guide 50

/File:Before_5.png
/File:Before_5.png
/File:After_5.png
/File:After_5.png
/File:Before_6.png
/File:Before_6.png
/File:After_6.png
/File:After_6.png
/File:Before_10.png
/File:Before_10.png
/File:After_10.png
/File:After_10.png
/File:Before_20.png
/File:Before_20.png
/File:After_20.png
/File:After_20.png

Important
The SideBar Widget can only support the zoom feature properly if it contains six or
fewer rows.

Customization

Localization
Aria labels are used throughout Genesys Widgets to supply callouts and context for screen readers.
These labels have been added to the standard localization language pack definition, allowing you to
customize these labels yourself. All aria label strings are prefixed with "aria" to make them easy to
identify. Review each widget's localization reference page to find these new aria labels. Example:
WebChat Widget Localization reference.

Configuration options

Widget Option name Description

WebChat ariaIdleAlertIntervals

An array containing the intervals
as a percentage at which the
screen reader will announce the
remaining idle time. By default, it
is enabled with the following time
intervals, and it is customizable
according to the user's needs.
Configuring a value of false will
let the screen reader call out idle
time for every change.

WebChat ariaCharRemainingIntervals

An array containing the intervals
as a percentage at which the
screen reader will announce the
remaining characters when the
user inputs text into the message
area. By default, it is enabled
with the following intervals, and
it is customizable according to
user needs. Configuring a value
of false will let the screen
reader call out remaining
characters for every change.

WebChat emojiList

emojiList must be configured
with display names to support
the screen reader calling out the
emoji name. These emoji names
are applied as aria-label
attributes on the non-text emoji
markup.

Accessibility

Widgets Developer's Guide 51

Resources and tools used

Online

• webaim.org
• deque.com
• contrastchecker.com

Screen readers

• JAWS
• NVDA
• VoiceOver

Accessibility

Widgets Developer's Guide 52

	Widgets Developer's Guide
	Table of Contents
	Genesys Widgets deployment guide
	Supported browsers
	Cookies
	Configure widgets and services
	Localize widgets and services
	Customize appearance
	Rich Media
	Accessibility

