3 GENESYS

This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Telemetry Service Private Edition
Guide

Provision Telemetry Service

2/2/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

¢ 1 Tenant provisioning
¢ 2 Provisioning Telemetry Service in AKS
* 2.1 Update CORS settings
* 2.2 Update the below setting in Configserver:

¢ 3 Configuring Telemetry Contracts

Telemetry Service Private Edition Guide

e Administrator

Learn how to provision Telemetry Service.

Related documentation:

* For private edition

Each Telemetry Client application has its own way to activate the connection to the Telemetry
Service. The Telemetry Service can be configured to enable some advanced functionalities like
custom trace contracts, monitored events, monitored metrics, and bucketized metrics.

Currently, the Telemetry service uses a remote storage for its configuration override like AWS S3 or
Azure Blob Storage. To avoid the deployment of persistent volume in Private Edition, Environment
variables are used for configuration.

TELEMETRY_CONFIG_TENANTS="{\"2868802f-1763-4ecd-94f6-203400001200\":\"pulse\"}"
TELEMETRY_ CONFIG CONTRACTS="[{ ... }1"

For provisioning, the following updates can be made to the values.yaml file:

tlm:
context:
envs:
TELEMETRY_ CONFIG SERVICE: "env" # This will tell Telemetry service to use
environment variables provisioning
TELEMETRY_ CONFIG TENANTS: "{\"2868802f-1763-4ecd-94f6-203400001200\":\"pulse\"}"
TELEMETRY CONFIG CONTRACTS: '[{"appName": "wwe ui", "properties": ["connId",

"agentSessionId", "browserSessionId", "interactionId", "POC override"],
"monitoredMetrics":

[{ "name": "http sync req StartContactCenterSession", "value": 2, "type":

"gt" }, { "name": "http sync req AttachUserData", "value": 5222000, "type":

"1t" } 1, "monitoredEvents": ["error_ .*", "disaster recovery .*",
"performance worker major",

"performance worker severe" 1}, {"appName": "softphone", "properties": ["ThisDN",

"call id", "call uuid", "region", "level", "msgId", "sepsessionid", "value NUM"

1, "apdex": { "metrics": { "sip call mos": { "satisfiedTH": 3.6, "toleratedTH":
2, "isExtended": true } } }}1°'
TELEMETRY CONFIG CORS: '{ "33cd4384-e0e7-4860-90e7-589712c33301":
{"urls":["http://localhost:8080",
"http://localhost:3000"], "domains":[1}, "ed79bc34-768e-4d74-a924-cf10107c1807":
{"urls":["http://localhost:8080", "http://localhost:7000"], "domains":[]}}'

Telemetry Service Private Edition Guide

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Tenant provisioning

The Telemetry service has the information of the Contact Center by ID and not by name. Telemetry
service provides the possibility of mapping contact center ID to a name by injecting it as an
environment variable. This allows displaying the name of the contact center instead of the contact
enter ID in the time series labels.

To add a name to the contact center ID, add the information in the TELEMETRY_CONFIG_TENANTS
environment variable.

TELEMETRY CONFIG TENANTS: '{"my-contact-center-id":"my contact center"}'

As the JSON is parsed directly from the environment variable, use the
[https://github.com/fastify/secure-json-parse]SON-SECURE-PARSE] library and
[https://github.com/ajv-validator/ajv AJV] library for validating the JSON schema.

Provisioning Telemetry Service in AKS

Update CORS settings
Use the following command to update the CORS settings:

$ curl --location --request POST '/environment/v3/cors' \--header 'Content-Type: application/
json' \

--header 'Authorization: Bearer 201ad145-3b79-4d25-b88e-6c3279e00c63' \ --- Bearer Token
--data-raw '{

"data": {

"origin": "M, ------------ TLM url

"contactCenterId": "" -------------- CCID

}

3

Update the below setting in Configserver:

Navigate to the following location in configserver and update the below settings,
configserver -> cloudcluster application -> interaction-workspace
section.

system.telemetry.service
system.telemetry.enabled = true

system.telemetry.enable-metrics = true

Telemetry Service Private Edition Guide 4

system.telemetry.enable-traces = true

Configuring Telemetry Contracts

Each application that wants to send data to Telemetry service needs a contract to be declared and
provisioned in the service. Depending on the features, the contract values can be configures. An

example of a contract with all features activated:

[{
"appName": "nameOfTheApplication",
"properties": ["propertyl", "property2"],
"apdex": {
"default": {
"satisfiedTH":
"toleratedTH":
}I
"metrics": {
"http async_req Accept": {
"satisfiedTH": 1200,
"toleratedTH": 4800
}l
"call Quality ReversedApdex": {
"satisfiedTH": 4,
"toleratedTH": 3,
"isExtended": true
}
}
}I
"buckets": {
"foo": [400, 500, 900]
¥

"monitoredMetrics": [
{ Ilnamell: IIII’ “Value":

1201,
4801

"type": nn }

I,
"monitoredEvents": [
"error .*",
"disaster recovery .*",
"business attribute option config issue"
]
3|

Property

appName

properties

apdex

Description

This is the application name to be used to identify
the application. for example, wwe_ui / softphone /
hca / nexus_chat

An array of properties to serialize when traces are
pushed to Telemetry service, all other properties
will be ignored.

Apdex calculation is done by applying Satisfied and
Tolerated Threshold to a metric. This metric can be
any unit as long as the threshold that have to be
applied are on the same range. Once a metric
needs to have an apdex calculation the looking for
threshold is applied and it goes like this:

Telemetry Service Private Edition Guide

Property

isExtended

buckets

monitoredMetrics

Description

1. There is a lookup in the config file if the
metricname is in the property apdex.metrics
of the configuration object.

2. If the first step is not successful, there is a
lookup on apdex.default values.

3. If none of the previous step is successful, the
apdex calculation falls back to default threshold
which are : SatisfiedTH: 1200 / toleratedTH:
4800.

Note: Those default metrics are used to calculate the render
speed of Ul components in milliseconds.

isExtended property is a Boolean value to activate
or not the display of the raw numbers which have
been used to calculate the apdex. Once it's set to
true, 3 more counters will be added:

» satisfied count
e tolerated count
e frustrated count

Note: Apdex definition is first meant to define the lowest value
as the better score. For specific concerns, Telemetry APDEX
supports the reversed behavior if you switch values of satisfied
and tolerated threshold.

Buckets are made with the interval declared
between the thresholds; from -Infinity to +Infinity.
And then those values will be exposed in buckets
named with the index of the interval starting at 1
to X. For example:

e Bucket definition: [400 , 500]
The API receives those metrics : 200,340,350,600.

This will end up with:

¢ {metricType="Bucket", Bucketld="1"} 3
e {metricType="Bucket", Bucketld="2"} 0
e {metricType="Bucket", Bucketld="3"} 1

Monitored Events are declared in Telemetry
contracts with plain text event or Regular
Expression using the property, monitoredEvents.
There is no default activation, definition is done per
Telemetry client. Each metric received from
Telemetry clients through the APl endpoint
telemetry/vl/record is evaluated by the
monitored metric module. If a Monitored Metric has
been configured for this metric, the received value

Telemetry Service Private Edition Guide

Property Description

is evaluated against the threshold configured for
this monitored metric.

 "appName":: the keyword representing the
Telemetry client application (‘'wwe_ui',
'softphone’, 'hca’, 'nexus_chat'...).

* "name":: the name of the metric as posted by
the Telemetry client application at runtime.

¢ "value":: the numeric value representing the
threshold that can trigger the recording of the
monitored metric. It must be consistent in unit
with the value that the Telemetry client
application is posting at runtime.

* "type":"": the type of threshold

e 'gt' (default): the values greater than the

threshold are recorded as 'monitored metric'
records.

e '"Lt": the values lower than the threshold are
recorded as 'monitored metric' records.

The data is collected and compiled every 10 minutes by default
and can be changed with the environment variable,
TELEMETRY_EVENT_MONITOR_TIME. After each compilation
the data is sent to ElasticSearch like other traces in the index
tim-traces-*. Those can be identified with the property
trace_type set to eventMonitor

Telemetry Service Private Edition Guide

	Telemetry Service Private Edition Guide

