
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Deploy Telemetry Service

Telemetry Service Private Edition
Guide

1/14/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

• 1 Assumptions
• 2 Deploy the service
• 3 Validate the deployment
• 4 Expose ports for access

• 4.1 Configuring ports for external access
• 4.2 Configuring ports for internal access

• 5 Deploying in AKS
• 5.1 Prerequisites
• 5.2 Environment preparation
• 5.3 Connect to cluster
• 5.4 Create Namespace for Telemetry Service
• 5.5 Download the Helm charts
• 5.6 Create the override file
• 5.7 Telemetry Installation

Telemetry Service Private Edition Guide 2

Learn how to deploy Telemetry Service into a private edition environment.

Related documentation:
•
•
•

RSS:

• For private edition

Assumptions

• The instructions on this page assume you are deploying the service in a service-specific namespace,
named in accordance with the requirements on Creating namespaces. If you are using a single
namespace for all private edition services, replace the namespace element in the commands on this
page with the name of your single namespace or project.

• Similarly, the configuration and environment setup instructions assume you need to create namespace-
specific (in other words, service-specific) secrets. If you are using a single namespace for all private
edition services, you might not need to create separate secrets for each service, depending on your
credentials management requirements. However, if you do create service-specific secrets in a single
namespace, be sure to avoid naming conflicts.

Important
Make sure to review Before you begin for the full list of prerequisites required to
deploy Telemetry Service.

Deploy the service

To install the Telemetry Service, run the following command:

helm install -f values-tlm.yaml telemetry-service telemetry-service/

Validate the deployment

To validate the installed release, run the following command:

Telemetry Service Private Edition Guide 3

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

helm list –n tlm

Verify that details of the Telemetry Service deployment information is displayed.

To check the status of installed Helm release, execute the following command:

helm status telemetry-service -n tlm

Verify that the deployment status mentions 'STATUS: deployed'.

To verify if the objects are created and available in the Telemetry namespace

kubectl get all -n tlm

Verify that all pods, services, and config maps are displayed.

Expose ports for access

To make the Telemetry service accessible from outside the cluster, you have to create ingress files for
external and internal access points and apply them to the containers.

Configuring ports for external access

• Create an ingress file named tlm-ingress-cert.yaml and modify it to reflect your domain
configurations:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

name: tlm-ingress
namespace: tlm
annotations:

cert-manager.io/cluster-issuer:
kubernetes.io/ingress.class:
nginx.ingress.kubernetes.io/ssl-redirect: 'false'
nginx.ingress.kubernetes.io/use-regex: 'true'

spec:
tls:

- hosts:
- tlm.

secretName: tlm-secret-ext
rules:

- host: tlm.
http:

paths:
- path: /.*

pathType: ImplementationSpecific
backend:

service:
name: telemetry-service
port:

number: 8107

• Apply the access rules:

Telemetry Service Private Edition Guide 4

kubectl apply -f tlm-ingress-cert.yaml -n tlm

Configuring ports for internal access

• Create an ingress file named tlm-ingress-int-cert.yaml and modify it to reflect your domain
configurations:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

name: tlm-ingress-int
namespace: tlm
annotations:

cert-manager.io/cluster-issuer: ca-cluster-issuer
kubernetes.io/ingress.class: nginx
nginx.ingress.kubernetes.io/ssl-redirect: 'false'
nginx.ingress.kubernetes.io/use-regex: 'true'

spec:
tls:

- hosts:
- tlm.

secretName: tlm-secret-int
rules:

- host: tlm.
http:

paths:
- path: /metrics

pathType: ImplementationSpecific
backend:

service:
name: telemetry-service
port:

number: 9107

• Apply the access rules:

kubectl apply -f tlm-ingress-int-cert.yaml -n tlm

Verify if the routes are created correctly:

kubectl get ingress -n tlm

Deploying in AKS

Prerequisites
Secret configuration for pulling image

Use the following commands to create the Secret for accessing the jfrog registry
and map the secret to the default account:

Telemetry Service Private Edition Guide 5

kubectl create secret docker-registry mycred --docker-server=pureengageuse1-docker-
multicloud.jfrog.io --docker-username= --docker-password= --docker-email=

Install the azure-cli based on you OS environment

Follow the instructions found in the following website to install the Azure CLI:

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest

Environment preparation
Login to Azure cluster
$ az login

Connect to cluster
Use the following command to log in to the cluster from the deployment host:
$ az aks get-credentials --resource-group --name

Create Namespace for Telemetry Service
Use the following command to create a new namespace for Telemetry Service:
$ kubectl create namespace tlm

Download the Helm charts
Download the Telemetry Service Helm charts from the following repository:
https://pureengageuse1.jfrog.io/ui/login/

Create the override file
Create the values-telemetry.yaml and update the following parameters:
TELEMETRY_AUTH_CLIENT_SECRET:

TELEMETRY_AUTH_CLIENT_ID:

TELEMETRY_SERVICES_AUTH: ""

TELEMETRY_CLOUD_PROVIDER: "azure"

TELEMETRY_CORS_DOMAIN: ""

Set the below parameter to true to enable grafana dashboards:

grafanaDashboard:

enabled: true

Telemetry Service Private Edition Guide 6

Refer the sample below for values-tlm.yaml and uid-tlm.yaml. values-
tlm.yaml:
namespace: tlm
nameOverride: ""
fullnameOverride: ""
TS_DEPLOY: ""

podDisruptionBudget:
enabled: true

alertRules:
enabled: false
healthypods: 2

serviceMonitor:
enabled: true

grafanaDashboard:
enabled: true

tlm:
replicaCount: 2
annotations: {}
tolerations: []
labels: []
image:

registry: pureengageuse1-docker-multicloud.jfrog.io
repository: tlm
tag: "9.0.000.30"
pullPolicy: IfNotPresent
imagePullSecrets: []

nodeSelector:
genesysengage.com/nodepool:

service:
type: ClusterIP
port_external: 8107
port_internal: 9107

priorityClassName:
autoscaling:

enabled: true
targetCPUPercent: 40
minReplicas: 2
maxReplicas: 10

securityContext:
runAsUser: 500
runAsGroup: 500
runAsNonRoot: true

secrets:
name_override:
TELEMETRY_AUTH_CLIENT_SECRET: secret

context:
envs:

TELEMETRY_AUTH_CLIENT_ID: gws-app-workspace
TELEMETRY_SERVICES_AUTH: "http://gauth-auth.gauth.svc.cluster.local"
TELEMETRY_TRACES_THRESHOLD: 200000
TELEMETRY_TRACES_SHIFT_THRESHOLD: 10000
TELEMETRY_TRACES_BULK_SIZE: 10000
TELEMETRY_TRACES_BULK_TIME: 1
TELEMETRY_TRACES_TIMEOUT: 30
TELEMETRY_TRACES_CONCURRENT: 1
TELEMETRY_TRACES_PROVIDER: "Console"

Telemetry Service Private Edition Guide 7

TELEMETRY_PROM_SCRAP_ALERT: 5
TELEMETRY_METRICS_SHIFT_THRESHOLD: 100000
TELEMETRY_METRICS_THRESHOLD: 600000
TELEMETRY_HEALTH_TIMER: 30
TELEMETRY_RECORD_MIN_INTERVAL: -1
TELEMETRY_AUTH_MIN_INTERVAL: -1
TELEMETRY_MAX_SESSION: 10000
APP_LOG_LEVEL: "info"
API_LOG_LEVEL: "warn"
TELEMETRY_HTTPS_ENABLED: "auto"
TELEMETRY_CONFIG_PATH: "tlm-config"
TELEMETRY_CLOUD_PROVIDER: "azure"
TELEMETRY_CORS_DOMAIN: "apps.qrtph6qa.westus2.aroapp.io"

resources:
requests:

memory: "1000Mi"
cpu: "500m"

limits:
memory: "1000Mi"
cpu: "500m"

ingress:
enabled: false

annotations: {}

securityContext:
fsGroup: 500
runAsUser: 500
runAsGroup: 500
runAsNonRoot: true

dnsPolicy: "ClusterFirst"
dnsConfig:

options:
- name: ndots

value: "3"

secrets: {}

uid-tlm.yaml:
securityContext:

runAsUser: null
runAsGroup: 0
fsGroup: null

tlm:
securityContext:

runAsUser: null
runAsGroup: 0

Copy the values-telemetry.yaml file and tlm helm package to the installation
location.

Telemetry Installation
Render the templates

To verify whether resources are getting created without issue, execute the
following command to render templates without installing:

Telemetry Service Private Edition Guide 8

$ helm template --debug -f values-tlm.yaml -f uid-tlm.yaml telemetry-service telemetry-
service/ -n tlm

Review the displayed Kubernetes descriptors. The values are generated from
Helm templates and are based on settings from the values.yaml and values-
telemetry.yaml files. Ensure that no errors are displayed. Later, you will apply
this configuration to your Kubernetes cluster.
Deploy Telemetry Service

Use the following command to deploy Telemetry Service:
$ helm install -f values-tlm.yaml -f uid-tlm.yaml telemetry-service telemetry-service/ -n tlm

Verify the installation

Use the following command to check the installed Helm release:
helm list –n tlm

Result should show telemetry-service deployment details. Execute the following
tlm project status command:
helm status telemetry-service -n tlm

Result should be showing the details with 'STATUS: deployed'

NAME: telemetry-service

LAST DEPLOYED: Tue Jun 21 15:45:35 2022

NAMESPACE: tlm

STATUS: deployed

REVISION: 1

TEST SUITE: None

Use the following command to check the Azure objects created by Helm:
kubectl get all -n tlm

Expose the Telemetry Service

Make Telemetry Service accessible from outside the cluster, using the standard HTTP port.

Use the following commands to expose the Telemetry Service: tlm-ingress-cert.yaml and tlm-ingress-
int-cert.yaml

tlm-ingress-cert.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

name: tlm-ingress
namespace: tlm

Telemetry Service Private Edition Guide 9

annotations:
cert-manager.io/cluster-issuer: ca-cluster-issuer
kubernetes.io/ingress.class: nginx
nginx.ingress.kubernetes.io/ssl-redirect: 'false'
nginx.ingress.kubernetes.io/use-regex: 'true'

spec:
tls:

- hosts:
-

secretName: tlm-secret-ext
rules:

- host:
http:

paths:
- path: /.*

pathType: ImplementationSpecific
backend:

service:
name: telemetry-service
port:

number: 8107

Apply the yaml file to your namespace

Use the following command to apply the yaml file to your namespace:
kubectl apply -f tlm-ingress-cert.yaml -n tlm

tlm-ingress-int-cert.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

name: tlm-ingress-int
namespace: tlm
annotations:

cert-manager.io/cluster-issuer: ca-cluster-issuer
kubernetes.io/ingress.class: nginx
nginx.ingress.kubernetes.io/ssl-redirect: 'false'
nginx.ingress.kubernetes.io/use-regex: 'true'

spec:
tls:

- hosts:
-

secretName: tlm-secret-int
rules:

- host:
http:

paths:
- path: /metrics

pathType: ImplementationSpecific
backend:

service:
name: telemetry-service
port:

number: 9107

Apply the yaml file to your namespace

Use the following command to apply the yaml file to your namespace:

Telemetry Service Private Edition Guide 10

kubectl apply -f tlm-ingress-int-cert.yaml -n tlm

Recommended Hostname format: tlm.

Validate the deployment

Use the following command to verify that the new route is created in the
Telemetry Service project:
kubectl get ingress -n tlm (ingress information appears, similar to the following)

NAME CLASS HOSTS ADDRESS PORTS AGE

tlm-ingress 35.233.131.150 80, 443 82m

tlm-ingress-int 35.233.131.150 80, 443 50m

where is the host name generated by Azure.

Telemetry Service Private Edition Guide 11

	Telemetry Service Private Edition Guide

