
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Telemetry Service Private Edition
Guide

7/5/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
Overview

About Telemetry Service 6
Architecture 9
High availability and disaster recovery 13
Ports 14

Configure and deploy
Before you begin 16
Configure Telemetry Service 18
Provision Telemetry Service 24
Deploy Telemetry Service 30

Upgrade, roll back, or uninstall Telemetry
Upgrade, roll back, or uninstall 40

Observability
Observability in Telemetry Service 45
No results metrics and alerts 48

Contents

• 1 Overview
• 2 Configure and deploy
• 3 Upgrade, roll back, or uninstall
• 4 Operations

Telemetry Service Private Edition Guide 3

Find links to all the topics in this guide.

Related documentation:
•
•

RSS:

• For private edition

Telemetry Service is a service available with the Genesys Multicloud CX private edition offering.

The Telemetry Service is designed to act as an observability gateway to gather telemetry data,
metrics, and logs for Genesys Multicloud software that has services running outside the Data Center
and out of range of the Cloud Observability framework like Agent Workspace, Genesys Softphone,
etc.

Once gathered by the Telemetry Service, those metrics and logs are stored in the same data sources
as the standard services running inside the Data Center.

Overview
Learn more about Telemetry Service, its architecture, and how to support high availability and
disaster recovery.

• About Telemetry Service
• Architecture
• High availability and disaster recovery

Configure and deploy
Find out how to configure and deploy Telemetry Service.

• Before you begin
• Configure Telemetry Service
• Provision Telemetry Service
• Deploy Telemetry Service

Telemetry Service Private Edition Guide 4

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Upgrade, roll back, or uninstall
Find out how to upgrade, roll back, or uninstall the Telemetry service.

• Upgrade, roll back, or uninstall

Operations
Learn how to monitor Telemetry Service with metrics and logging.

• Observability in Telemetry Service
• No results metrics and alerts

Telemetry Service Private Edition Guide 5

/TLM/Current/TLMPEGuide/TLMMetrics

About Telemetry Service

Contents

• 1 Supported Kubernetes platforms

About Telemetry Service

Telemetry Service Private Edition Guide 6

Learn about Telemetry Service and how it works in Genesys Multicloud CX private edition.

Related documentation:
•
•
•

RSS:

• For private edition

The Telemetry Service is designed to act as an observability gateway to gather telemetry data,
metrics, and logs for Genesys Multicloud software that has services running outside the data center
and out of range of the Cloud Observability framework like Agent Workspace, Genesys Softphone,
etc.

Once gathered by the Telemetry Service, those metrics and logs are stored in the same data sources
as the standard services running inside the data center.

The microservice supports the following API:

• An endpoint to allow remote apps (e.g., applications running in customer environment) to push their
traces for a centralized treatment.

• An endpoint to allow remote apps to push metrics for centralized treatment. Metrics are aggregated by
Telemetry service, and available as a Prometheus-compliant data format for building dashboards and
alerts.

• An endpoint allowing remote apps to push events for centralized treatment. Events are aggregated by
Telemetry service, and available as a Prometheus-compliant data format for building dashboards and
alerts.

Remote client-side applications can be browser-based interfaces like WWE, as well as executables
running on customer premises like Genesys Softphone.

This Telemetry service serves two main goals:

• Proactive detection of issues:
• Telemetry Service can aggregate information coming from client-side in forms of Metric and Events

data.
• It allows monitoring the client-side activity in any monitoring platforms for performance, active

functionalities, incidents.
• Trigger incidents in an Incident Response Platform when values are hitting some thresholds.

• Accelerate troubleshooting during incidents.

About Telemetry Service

Telemetry Service Private Edition Guide 7

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Supported Kubernetes platforms

Telemetry Service is supported on the following cloud platforms:

• Azure Kubernetes Service (AKS)
• Google Kubernetes Engine (GKE)

See the Telemetry Service Release Notes for information about when support was introduced.

About Telemetry Service

Telemetry Service Private Edition Guide 8

Architecture

Contents

• 1 Introduction
• 2 Architecture diagram — Connections
• 3 Connections table

Architecture

Telemetry Service Private Edition Guide 9

Learn about Telemetry Service architecture

Related documentation:
•
•
•

RSS:

• For private edition

Introduction

In the architecture diagram, the dotted lines from the browser (going through External Ingress and
Ingress Controller) and from gws service pods (intra-cluster), to the non-tlm namespace resources,
represents the connectivity required by WWE to set-up an authorized connection to the Telemetry
Service. Refer to the following documentation for details about their respective connectivity:

• Genesys Authentication Private Edition Guide
• Genesys Web Services and Applications Private Edition Guide
• Workspace Web Edition Private Edition Guide

For information about the overall architecture of Genesys Multicloud CX private edition, see the high-
level Architecture page.

See also High availability and disaster recovery for information about high availability/disaster
recovery architecture.

Architecture diagram — Connections

The numbers on the connection lines refer to the connection numbers in the table that follows the
diagram. The direction of the arrows indicates where the connection is initiated (the source) and
where an initiated connection connects to (the destination), from the point of view of Telemetry
Service as a service in the network.

Architecture

Telemetry Service Private Edition Guide 10

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Architecture

Telemetry Service Private Edition Guide 11

/File:Telemetry_PE_Architecture.png
/File:Telemetry_PE_Architecture.png

Connections table

The connection numbers refer to the numbers on the connection lines in the diagram. The Source,
Destination, and Connection Classification columns in the table relate to the direction of the
arrows in the Connections diagram above: The source is where the connection is initiated, and the
destination is where an initiated connection connects to, from the point of view of Telemetry Service
as a service in the network. Egress means the Telemetry Service service is the source, and Ingress
means the Telemetry Service service is the destination. Intra-cluster means the connection is
between services in the cluster.

Connection Source Destination Protocol Port Classification
Data that
travels on

this
connection

1 Browser Inbound
Gateway HTTPS 443 Ingress Inbound web

traffic

2 Ingress
proxy

Ingress
controller HTTPS 443 Intra-cluster Inbound web

traffic

3 Ingress
controller

Telemetry
Service HTTP 8107 Intra-cluster

Ingress
controller
connects to
Telemetry
pod

4 Genesys
Authentication HTTP 80 Intra-cluster

Telemetry
queries the
Genesys
Authentication
Service to
validate user
identity.

5 Prometheus Telemetry
Service HTTP 9107 Intra-cluster

Prometheus
connects to
Telemetry
service for
metrics
scraping.

6 Telemetry
Service

Stdout/
Stderr Intra-cluster

Structured
logs of
Telemetry
Service and
structured
logs
captured
from
Telemetry
clients.

Architecture

Telemetry Service Private Edition Guide 12

High availability and disaster recovery

Find out how this service provides disaster recovery in the event the service goes down.

Related documentation:
•
•
•

RSS:

• For private edition

Service High Availability Disaster Recovery Where can you host
this service?

Telemetry Service N = N (N+1) Active-spare Primary or secondary
unit

See High Availability information for all services: High availability and disaster recovery

For High Availability and Load Balancing, Telemetry Service implements an N+1 architecture available
behind a Load Balancer.

Telemetry Service is deployed in all Engage Multicloud region/data center so that a client application
like WWE can always find a Telemetry Service region/data center where it is relocated.

High availability and disaster recovery

Telemetry Service Private Edition Guide 13

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Ports

Contents

• 1 Ports and protocols for Telemetry Service

Ports

Telemetry Service Private Edition Guide 14

Related documentation:
•
•
•

RSS:

• For private edition

Ports and protocols for Telemetry Service
Included Service Protocol Port Type of data Comment

HTTP 8107 JSON payload Container port
(default)

HTTP 8107 JSON payload Kubernetes service
port (default)

Ports

Telemetry Service Private Edition Guide 15

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Before you begin

Contents

• 1 Download the Helm charts
• 2 Genesys dependencies

Before you begin

Telemetry Service Private Edition Guide 16

Find out what to do before deploying Telemetry Service.

Related documentation:
•
•
•

RSS:

• For private edition

Download the Helm charts

Telemetry Service is composed of:

• 1 Docker Container: tlm/telemetry-service:version
• 1 Helm Chart: telemetry-service_version.tgz

For additional information about overriding Helm chart values, see Overriding Helm Chart values in
the Genesys Multicloud CX Private Edition Guide.

For information about downloading Helm charts from JFrog Edge, see Downloading your Genesys
Multicloud CX containers in the Setting up Genesys Multicloud CX Private Edition guide.

Genesys dependencies

For any kind of Telemetry deployment, the following service must be deployed and running before
deploying the Telemetry service:

• Genesys Authentication Service

For a look at the high-level deployment order, see Order of services deployment.

Before you begin

Telemetry Service Private Edition Guide 17

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Configure Telemetry Service

Contents

• 1 Configure a secret to access JFrog
• 2 Override Helm chart values
• 3 Configure security
• 4 Environment variables
• 5 Prepare an environment

Configure Telemetry Service

Telemetry Service Private Edition Guide 18

Learn how to configure Telemetry Service.

Related documentation:
•
•
•

RSS:

• For private edition

Configure a secret to access JFrog
If you haven't done so already, create a secret for accessing the JFrog registry:
kubectl create secret docker-registry --docker-server= --docker-username= --docker-password=
--docker-email=

Now map the secret to the default service account:
kubectl secrets link default --for=pull

Override Helm chart values
Parameter Description Default Valid values

serviceMonitoringAnnotations.enabled
Activation of
Prometheus monitoring
annotations on service.

true

podDisruptionBudget.enabledActivation of pod
disruption. true

enableServiceLinks
Enable service links in
single namespace
environment.

false

tlm.replicaCount Number of replicas. 2

tlm.image.registry docker registry. pureengage-docker-
staging.jfrog.io

tlm.image.repository docker registry. Telemetry
tlm.image.tag WWE image version.
tlm.image.pullPolicy Image pull policy. IfNotPresent
tlm.image.imagePullSecretsImage pull secrets. []

Configure Telemetry Service

Telemetry Service Private Edition Guide 19

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Parameter Description Default Valid values
tlm.service.type k8s service type. ClusterIP

tlm.service.port_external
k8s service port
external (for customer
facing).

8107

tlm.service.port_internal
k8s service port internal
(for metric scrapping
endpoint).

9107

tlm.ingress Ingress configuration
block. See #Ingress. {enabled:false}

tlm.resources.limits.cpu
Maximum amount of
CPU K8s allocates for
container.

750m

tlm.resources.limits.memory
Maximum amount of
Memory K8s allocates
for container.

1400Mi

tlm.resources.requests.cpuGuaranteed CPU
allocation for container. 750m

tlm.resources.requests.memoryGuaranteed Memory
allocation for container. 1400Mi

tlm.deployment.strategy k8s deployment
strategy. {}

tlm.priorityClassName k8s priority classname.
tlm.affinity pod affinity. {}

tlm.nodeselector k8s nodeselector map. { genesysengage.com/
nodepool: general }

tlm.tolerations pod toleration. []
tlm.annotations pod annotations. []
tlm.autoscaling.enabled activate auto scaling. true

tlm.autoscaling.targetCPUPercentCPU percentage
autoscaling trigger. 40

tlm.autoscaling.minReplicasMinimum number of
replicas. 2

tlm.autoscaling.maxReplicasMaximum number of
replicas. 10

tlm.secrets.name_override Name override of the
secret to target.

tlm.secrets.TELEMETRY_AUTH_CLIENT_SECRETGAuth client Secret
value.

tlm.context.envs.*
Environment variables
for Telemetry Service.
Please refer to TLM
service documentation.

You can modify the configuration to suit your environment by two methods:

Configure Telemetry Service

Telemetry Service Private Edition Guide 20

• Specify each parameter using the --set key=value[,key=value] argument to helm install. For example,
helm install telemetry-service.tgz --set tlm.replicaCount 4

• Specify the parameters to be modified in a values.yaml file.
helm install --name tlm -f values.yaml telemetry-service.tgz

Configure security

To learn more about how security is configured for private edition, be sure to read the Permissions
and OpenShift security settings topics in the Setting up Genesys Multicloud CX Private Edition guide.

The security context settings define the privilege and access control settings for pods and containers.

By default, the user and group IDs are set in the values.yaml file as
500:500:500, meaning the genesys user.
optional:

securityContext:
runAsUser: 500
runAsGroup: 500
fsGroup: 500
runAsNonRoot: true

Environment variables

Parameter Description Default Valid values
tlm.context.envs.TELEMETRY_AUTH_CLIENT_IDGAuth client ID value. telemetry_client

tlm.context.envs.TELEMETRY_CLOUD_PROVIDER

Specify the mode how
telemetry service
should be executed:
Possible values aws /
azure .

TELEMETRY_SERVICES_AUTH
URL of the GWS Auth
public API. This is a
mandatory field.

http://gws-core-
auth:8095

TELEMETRY_AUTH_CLIENT_ID
The Client ID that is
used to authenticate
with GWS Auth service.

telemetry_client

TELEMETRY_CORS_DOMAIN
Domains to be
supported by CORS.
This can a comma
separated list.

Configure Telemetry Service

Telemetry Service Private Edition Guide 21

Parameter Description Default Valid values

Important
Add a `\` before `.` for
regex matching. eg:
`\.genesyslab\.com`
(another `\` should be
added when using
quotes).

TELEMETRY_TRACES_PROVIDER
The trace provider to
use can be
`ElasticSearch` or
`Console`.

ElasticSearch

TELEMETRY_TRACES_CONCURRENT
The maximum of
parallel bulk request to
Elasticsearch at the
same time.

3

TELEMETRY_TRACES_THRESHOLD
The maximum buffer
entries for Elasticsearch
service.

400000

TELEMETRY_CONFIG_SERVICE

The data source to fetch
configuration
information. Possible
values : s3, azure, env,
or an empty string.

none

TELEMETRY_CONFIG_SERVICE_CORS

This overrides data
source to fetch CORS
configurations. Possible
values : Same value as
`TELEMETRY_CONFIG_SERVICE`
or `environmentservice`
for using the
environment-service API
(Uses the
`TELEMETRY_SERVICES_ENVIRONMENT`
variable).

none

TELEMETRY_CLOUD_PROVIDER
Cloud provider for the
service. Can be `aws`,
`azure`, `gcp` or
`premise`.

aws

TELEMETRY_CONFIG_CONTRACTS
Stringified JSON array to
provision contracts
through `env` config
provider.

[]

TELEMETRY_CONFIG_TENANTS
A Stringified JSON to
provision tenants
through `env` config
provider.

{}

TELEMETRY_SERVICES_ENVIRONMENT

The URL of the GWS
environment service
API. Used only if
environment service is
used for configuration

value of
TELEMETRY_SERVICES_AUTH

http://gauth-
environment-
active.gauth

Configure Telemetry Service

Telemetry Service Private Edition Guide 22

Parameter Description Default Valid values
provisioning.

Prepare an environment

Create a new project namespace for Telemetry:

kubectl create namespace tlm

See Creating namespaces for a list of approved namespaces.

Download the telemetry helm charts from the JFrog repository:

https://pureengage.jfrog.io/artifactory/helm-staging/tlm

Create a values-telemetry.yaml file and update the following parameters:

TELEMETRY_AUTH_CLIENT_SECRET:
TELEMETRY_AUTH_CLIENT_ID:
TELEMETRY_SERVICES_AUTH: ""
TELEMETRY_CLOUD_PROVIDER: "GKE"
TELEMETRY_CORS_DOMAIN: ""
grafanaDashboard:

enabled: true

Copy the values-telemetry.yaml file and the tlm Helm package to the installation location.

Configure Telemetry Service

Telemetry Service Private Edition Guide 23

Provision Telemetry Service

Contents

• 1 Tenant provisioning
• 2 Provisioning Telemetry Service in AKS

• 2.1 Update CORS settings
• 2.2 Update the below setting in Configserver:

• 3 Configuring Telemetry Contracts

Provision Telemetry Service

Telemetry Service Private Edition Guide 24

• Administrator

Feature coming soon! Learn how to provision Telemetry Service.

Related documentation:
•
•
•

RSS:

• For private edition

Each Telemetry Client application has its own way to activate the connection to the Telemetry
Service. The Telemetry Service can be configured to enable some advanced functionalities like
custom trace contracts, monitored events, monitored metrics, and bucketized metrics.

Currently, the Telemetry service uses a remote storage for its configuration override like AWS S3 or
Azure Blob Storage. To avoid the deployment of persistent volume in Private Edition, Environment
variables are used for configuration.

TELEMETRY_CONFIG_TENANTS="{\"2868802f-1763-4ecd-94f6-203400001200\":\"pulse\"}"
TELEMETRY_CONFIG_CONTRACTS="[{ ... }]"

For provisioning, the following updates can be made to the values.yaml file:
tlm:

context:
envs:

TELEMETRY_CONFIG_SERVICE: "env" # This will tell Telemetry service to use
environment variables provisioning

TELEMETRY_CONFIG_TENANTS: "{\"2868802f-1763-4ecd-94f6-203400001200\":\"pulse\"}"
TELEMETRY_CONFIG_CONTRACTS: '[{"appName": "wwe_ui", "properties": ["connId",

"agentSessionId", "browserSessionId", "interactionId", "POC_override"],
"monitoredMetrics":

[{ "name": "http_sync_req_StartContactCenterSession", "value": 2, "type":
"gt" }, { "name": "http_sync_req_AttachUserData", "value": 5222000, "type":
"lt" }], "monitoredEvents": ["error_.*", "disaster_recovery_.*",

"performance_worker_major",
"performance_worker_severe"]}, {"appName": "softphone", "properties": ["ThisDN",
"call_id", "call_uuid", "region", "level", "msgId", "sepsessionid", "value__NUM"
], "apdex": { "metrics": { "sip_call_mos": { "satisfiedTH": 3.6, "toleratedTH":
2, "isExtended": true } } }}]'

TELEMETRY_CONFIG_CORS: '{ "33cd4384-e0e7-4860-90e7-589712c33301":
{"urls":["http://localhost:8080",

"http://localhost:3000"], "domains":[]}, "ed79bc34-768e-4d74-a924-cf10107c1807":
{"urls":["http://localhost:8080", "http://localhost:7000"], "domains":[]}}'

Provision Telemetry Service

Telemetry Service Private Edition Guide 25

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Tenant provisioning

The Telemetry service has the information of the Contact Center by ID and not by name. Telemetry
service provides the possibility of mapping contact center ID to a name by injecting it as an
environment variable. This allows displaying the name of the contact center instead of the contact
enter ID in the time series labels.

To add a name to the contact center ID, add the information in the TELEMETRY_CONFIG_TENANTS
environment variable.

TELEMETRY_CONFIG_TENANTS: '{"my-contact-center-id":"my contact center"}'

As the JSON is parsed directly from the environment variable, use the
[https://github.com/fastify/secure-json-parse JSON-SECURE-PARSE] library and
[https://github.com/ajv-validator/ajv AJV] library for validating the JSON schema.

Provisioning Telemetry Service in AKS

Update CORS settings
Use the following command to update the CORS settings:
$ curl --location --request POST '/environment/v3/cors' \--header 'Content-Type: application/
json' \

--header 'Authorization: Bearer 201ad145-3b79-4d25-b88e-6c3279e00c63' \ --- Bearer Token

--data-raw '{

"data": {

"origin": "", ------------ TLM url

"contactCenterId": "" -------------- CCID

}

}'

Update the below setting in Configserver:
Navigate to the following location in configserver and update the below settings,
configserver -> cloudcluster application -> interaction-workspace
section.
system.telemetry.service =

system.telemetry.enabled = true

system.telemetry.enable-metrics = true

Provision Telemetry Service

Telemetry Service Private Edition Guide 26

system.telemetry.enable-traces = true

Configuring Telemetry Contracts

Each application that wants to send data to Telemetry service needs a contract to be declared and
provisioned in the service. Depending on the features, the contract values can be configures. An
example of a contract with all features activated:

[{
"appName": "nameOfTheApplication",
"properties": ["property1", "property2"],
"apdex": {

"default": {
"satisfiedTH": 1201,
"toleratedTH": 4801

},
"metrics": {

"http_async_req_Accept": {
"satisfiedTH": 1200,
"toleratedTH": 4800

},
"call_Quality_ReversedApdex": {

"satisfiedTH": 4,
"toleratedTH": 3,
"isExtended": true

}
}

},
"buckets": {

"foo": [400, 500, 900]
},
"monitoredMetrics": [

{ "name": "", "value": , "type": "" }
],
"monitoredEvents": [

"error_.*",
"disaster_recovery_.*",
"business_attribute_option_config_issue"

]
}]

Property Description

appName
This is the application name to be used to identify
the application. for example, wwe_ui / softphone /
hca / nexus_chat

properties
An array of properties to serialize when traces are
pushed to Telemetry service, all other properties
will be ignored.

apdex

Apdex calculation is done by applying Satisfied and
Tolerated Threshold to a metric. This metric can be
any unit as long as the threshold that have to be
applied are on the same range. Once a metric
needs to have an apdex calculation the looking for
threshold is applied and it goes like this:

Provision Telemetry Service

Telemetry Service Private Edition Guide 27

Property Description

1. There is a lookup in the config file if the
metricname is in the property apdex.metrics
of the configuration object.

2. If the first step is not successful, there is a
lookup on apdex.default values.

3. If none of the previous step is successful, the
apdex calculation falls back to default threshold
which are : SatisfiedTH: 1200 / toleratedTH:
4800.

Note: Those default metrics are used to calculate the render
speed of UI components in milliseconds.

isExtended

isExtended property is a Boolean value to activate
or not the display of the raw numbers which have
been used to calculate the apdex. Once it's set to
true, 3 more counters will be added:

• satisfied count
• tolerated count
• frustrated count

Note: Apdex definition is first meant to define the lowest value
as the better score. For specific concerns, Telemetry APDEX
supports the reversed behavior if you switch values of satisfied
and tolerated threshold.

buckets

Buckets are made with the interval declared
between the thresholds; from -Infinity to +Infinity.
And then those values will be exposed in buckets
named with the index of the interval starting at 1
to X. For example:

• Bucket definition: [400 , 500]
The API receives those metrics : 200,340,350,600.

This will end up with:

• {metricType="Bucket", BucketId="1"} 3
• {metricType="Bucket", BucketId="2"} 0
• {metricType="Bucket", BucketId="3"} 1

monitoredMetrics

Monitored Events are declared in Telemetry
contracts with plain text event or Regular
Expression using the property, monitoredEvents.
There is no default activation, definition is done per
Telemetry client. Each metric received from
Telemetry clients through the API endpoint
telemetry/v1/record is evaluated by the
monitored metric module. If a Monitored Metric has
been configured for this metric, the received value

Provision Telemetry Service

Telemetry Service Private Edition Guide 28

Property Description
is evaluated against the threshold configured for
this monitored metric.

• "appName":: the keyword representing the
Telemetry client application ('wwe_ui',
'softphone', 'hca', 'nexus_chat'...).

• "name":: the name of the metric as posted by
the Telemetry client application at runtime.

• "value":: the numeric value representing the
threshold that can trigger the recording of the
monitored metric. It must be consistent in unit
with the value that the Telemetry client
application is posting at runtime.

• "type":"": the type of threshold
• 'gt' (default): the values greater than the

threshold are recorded as 'monitored metric'
records.

• 'lt': the values lower than the threshold are
recorded as 'monitored metric' records.

The data is collected and compiled every 10 minutes by default
and can be changed with the environment variable,
TELEMETRY_EVENT_MONITOR_TIME. After each compilation
the data is sent to ElasticSearch like other traces in the index
tlm-traces-*. Those can be identified with the property
trace_type set to eventMonitor

Provision Telemetry Service

Telemetry Service Private Edition Guide 29

Deploy Telemetry Service

Contents

• 1 Assumptions
• 2 Deploy the service
• 3 Validate the deployment
• 4 Expose ports for access

• 4.1 Configuring ports for external access
• 4.2 Configuring ports for internal access

• 5 Deploying in AKS
• 5.1 Prerequisites
• 5.2 Environment preparation
• 5.3 Connect to cluster
• 5.4 Create Namespace for Telemetry Service
• 5.5 Download the Helm charts
• 5.6 Create the override file
• 5.7 Telemetry Installation

Deploy Telemetry Service

Telemetry Service Private Edition Guide 30

Learn how to deploy Telemetry Service into a private edition environment.

Related documentation:
•
•
•

RSS:

• For private edition

Assumptions

• The instructions on this page assume you are deploying the service in a service-specific namespace,
named in accordance with the requirements on Creating namespaces. If you are using a single
namespace for all private edition services, replace the namespace element in the commands on this
page with the name of your single namespace or project.

• Similarly, the configuration and environment setup instructions assume you need to create namespace-
specific (in other words, service-specific) secrets. If you are using a single namespace for all private
edition services, you might not need to create separate secrets for each service, depending on your
credentials management requirements. However, if you do create service-specific secrets in a single
namespace, be sure to avoid naming conflicts.

Important
Make sure to review Before you begin for the full list of prerequisites required to
deploy Telemetry Service.

Deploy the service

To install the Telemetry Service, run the following command:

helm install -f values-tlm.yaml telemetry-service telemetry-service/

Validate the deployment

To validate the installed release, run the following command:

Deploy Telemetry Service

Telemetry Service Private Edition Guide 31

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

helm list –n tlm

Verify that details of the Telemetry Service deployment information is displayed.

To check the status of installed Helm release, execute the following command:

helm status telemetry-service -n tlm

Verify that the deployment status mentions 'STATUS: deployed'.

To verify if the objects are created and available in the Telemetry namespace

kubectl get all -n tlm

Verify that all pods, services, and config maps are displayed.

Expose ports for access

To make the Telemetry service accessible from outside the cluster, you have to create ingress files for
external and internal access points and apply them to the containers.

Configuring ports for external access

• Create an ingress file named tlm-ingress-cert.yaml and modify it to reflect your domain
configurations:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

name: tlm-ingress
namespace: tlm
annotations:

cert-manager.io/cluster-issuer:
kubernetes.io/ingress.class:
nginx.ingress.kubernetes.io/ssl-redirect: 'false'
nginx.ingress.kubernetes.io/use-regex: 'true'

spec:
tls:

- hosts:
- tlm.

secretName: tlm-secret-ext
rules:

- host: tlm.
http:

paths:
- path: /.*

pathType: ImplementationSpecific
backend:

service:
name: telemetry-service
port:

number: 8107

• Apply the access rules:

Deploy Telemetry Service

Telemetry Service Private Edition Guide 32

kubectl apply -f tlm-ingress-cert.yaml -n tlm

Configuring ports for internal access

• Create an ingress file named tlm-ingress-int-cert.yaml and modify it to reflect your domain
configurations:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

name: tlm-ingress-int
namespace: tlm
annotations:

cert-manager.io/cluster-issuer: ca-cluster-issuer
kubernetes.io/ingress.class: nginx
nginx.ingress.kubernetes.io/ssl-redirect: 'false'
nginx.ingress.kubernetes.io/use-regex: 'true'

spec:
tls:

- hosts:
- tlm.

secretName: tlm-secret-int
rules:

- host: tlm.
http:

paths:
- path: /metrics

pathType: ImplementationSpecific
backend:

service:
name: telemetry-service
port:

number: 9107

• Apply the access rules:

kubectl apply -f tlm-ingress-int-cert.yaml -n tlm

Verify if the routes are created correctly:

kubectl get ingress -n tlm

Deploying in AKS

Prerequisites
Secret configuration for pulling image

Use the following commands to create the Secret for accessing the jfrog registry
and map the secret to the default account:

Deploy Telemetry Service

Telemetry Service Private Edition Guide 33

kubectl create secret docker-registry mycred --docker-server=pureengageuse1-docker-
multicloud.jfrog.io --docker-username= --docker-password= --docker-email=

Install the azure-cli based on you OS environment

Follow the instructions found in the following website to install the Azure CLI:

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest

Environment preparation
Login to Azure cluster
$ az login

Connect to cluster
Use the following command to log in to the cluster from the deployment host:
$ az aks get-credentials --resource-group --name

Create Namespace for Telemetry Service
Use the following command to create a new namespace for Telemetry Service:
$ kubectl create namespace tlm

Download the Helm charts
Download the Telemetry Service Helm charts from the following repository:
https://pureengageuse1.jfrog.io/ui/login/

Create the override file
Create the values-telemetry.yaml and update the following parameters:
TELEMETRY_AUTH_CLIENT_SECRET:

TELEMETRY_AUTH_CLIENT_ID:

TELEMETRY_SERVICES_AUTH: ""

TELEMETRY_CLOUD_PROVIDER: "azure"

TELEMETRY_CORS_DOMAIN: ""

Set the below parameter to true to enable grafana dashboards:

grafanaDashboard:

enabled: true

Deploy Telemetry Service

Telemetry Service Private Edition Guide 34

Refer the sample below for values-tlm.yaml and uid-tlm.yaml. values-
tlm.yaml:
namespace: tlm
nameOverride: ""
fullnameOverride: ""
TS_DEPLOY: ""

podDisruptionBudget:
enabled: true

alertRules:
enabled: false
healthypods: 2

serviceMonitor:
enabled: true

grafanaDashboard:
enabled: true

tlm:
replicaCount: 2
annotations: {}
tolerations: []
labels: []
image:

registry: pureengageuse1-docker-multicloud.jfrog.io
repository: tlm
tag: "9.0.000.30"
pullPolicy: IfNotPresent
imagePullSecrets: []

nodeSelector:
genesysengage.com/nodepool:

service:
type: ClusterIP
port_external: 8107
port_internal: 9107

priorityClassName:
autoscaling:

enabled: true
targetCPUPercent: 40
minReplicas: 2
maxReplicas: 10

securityContext:
runAsUser: 500
runAsGroup: 500
runAsNonRoot: true

secrets:
name_override:
TELEMETRY_AUTH_CLIENT_SECRET: secret

context:
envs:

TELEMETRY_AUTH_CLIENT_ID: gws-app-workspace
TELEMETRY_SERVICES_AUTH: "http://gauth-auth.gauth.svc.cluster.local"
TELEMETRY_TRACES_THRESHOLD: 200000
TELEMETRY_TRACES_SHIFT_THRESHOLD: 10000
TELEMETRY_TRACES_BULK_SIZE: 10000
TELEMETRY_TRACES_BULK_TIME: 1
TELEMETRY_TRACES_TIMEOUT: 30
TELEMETRY_TRACES_CONCURRENT: 1
TELEMETRY_TRACES_PROVIDER: "Console"

Deploy Telemetry Service

Telemetry Service Private Edition Guide 35

TELEMETRY_PROM_SCRAP_ALERT: 5
TELEMETRY_METRICS_SHIFT_THRESHOLD: 100000
TELEMETRY_METRICS_THRESHOLD: 600000
TELEMETRY_HEALTH_TIMER: 30
TELEMETRY_RECORD_MIN_INTERVAL: -1
TELEMETRY_AUTH_MIN_INTERVAL: -1
TELEMETRY_MAX_SESSION: 10000
APP_LOG_LEVEL: "info"
API_LOG_LEVEL: "warn"
TELEMETRY_HTTPS_ENABLED: "auto"
TELEMETRY_CONFIG_PATH: "tlm-config"
TELEMETRY_CLOUD_PROVIDER: "azure"
TELEMETRY_CORS_DOMAIN: "apps.qrtph6qa.westus2.aroapp.io"

resources:
requests:

memory: "1000Mi"
cpu: "500m"

limits:
memory: "1000Mi"
cpu: "500m"

ingress:
enabled: false

annotations: {}

securityContext:
fsGroup: 500
runAsUser: 500
runAsGroup: 500
runAsNonRoot: true

dnsPolicy: "ClusterFirst"
dnsConfig:

options:
- name: ndots

value: "3"

secrets: {}

uid-tlm.yaml:
securityContext:

runAsUser: null
runAsGroup: 0
fsGroup: null

tlm:
securityContext:

runAsUser: null
runAsGroup: 0

Copy the values-telemetry.yaml file and tlm helm package to the installation
location.

Telemetry Installation
Render the templates

To verify whether resources are getting created without issue, execute the
following command to render templates without installing:

Deploy Telemetry Service

Telemetry Service Private Edition Guide 36

$ helm template --debug -f values-tlm.yaml -f uid-tlm.yaml telemetry-service telemetry-
service/ -n tlm

Review the displayed Kubernetes descriptors. The values are generated from
Helm templates and are based on settings from the values.yaml and values-
telemetry.yaml files. Ensure that no errors are displayed. Later, you will apply
this configuration to your Kubernetes cluster.
Deploy Telemetry Service

Use the following command to deploy Telemetry Service:
$ helm install -f values-tlm.yaml -f uid-tlm.yaml telemetry-service telemetry-service/ -n tlm

Verify the installation

Use the following command to check the installed Helm release:
helm list –n tlm

Result should show telemetry-service deployment details. Execute the following
tlm project status command:
helm status telemetry-service -n tlm

Result should be showing the details with 'STATUS: deployed'

NAME: telemetry-service

LAST DEPLOYED: Tue Jun 21 15:45:35 2022

NAMESPACE: tlm

STATUS: deployed

REVISION: 1

TEST SUITE: None

Use the following command to check the Azure objects created by Helm:
kubectl get all -n tlm

Expose the Telemetry Service

Make Telemetry Service accessible from outside the cluster, using the standard HTTP port.

Use the following commands to expose the Telemetry Service: tlm-ingress-cert.yaml and tlm-ingress-
int-cert.yaml

tlm-ingress-cert.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

name: tlm-ingress
namespace: tlm

Deploy Telemetry Service

Telemetry Service Private Edition Guide 37

annotations:
cert-manager.io/cluster-issuer: ca-cluster-issuer
kubernetes.io/ingress.class: nginx
nginx.ingress.kubernetes.io/ssl-redirect: 'false'
nginx.ingress.kubernetes.io/use-regex: 'true'

spec:
tls:

- hosts:
-

secretName: tlm-secret-ext
rules:

- host:
http:

paths:
- path: /.*

pathType: ImplementationSpecific
backend:

service:
name: telemetry-service
port:

number: 8107

Apply the yaml file to your namespace

Use the following command to apply the yaml file to your namespace:
kubectl apply -f tlm-ingress-cert.yaml -n tlm

tlm-ingress-int-cert.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

name: tlm-ingress-int
namespace: tlm
annotations:

cert-manager.io/cluster-issuer: ca-cluster-issuer
kubernetes.io/ingress.class: nginx
nginx.ingress.kubernetes.io/ssl-redirect: 'false'
nginx.ingress.kubernetes.io/use-regex: 'true'

spec:
tls:

- hosts:
-

secretName: tlm-secret-int
rules:

- host:
http:

paths:
- path: /metrics

pathType: ImplementationSpecific
backend:

service:
name: telemetry-service
port:

number: 9107

Apply the yaml file to your namespace

Use the following command to apply the yaml file to your namespace:

Deploy Telemetry Service

Telemetry Service Private Edition Guide 38

kubectl apply -f tlm-ingress-int-cert.yaml -n tlm

Recommended Hostname format: tlm.

Validate the deployment

Use the following command to verify that the new route is created in the
Telemetry Service project:
kubectl get ingress -n tlm (ingress information appears, similar to the following)

NAME CLASS HOSTS ADDRESS PORTS AGE

tlm-ingress 35.233.131.150 80, 443 82m

tlm-ingress-int 35.233.131.150 80, 443 50m

where is the host name generated by Azure.

Deploy Telemetry Service

Telemetry Service Private Edition Guide 39

Upgrade, roll back, or uninstall

Contents

• 1 Supported upgrade strategies
• 2 Timing

• 2.1 Scheduling considerations

• 3 Monitoring
• 4 Preparatory steps
• 5 Rolling Update

• 5.1 Rolling Update: Upgrade
• 5.2 Rolling Update: Verify the upgrade
• 5.3 Rolling Update: Rollback
• 5.4 Rolling Update: Verify the rollback

• 6 Uninstall

Upgrade, roll back, or uninstall

Telemetry Service Private Edition Guide 40

Learn how to upgrade, roll back, or uninstall Telemetry Service.

Related documentation:
•
•
•

RSS:

• For private edition

Important
The instructions on this page assume you have deployed the services in service-
specific namespaces. If you are using a single namespace for all private edition
services, replace the namespace element in the commands on this page with the
name of your single namespace or project.

Supported upgrade strategies

Telemetry Service supports the following upgrade strategies:

Service Upgrade Strategy Notes
Telemetry Service Rolling Update

For a conceptual overview of the upgrade strategies, refer to Upgrade strategies in the Setting up
Genesys Multicloud CX Private Edition guide.

Timing

A regular upgrade schedule is necessary to fit within the Genesys policy of supporting N-2 releases,
but a particular release might warrant an earlier upgrade (for example, because of a critical security
fix).

If the service you are upgrading requires a later version of any third-party services, upgrade the third-
party service(s) before you upgrade the private edition service. For the latest supported versions of
third-party services, see the Software requirements page in the suite-level guide.

Upgrade, roll back, or uninstall

Telemetry Service Private Edition Guide 41

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Scheduling considerations
Genesys recommends that you upgrade the services methodically and sequentially: Complete the
upgrade for one service and verify that it upgraded successfully before proceeding to upgrade the
next service. If necessary, roll back the upgrade and verify successful rollback.

Monitoring

Monitor the upgrade process using standard Kubernetes and Helm metrics, as well as service-specific
metrics that can identify failure or successful completion of the upgrade (see Observability in
Telemetry Service).

Genesys recommends that you create custom alerts for key indicators of failure — for example, an
alert that a pod is in pending state for longer than a timeout suitable for your environment. Consider
including an alert for the absence of metrics, which is a situation that can occur if the Docker image
is not available. Note that Genesys does not provide support for custom alerts that you create in your
environment.

Preparatory steps

Ensure that your processes have been set up to enable easy rollback in case an upgrade leads to
compatibility or other issues.

Each time you upgrade a service:

1. Review the release note to identify changes.
2. Ensure that the new package is available for you to deploy in your environment.
3. Ensure that your existing -values.yaml file is available and update it if required to implement changes.

Rolling Update

Rolling Update: Upgrade
Execute the following command to upgrade :

helm upgrade --install -f -values.yaml -n

Tip: If your review of Helm chart changes (see Preparatory Step 3) identifies that the only update you
need to make to your existing -values.yaml file is to update the image version, you can pass the
image tag as an argument by using the --set flag in the command:

helm upgrade --install -f -values.yaml --set .image.tag=

For example, run the command: helm upgrade --version -f values.yaml telemetry-service

Upgrade, roll back, or uninstall

Telemetry Service Private Edition Guide 42

./tlm

Rolling Update: Verify the upgrade
Follow usual Kubernetes best practices to verify that the new service version is deployed. See the
information about initial deployment for additional functional validation that the service has
upgraded successfully.

Rolling Update: Rollback
Execute the following command to roll back the upgrade to the previous version:

helm rollback

or, to roll back to an even earlier version:

helm rollback

Alternatively, you can re-install the previous package:

1. Revert the image version in the .image.tag parameter in the -values.yaml file. If applicable, also
revert any configuration changes you implemented for the new release.

2. Execute the following command to roll back the upgrade:
helm upgrade --install -f -values.yaml

Tip: You can also directly pass the image tag as an argument by using the --set flag in the
command:
helm upgrade --install -f -values.yaml --set .image.tag=

For example you can use either of these commands for a rollback:

• helm rollback telemetry-service

• helm upgrade --version -f previous-values.yaml telemetry-service ./tlm

Rolling Update: Verify the rollback
Verify the rollback in the same way that you verified the upgrade (see Rolling Update: Verify the
upgrade).

Upgrade, roll back, or uninstall

Telemetry Service Private Edition Guide 43

Uninstall

Warning
Uninstalling a service removes all Kubernetes resources associated with that service.
Genesys recommends that you contact Genesys Customer Care before uninstalling
any private edition services, particularly in a production environment, to ensure that
you understand the implications and to prevent unintended consequences arising
from, say, unrecognized dependencies or purged data.

Execute the following command to uninstall :

helm uninstall -n

For example, you can run this command to uninstall: helm uninstall telemetry-service -n tlm

Upgrade, roll back, or uninstall

Telemetry Service Private Edition Guide 44

Observability in Telemetry Service

Contents

• 1 Monitoring
• 1.1 Enable monitoring
• 1.2 Configure metrics

• 2 Alerting
• 2.1 Configure alerts

• 3 Logging

Observability in Telemetry Service

Telemetry Service Private Edition Guide 45

Learn about the logs, metrics, and alerts you should monitor for Telemetry Service.

Related documentation:
•
•
•

RSS:

• For private edition

Monitoring

Private edition services expose metrics that can be scraped by Prometheus, to support monitoring
operations and alerting.

• As described on Monitoring overview and approach, you can use a tool like Grafana to create
dashboards that query the Prometheus metrics to visualize operational status.

• As described on Customizing Alertmanager configuration, you can configure Alertmanager to send
notifications to notification providers such as PagerDuty, to notify you when an alert is triggered
because a metric has exceeded a defined threshold.

The services expose a number of Genesys-defined and third-party metrics. The metrics that are
defined in third-party software used by private edition services are available for you to use as long as
the third-party provider still supports them. For descriptions of available Telemetry Service metrics,
see:

•

See also System metrics.

Enable monitoring
Telemetry Service does not expose any specific metrics for monitoring. You can use standard
Kubernetes metrics, as delivered by cAdvisor, of the kind that apply to any pod of the same nature.

Service CRD or
annotations? Port Endpoint/

Selector
Metrics update

interval
n/a /metrics

Configure metrics
No additional service-level configuration is required to enable monitoring for Telemetry Service.

Observability in Telemetry Service

Telemetry Service Private Edition Guide 46

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Alerting

Private edition services define a number of alerts based on Prometheus metrics thresholds.

Important
You can use general third-party functionality to create rules to trigger alerts based on
metrics values you specify. Genesys does not provide support for custom alerts that
you create in your environment.

For descriptions of available Telemetry Service alerts, see:
•

Configure alerts
Private edition services define a number of alerts by default (for Telemetry Service, see the pages
linked to above). No further configuration is required.

The alerts are defined as PrometheusRule objects in a prometheus-rule.yaml file in the Helm
charts. As described above, Telemetry Service does not support customizing the alerts or defining
additional PrometheusRule objects to create alerts based on the service-provided metrics.

Logging

Telemetry Service sends logs to stdout.

Telemetry Service logs are structured so that log documents can be split into two distinct indexes:
one for the Core Telemetry activity and the other for the Telemetry client logs.

The traceId attribute of the Telemetry log Contract is available to all Telemetry clients by default.
This allows logs sent through Telemetry to meet the pre-condition for distributed tracing Observability
goal.

Observability in Telemetry Service

Telemetry Service Private Edition Guide 47

No results metrics and alerts

Contents

• 1 Metrics
• 2 Alerts

No results metrics and alerts

Telemetry Service Private Edition Guide 48

Find the metrics Telemetry Service exposes and the alerts defined for Telemetry Service.

Related documentation:
•
•
•

RSS:

• For private edition

Service CRD or
annotations? Port Endpoint/Selector

Metrics
update
interval

Telemetry
Service

n/aAnnotations /metrics
All the Telemetry Service metrics are standard Kubernetes metrics as delivered by a
standard Kubernetes metrics service.

See details about:

• No results metrics
• No results alerts

Metrics

Use standard Kubernetes metrics, as delivered by a standard Kubernetes metrics service (such as
cAdvisor), to monitor the Telemetry Service. For information about standard system metrics to use to
monitor services, see System metrics.

The following standard Kubernetes metrics are likely to be most relevant.

Metric and description Metric details Indicator of

container_cpu_usage_seconds_total
Cumulative CPU time consumed

Unit: seconds
Type: Counter
Label: pod="podId"
Sample value: 7000

Monitoring the CPU usage

container_fs_reads_bytes_total
Cumulative count of bytes read

Unit: bytes
Type: Counter
Label: pod="podId
Sample value: 900

Monitoring Filesystem usage

No results metrics and alerts

Telemetry Service Private Edition Guide 49

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss
/TLM/Current/TLMPEGuide/TLMMetrics#Metrics
/TLM/Current/TLMPEGuide/TLMMetrics#Alerts

Metric and description Metric details Indicator of

container_network_receive_bytes_total
Cumulative count of bytes received

Unit: bytes
Type: Counter
Label: pod="podId"
Sample value: 3000

Monitoring incoming network

container_network_transmit_bytes_total
Cumulative count of bytes transmitted

Unit: bytes
Type: Counter
Label: pod="podId"
Sample value: 5000

Monitoring outgoing network

kube_pod_container_status_ready
Describes whether the containers
readiness check succeeded.

Unit: integer
Type: Gauge
Label: pod="podId"
Sample value: 2

Monitoring Healthy pods

kube_pod_container_status_restarts_total
The number of container restarts per
container

Unit: integer
Type: Counter
Label: pod="podId"
Sample value: 0

Monitoring pod restarts

Alerts

The following alerts are defined for No results.

Alert Severity Description Based on Threshold
Telemetry CPU
Utilization is
Greater Than
Threshold

High
Triggered when
average CPU
usage is more than
60%

node_cpu_seconds_total
>60%

Telemetry Memory
Usage is Greater
Than Threshold

High
Triggered when
average memory
usage is more than
60%

container_cpu_usage_seconds_total,
kube_pod_container_resource_limits_cpu_cores

>60%

Telemetry High
Network Traffic High

Triggered when
network traffic
exceeds 10MB/
second for 5
minutes

node_network_transmit_bytes_total,
node_network_receive_bytes_total

>10MBps

Http Errors
Occurrences
Exceeded
Threshold

High

Triggered when the
number of HTTP
errors exceeds 500
responses in 5
minutes

telemetry_events{eventName=~"http_error_.*",
eventName!="http_error_404"}

>500 in 5 minutes

Telemetry
Dependency
Status

Low
Triggered when
there is no
connection to one
of the dependent

telemetry_dependency_status

No results metrics and alerts

Telemetry Service Private Edition Guide 50

Alert Severity Description Based on Threshold
services - GAuth,
Config,
Prometheus

Telemetry Healthy
Pod Count Alert High

Triggered when the
number of healthy
pods drops to
critical level

kube_pod_container_status_ready

Telemetry GAuth
Time Alert High

Triggered when
there is no
connection to the
GAuth service

telemetry_gws_auth_req_time>10000

No results metrics and alerts

Telemetry Service Private Edition Guide 51

	Telemetry Service Private Edition Guide
	Table of Contents
	About Telemetry Service
	Architecture
	High availability and disaster recovery
	Ports
	Before you begin
	Configure Telemetry Service
	Provision Telemetry Service
	Deploy Telemetry Service
	Upgrade, roll back, or uninstall
	Observability in Telemetry Service
	No results metrics and alerts

