3 GENESYS

This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Telemetry Service Private Edition
Guide

1/28/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents

Overview
About Telemetry Service
Architecture
High availability and disaster recovery
Ports
Configure and deploy
Before you begin
Configure Telemetry Service
Provision Telemetry Service
Deploy Telemetry Service
Upgrade, roll back, or uninstall Telemetry
Upgrade, roll back, or uninstall
Observability
Observability in Telemetry Service
No results metrics and alerts

13
14

16
18
24
30

40

45
48

Contents

¢ 1 Overview
e 2 Configure and deploy
* 3 Upgrade, roll back, or uninstall

¢ 4 Operations

Telemetry Service Private Edition Guide

Find links to all the topics in this guide.

Related documentation:

RSS:

* For private edition

Telemetry Service is a service available with the Genesys Multicloud CX private edition offering.

The Telemetry Service is designed to act as an observability gateway to gather telemetry data,
metrics, and logs for Genesys Multicloud software that has services running outside the Data Center
and out of range of the Cloud Observability framework like Agent Workspace, Genesys Softphone,
etc.

Once gathered by the Telemetry Service, those metrics and logs are stored in the same data sources
as the standard services running inside the Data Center.

Overview

Learn more about Telemetry Service, its architecture, and how to support high availability and
disaster recovery.

e About Telemetry Service
e Architecture

e High availability and disaster recovery

Configure and deploy

Find out how to configure and deploy Telemetry Service.

e Before you begin
¢ Configure Telemetry Service

e Provision Telemetry Service

Deploy Telemetry Service

Telemetry Service Private Edition Guide 4

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Upgrade, roll back, or uninstall
Find out how to upgrade, roll back, or uninstall the Telemetry service.

e Upgrade, roll back, or uninstall

Operations
Learn how to monitor Telemetry Service with metrics and logging.

e Observability in Telemetry Service

e No results metrics and alerts

Telemetry Service Private Edition Guide

/TLM/Current/TLMPEGuide/TLMMetrics

About Telemetry Service

About Telemetry Service

Contents

e 1 Supported Kubernetes platforms

Telemetry Service Private Edition Guide

About Telemetry Service

Learn about Telemetry Service and how it works in Genesys Multicloud CX private edition.

Related documentation:

* For private edition

The Telemetry Service is designed to act as an observability gateway to gather telemetry data,
metrics, and logs for Genesys Multicloud software that has services running outside the data center

and out of range of the Cloud Observability framework like Agent Workspace, Genesys Softphone,
etc.

Once gathered by the Telemetry Service, those metrics and logs are stored in the same data sources
as the standard services running inside the data center.

The microservice supports the following API:

e An endpoint to allow remote apps (e.g., applications running in customer environment) to push their
traces for a centralized treatment.

* An endpoint to allow remote apps to push metrics for centralized treatment. Metrics are aggregated by
Telemetry service, and available as a Prometheus-compliant data format for building dashboards and
alerts.

* An endpoint allowing remote apps to push events for centralized treatment. Events are aggregated by

Telemetry service, and available as a Prometheus-compliant data format for building dashboards and
alerts.

Remote client-side applications can be browser-based interfaces like WWE, as well as executables
running on customer premises like Genesys Softphone.

This Telemetry service serves two main goals:

¢ Proactive detection of issues:

* Telemetry Service can aggregate information coming from client-side in forms of Metric and Events
data.

* |t allows monitoring the client-side activity in any monitoring platforms for performance, active
functionalities, incidents.

e Trigger incidents in an Incident Response Platform when values are hitting some thresholds.

* Accelerate troubleshooting during incidents.

Telemetry Service Private Edition Guide 7

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

About Telemetry Service

Supported Kubernetes platforms

Telemetry Service is supported on the following cloud platforms:

e Azure Kubernetes Service (AKS)

¢ Google Kubernetes Engine (GKE)

See the Telemetry Service Release Notes for information about when support was introduced.

Telemetry Service Private Edition Guide

Architecture

Architecture

Contents

e 1 Introduction
* 2 Architecture diagram — Connections

¢ 3 Connections table

Telemetry Service Private Edition Guide

Architecture

Learn about Telemetry Service architecture

Related documentation:

* For private edition

Introduction

In the architecture diagram, the dotted lines from the browser (going through External Ingress and
Ingress Controller) and from gws service pods (intra-cluster), to the non-tim namespace resources,
represents the connectivity required by WWE to set-up an authorized connection to the Telemetry
Service. Refer to the following documentation for details about their respective connectivity:

* Genesys Authentication Private Edition Guide
¢ Genesys Web Services and Applications Private Edition Guide
* Workspace Web Edition Private Edition Guide

For information about the overall architecture of Genesys Multicloud CX private edition, see the high-
level Architecture page.

See also High availability and disaster recovery for information about high availability/disaster
recovery architecture.

Architecture diagram — Connections

The numbers on the connection lines refer to the connection numbers in the table that follows the
diagram. The direction of the arrows indicates where the connection is initiated (the source) and
where an initiated connection connects to (the destination), from the point of view of Telemetry
Service as a service in the network.

Telemetry Service Private Edition Guide 10

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Architecture

Kubernetes
I‘g‘l r @‘I r A r S |
el I I | " I = |
gws aul m
I | | I | I I |
I I | I I I I |
I I | N T I
| EF 6 | !
| : | | : | | : | | | Prometheus
: : Stdout/,
| I o | | | “I—
e I . I I, I
| I | oo > | | |
| sve I s sve | I sve | | sve I
L —J L — : L — — 4 L — = — — — J
@ | .
Ingress —J
CDTTH:F LogAgent
Public VNET
External Ingress
Proxy
(SSL Offload)
C’ D) REY
........... M R
— >)
Agent Workspace

Centralized Log Service

Telemetry Service Private Edition Guide

11

/File:Telemetry_PE_Architecture.png
/File:Telemetry_PE_Architecture.png

Architecture

Connections table

The connection numbers refer to the numbers on the connection lines in the diagram. The Source,
Destination, and Connection Classification columns in the table relate to the direction of the
arrows in the Connections diagram above: The source is where the connection is initiated, and the
destination is where an initiated connection connects to, from the point of view of Telemetry Service
as a service in the network. Egress means the Telemetry Service service is the source, and Ingress
means the Telemetry Service service is the destination. Intra-cluster means the connection is
between services in the cluster.

Connection

Source

Browser

Ingress
proxy

Ingress
controller

Prometheus

Telemetry
Service

Destination

Inbound

Gateway AT

Ingress

controller HTTPS

Telemetry

. HTTP
Service

Genesys
Authentication TP

Telemetry

. HTTP
Service

Stdout/
Stderr

Protocol

Port

443

443

8107

80

9107

Classification

Ingress

Intra-cluster

Intra-cluster

Intra-cluster

Intra-cluster

Intra-cluster

Data that
travels on
this
connection

Inbound web
traffic

Inbound web
traffic

Ingress
controller
connects to
Telemetry
pod

Telemetry
queries the
Genesys
Authentication
Service to
validate user
identity.

Prometheus
connects to
Telemetry
service for
metrics
scraping.

Structured
logs of
Telemetry
Service and
structured
logs
captured
from
Telemetry
clients.

Telemetry Service Private Edition Guide

12

High availability and disaster recovery

High availability and disaster recovery

Find out how this service provides disaster recovery in the event the service goes down.

Related documentation:

RSS:

* For private edition

. . R . Where can you host
Service High Availability Disaster Recovery this service?
Telemetry Service N =N (N+1) Active-spare S::irpary Gl EEERE Y

See High Availability information for all services: High availability and disaster recovery

For High Availability and Load Balancing, Telemetry Service implements an N+1 architecture available
behind a Load Balancer.

Telemetry Service is deployed in all Engage Multicloud region/data center so that a client application
like WWE can always find a Telemetry Service region/data center where it is relocated.

Telemetry Service Private Edition Guide 13

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Ports

Ports

Contents

e 1 Ports and protocols for Telemetry Service

Telemetry Service Private Edition Guide

14

Ports

Related documentation:

* For private edition

Ports and protocols for Telemetry Service

Included Service Protocol Port Type of data
HTTP 8107 JSON payload
HTTP 8107 JSON payload

Comment

Container port
(default)

Kubernetes service
port (default)

Telemetry Service Private Edition Guide

15

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Before you begin

Before you begin

Contents

¢ 1 Download the Helm charts

* 2 Genesys dependencies

Telemetry Service Private Edition Guide

16

Before you begin

Find out what to do before deploying Telemetry Service.

Related documentation:

* For private edition

Download the Helm charts

Telemetry Service is composed of:

e 1 Docker Container: tim/telemetry-service:version

¢ 1 Helm Chart: telemetry-service_version.tgz

For additional information about overriding Helm chart values, see Overriding Helm Chart values in
the Genesys Multicloud CX Private Edition Guide.

For information about downloading Helm charts from JFrog Edge, see Downloading your Genesys
Multicloud CX containers in the Setting up Genesys Multicloud CX Private Edition guide.

Genesys dependencies

For any kind of Telemetry deployment, the following service must be deployed and running before
deploying the Telemetry service:

¢ Genesys Authentication Service

For a look at the high-level deployment order, see Order of services deployment.

Telemetry Service Private Edition Guide

17

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Configure Telemetry Service

Configure Telemetry Service

Contents

* 1 Configure a secret to access JFrog
e 2 Override Helm chart values

¢ 3 Configure security

* 4 Environment variables

¢ 5 Prepare an environment

Telemetry Service Private Edition Guide

18

Configure Telemetry Service

Learn how to configure Telemetry Service.

Related documentation:

* For private edition

Configure a secret to access JFrog

If you haven't done so already, create a secret for accessing the JFrog registry:

kubectl create secret docker-registry --docker-server= --docker-username= --docker-password=

--docker-email=

Now map the secret to the default service account:

kubectl secrets link default --for=pull

Override Helm chart values

Parameter Description

Activation of
serviceMonitoringAnnotatioPoeretbleds monitoring
annotations on service.

8tivation of pod

IOOdDisrUptionBUdget'enab|§|sruption

Enable service links in
enableServicelLinks single namespace
environment.

tIm.replicaCount Number of replicas.
tIm.image.registry docker registry.
tIm.image.repository docker registry.
tIm.image.tag WWE image version.
tim.image.pullPolicy Image pull policy.

tIm.image.imagePullSecretdmage pull secrets.

Default Valid values

true

true

false

2

pureengage-docker-
staging.jfrog.io

Telemetry

IfNotPresent

(1

Telemetry Service Private Edition Guide

19

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Configure Telemetry Service

Parameter Description
tim.service.type k8s service type.

k8s service port
tim.service.port_external external (for customer
facing).

k8s service port internal

tim.service.port_internal (for metric scrapping
endpoint).

Ingress configuration

tim.ingress block. See #Ingress.

Maximum amount of
tIm.resources.limits.cou CPU K8s allocates for
container.

Maximum amount of
tIm.resources.limits.memorylemory K8s allocates
for container.

Guaranteed CPU
tIm.resources.requests.cpu

tlm.resources.requests.merﬁ#&aranteed il

tIm.deployment.strategy k8s deployment

strategy.
tIm.priorityClassName k8s priority classname.
tim.affinity pod affinity.
tIm.nodeselector k8s nodeselector map.
tIm.tolerations pod toleration.
tIm.annotations pod annotations.

tIm.autoscaling.enabled activate auto scaling.

Htercentage

tlm.autoscaling.targetCPUng%%sca”ng trigger.

tIm.autoscaIing.minRepIica%’lelglli?ausm number of

. .__Maximum number of
tIm.autoscalmg.maxRelecarseplicas_

Name override of the
secret to target.

tim.secrets TELEMETRY_AUT 1 ERR" SBERiEE

Environment variables
for Telemetry Service.
Please refer to TLM

tIm.secrets.name_override

tIm.context.envs.*

service documentation.

allocation for container.

Xation for container.

Default
ClusterlP
8107
9107

{enabled:false}

750m

1400Mi

750m

1400Mi

{}

{}

{ genesysengage.com/
nodepool: general }

(]
(1

true

40

10

Valid values

You can modify the configuration to suit your environment by two methods:

Telemetry Service Private Edition Guide

20

Configure Telemetry Service

e Specify each parameter using the --set key=value[,key=value] argument to helm install. For example,
helm install telemetry-service.tgz --set tlm.replicaCount 4
e Specify the parameters to be modified in a values.yaml file.

helm install --name tlm -f values.yaml telemetry-service.tgz

Configure security

To learn more about how security is configured for private edition, be sure to read the Permissions
and OpenShift security settings topics in the Setting up Genesys Multicloud CX Private Edition guide.

The security context settings define the privilege and access control settings for pods and containers.

By default, the user and group IDs are set in the values.yaml file as
500:500:500, meaning the genesys user.

optional:
securityContext:
runAsUser: 500
runAsGroup: 500
fsGroup: 500
runAsNonRoot: true

Environment variables

Parameter Description Default Valid values
tIm.context.envs. TELEMETRFAAUT HIi€htENTvdlue. telemetry_client

Specify the mode how
telemetry service

tIm.context.envs. TELEMETRh@ILOWB @&RVtiedR
Possible values aws /
azure .

URL of the GWS Auth .
TELEMETRY_SERVICES_AUTBublic API. This is a gfjtt%_/é%‘gg‘core‘
mandatory field. ’

The Client ID that is
TELEMETRY_AUTH_CLIENT UBed to authenticate telemetry_client

with GWS Auth service.

Domains to be
TELEMETRY_CORS_DOMAIN.sl_ﬁ?spgaraeg Egrgr?]gs'

separated list.

Telemetry Service Private Edition Guide 21

Configure Telemetry Service

Parameter Description

Add a "\' before *." for
regex matching. eg:
*\.genesyslab\.com’
(another "\" should be
added when using
quotes).

The trace provider to
can be
sticSearch™ or

“Console”.

TELEMETRY_TRACES_PROVI

The maximum of
TELEMETRY_TRACES_CONCE%@#@éfgaurlckhrggltﬁZt 0
same time.

The maximum buffer
TELEMETRY_TRACES_THRESh®i€xs for Elasticsearch
service.

The data source to fetch
configuration

TELEMETRY_CONFIG_SERVIG@Hormation. Possible
values : s3, azure, env,
or an empty string.

This overrides data
source to fetch CORS
configurations. Possible
values : Same value as

Default Valid values

ElasticSearch

400000

none

"TELEMETRY_CONFIG_SERVICE®

TELEMETRY_CONFIG_SERVIGE €B6RSonmentservice’
for using the
environment-service API
(Uses the

none

"TELEMETRY_SERVICES_ENVIRONMENT"

variable).
Cloud provider for the

vice. Can be “aws’,
TELEMETRY_CLOUD_PROVIIfggure\’ ‘gcp’ or

“premise’.
Stringified JSON array to
ision contracts

TELEMETRY_CONFIG_CONTI?é«%t%h ‘env’ config

provider.

A Stringified JSON to

vision tenants

TELEMETRY_CONFIG_TENAI‘ﬁIfsough “env' config
provider.

The URL of the GWS
environment service
TELEMETRY_SERVICES ENVARONMENTDnNly if
environment service is
used for configuration

aws

{}

http://gauth-
ﬁnvironment-
active.gauth

value of
TELEMETRY_SERVICES AUT

Telemetry Service Private Edition Guide

22

Configure Telemetry Service

Parameter Description Default Valid values

provisioning.

Prepare an environment

Create a new project namespace for Telemetry:

kubectl create namespace tlm

See Creating namespaces for a list of approved namespaces.

Download the telemetry helm charts from the JFrog repository:
https://pureengage.jfrog.io/artifactory/helm-staging/tlm

Create a values-telemetry.yaml file and update the following parameters:

TELEMETRY AUTH CLIENT SECRET:
TELEMETRY AUTH_CLIENT ID:
TELEMETRY_ SERVICES AUTH: ""
TELEMETRY CLOUD PROVIDER: "GKE"
TELEMETRY_CORS DOMAIN: ""
grafanaDashboard:

enabled: true

Copy the values-telemetry.yaml file and the tlm Helm package to the installation location.

Telemetry Service Private Edition Guide

23

Provision Telemetry Service

Provision Telemetry Service

Contents

¢ 1 Tenant provisioning
* 2 Provisioning Telemetry Service in AKS
e 2.1 Update CORS settings

* 2.2 Update the below setting in Configserver:

¢ 3 Configuring Telemetry Contracts

Telemetry Service Private Edition Guide

24

Provision Telemetry Service

e Administrator

Learn how to provision Telemetry Service.

Related documentation:

* For private edition

Each Telemetry Client application has its own way to activate the connection to the Telemetry
Service. The Telemetry Service can be configured to enable some advanced functionalities like
custom trace contracts, monitored events, monitored metrics, and bucketized metrics.

Currently, the Telemetry service uses a remote storage for its configuration override like AWS S3 or
Azure Blob Storage. To avoid the deployment of persistent volume in Private Edition, Environment
variables are used for configuration.

TELEMETRY_CONFIG_TENANTS="{\"2868802f-1763-4ecd-94f6-203400001200\":\"pulse\"}"
TELEMETRY_ CONFIG CONTRACTS="[{ ... }1"

For provisioning, the following updates can be made to the values.yaml file:

tlm:
context:
envs:
TELEMETRY_ CONFIG SERVICE: "env" # This will tell Telemetry service to use
environment variables provisioning
TELEMETRY_ CONFIG TENANTS: "{\"2868802f-1763-4ecd-94f6-203400001200\":\"pulse\"}"
TELEMETRY CONFIG CONTRACTS: '[{"appName": "wwe ui", "properties": ["connId",

"agentSessionId", "browserSessionId", "interactionId", "POC override"],
"monitoredMetrics":

[{ "name": "http sync req StartContactCenterSession", "value": 2, "type":

"gt" }, { "name": "http sync req AttachUserData", "value": 5222000, "type":

"1t" } 1, "monitoredEvents": ["error_ .*", "disaster recovery .*",
"performance worker major",

"performance worker severe" 1}, {"appName": "softphone", "properties": ["ThisDN",

"call id", "call uuid", "region", "level", "msgId", "sepsessionid", "value NUM"

1, "apdex": { "metrics": { "sip call mos": { "satisfiedTH": 3.6, "toleratedTH":
2, "isExtended": true } } }}1°'
TELEMETRY CONFIG CORS: '{ "33cd4384-e0e7-4860-90e7-589712c33301":
{"urls":["http://localhost:8080",
"http://localhost:3000"], "domains":[1}, "ed79bc34-768e-4d74-a924-cf10107c1807":
{"urls":["http://localhost:8080", "http://localhost:7000"], "domains":[]}}'

Telemetry Service Private Edition Guide 25

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Provision Telemetry Service

Tenant provisioning

The Telemetry service has the information of the Contact Center by ID and not by name. Telemetry
service provides the possibility of mapping contact center ID to a name by injecting it as an
environment variable. This allows displaying the name of the contact center instead of the contact
enter ID in the time series labels.

To add a name to the contact center ID, add the information in the TELEMETRY_CONFIG_TENANTS
environment variable.

TELEMETRY CONFIG TENANTS: '{"my-contact-center-id":"my contact center"}'

As the JSON is parsed directly from the environment variable, use the
[https://github.com/fastify/secure-json-parse]SON-SECURE-PARSE] library and
[https://github.com/ajv-validator/ajv AJV] library for validating the JSON schema.

Provisioning Telemetry Service in AKS

Update CORS settings
Use the following command to update the CORS settings:

$ curl --location --request POST '/environment/v3/cors' \--header 'Content-Type: application/
json' \

--header 'Authorization: Bearer 201ad145-3b79-4d25-b88e-6c3279e00c63' \ --- Bearer Token
--data-raw '{

"data": {

"origin": "M, ------------ TLM url

"contactCenterId": "" -------------- CCID

}

3

Update the below setting in Configserver:

Navigate to the following location in configserver and update the below settings,
configserver -> cloudcluster application -> interaction-workspace
section.

system.telemetry.service
system.telemetry.enabled = true

system.telemetry.enable-metrics = true

Telemetry Service Private Edition Guide 26

Provision Telemetry Service

system.telemetry.enable-traces = true

Configuring Telemetry Contracts

Each application that wants to send data to Telemetry service needs a contract to be declared and
provisioned in the service. Depending on the features, the contract values can be configures. An

example of a contract with all features activated:

[{
"appName": "nameOfTheApplication",
"properties": ["propertyl", "property2"],
"apdex": {
"default": {
"satisfiedTH":
"toleratedTH":
}I
"metrics": {
"http async_req Accept": {
"satisfiedTH": 1200,
"toleratedTH": 4800
}l
"call Quality ReversedApdex": {
"satisfiedTH": 4,
"toleratedTH": 3,
"isExtended": true
}
}
}I
"buckets": {
"foo": [400, 500, 900]
¥

"monitoredMetrics": [
{ Ilnamell: IIII’ “Value":

1201,
4801

"type": nn }

I,
"monitoredEvents": [
"error .*",
"disaster recovery .*",
"business attribute option config issue"
]
3|

Property

appName

properties

apdex

Description

This is the application name to be used to identify
the application. for example, wwe_ui / softphone /
hca / nexus_chat

An array of properties to serialize when traces are
pushed to Telemetry service, all other properties
will be ignored.

Apdex calculation is done by applying Satisfied and
Tolerated Threshold to a metric. This metric can be
any unit as long as the threshold that have to be
applied are on the same range. Once a metric
needs to have an apdex calculation the looking for
threshold is applied and it goes like this:

Telemetry Service Private Edition Guide

27

Provision Telemetry Service

Property

isExtended

buckets

monitoredMetrics

Description

1. There is a lookup in the config file if the
metricname is in the property apdex.metrics
of the configuration object.

2. If the first step is not successful, there is a
lookup on apdex.default values.

3. If none of the previous step is successful, the
apdex calculation falls back to default threshold
which are : SatisfiedTH: 1200 / toleratedTH:
4800.

Note: Those default metrics are used to calculate the render
speed of Ul components in milliseconds.

isExtended property is a Boolean value to activate
or not the display of the raw numbers which have
been used to calculate the apdex. Once it's set to
true, 3 more counters will be added:

» satisfied count
e tolerated count
e frustrated count

Note: Apdex definition is first meant to define the lowest value
as the better score. For specific concerns, Telemetry APDEX
supports the reversed behavior if you switch values of satisfied
and tolerated threshold.

Buckets are made with the interval declared
between the thresholds; from -Infinity to +Infinity.
And then those values will be exposed in buckets
named with the index of the interval starting at 1
to X. For example:

e Bucket definition: [400 , 500]
The API receives those metrics : 200,340,350,600.

This will end up with:

¢ {metricType="Bucket", Bucketld="1"} 3
e {metricType="Bucket", Bucketld="2"} 0
e {metricType="Bucket", Bucketld="3"} 1

Monitored Events are declared in Telemetry
contracts with plain text event or Regular
Expression using the property, monitoredEvents.
There is no default activation, definition is done per
Telemetry client. Each metric received from
Telemetry clients through the APl endpoint
telemetry/vl/record is evaluated by the
monitored metric module. If a Monitored Metric has
been configured for this metric, the received value

Telemetry Service Private Edition Guide

28

Provision Telemetry Service

Property Description

is evaluated against the threshold configured for
this monitored metric.

 "appName":: the keyword representing the
Telemetry client application (‘'wwe_ui',
'softphone’, 'hca’, 'nexus_chat'...).

* "name":: the name of the metric as posted by
the Telemetry client application at runtime.

"value":: the numeric value representing the
threshold that can trigger the recording of the
monitored metric. It must be consistent in unit
with the value that the Telemetry client
application is posting at runtime.

* "type":"": the type of threshold

e 'gt' (default): the values greater than the

threshold are recorded as 'monitored metric'
records.

e '"Lt": the values lower than the threshold are
recorded as 'monitored metric' records.

The data is collected and compiled every 10 minutes by default
and can be changed with the environment variable,
TELEMETRY_EVENT_MONITOR_TIME. After each compilation
the data is sent to ElasticSearch like other traces in the index
tim-traces-*. Those can be identified with the property
trace_type set to eventMonitor

Telemetry Service Private Edition Guide 29

Deploy Telemetry Service

Deploy Telemetry Service

Contents

e 1 Assumptions

* 2 Deploy the service

3 Validate the deployment

* 4 Expose ports for access
* 4.1 Configuring ports for external access
e 4.2 Configuring ports for internal access

¢ 5 Deploying in AKS

* 5.1 Prerequisites

* 5.2 Environment preparation

» 5.3 Connect to cluster

* 5.4 Create Namespace for Telemetry Service

5.5 Download the Helm charts
e 5.6 Create the override file

* 5.7 Telemetry Installation

Telemetry Service Private Edition Guide

30

Deploy Telemetry Service

Learn how to deploy Telemetry Service into a private edition environment.

Related documentation:

* For private edition

Assumptions

¢ The instructions on this page assume you are deploying the service in a service-specific namespace,
named in accordance with the requirements on Creating namespaces. If you are using a single
namespace for all private edition services, replace the namespace element in the commands on this

page with the name of your single namespace or project.

¢ Similarly, the configuration and environment setup instructions assume you need to create namespace-
specific (in other words, service-specific) secrets. If you are using a single namespace for all private
edition services, you might not need to create separate secrets for each service, depending on your
credentials management requirements. However, if you do create service-specific secrets in a single
namespace, be sure to avoid naming conflicts.

Make sure to review Before you begin for the full list of prerequisites required to
deploy Telemetry Service.

Deploy the service

To install the Telemetry Service, run the following command:

helm install -f values-tlm.yaml telemetry-service telemetry-service/

Validate the deployment

To validate the installed release, run the following command:

Telemetry Service Private Edition Guide 31

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Deploy Telemetry Service

helm list —n tlm

Verify that details of the Telemetry Service deployment information is displayed.
To check the status of installed Helm release, execute the following command:
helm status telemetry-service -n tlm

Verify that the deployment status mentions 'STATUS: deployed'.

To verify if the objects are created and available in the Telemetry namespace
kubectl get all -n tlm

Verify that all pods, services, and config maps are displayed.

Expose ports for access

To make the Telemetry service accessible from outside the cluster, you have to create ingress files for
external and internal access points and apply them to the containers.

Configuring ports for external access

e Create an ingress file named tim-ingress-cert.yaml and modify it to reflect your domain
configurations:

apiVersion: networking.k8s.io/vl
kind: Ingress
metadata:
name: tlm-ingress
namespace: tlm
annotations:
cert-manager.io/cluster-issuer:
kubernetes.io/ingress.class:
nginx.ingress.kubernetes.io/ssl-redirect: 'false'
nginx.ingress.kubernetes.io/use-regex: 'true'
spec:
tls:
- hosts:
- tlm.
secretName: tlm-secret-ext
rules:
- host: tlm.
http:
paths:
- path: /.*
pathType: ImplementationSpecific
backend:
service:
name: telemetry-service
port:
number: 8107

e Apply the access rules:

Telemetry Service Private Edition Guide 32

Deploy Telemetry Service

kubectl apply -f tlm-ingress-cert.yaml -n tlm

Configuring ports for internal access

e Create an ingress file named tim-ingress-int-cert.yaml and modify it to reflect your domain
configurations:

apiVersion: networking.k8s.io/v1l
kind: Ingress
metadata:
name: tlm-ingress-int
namespace: tlm
annotations:
cert-manager.io/cluster-issuer: ca-cluster-issuer
kubernetes.io/ingress.class: nginx
nginx.ingress.kubernetes.io/ssl-redirect: 'false'
nginx.ingress.kubernetes.io/use-regex: 'true'
spec:
tls:
- hosts:
- tlim.
secretName: tlm-secret-int
rules:
- host: tlm.
http:
paths:
- path: /metrics
pathType: ImplementationSpecific
backend:
service:
name: telemetry-service
port:
number: 9107

e Apply the access rules:

kubectl apply -f tlm-ingress-int-cert.yaml -n tlm

Verify if the routes are created correctly:

kubectl get ingress -n tlm

Deploying in AKS

Prerequisites

Secret configuration for pulling image

Use the following commands to create the Secret for accessing the jfrog registry
and map the secret to the default account:

Telemetry Service Private Edition Guide 33

Deploy Telemetry Service

kubectl create secret docker-registry mycred --docker-server=pureengageusel-docker-
multicloud.jfrog.io --docker-username= --docker-password= --docker-email=

Install the azure-cli based on you OS environment

Follow the instructions found in the following website to install the Azure CLI:

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest

Environment preparation

Login to Azure cluster

$ az login

Connect to cluster

Use the following command to log in to the cluster from the deployment host:

$ az aks get-credentials --resource-group --name

Create Namespace for Telemetry Service

Use the following command to create a new namespace for Telemetry Service:

$ kubectl create namespace tlm

Download the Helm charts

Download the Telemetry Service Helm charts from the following repository:
https://pureengageusel.jfrog.io/ui/login/

Create the override file

Create the values-telemetry.yaml and update the following parameters:
TELEMETRY AUTH CLIENT SECRET:

TELEMETRY_AUTH CLIENT ID:

TELEMETRY_ SERVICES AUTH: ""

TELEMETRY_CLOUD PROVIDER: "azure"

TELEMETRY_ CORS DOMAIN: ™"

Set the below parameter to true to enable grafana dashboards:

grafanaDashboard:

enabled: true

Telemetry Service Private Edition Guide

34

Deploy Telemetry Service

Refer the sample below for values-tim.yaml and uid-tim.yaml. values-
tim.yaml:

namespace: tlm
nameOverride:
fullnameOverride:
TS DEPLOY: ""

podDisruptionBudget:
enabled: true

alertRules:
enabled: false
healthypods: 2

serviceMonitor:
enabled: true

grafanaDashboard:
enabled: true

tim:
replicaCount: 2
annotations: {}
tolerations: []
labels: []
image:
registry: pureengageusel-docker-multicloud.jfrog.io
repository: tlm
tag: "9.0.000.30"
pullPolicy: IfNotPresent
imagePullSecrets: []
nodeSelector:
genesysengage.com/nodepool:
service:
type: ClusterIP
port external: 8107
port internal: 9107
priorityClassName:
autoscaling:
enabled: true
targetCPUPercent: 40
minReplicas: 2
maxReplicas: 10
securityContext:
runAsUser: 500
runAsGroup: 500
runAsNonRoot: true
secrets:
name override:
TELEMETRY_ AUTH CLIENT SECRET: secret
context:
envs:
TELEMETRY_ AUTH CLIENT ID: gws-app-workspace
TELEMETRY SERVICES AUTH: "http://gauth-auth.gauth.svc.cluster.local"
TELEMETRY TRACES THRESHOLD: 200000
TELEMETRY_ TRACES SHIFT THRESHOLD: 10000
TELEMETRY_ TRACES BULK SIZE: 106000
TELEMETRY TRACES BULK TIME: 1
TELEMETRY_ TRACES TIMEOUT: 30
TELEMETRY_ TRACES CONCURRENT: 1
TELEMETRY TRACES PROVIDER: "Console"

Telemetry Service Private Edition Guide

35

Deploy Telemetry Service

TELEMETRY_PROM_SCRAP_ALERT: 5
TELEMETRY_METRICS SHIFT THRESHOLD: 100000
TELEMETRY_ METRICS THRESHOLD: 600000
TELEMETRY_ HEALTH TIMER: 30
TELEMETRY_RECORD MIN INTERVAL: -1
TELEMETRY_ AUTH MIN INTERVAL: -1
TELEMETRY MAX SESSION: 10000

APP_LOG LEVEL: "info"

API LOG LEVEL: "warn"

TELEMETRY_HTTPS ENABLED: "auto"
TELEMETRY_ CONFIG PATH: "tlm-config"
TELEMETRY_ CLOUD PROVIDER: "azure"
TELEMETRY_CORS DOMAIN: "apps.qrtph6ga.westus2.aroapp.io"

resources:
requests:
memory: "1000Mi"
cpu: "500m"
limits:
memory: "1000Mi"
cpu: "500m"
ingress:

enabled: false
annotations: {}

securityContext:
fsGroup: 500
runAsUser: 500
runAsGroup: 500
runAsNonRoot: true

dnsPolicy: "ClusterFirst"

dnsConfig:
options:
- name: ndots
value: "3"

secrets: {}

uid-tim.yaml:

securityContext:
runAsUser: null
runAsGroup: 0
fsGroup: null
tim:
securityContext:
runAsUser: null
runAsGroup: 0

Copy the values-telemetry.yaml file and tIm helm package to the installation
location.

Telemetry Installation

Render the templates

To verify whether resources are getting created without issue, execute the
following command to render templates without installing:

Telemetry Service Private Edition Guide 36

Deploy Telemetry Service

$ helm template --debug -f values-tlm.yaml -f uid-tlm.yaml telemetry-service telemetry-
service/ -n tlm

Review the displayed Kubernetes descriptors. The values are generated from
Helm templates and are based on settings from the values.yaml and values-
telemetry.yaml files. Ensure that no errors are displayed. Later, you will apply
this configuration to your Kubernetes cluster.

Deploy Telemetry Service

Use the following command to deploy Telemetry Service:

$ helm install -f values-tlm.yaml -f uid-tlm.yaml telemetry-service telemetry-service/ -n tlm
Verify the installation

Use the following command to check the installed Helm release:

helm list —n tlm

Result should show telemetry-service deployment details. Execute the following
tIm project status command:

helm status telemetry-service -n tlm

Result should be showing the details with 'STATUS: deployed'
NAME: telemetry-service

LAST DEPLOYED: Tue Jun 21 15:45:35 2022

NAMESPACE: tlm

STATUS: deployed

REVISION: 1

TEST SUITE: None
Use the following command to check the Azure objects created by Helm:
kubectl get all -n tlm

Expose the Telemetry Service

Make Telemetry Service accessible from outside the cluster, using the standard HTTP port.

Use the following commands to expose the Telemetry Service: tim-ingress-cert.yaml and tim-ingress-
int-cert.yaml

tIm-ingress-cert.yaml

apiVersion: networking.k8s.io/v1l
kind: Ingress
metadata:

name: tlm-ingress

namespace: tlm

Telemetry Service Private Edition Guide 37

Deploy Telemetry Service

annotations:
cert-manager.io/cluster-issuer: ca-cluster-issuer
kubernetes.io/ingress.class: nginx
nginx.ingress.kubernetes.io/ssl-redirect: 'false'
nginx.ingress.kubernetes.io/use-regex: 'true'

spec:
tls:
- hosts:
secretName: tlm-secret-ext
rules:
- host:
http:
paths:
- path: /.*
pathType: ImplementationSpecific
backend:
service:
name: telemetry-service
port:

number: 8107

Apply the yaml file to your namespace

Use the following command to apply the yaml file to your namespace:

kubectl apply -f tlm-ingress-cert.yaml -n tlm
tim-ingress-int-cert.yaml

apiVersion: networking.k8s.io/vl
kind: Ingress
metadata:
name: tlm-ingress-int
namespace: tlm
annotations:
cert-manager.io/cluster-issuer: ca-cluster-issuer
kubernetes.io/ingress.class: nginx
nginx.ingress.kubernetes.io/ssl-redirect: 'false'
nginx.ingress.kubernetes.io/use-regex: 'true'’
spec:
tls:
- hosts:
secretName: tlm-secret-int
rules:
- host:
http:
paths:
- path: /metrics
pathType: ImplementationSpecific
backend:
service:
name: telemetry-service
port:
number: 9107

Apply the yaml file to your namespace

Use the following command to apply the yaml file to your namespace:

Telemetry Service Private Edition Guide

38

Deploy Telemetry Service

kubectl apply -f tlm-ingress-int-cert.yaml -n tlm
Recommended Hostname format: tlm.

Validate the deployment

Use the following command to verify that the new route is created in the
Telemetry Service project:

kubectl get ingress -n tlm (ingress information appears, similar to the following)

NAME CLASS HOSTS ADDRESS PORTS AGE
tlm-ingress 35.233.131.150 80, 443 82m
tlm-ingress-int 35.233.131.150 80, 443 50m

where 1is the host name generated by Azure.

Telemetry Service Private Edition Guide

39

Upgrade, roll back, or uninstall

Upgrade, roll back, or uninstall

Contents

e 1 Supported upgrade strategies
e 2 Timing
e 2.1 Scheduling considerations
¢ 3 Monitoring
* 4 Preparatory steps
* 5 Rolling Update
¢ 5.1 Rolling Update: Upgrade
* 5.2 Rolling Update: Verify the upgrade
* 5.3 Rolling Update: Rollback
* 5.4 Rolling Update: Verify the rollback

¢ 6 Uninstall

Telemetry Service Private Edition Guide

40

Upgrade, roll back, or uninstall

Learn how to upgrade, roll back, or uninstall Telemetry Service.

Related documentation:

* For private edition

The instructions on this page assume you have deployed the services in service-
specific namespaces. If you are using a single namespace for all private edition
services, replace the namespace element in the commands on this page with the
name of your single namespace or project.

Supported upgrade strategies

Telemetry Service supports the following upgrade strategies:

Service Upgrade Strategy Notes
Telemetry Service Rolling Update

For a conceptual overview of the upgrade strategies, refer to Upgrade strategies in the Setting up
Genesys Multicloud CX Private Edition guide.

Timing

A regular upgrade schedule is necessary to fit within the Genesys policy of supporting N-2 releases,
but a particular release might warrant an earlier upgrade (for example, because of a critical security
fix).

If the service you are upgrading requires a later version of any third-party services, upgrade the third-
party service(s) before you upgrade the private edition service. For the latest supported versions of
third-party services, see the Software requirements page in the suite-level guide.

Telemetry Service Private Edition Guide 41

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Upgrade, roll back, or uninstall

Scheduling considerations

Genesys recommends that you upgrade the services methodically and sequentially: Complete the
upgrade for one service and verify that it upgraded successfully before proceeding to upgrade the
next service. If necessary, roll back the upgrade and verify successful rollback.

Monitoring

Monitor the upgrade process using standard Kubernetes and Helm metrics, as well as service-specific
metrics that can identify failure or successful completion of the upgrade (see Observability in
Telemetry Service).

Genesys recommends that you create custom alerts for key indicators of failure — for example, an
alert that a pod is in pending state for longer than a timeout suitable for your environment. Consider
including an alert for the absence of metrics, which is a situation that can occur if the Docker image

is not available. Note that Genesys does not provide support for custom alerts that you create in your
environment.

Preparatory steps

Ensure that your processes have been set up to enable easy rollback in case an upgrade leads to
compatibility or other issues.

Each time you upgrade a service:
1. Review the release note to identify changes.

2. Ensure that the new package is available for you to deploy in your environment.

3. Ensure that your existing -values.yaml file is available and update it if required to implement changes.

Rolling Update

Rolling Update: Upgrade

Execute the following command to upgrade :

helm upgrade --install -f -values.yaml -n

Tip: If your review of Helm chart changes (see Preparatory Step 3) identifies that the only update you
need to make to your existing -values.yaml file is to update the image version, you can pass the
image tag as an argument by using the - -set flag in the command:

helm upgrade --install -f -values.yaml --set .image.tag=

For example, run the command: helm upgrade --version -f values.yaml telemetry-service

Telemetry Service Private Edition Guide 42

Upgrade, roll back, or uninstall

L/tlm

Rolling Update: Verify the upgrade

Follow usual Kubernetes best practices to verify that the new service version is deployed. See the
information about initial deployment for additional functional validation that the service has
upgraded successfully.

Rolling Update: Rollback

Execute the following command to roll back the upgrade to the previous version:
helm rollback

or, to roll back to an even earlier version:

helm rollback

Alternatively, you can re-install the previous package:

1. Revert the image version in the .image.tag parameter in the -values.yaml file. If applicable, also
revert any configuration changes you implemented for the new release.

2. Execute the following command to roll back the upgrade:
helm upgrade --install -f -values.yaml

Tip: You can also directly pass the image tag as an argument by using the --set flag in the
command:

helm upgrade --install -f -values.yaml --set .image.tag=
For example you can use either of these commands for a rollback:

e helm rollback telemetry-service

e helm upgrade --version -f previous-values.yaml telemetry-service ./tlm

Rolling Update: Verify the rollback

Verify the rollback in the same way that you verified the upgrade (see Rolling Update: Verify the
upgrade).

Telemetry Service Private Edition Guide

43

Upgrade, roll back, or uninstall

Uninstall

Warning

Genesys recommends that you contact Genesys Customer Care before uninstalling
any private edition services, particularly in a production environment, to ensure that
you understand the implications and to prevent unintended consequences arising
from, say, unrecognized dependencies or purged data.

Execute the following command to uninstall :

helm uninstall -n

Uninstalling a service removes all Kubernetes resources associated with that service.

For example, you can run this command to uninstall: helm uninstall telemetry-service -n tlm

Telemetry Service Private Edition Guide

44

Observability in Telemetry Service

Observability in Telemetry Service

Contents

e 1 Monitoring
* 1.1 Enable monitoring
¢ 1.2 Configure metrics
e 2 Alerting

* 2.1 Configure alerts

¢ 3 Logging

Telemetry Service Private Edition Guide

45

Observability in Telemetry Service

Learn about the logs, metrics, and alerts you should monitor for Telemetry Service.

Related documentation:

* For private edition

Monitoring

Private edition services expose metrics that can be scraped by Prometheus, to support monitoring
operations and alerting.

¢ As described on Monitoring overview and approach, you can use a tool like Grafana to create
dashboards that query the Prometheus metrics to visualize operational status.

e As described on Customizing Alertmanager configuration, you can configure Alertmanager to send
notifications to notification providers such as PagerDuty, to notify you when an alert is triggered
because a metric has exceeded a defined threshold.

The services expose a number of Genesys-defined and third-party metrics. The metrics that are
defined in third-party software used by private edition services are available for you to use as long as
the third-party provider still supports them. For descriptions of available Telemetry Service metrics,
see:

See also System metrics.

Enable monitoring

Telemetry Service does not expose any specific metrics for monitoring. You can use standard
Kubernetes metrics, as delivered by cAdvisor, of the kind that apply to any pod of the same nature.

Service CRD or Port Endpoint/ Met_rlcs update
annotations? Selector interval
n/a /metrics

Configure metrics

No additional service-level configuration is required to enable monitoring for Telemetry Service.

Telemetry Service Private Edition Guide 46

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Observability in Telemetry Service

Alerting

Private edition services define a number of alerts based on Prometheus metrics thresholds.

You can use general third-party functionality to create rules to trigger alerts based on
metrics values you specify. Genesys does not provide support for custom alerts that
you create in your environment.

For descriptions of available Telemetry Service alerts, see:

Configure alerts

Private edition services define a number of alerts by default (for Telemetry Service, see the pages
linked to above). No further configuration is required.

The alerts are defined as PrometheusRule objects in a prometheus-rule.yaml file in the Helm

charts. As described above, Telemetry Service does not support customizing the alerts or defining
additional PrometheusRule objects to create alerts based on the service-provided metrics.

Logging

Telemetry Service sends logs to stdout.

Telemetry Service logs are structured so that log documents can be split into two distinct indexes:

one for the Core Telemetry activity and the other for the Telemetry client logs.

The traceld attribute of the Telemetry log Contract is available to all Telemetry clients by default.
This allows logs sent through Telemetry to meet the pre-condition for distributed tracing Observability

goal.

Telemetry Service Private Edition Guide

47

No results metrics and alerts

No results metrics and alerts

Contents

e 1 Metrics

e 2 Alerts

Telemetry Service Private Edition Guide

48

No results metrics and alerts

Find the metrics Telemetry Service exposes and the alerts defined for Telemetry Service.

Related documentation:

* For private edition

CRD or Metrics
Service = 5 Port Endpoint/Selector update
annotations? interval
n/aAnnotations /metrics
Telemetry i . i i
Service All the Telemetry Service metrics are standard Kubernetes metrics as delivered by a

standard Kubernetes metrics service.
See details about:

e No results metrics

e No results alerts

Metrics

Use standard Kubernetes metrics, as delivered by a standard Kubernetes metrics service (such as
cAdvisor), to monitor the Telemetry Service. For information about standard system metrics to use to
monitor services, see System metrics.

The following standard Kubernetes metrics are likely to be most relevant.

Metric and description Metric details Indicator of

) Unit: seconds
container_cpu_usage_seconds_total
Type: Counter i A
Cumulative CPU time consumed Label: pod="podId" Monitoring the CPU usage
Sample value: 7000

. Unit: bytes
container_fs_reads_bytes_total
Type: Counter ; : H
Cumulative count of bytes read Label: pod="podld Monitoring Fllesystem usage

Sample value: 900

Telemetry Service Private Edition Guide 49

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss
/TLM/Current/TLMPEGuide/TLMMetrics#Metrics
/TLM/Current/TLMPEGuide/TLMMetrics#Alerts

No results metrics and alerts

Metric and description

Cumulative count of bytes received

Cumulative count of bytes transmitted

Metric details

Unit: bytes
container_network _receive_bytes_total
Type: Counter

Label: pod="podId"

Sample value: 3000

. . Unit: bytes
container_network_transmit_bytes_total
Type: Counter

Label: pod="podId"

Sample value: 5000

kube_pod_container status_readynit: integer

Describes whether the containers
readiness check succeeded.

Type: Gauge
Label: pod="podId"
Sample value: 2

ku be_pod_container_status_resté‘piist_:t.Epl!:gﬁer

The number of container restarts per

container

Alerts

Type: Counter
Label: pod="podId"

Sample value: 0

The following alerts are defined for No results.

Alert

Telemetry CPU
Utilization is
Greater Than
Threshold

Telemetry Memory
Usage is Greater
Than Threshold

Telemetry High
Network Traffic

Http Errors
Occurrences
Exceeded
Threshold

Telemetry
Dependency
Status

Severity

High

High

High

High

Low

Description

Triggered when
average CPU
usage is more than
60%

Triggered when
average memory
usage is more than
60%

Triggered when
network traffic
exceeds 10MB/
second for 5
minutes

Triggered when the
number of HTTP
errors exceeds 500
responses in 5
minutes

Triggered when
there is no
connection to one
of the dependent

Indicator of

Monitoring incoming network

Monitoring outgoing network

Monitoring Healthy pods

Monitoring pod restarts

Based on Threshold

>60%
node_cpu_seconds_total

) >60%
container_cpu_usage_seconds_total,
kube _pod_container_resource_limits_cpu_cores

>10MB ES
node_network_transmit_bytes_total,
node_network _receive_bytes total

>500 in 5 mjnutes
telemetry_events{eventName=~"http_error_.*",

eventName!="http_error_404"}

telemetry_dependency_status

Telemetry Service Private Edition Guide

50

No results metrics and alerts

Alert Severity

Telemetry Healthy

Pod Count Alert High

Telemetry GAuth

Time Alert High

Description

services - GAuth,
Config,
Prometheus

Triggered when the
number of healthy
pods drops to
critical level

Triggered when
there is no
connection to the
GAuth service

Based on Threshold

kube_pod_container_status_ready

telemetry_gws_auth_redGode

Telemetry Service Private Edition Guide

51

	Telemetry Service Private Edition Guide
	Table of Contents
	About Telemetry Service
	Architecture
	High availability and disaster recovery
	Ports
	Before you begin
	Configure Telemetry Service
	Provision Telemetry Service
	Deploy Telemetry Service
	Upgrade, roll back, or uninstall
	Observability in Telemetry Service
	No results metrics and alerts

