
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Deploy Tenant Service

Tenant Service Private Edition Guide

11/3/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

• 1 Assumptions
• 2 Deployment scenarios

• 2.1 Single region/location/cluster
• 2.2 Multiple regions/locations/clusters: Basic deployment

• 3 Deploy the service
• 3.1 Prerequisites
• 3.2 Location-specific deployment steps
• 3.3 Service-specific deployment steps: Single service at one location

• 4 Samples and references
• 5 Validate the deployment

Tenant Service Private Edition Guide 2

Learn how to deploy Tenant Service into a private edition environment.

Related documentation:
•
•
•
•
•

RSS:

• For private edition

Assumptions

• The instructions on this page assume you are deploying the service in a service-specific namespace,
named in accordance with the requirements on Creating namespaces. If you are using a single
namespace for all private edition services, replace the namespace element in the commands on this
page with the name of your single namespace or project.

• Similarly, the configuration and environment setup instructions assume you need to create namespace-
specific (in other words, service-specific) secrets. If you are using a single namespace for all private
edition services, you might not need to create separate secrets for each service, depending on your
credentials management requirements. However, if you do create service-specific secrets in a single
namespace, be sure to avoid naming conflicts.

For an overview of solution-level deployment, see the deployment tour.

Deployment scenarios

More than one deployment scenario is supported for Tenant Service, including single region,
redundant, and multi-region deployment as well as multi-Tenant deployment.

Single region/location/cluster
You deploy Tenant resources in a single Kubernetes cluster within the same or separate namespace
(project) with the Voice platform. If shared resources are being deployed across all Tenants, they must
also be added to the same target namespace.

The Tenant deployment process creates resources using a release name parameter, specified when
executing the Helm deployment step. When installed in a single namespace, you must make sure
that the release name value is distinct across all Tenants and other deployments.

Tenant Service Private Edition Guide 3

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

For example, you might specify the Helm release name in the format t. Optionally, if you want the
Tenant service name to match other Voice services, you can prefix the Tenant name with voice- in
the Helm release name. So, in this example, you would specify the release name as voice-t during
Helm deployment. The value for is the last four characters of the Tenant UUID that you configure in
the values.yaml file. For more information about the identification parameters for the Tenant
service, see Identification.

If you plan to use Prometheus monitoring or Fluent Bit logging framework for Tenant, you must
execute the tenant-monitor module, as described in tenant-monitor. The module enables the
following features:

• Prometheus PodMonitor definition for all tenant pods.
• Common Fluent Bit framework configuration for all tenant pods.

Single Tenant: Basic deployment

Single-node deployment requires a single override file and one "tenant" module to deploy, with
reference implementation described at Single service at one location.

To increase the number of nodes, adjust the node count parameter. For more information, see
Scalability and redundancy parameters.

Upgrade

For information about upgrading Tenant Service, see Upgrade, rollback, or uninstall the Tenant
Service.

Multiple Tenants at one location: Basic deployment

You can deploy additional Tenants at the same location using the following guidelines:

• Each Tenant Service must have a unique tenant uuid, shortid, and nickname.
• Each Tenant Service is deployed or upgraded and adjusted independently.

Multiple regions/locations/clusters: Basic deployment
In multi-regional/multi-location deployments, one region/location is considered "master" (from the
Tenant perspective) and includes the database backend with write capabilities. Other regions/
locations have replicas of the database backend in read-only mode. A Tenant Service at each location
may be deployed to have one of its nodes running as master (write access to provisioning data
through the config API) or have all its nodes running only as replicas (read access to configuration).

Multi-regional deployments must be performed using the following steps (with prerequisites already
satisfied at each region/location):

• If required, deploy the tenant-monitor module at a location planned as a Master Tenant node.
• Complete the basic deployment of a Tenant Service in the Master region, including specification of DR

parameters for the Master, as per Scalability and redundancy parameters.
• Complete the deployment of the database backend with a replica of the Master database at the

location(s) where the replica Tenant nodes are expected to run, including provisioning of access keys/

Tenant Service Private Edition Guide 4

secrets to access the local replica.
• If required, deploy the tenant-monitor module at location(s) where replicas are expected to run.
• Complete the basic Tenant deployment for additional region(s) and specify DR parameters for the

Master region (see Scalability and redundancy parameters).

The same customization scenarios described for Tenant nodes can be applied for each location
independently.

Upgrade

For information about upgrading Tenant Service, see Upgrade, rollback, or uninstall the Tenant
Service.

Deploy the service

This section provides reference commands with key parameters that are required to complete each
deployment step.

On this page, the tenant-values.yaml file refers to the values.yaml file in the Tenant Helm chart.
Likewise, the tenant-monitor-values.yaml file refers to the values.yaml file in the Tenant Monitor
Helm chart.

Prerequisites

• Read Before you begin for the full list of prerequisites required to deploy the Tenant Service.
• Mandatory parameter values for basic installation are:

• tenant uuid (v4)
• tenant nickname (becomes a Helm release name)
• all backend parameters (along with all secrets that may be required based on these parameters)

• Before proceeding with the Tenant Service deployment, ensure you have completed procedures in the
Configure security section of this guide.

• Ensure you have configured all required overrides in the Helm chart values.yaml files, including
specifying the correct SIP domain. For information, see Override Helm chart values.

Tenant Service Private Edition Guide 5

Location-specific deployment steps
tenant-monitor

Monitoring/logging shared configuration and infrastructure deployment:
helm upgrade --install --force --wait --timeout 600s -n voice tenant-monitor https:///tenant-
monitor-$TENANT_MANIFEST_VERSION.tgz --username "$JFROG_USER" --password "$JFROG_PASSWORD"

To enable Prometheus monitoring, you can use the following overrides with tenant-monitor. Use the
following changes in the tenant-monitor-values.yaml file to implement the changes:

prometheus:
podMonitor:

create: "true"

To enable Fluent Bit to send additional logs to stdout in json format (for selected Tenant functions,
such as configuration audit) and/or raw format (such as from internal applications such as StatServer
and URS), modify the following changes to upgrade tenant-monitor. Use the following changes in the
tenant-monitor-values.yaml file to implement the changes.

fluent:
enable: "true"
rawlogs:

stdout:
enable: "true"

jsonlogs:
stdout:

enable: "true"

To enable RWX Persistent Volume Claim (PVC) in tenant-monitor to store Tenant logs shared across all
Tenant pods, make the following modifications to override values in the tenant-monitor-
values.yaml file:

tenant:
logging:

volume:
enabled: "true"
createSC: "false"
createpvClaim: "true"
logClaim: "tenant-logs-pvc"
logClaimSize: "5Gi"
logStorageClass: ""
Storageprovisioner: "TBD OC provisioner"
parameters: {}

RWX PV is disabled by default; no overrides are required in the tenant-monitor-values.yaml file to
disable it.

Service-specific deployment steps: Single service at one location
A PostgreSQL database must be available for the Tenant Service before you begin the service
deployment. For more information about the database requirements, see Third-party prerequisites. In
addition, after the PostgreSQL database is deployed and before you deploy the Tenant Service, you
must configure secrets that contain values for certain PostgreSQL database parameters. To configure

Tenant Service Private Edition Guide 6

the secrets, see Service-specific secrets.

Use the following template if you are deploying with the tenant Helm chart. A single-service
deployment can be implemented with the following sample parameters in the tenant-values.yaml
file:

##UUID 4 format (Set a new UUID for new tenant deployment)
tenantid:

serviceAccount:
create: true

images:
imagePullSecrets: mycred
registry:
pullPolicy: Always
tenant:

tag:

pgdbInit:
tag:

rcsInit:
tag:
enable: "true"

pulseInit:
tag:
enable: "true"
pulseMode: "setup"

tenant:
general:

upstreamServices: voice-sipfe:9101,voice-config:9100,ixn-server-{{ $.Values.tenantid
}}:7120,ixn-vqnode-{{ $.Values.tenantid }}:7122"

pgdb:
dbhost: "/opt/genesys/dbserver/dbserver"
dbuser: "/opt/genesys/dbuser/dbuser"
dbname: "/opt/genesys/dbname/dbname"

securityContext:
fsGroup: 0

logging
....
volumes:

logPvc:
enabled: "true"
logClaimSize: "5Gi"
accessModes: "ReadWriteOnce"
logStorageClass: "" #Replace the storage class with a relevant storage class for

the cluster type

mounts:
log:

- name: log
mountPath: /opt/genesys/logs/volume

- name: log
mountPath: /logs

secrets:

Tenant Service Private Edition Guide 7

pgdb:
pwd:

secretName: "/opt/genesys/dbpassword/dbpassword"
secretKey: "dbpassword"

volumes: |
- name: dbpassword

secret:
secretName: dbpassword

- name: dbserver
secret:

secretName: dbserver
- name: dbname

secret:
secretName: dbname

- name: dbuser
secret:

secretName: dbuser
mounts:

- name: dbpassword
readOnly: true
mountPath: "/opt/genesys/dbpassword"

- name: dbserver
readOnly: true
mountPath: "/opt/genesys/dbserver"

- name: dbname
readOnly: true
mountPath: "/opt/genesys/dbname"

- name: dbuser
readOnly: true
mountPath: "/opt/genesys/dbuser"

consul:
acl:

secretName: "/opt/genesys/consul-shared-secret/consul-consul-voice-token"
volumes:

- name: consul-shared-secret
secret:

secretName: consul-voice-token
mounts:

- name: consul-shared-secret
readOnly: true
mountPath: "/opt/genesys/consul-shared-secret"

redis:
configPwd:

secretName: "/opt/genesys/redis-config-secret/redis-config-state"
volumes:

- name: redis-config-secret
secret:

secretName: redis-config-token
mounts:

- name: redis-config-secret
readOnly: true
mountPath: "/opt/genesys/redis-config-secret"

streamPwd:
secretName: "/opt/genesys/redis-tenant-secret/redis-tenant-stream"
volumes:

- name: redis-tenant-secret
secret:

secretName: redis-tenant-token
mounts:

- name: redis-tenant-secret
readOnly: true

Tenant Service Private Edition Guide 8

mountPath: "/opt/genesys/redis-tenant-secret"

kafka:
pwd:

secretName: "/opt/genesys/kafka-secrets/kafka-secrets"
volumes:

- name: kafka-secrets
secret:

secretName: kafka-secrets-token
mounts:

- name: kafka-secrets
mountPath: "/opt/genesys/kafka-secrets"

gws:
user:

secretName: "/opt/genesys/gauth-client-id/clientid"
pwd:

secretName: "/opt/genesys/gauth-client-token/clientsecret"
volumes:

- name: gauth-client-id
secret:

secretName: gauthclientid
- name: gauth-client-token

secret:
secretName: gauthclientsecret

mounts:
- name: gauth-client-id

readOnly: true
mountPath: "/opt/genesys/gauth-client-id"

- name: gauth-client-token
readOnly: true
mountPath: "/opt/genesys/gauth-client-token"

redis:
isCluster: true

In addition, use the following deployment command:

helm upgrade --install --force --wait --timeout 600s -n voice -f ./tenant-node-values.yaml t \
https:///tenant-.tgz \
--username "$JFROG_USER" --password "$JFROG_PASSWORD"

The preceding deployment will create a Tenant with the password of the service account set up
explicitly and without enabling GWS integration. See Samples and references for values that allow
you to reset the Tenant password upon deployment using a pre-generated value from the secret and
to enable automated GWS integration.

Samples and references

Enabling a service admin password (the secret should be created as described in the Service account
password section):

...
tenant:

serviceuser: "default"
svcpwdSecretName: "/opt/genesys/service-user-account/svcpassword"
...

Tenant Service Private Edition Guide 9

volumes: |
- name: service-user-account

secret:
secretName: svcuseraccount

...
volumeMounts: |

- name: service-user-account
readOnly: true
mountPath: "/opt/genesys/service-user-account"

....
initVolumeMounts: |

- name: service-user-account
readOnly: true
mountPath: "/opt/genesys/service-user-account"

....

To enable stdout log output for all Tenant components, make the following modifications to override
values in the tenant-values.yaml file.

images
fbregistry: fluent/fluent-bit
...

fluentBit:
enable: "true"
name: json-sidecar
tag: 1.8.x

fluentBitUrs:
enable: "true"
name: stdouturs-sidecar
tag: 1.8.x

fluentBitSs:
enable: "true"
name: stdoutss-sidecar
tag: 1.8.x

fluentBitOcs:
enable: "true"
name: stdoutocs-sidecar
tag: 1.8.x

fluentBitCs:
enable: "true"
name: stdoutcs-sidecar
tag: 1.8.x

tenant:
...
logging:

volumes:
log:

- name: log
jsonLog:

- name: fluent-logs
emptyDir: {}

stdoutUrsLog:
- name: fluenturs-logs

emptyDir: {}
stdoutOcsLog:

- name: fluentocs-logs
emptyDir: {}

stdoutSsLog:

Tenant Service Private Edition Guide 10

- name: fluentss-logs
emptyDir: {}

stdoutCsLog:
- name: fluentcs-logs

emptyDir: {}
fluentBconfigmap:

- configMap:
defaultMode: 420
name: tenants-fluent-bit-config

name: tenants-fluent-bit-config
fluentBconfigmapCs:

- configMap:
defaultMode: 420
name: tenants-fluent-bit-config-cs

name: tenants-fluent-bit-config-cs
fluentBconfigmapSs:

- configMap:
defaultMode: 420
name: tenants-fluent-bit-config-ss

name: tenants-fluent-bit-config-ss
fluentBconfigmapOcs:

- configMap:
defaultMode: 420
name: tenants-fluent-bit-config-ocs

name: tenants-fluent-bit-config-ocs
fluentBconfigmapUrs:

- configMap:
defaultMode: 420
name: tenants-fluent-bit-config-urs

name: tenants-fluent-bit-config-urs
mounts:

log:
- name: log

mountPath: /opt/genesys/logs/volume
- name: log

mountPath: /logs
jsonLog:

- name: fluent-logs
mountPath: "/opt/genesys/logs/JSON"

stdoutUrsLog:
- name: fluenturs-logs

mountPath: "/opt/genesys/logs/URS"
stdoutSsLog:

- name: fluentss-logs
mountPath: "/opt/genesys/logs/SS"

stdoutOcsLog:
- name: fluentocs-logs

mountPath: "/opt/genesys/logs/OCS"
stdoutCsLog:

- name: fluentcs-logs
mountPath: "/opt/genesys/logs/confserv"

fbJsonLog:
- name: fluent-logs

mountPath: "/mnt/logs"
fbstdoutUrsLog:

- name: fluenturs-logs
mountPath: "/mnt/logs"

fbstdoutSsLog:
- name: fluentss-logs

mountPath: "/mnt/logs"
fbstdoutOcsLog:

- name: fluentocs-logs

Tenant Service Private Edition Guide 11

mountPath: "/mnt/logs"
fbstdoutCsLog:

- name: fluentcs-logs
mountPath: "/mnt/logs"

fluentBconfigmap:
- mountPath: /fluent-bit/etc/

name: tenants-fluent-bit-config
fluentBconfigmapCs:

- mountPath: /fluent-bit/etc/
name: tenants-fluent-bit-config-cs

fluentBconfigmapSs:
- mountPath: /fluent-bit/etc/

name: tenants-fluent-bit-config-ss
fluentBconfigmapOcs:

- mountPath: /fluent-bit/etc/
name: tenants-fluent-bit-config-ocs

fluentBconfigmapUrs:
- mountPath: /fluent-bit/etc/

name: tenants-fluent-bit-config-urs

You can deploy Persistent Volume/Persistent Volume Claim (PV/PVC) in two ways:

1. Enable ReadWriteOnce (RWO) from the tenant Helm chart, which maintains unique PVCs for each pod/
replica from the same Tenant.

2. Enable ReadWriteMany (RWX) from the tenant-monitor Helm chart, which has multiple Tenant pods
sharing the same PVC.

To enable RWO PV/PVC logging from individual Tenant pods in Statefulset, make the following
modifications to override the values in the tenant-values.yaml file. RWO Persistent Volume is
disabled by default.

logging
....
volumes:

logPvc:
enabled: "true"
logClaimSize: "5Gi"
accessModes: "ReadWriteOnce"
logStorageClass: "" #Replace the storage class that's relevant to the Openshift

Cluster

Enabling GWS integration (the secret should be created as described in the Genesys Authentication
backend secrets section):

tenant:
…
gws:

enable: Enable GWS registeration about tenant
tls: Enable/Disable Secure connection to GWS
authEndpoint: GWS auth end point
envEndpoint: GWS env end point for Registeration
db: Pass DB infromation for GWS to connect to PSQL DB for read and store data
enable: "true"
tls: false
authEndpoint: "gauth-auth.gauth.svc.cluster.local"
envEndpoint: ""
db:

enable: "false"
read: "false"

Tenant Service Private Edition Guide 12

init: "false"
secrets:

……….
gws:

enabled: true
user:

secretName: "/opt/genesys/gauth-client-id/clientid"
pwd:

secretName: "/opt/genesys/gauth-client-token/clientsecret"
volumes:

- name: gauth-client-id
secret:

secretName: gauthclientid
- name: gauth-client-token

secret:
secretName: gauthclientsecret

mounts:
- name: gauth-client-id

readOnly: true
mountPath: "/opt/genesys/gauth-client-id"

- name: gauth-client-token
readOnly: true
mountPath: "/opt/genesys/gauth-client-token"

To mount the PVC to store Tenant logs, make the following modifications to override the values in the
tenant-values.yaml file:

.....

tenant:
...

logging:
mounts:

log:
- name: log

mountPath: /opt/genesys/logs/volume
- name: log

mountPath: /logs

Validate the deployment

Content coming soon

Tenant Service Private Edition Guide 13

	Tenant Service Private Edition Guide

