3 GENESYS

This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Tenant Service Private Edition Guide

1/19/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents

Overview

About the Tenant Service

Architecture

High availability and disaster recovery
Configure and deploy

Before you begin

Configure the Tenant Service

Provision the Tenant Service

Deploy Tenant Service
Upgrade, roll back, or uninstall

Upgrade, roll back, or uninstall Tenant Service
Observability

Observability in Tenant Service

Tenant Service metrics and alerts

14

15
20
34
35

47

53
57

Contents

¢ 1 Overview
e 2 Configure and deploy
* 3 Upgrade, roll back, or uninstall

4 Observability

Tenant Service Private Edition Guide

Find links to all the topics in this guide.

Related documentation:

RSS:

* For private edition

The Tenant Service is a service available with the Genesys Multicloud CX private edition offering. The
Tenant Service is included with the Voice Microservices, however there is a separate Private Edition
Guide for the Voice Services. For information about the Voice Services, including provisioning,
configuration, and deployment information, see the Voice Microservices Private Edition Guide.

Overview

Learn more about the Tenant Service, its architecture, and how to support high availability and
disaster recovery.

¢ About the Tenant Service
e Architecture

e High availability and disaster recovery

Configure and deploy

Find out how to configure and deploy the Tenant Service.

e Before you begin
e Configure the Tenant Service
e Provision the Tenant Service

¢ Deploy Tenant Service

Tenant Service Private Edition Guide 4

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Upgrade, roll back, or uninstall
Find out how to upgrade, roll back, or uninstall Tenant services and to migrate the database.

e Upgrade, roll back, or uninstall Tenant Service

Observability

Learn how to monitor the Tenant Service with metrics and logging.

¢ Observability in Tenant Service

e Tenant Service metrics and alerts

Tenant Service Private Edition Guide

About the Tenant Service

About the Tenant Service

Contents

e 1 Supported Kubernetes platforms

* 2 Service description

Tenant Service Private Edition Guide

About the Tenant Service

Learn about the Tenant Service and how it works in Genesys Multicloud CX private edition.

Related documentation:

RSS:

* For private edition

Supported Kubernetes platforms

Voice Tenant Service is supported on the following Kubernetes platforms:

¢ Azure Kubernetes Service (AKS)
* Google Kubernetes Engine (GKE)
¢ OpenShift Container Platform (OpenShift)

See the Voice Microservices Release Notes for information about when support was introduced.

Service description

The Voice Tenant Service is included with the Voice Microservices and is a core service of the Genesys
Multicloud CX platform. The Tenant Service is an application layer between front-end Genesys
Multicloud CX solutions and shared back-end core services in a region.

The Voice Tenant Service instances are dedicated to a tenant of the Genesys Multicloud CX platform
and provide these main functions:

¢ Provisioning of tenant resources, such as agents and DNs.

e Routing of interactions within a tenant.

e Execution of outbound campaigns for a tenant.

¢ Providing call control functionality.

e Participation in the authentication workflow for a tenant's agents.

Tenant Service Private Edition Guide 7

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Architecture

Architecture

Contents

e 1 Introduction
* 2 Architecture diagram — Connections

¢ 3 Connections table

Tenant Service Private Edition Guide

Architecture

Learn about Tenant Service architecture

Related documentation:

RSS:

* For private edition

Introduction

The following diagram shows an example of the high-level architecture specific to the Tenant Service.

For the high-level architecture that includes all of the Voice Microservices, see Voice Microservices
architecture.

For information about the overall architecture of Genesys Multicloud CX private edition, see the high-
level Architecture page.

See also High availability and disaster recovery for information about high availability/disaster
recovery architecture.

Architecture diagram — Connections

The numbers on the connection lines refer to the connection numbers in the table that follows the
diagram. The direction of the arrows indicates where the connection is initiated (the source) and
where an initiated connection connects to (the destination), from the point of view of Tenant Service
as a service in the network.

Tenant Service Private Edition Guide

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Architecture

S

Kubernetes

s @ @

@ | pulse | | gws
. [_I_I

tenant-txxxx I I @I

gpa
(Gplus Adapter

PR I
ek

O

for WFM |
) | Config Server @ | l_] | | : | Health Prometheus
monitor
| l | | | L domer regions
| N oy
| | <~
@ oy 11 - S
es |
¢ TS | Stat Server | ocs
L ' I
- - I====—- n I Kubernetes
' |
-—— 5 |
- — — — — — ———
~ @ -qCoT Ll qCp |
voice 0 I I I
TServer | | Config sync |
SO - [| N DR [e voice
J|7|_|_|_|7I ==
—— — | p— | I Redi I
edis
® T®® |
i IR | 4 |
§€ kafka | é L _, Ingress |
| Redis tenant-txxxx :
| PostgreSQL |
|
| |
.- - ®_ _________________ J

Additional information

O 0

Multi-Tenant Single Tenant For the benefit of users who
are familiar with Genesys
legacy applications, the
diagram uses application
names to identify specific
functionality within Tenant
Service.

The legacy applications do not
exist as containers, pods,
services, or any other
Kubernetes entity in Genesys
Multicloud CX private edition.

Connections table

The connection numbers refer to the numbers on the connection lines in the diagram. The Source,
Destination, and Connection Classification columns in the table relate to the direction of the
arrows in the Connections diagram above: The source is where the connection is initiated, and the
destination is where an initiated connection connects to, from the point of view of Tenant Service as a
service in the network. Egress means the Tenant Service service is the source, and Ingress means the
Tenant Service service is the destination. Intra-cluster means the connection is between services in
the cluster.

Tenant Service Private Edition Guide 10

/File:Pe_tenant_architecture_diagram.png
/File:Pe_tenant_architecture_diagram.png

Architecture

Connection

10

11

12

13

14

Source

Billing Data
Service

Genesys
Pulse

Genesys
Pulse

Interaction
Server

Tenant
Service

Interaction
Server

Genesys
Web
Services and
Applications

Genesys
Web
Services and
Applications

Genesys
Web
Services and
Applications

Genesys
Web
Services and
Applications

Genesys

Authentication

Gplus
Adapters for
WFM

Gplus
Adapters for
WFM

Prometheus

Destination

Tenant
Service

Tenant
Service

Tenant
Service

Tenant
Service

Interaction
Server

Tenant
Service

Tenant
Service

Tenant
Service

Tenant
Service

Tenant
Service

Tenant
Service

Tenant
Service

Tenant
Service

Tenant

Protocol

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

HTTP

Port

8888

8888

8000

8888

7120

2060

8888

8000

2060

5050

8888

8888

8000

15000

Classification

Intra-cluster

Intra-cluster

Intra-cluster

Intra-cluster

Intra-cluster

Intra-cluster

Intra-cluster

Intra-cluster

Intra-cluster

Intra-cluster

Intra-cluster

Intra-cluster

Ingress

Data that
travels on
this
connection

Configuration
and
provisioning

Configuration
and
provisioning

Voice
Microservices
events

Configuration
and
provisioning

Multimedia
transactions
status

Agent status
for
multimedia

GWS
(Configuration
Service)
access to
provisioning

GWS call
control
events

GWS
statistics

Outbound
campaign control through
GWS

Genesys
Authentication
access to
provisioning

Configuration
and
provisioning

Voice
Microservices
events

Tenant

Tenant Service Private Edition Guide

11

Architecture

Connection

15

16

17

18

19

20

21

22

Source

Tenant
Service

Genesys
Engagement
Service

Tenant
Service

Tenant
Service

Tenant
Service

Tenant
Service

Tenant
Service

Tenant
Service

Destination Protocol

Service

PostgreSQL TCP

Tenant

. HTTP
Service

PostgreSQL TCP

Voice
Microservices

Kafka TCP
Redis TCP
Redis TCP
Redis TCP

Port

5432

5580

5432

9092/9093

6379

6379

6379

Classification

Egress

Intra-cluster

Egress

Egress

Egress

Egress

Intra-cluster

Data that
travels on
this
connection

Service
provides
metrics for
monitoring
and alerting
with
Prometheus.

Persistent
SQL storage
for
provisioning
data

Routing
requests and
events

Persistent
storage for
outbound
campaigns
and calling
lists

For
information,
see
connections
16, 27, and
32 in the
Voice
Microservices

Outbound
reporting

Voice
Microservices
call control
events

Tenant
configuration
and
provisioning
synchronization
for in-
memory
caching

Cross-region
Voice
Microservices
call control
events in

Tenant Service Private Edition Guide

12

Architecture

Connection Source Destination

Protocol

Port

Classification

Data that
travels on
this
connection

remote
Redis

13

Tenant Service Private Edition Guide

High availability and disaster recovery

High availability and disaster recovery

Find out how this service provides disaster recovery in the event the service goes down.

Related documentation:

RSS:

* For private edition

. . . . Where can you host
Service High Availability Disaster Recovery this service?
Tenant Service N =N (N+1) Active-spare SgiTary or secondary

See High Availability information for all services: High availability and disaster recovery

Tenant Service Private Edition Guide 14

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Before you begin

Before you begin

Contents

e 1 Limitations and assumptions
¢ 2 Download the Helm charts
e 2.1 Containers

e 2.2 Helm charts

3 Third-party prerequisites
* 4 Storage requirements

¢ 5 Network requirements

* 6 Browser requirements

* 7 Genesys dependencies

e 7.1 Specific dependencies

* 8 GDPR support

Tenant Service Private Edition Guide

15

Before you begin

Find out what to do before deploying the Tenant Service.

Related documentation:

RSS:

* For private edition

Limitations and assumptions

Not applicable

Download the Helm charts

For information about how to download the Helm charts, see Downloading your Genesys Multicloud
CX containers.

See Helm charts and containers for Voice Microservices for the Helm chart version you must
download for your release.
Containers

The Tenant Service has the following containers:
e Core tenant service container
¢ Database initialization and upgrade container

* Role and privileges initialization and upgrade container

* Solution specific: pulse provisioning container

Helm charts

e Tenant deployment

¢ Tenant infrastructure

Tenant Service Private Edition Guide

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Before you begin

Third-party prerequisites

For information about setting up your Genesys Multicloud CX private edition platform, see Software
Requirements.

The following table lists the third-party prerequisites for the Tenant Service.

Third-party services
Name Version Purpose Notes
Kafka 2.X Message bus.

Starting with version
100.0.100.0041, Tenant
Service supports Consul
1.10.

Service discovery,
Consul 1.13.x service mesh, and key/
value store.

Used for caching. Only
distributions of Redis
that support Redis
Redis 6.x cluster mode are
supported, however,
some services may not
support cluster mode.

NOTE: Starting with
version 100.0.100.0041,
Tenant Service supports
PostgreSQL 11.x.

Before deploying Tenant
Service, you must provision a
PostgreSQL database for
Tenant Service using one of
the following methods:

* Create a PostgreSQL
database specifically
for use by Tenant
Service.

e Use the shared
PostgreSQL
database, which is
recommended in the
OpenShift platform.

PostgreSQL 11.x Relational database.

Deploy a PostgreSQL
database using the
following commands:

helm repo add

bitnami
https://charts.bitnami.com/
bitnami

helm install -n
voice postgres

Tenant Service Private Edition Guide 17

https://kafka.apache.org/
https://www.consul.io/
https://redis.io/
https://www.postgresql.org/

Before you begin

Name Version Purpose Notes

bitnami/postgresql

During deployment, you
require the database
information, including
credentials. For the list
of database parameters
that you override in the
Tenant Helm chart
values.yaml file, see
Backend parameters in
Override Helm chart
values.

Used for downloading
Genesys containers and
Helm charts into the

A container image ' :
registry and Helm chart gﬂ;t;)oor?teg sCIr/eCpS)smory B

repository pipeline. You can use
any Docker OCI
compliant registry.

Storage requirements

For information about storage requirements for Voice Microservices, including the Tenant Service, see
Storage requirements in the Voice Microservices Private Edition Guide.

Network requirements

For general network requirements, review the information on the suite-level Network settings page.

Browser requirements

Not applicable

Genesys dependencies

For detailed information about the correct order of services deployment, see Order of services
deployment.

The following prerequisites are required before deploying the Tenant Service:

Tenant Service Private Edition Guide 18

Before you begin

¢ Voice Platform and all its external dependencies must be deployed before proceeding with the Tenant
Service deployment.

* PostgreSQL 10 database management system must be deployed and database shall be allocated
either as a primary or replica. For more information about the sample deployment of a standalone
DBMS, see Third-party prerequisites.

In addition, if you expect to use Agent Setup or Workspace Web Edition after the tenant is deployed,
Genesys recommends that you deploy GWS Authentication Service before proceeding with the
Tenant Service deployment.

Specific dependencies

The Tenant Service is dependent on the following platform endpoints:

¢ GWS environment API
¢ Interaction service core

¢ Interaction service vq

The Tenant Service is dependent on the following service component endpoints:

¢ Voice Front End Service
¢ Voice Redis (RQ) Service

* Voice Config Service

GDPR support

Not applicable.

Tenant Service Private Edition Guide 19

Configure the Tenant Service

Configure the Tenant Service

Contents

* 1 Override Helm chart values
* 2 Configure Kubernetes
¢ 3 Configure security
* 3.1 Security context configuration

» 3.2 Configure service-specific secrets

Tenant Service Private Edition Guide

20

Configure the Tenant Service

Learn how to configure the Tenant Service.

Related documentation:

RSS:

e For private edition

Override Helm chart values

For additional information about overriding Helm chart values, see Overriding Helm Chart values in
the Genesys Multicloud CX Private Edition Guide.

This section describes the purpose and use case for each configurable parameter in a Tenant Service

deployment.

The content in the following tables is not intended to be actual values or the names of override
options for the Helm charts; you can extract those later from the values.yaml file for each Helm

chart.

Group

version

version

location

Group

Tenant

Versioning

Name Purpose

Target image to install;
Tenant image versions must use same version
for all init containers.

Target version of roles

Roles and permissions o
P and permissions to

version
apply.
. Target registry to pull
Image location images from.

Identification

Name Purpose

name Nickname of the tenant.

Comments

Comments

Human-readable name.
The default value is the
Helm release name.

Tenant Service Private Edition Guide

21

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Configure the Tenant Service

Group Name

Tenant uuid

Purpose

Unique identifier of all
instances of the Tenant
Service.

Backend parameters

Group Name

postgres database host
postgres database user
postgres database name
database password
postgres parameters
postgres Kubernetes secret

usage flags

Purpose

A reference to the
backend DBMS into
which to persist the
service.

A reference to the
backend database into
which to persist the
service.

A reference to the
backend database into
which to persist the
service.

Either direct value or
reference to a secret
name and key that hold
a value; depends on
relevant Kubernetes
secret flag and
Kubernetes secret env
map flag.

Indication of Kubernetes
secret being used to
keep password and
whenever secret shall
be mounted to env
variable or expected to
be mapped as a

Comments

All nodes deployed to
handle the end-
customer environment
use that UUID that is
also registered. The

last four positions of the
UUID are used as the
short Tenant ID, when
applicable.

Comments

Either a direct value or a
file path that points to a
mapped volume with
file content to be used
as the DBMS name.

Either a direct value or a
file path that points to a
mapped volume with
file content to be used
as the database
username.

Either a direct value or a
file path that points to a
mapped volume with
file content to be used
as the database name.

These parameters
control how password is
being extracted by
service. Direct value is
supported to testing
purposes. Secret name
can be specified if
password from external
secret will be mounted
as a volume and
password exposed via
file. Secret key can be
specified if password
will be mapped to
environment variable.

Boolean values that
force use of secret
(instead of direct
database password).

Tenant Service Private Edition Guide

22

Configure the Tenant Service

postgres

consul

consul

redis

redis

redis

Name

ssl usage

Kubernetes secret
usage flags

consul token
parameters

Kubernetes secret
usage flags

redis connection string
for tenant stream

redis connection string
for config cache

Purpose
volume.

specify secure
connection preferences

indication of Kubernetes
secret being used to
keep token and
whenever secret shall
be mounted to env
variable or expected to
be mapped as a volume

either direct value or
reference to a secret
name and key that hold
a value, depends on
relevant Kubernetes
secret flag and
Kubernetes secret env
map flag

indication of Kubernetes
secrets being used to
keep connection strings
and whenever secrets
shall be mounted to env
variables or expected to
be mapped as a
volumes

either direct value or
reference to a secret
name and key that hold
a value, depends on
relevant Kubernetes
secret flag and
Kubernetes secret env
map flag

either direct value or
reference to a secret
name and key that hold
a value, depends on
relevant Kubernetes

Comments

Allow or require TLS.

boolean values that
force use of secret
(instead of direct consul
token value).

these parameters
control how token is
being extracted by
service. direct value is
supported to testing
purposes; secret name
can be specified if token
from external secret
shall be mounted as a
volume and token
exposed via file; secret
key can be specified if
password shall be
mapped to environment
variable

boolean values that
forces use of secret
(instead of direct
connection strings).
applicable for all type of
redis connections
supported by tenant

these parameters
control how string is
being extracted by
service. direct value is
supported for testing
purposes; secret name
can be specified if value
from external secret
shall be mounted as a
volume and connection
parameters exposed
via file; secret key can
be specified if string
shall be mapped to
environment variable

these parameters
control how string is
being extracted by
service. direct value is
supported for testing

Tenant Service Private Edition Guide

23

Configure the Tenant Service

Group
redis
kafka
kafka

Group

Auth and Autorization

Name

cluster flag

Kubernetes secret
usage flags

Kafka connection string

Purpose

secret flag and
Kubernetes secret env
map flag

type of redis backend to
connect

indication of Kubernetes
secrets being used to
keep connection strings
and whenever secrets
shall be mounted to env
variables or expected to
be mapped as volumes

either direct value or
reference to a secret
name and key that hold
a value, depends on
relevant Kubernetes
secret flag and
Kubernetes secret env
map flag

Kubernetes parameters

name

Service Account

purpose

Specify non-default
service account that
shall be associated with
all PODs of a tenant
service deployment

Comments

purposes; secret name
can be specified if
value from external
secret shall be mounted
as a volume and
connection parameters
exposed via file; secret
key can be specified if
string shall be mapped
to environment variable

indicate whenever
backend for redis is
cluster or standalone
server (same is used for
all types of redis
endpoints)

boolean values that
force use of secret
(instead of direct
connection strings).

these parameters
control how string is
being extracted by
service. direct value is
supported for testing
purposes; secret name
can be specified if value
from external secret
shall be mounted as a
volume and connection
parameters exposed via
file; secret key can be
specified if string shall
be mapped to
environment variable

comments

PODs will be assigned
default account if not
specified. If required, a
separate account will be
created during tenant
deployment and set to
use by all PODs. This
could be required if
consul registration of
tenant service relies on

Tenant Service Private Edition Guide

24

Configure the Tenant Service

Group

Auth and Authorization

Auth and Autorization

Scheduling

Scheduling

Scheduling

Scheduling

name

security context

Pod identity

pod node selector

pod toleration

affinity

priority class

purpose

Adjust security context
to run with random user

specify optional
annotation to associate
with POD in order to
access Kubernetes
resources

specify optional node
pool selector for tenant
PODs

specify optional
toleration for tenant
PODs

enable affinity of tenant
PODs to provide high
availability

specify optional priority
class for tenant PODs

comments

tenant's POD having
Kubernetes accounts
named after tenant
service being
registered. Service
account is being created
with name matching
service name of as
tenant (as visible in
consul)

If random user is used
to launch tenant
containers, an
adjustment to security
context is needed for all
tenant containers.
Tenant is running as
user 500 in group/
fsgroup 500 by default
and it may use group/
fsgroup O for random
user. For more
information, see
Security context
configuration.

PODs may be assigned
an ADODB identity if
needed

PODs can be assigned
to a specific poaol, if
needed. There is no
default Kubernetes pool
selections

PODs can be set to
tolerate specific taints,
There is no default
tolerations

PODs of same tenant
service may be forced
to schedule in different
locations (if supported
by underlying
infrastructure) using
failure-
domain.beta.kubernetes.io/
zone annotation when
this is enabled. There is
no affinity by default.

PODS may be assigned
specific priority class;
not set by default.

Tenant Service Private Edition Guide

25

Configure the Tenant Service

Group

logging frameworks

logging frameworks

logging frameworks

file logging

Logging parameters

name

fluentbit

fluentbit config

fluentbit local storage

logging persistent
volume

purpose

Specify usage of
fluentbit for tenant
console logging

Specify config map with
fluentbit sidecar
configuration that
should be mounted as a
volume.

Specify volume and
volume mount where
fluentbit logs will
accumulate.

Specify usage of
persistent volumes for
logging by tenant
components that
produce log files.

comments

Tenant PODs won't use
fluentbit logging
solution by

default. Tenant-specific
fluentbit configuration
can be enabled when
deploying tenant-
monitor resources, and
use of fluentbit sidecar
can be enabled on
tenant PODs afterward.

If fluent is enabled in
both tenant-monitor and
tenant charts, a volume-
referencing config map
shall be specified, as
below (if custom config
map is created, map
name can be set
differently)

- name: tenants-
fluent-bit-config

configMap:

name: tenants-
fluent-bit-config

If fluent bit is enabled,
the following volume is
added:

- name: fluent-logs
emptyDir: {}
and volume mount:

- name: fluent-
logs

mountPath:
"/opt/genesys/logs/
JSON"

Tenant PODs won't use
persistent volume
claims by default and no
storage classes are
created. Persistent

Tenant Service Private Edition Guide

26

Configure the Tenant Service

Group

file logging

file logging

file logging

Group

prometheus

prometheus

Group

GWS

name

logging persistent
volume storage class

logging storage class

logging empty directory

purpose

If use of persistent
volume for logging has
been enabled, storage
class can be specified
for these volumes as
needed.

if logging to persistent
volume is enabled and
storage class has been
specified explicitly then
creation of storage class
can also be enabled as
needed

default logging mount
path pointing to a
Kubernetes empty
directory volume

Monitoring and observability

name

Prometheus PodMonitor

Pod level annotations

purpose

Specify if PodMonitor to
scrape Prometheus
endpoints of tenant
pods should be created.

Alternative to enabling
pod monitor.

Integration

name

GWS endpoint

purpose

specify dedicated
endpoint to register
tenant service upon
initial deployment or
upgrade

comments

volume claims can be
added to tenant PODs
when this is enabled.

If tenant PODS are set
to use persistent
volume claims, storage
class can be specified
explicitly for volume
claims. Storage class is
not specified in PVC by
default.

tenant-specific storage
class for persistent
volumes won't get
created by default, can
be enabled when
deploying tenant-
monitor resources and
later utilized by tenant
PODs using same
storage class name.
storage class name shall
be specified for this to
work

part of default mounts
provided for tenant
service

comments

Tenant-monitor doesn't
create PodMonitor for
Prometheus by default.
Prometheus specific
monitor can be created
as part of infrastructure
deployment when this is
enabled.

comments

when provided, define
contact address to
reach master GWS
environment service
that should be used to

Tenant Service Private Edition Guide

27

Configure the Tenant Service

Group

GWS

GWS

GWS

Service Mesh

name

GWS endpoint tls mode

Kubernetes secret
usage flags

client id and token

upstream services

purpose

enable https (secure)
connection mode to
contact GWS endpoint

indication of Kubernetes
secrets being used to
keep client id and token
and whenever secrets
shall be mounted to env
variables or expected to
be mapped as volumes

either direct values or
references to secret
names and keys that
hold values, depends on
relevant Kubernetes
secret flag and
Kubernetes secret env
map flag

override upstream
service references used
by tenant instance to
locate intra-service and
platform dependencies
via consul

comments

register tenant
resources to make them
available for GWS-based
applications. by default,
endpoint isn't specified
and localhost
connection attempt will
be made by tenant
container, GWS
endpoint shall be
reachable via service
mesh upstream

when endpoint is
provided, use of this
parameter forces secure
connection when
accessing GWS on that
address. NOTE: not
available in initial
release, only http
connections are
supported

boolean values that
force use of secret
(instead of direct client
id and token).

these parameters
control how client id and
token is being extracted
by service. direct value
is supported for testing
purposes; secret name
can be specified if value
from external secret
shall be mounted as a
volume and connection
parameters exposed via
file; secret key can be
specified if string shall
be mapped to
environment variables

tenant POD has default
service references that
tenant service has to
access via consul
service mesh, this
parameter allow to
specify alternative
values to make consul
service names to tenant
POD local ports

Tenant Service Private Edition Guide

28

Configure the Tenant Service

Group

voice

Tenant

Tenant

Tenant

Group

Tenant

Tenant

name

sip domain

service user

Kubernetes secret
usage flags

service user password

purpose

provide sip
communication domain
for voice /sbc
integration

provide name of service
user account

indicate usage of
Kubernetes secrets to
keep tenant service
account password

either direct value or
references to a secret
name and key that hold
values, depends on
relevant Kubernetes
secret flag and
Kubernetes secret env
map flag

Scalability and redundancy parameters

name

node count

master location

purpose

manage number of
nodes deployed per
service instance

manage location where
master (writable) tenant
node can be found for
multi-regional
deployments

comments

allocated for service
mesh.

customize SIP URI used
to deliver between
tenant and core voice
platform and / or SBC

this account is being
used to manage all
parts of tenant service
provisioning and is
created at bootstrap

these parameters
control how password
for internal admin
account is being
accessed service. direct
value is supported for
testing purposes; secret
name can be specified if
password from external
secret shall be mounted
as a volume and
password exposed as a
file; secret key can be
specified if password
shall be mapped to
environment variables

comment

by default service
instance is being
deployed with single
node. if local high
availability is required,
additional nodes can be
added to as service by
value of this parameter
and re-running
deployment

by default tenant
service is deployed as
master, and expects to
have writable local
database backend
accessible at its
location, this parameter
is required when

Tenant Service Private Edition Guide

29

Configure the Tenant Service

Group

Group

postgres

postgres

consul

name

purpose

Extended parameters

name

main volume mounts for
backend secrets

init volume mounts for
backend secrets

main volume mounts for
consul token

purpose

specify volumes and
volume mounts for main
tenant container that
reference secrets to
bound

specify volumes and
volume mounts for init
containers (which are
started as part of tenant
onboarding and require
secrets to operate)

specify volume mounts
for main container to
bound for consul access
creds

comment

deploying additional
regions of the same
tenant at other locations
and its content should
match with the name of
consul datacenter
where master tenant
nodes are deployed. it
shall be set the same
across all locations

comment

usage of volumes and
volume mounts
depends on backend
parameters selected as
part of backend
provisioning. volumes
and mounts need to be
specified if backend
secrets are provisioned
to come from secrets
mapped as file
systems. Note: Tenant
has only one set of
volume and
volumeMounts entries in
parameters overrides,
all volumes for all
purposes must be
concatenated into one
entry

Similar to volumes/
mounts of main tenant
container. Note: Tenant
has only one set of
initVolumes and
initVolumeMounts
entries in parameters
overrides, all volumes
for all purposes must be
concatenated into one
entry.

usage of volumes and
volume mounts
depends on backend
parameters selected as
part of consul
provisioning. Volumes
and mounts need to be
specified if consul token
is being provisioned
from secret mapped as

Tenant Service Private Edition Guide

30

Configure the Tenant Service

Group

consul

redis

kafka

name

init volume mounts for
consul token

Configure Kubernetes

For information, see the following resources:

e QOverride Helm chart values

e Configure security

e Configure service-specific secrets

* Deploy Tenant Service

Configure security

purpose

specify volume mounts
for main container to
bound for consul access
creds

comment

file systems. Note:
Tenant has only one set
of volume and
volumeMounts entries in
parameters overrides,
all volumes for all
purposes must be
concatenated into one
entry

Similar to volumes/
mounts of main tenant
container. Tenant has
only one set of
initVolumes and
initVolumeMounts
entries in parameters
overrides, all volumes
for all purposes must be
concatenated into one
entry.

Only main container
needs to be bound

Only main container
needs to be bound

Before you deploy the Tenant Service, be sure to read Security Settings in the Setting up Genesys
Multicloud CX Private Edition guide.

Security context configuration

By default, the user and group IDs are set in the values.yaml file as 500:500:500, meaning the

genesys user.

Tenant Service Private Edition Guide

31

Configure the Tenant Service

containerSecurityContext:

primaryApp containers' Security Context

ref: https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-
security-context-for-a-container

Containers should run as genesys user and cannot use elevated permissions

readOnlyRootFilesystem: false

runAsNonRoot: true

base/centos7 uses uid=500

runAsUser: 500

runAsGroup: 500

securityContext:
ref: https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-
security-context-for-a-pod
fsGroup is only valid at pod level
fsGroup: 500

Arbitrary UIDs in OpenShift

If you want to use arbitrary UIDs in your OpenShift deployment, you must override the
securityContext settings in the values.yaml file, so that you do not define any specific IDs.

containerSecurityContext:

primaryApp containers' Security Context

ref: https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-
security-context-for-a-container

Containers should run as genesys user and cannot use elevated permissions

readOnlyRootFilesystem: false

runAsNonRoot: true

base/centos7 uses uid=500

runAsUser: null

runAsGroup: 0

securityContext:

ref: https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-
security-context-for-a-pod

fsGroup is only valid at pod level

fsGroup: null

Configure service-specific secrets
Postgres database backend

Database backend can be allocated as shared or dedicated. The Tenant Service requires a separate
database. Once deployed, secrets with details of Postgres backend parameters must be created as
follows:

kubectl create secret generic dbserver -n voice --from-literal="dbserver="
kubectl create secret generic dbname -n voice --from-literal="dbname="

kubectl create secret generic dbuser -n voice --from-literal="dbuser="

kubectl create secret generic dbpassword -n voice --from-literal="dbpassword="

Service account password

The default account that allows access to the Tenant Service config interface after initial deployment
can be supplied a password through a secret. If not provided, password will be used as a default
value (empty passwords are prohibited by the Tenant Service).

Tenant Service Private Edition Guide 32

Configure the Tenant Service

kubectl create secret generic svcuseraccount -n voice --from-literal="svcpassword="

Genesys Authentication backend secrets

Genesys Web Services (GWS)/Genesys Authentication integration requires a client ID and token to
allow the Tenant Service to register at GWS.

kubectl create secret generic gauthclientid -n voice --from-literal="clientid="

kubectl create secret generic gauthclientsecret -n voice --from-literal="clientsecret="

Tenant Service Private Edition Guide

33

Provision the Tenant Service

Provision the Tenant Service

e Administrator
Learn how to provision the Tenant Service.

Related documentation:

RSS:

* For private edition

There are no specific steps to provision Tenant Service itself. When you deploy Tenant Service or
perform an upgrade, Tenant Service provisioning is done automatically.

After you complete the deployment of Tenant Service, use Agent Setup to provision the agents, DNs,
and other objects that describe your environment and to enable features in your contact center. For
more information about Agent Setup and how to use it to provision and enable features and
functionality in your contact center, see Get started with Agent Setup.

When properly deployed, Tenant Service is immediately operational and ready to contain the
provisioning information for every feature of the platform.

Tenant Service Private Edition Guide 34

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Deploy Tenant Service

Deploy Tenant Service

Contents

e 1 Assumptions
* 2 Deployment scenarios
* 2.1 Single region/location/cluster
* 2.2 Multiple regions/locations/clusters: Basic deployment
* 3 Deploy the service
* 3.1 Prerequisites
¢ 3.2 Location-specific deployment steps
* 3.3 Service-specific deployment steps: Single service at one location
¢ 4 Samples and references

* 5 Validate the deployment

Tenant Service Private Edition Guide

35

Deploy Tenant Service

Learn how to deploy Tenant Service into a private edition environment.

Related documentation:

RSS:

e For private edition

Assumptions

e The instructions on this page assume you are deploying the service in a service-specific namespace,
named in accordance with the requirements on Creating namespaces. If you are using a single
namespace for all private edition services, replace the namespace element in the commands on this
page with the name of your single namespace or project.

e Similarly, the configuration and environment setup instructions assume you need to create namespace-
specific (in other words, service-specific) secrets. If you are using a single namespace for all private
edition services, you might not need to create separate secrets for each service, depending on your
credentials management requirements. However, if you do create service-specific secrets in a single
namespace, be sure to avoid naming conflicts.

For an overview of solution-level deployment, see the deployment tour.

Deployment scenarios

More than one deployment scenario is supported for Tenant Service, including single region,
redundant, and multi-region deployment as well as multi-Tenant deployment.

Single region/location/cluster

You deploy Tenant resources in a single Kubernetes cluster within the same or separate namespace
(project) with the Voice platform. If shared resources are being deployed across all Tenants, they must
also be added to the same target namespace.

The Tenant deployment process creates resources using a release name parameter, specified when
executing the Helm deployment step. When installed in a single namespace, you must make sure
that the release name value is distinct across all Tenants and other deployments.

Tenant Service Private Edition Guide 36

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Deploy Tenant Service

For example, you might specify the Helm release name in the format t. Optionally, if you want the
Tenant service name to match other Voice services, you can prefix the Tenant name with voice- in
the Helm release name. So, in this example, you would specify the release name as voice-t during
Helm deployment. The value for is the last four characters of the Tenant UUID that you configure in
the values.yaml file. For more information about the identification parameters for the Tenant
service, see Identification.

If you plan to use Prometheus monitoring or Fluent Bit logging framework for Tenant, you must
execute the tenant-monitor module, as described in tenant-monitor. The module enables the
following features:

¢ Prometheus PodMonitor definition for all tenant pods.

e« Common Fluent Bit framework configuration for all tenant pods.

Single Tenant: Basic deployment

Single-node deployment requires a single override file and one "tenant" module to deploy, with
reference implementation described at Single service at one location.

To increase the number of nodes, adjust the node count parameter. For more information, see
Scalability and redundancy parameters.

Upgrade

For information about upgrading Tenant Service, see Upgrade, rollback, or uninstall the Tenant
Service.

Multiple Tenants at one location: Basic deployment
You can deploy additional Tenants at the same location using the following guidelines:

e Each Tenant Service must have a unique tenant uuid, shortid, and nickname.

¢ Each Tenant Service is deployed or upgraded and adjusted independently.

Multiple regions/locations/clusters: Basic deployment

In multi-regional/multi-location deployments, one region/location is considered "master" (from the
Tenant perspective) and includes the database backend with write capabilities. Other regions/
locations have replicas of the database backend in read-only mode. A Tenant Service at each location
may be deployed to have one of its nodes running as master (write access to provisioning data
through the config API) or have all its nodes running only as replicas (read access to configuration).

Multi-regional deployments must be performed using the following steps (with prerequisites already
satisfied at each region/location):
 If required, deploy the tenant-monitor module at a location planned as a Master Tenant node.

e Complete the basic deployment of a Tenant Service in the Master region, including specification of DR
parameters for the Master, as per Scalability and redundancy parameters.

¢ Complete the deployment of the database backend with a replica of the Master database at the
location(s) where the replica Tenant nodes are expected to run, including provisioning of access keys/

Tenant Service Private Edition Guide 37

Deploy Tenant Service

secrets to access the local replica.
e If required, deploy the tenant-monitor module at location(s) where replicas are expected to run.

¢ Complete the basic Tenant deployment for additional region(s) and specify DR parameters for the
Master region (see Scalability and redundancy parameters).

The same customization scenarios described for Tenant nodes can be applied for each location
independently.

Upgrade

For information about upgrading Tenant Service, see Upgrade, rollback, or uninstall the Tenant
Service.

Deploy the service

This section provides reference commands with key parameters that are required to complete each
deployment step.

On this page, the tenant-values.yaml file refers to the values.yaml file in the Tenant Helm chart.
Likewise, the tenant-monitor-values.yaml file refers to the values.yaml file in the Tenant Monitor
Helm chart.

Prerequisites

* Read Before you begin for the full list of prerequisites required to deploy the Tenant Service.
¢ Mandatory parameter values for basic installation are:

e tenant uuid (v4)

¢ tenant nickname (becomes a Helm release name)

* all backend parameters (along with all secrets that may be required based on these parameters)

* Before proceeding with the Tenant Service deployment, ensure you have completed procedures in the
Configure security section of this guide.

e Ensure you have configured all required overrides in the Helm chart values.yaml files, including
specifying the correct SIP domain. For information, see Override Helm chart values.

Tenant Service Private Edition Guide 38

Deploy Tenant Service

Location-specific deployment steps

tenant-monitor

Monitoring/logging shared configuration and infrastructure deployment:

helm upgrade --install --force --wait --timeout 600s -n voice tenant-monitor https:///tenant-
monitor-$TENANT MANIFEST VERSION.tgz --username "$JFROG USER" --password "$JFROG PASSWORD"

To enable Prometheus monitoring, you can use the following overrides with tenant-monitor. Use the
following changes in the tenant-monitor-values.yaml file to implement the changes:

prometheus:
podMonitor:
create: "true"

To enable Fluent Bit to send additional logs to stdout in json format (for selected Tenant functions,
such as configuration audit) and/or raw format (such as from internal applications such as StatServer
and URS), modify the following changes to upgrade tenant-monitor. Use the following changes in the
tenant-monitor-values.yaml file to implement the changes.

fluent:
enable: "true"
rawlogs:
stdout:
enable: "true"
jsonlogs:
stdout:
enable: "true"

To enable RWX Persistent Volume Claim (PVC) in tenant-monitor to store Tenant logs shared across all
Tenant pods, make the following modifications to override values in the tenant-monitor-
values.yaml file:

tenant:
logging:
volume:

enabled: "true"
createSC: "false"
createpvClaim: "true"
logClaim: "tenant-logs-pvc"
logClaimSize: "5Gi"
logStorageClass: ""
Storageprovisioner: "TBD OC provisioner
parameters: {}

RWX PV is disabled by default; no overrides are required in the tenant-monitor-values.yaml file to
disable it.

Service-specific deployment steps: Single service at one location

A PostgreSQL database must be available for the Tenant Service before you begin the service
deployment. For more information about the database requirements, see Third-party prerequisites. In
addition, after the PostgreSQL database is deployed and before you deploy the Tenant Service, you
must configure secrets that contain values for certain PostgreSQL database parameters. To configure

Tenant Service Private Edition Guide 39

Deploy Tenant Service

the secrets, see Service-specific secrets.

Use the following template if you are deploying with the tenant Helm chart. A single-service
deployment can be implemented with the following sample parameters in the tenant-values.yaml
file:

##UUID 4 format (Set a new UUID for new tenant deployment)
tenantid:

serviceAccount:
create: true

images:
imagePullSecrets: mycred
registry:
pullPolicy: Always
tenant:
tag:

pgdbInit:
tag:

rcsInit:
tag:
enable: "true"

pulselnit:
tag:
enable: "true"
pulseMode: "setup"

tenant:
general:
upstreamServices: voice-sipfe:9101,voice-config:9100,ixn-server-{{ $.Values.tenantid
}}:7120,ixn-vgnode-{{ $.Values.tenantid }}:7122"
pgdb:
dbhost: "/opt/genesys/dbserver/dbserver"
dbuser: "/opt/genesys/dbuser/dbuser"
dbname: "/opt/genesys/dbname/dbname"
securityContext:
fsGroup: 0

logging
volumes:
logPvc:
enabled: "true"
logClaimSize: "5Gi"
accessModes: "ReadWriteOnce"

logStorageClass: "" #Replace the storage class with a relevant storage class for
the cluster type

mounts:
log:
- name: log
mountPath: /opt/genesys/logs/volume
- name: log
mountPath: /logs
secrets:

Tenant Service Private Edition Guide 40

Deploy Tenant Service

pgdb:
pwd:
secretName: "/opt/genesys/dbpassword/dbpassword"
secretKey: "dbpassword"
volumes: |
- name: dbpassword
secret:
secretName: dbpassword
- name: dbserver
secret:
secretName: dbserver
- name: dbname
secret:
secretName: dbname
- name: dbuser
secret:
secretName: dbuser
mounts:
- name: dbpassword
readOnly: true
mountPath: "/opt/genesys/dbpassword"
- name: dbserver
readOnly: true
mountPath: "/opt/genesys/dbserver"
- name: dbname
readOnly: true
mountPath: "/opt/genesys/dbname"
- name: dbuser
readOnly: true
mountPath: "/opt/genesys/dbuser"

consul:
acl:

secretName: "/opt/genesys/consul-shared-secret/consul-consul-voice-token"

volumes:
- name: consul-shared-secret
secret:
secretName: consul-voice-token
mounts:
- name: consul-shared-secret
readOnly: true
mountPath: "/opt/genesys/consul-shared-secret"

redis:
configPwd:
secretName: "/opt/genesys/redis-config-secret/redis-config-state"
volumes:
- name: redis-config-secret
secret:
secretName: redis-config-token
mounts:
- name: redis-config-secret
readOnly: true
mountPath: "/opt/genesys/redis-config-secret"
streamPwd:
secretName: "/opt/genesys/redis-tenant-secret/redis-tenant-stream"
volumes:
- name: redis-tenant-secret
secret:
secretName: redis-tenant-token
mounts:

- name: redis-tenant-secret
readOnly: true

Tenant Service Private Edition Guide

41

Deploy Tenant Service

mountPath: "/opt/genesys/redis-tenant-secret"

kafka:
pwd:
secretName: "/opt/genesys/kafka-secrets/kafka-secrets
volumes:
- name: kafka-secrets
secret:
secretName: kafka-secrets-token
mounts:
- name: kafka-secrets
mountPath: "/opt/genesys/kafka-secrets"
gws:
user:
secretName: "/opt/genesys/gauth-client-id/clientid"
pwd:
secretName: "/opt/genesys/gauth-client-token/clientsecret"
volumes:
- name: gauth-client-id
secret:
secretName: gauthclientid
- name: gauth-client-token
secret:
secretName: gauthclientsecret
mounts:
- name: gauth-client-id
readOnly: true
mountPath: "/opt/genesys/gauth-client-id"
- name: gauth-client-token
readOnly: true
mountPath: "/opt/genesys/gauth-client-token"

redis:
isCluster: true

In addition, use the following deployment command:

helm upgrade --install --force --wait --timeout 600s -n voice -f ./tenant-node-values.yaml t \
https:///tenant-.tgz \
--username "$JFROG USER" --password "$JFROG PASSWORD"

The preceding deployment will create a Tenant with the password of the service account set up
explicitly and without enabling GWS integration. See Samples and references for values that allow
you to reset the Tenant password upon deployment using a pre-generated value from the secret and
to enable automated GWS integration.

Samples and references

Enabling a service admin password (the secret should be created as described in the Service account
password section):

tenant:
serviceuser: "default"
svcpwdSecretName: "/opt/genesys/service-user-account/svcpassword"

Tenant Service Private Edition Guide 42

Deploy Tenant Service

volumes: |
- name: service-user-account
secret:
secretName: svcuseraccount
volumeMounts: |

- name: service-user-account
readOnly: true

mountPath: "/opt/genesys/service-user-account"

initVolumeMounts: |
- name: service-user-account
readOnly: true

mountPath: "/opt/genesys/service-user-account"

To enable stdout log output for all Tenant components, make the following modifications to override

values in the tenant-values.yaml file.

images
fbregistry: fluent/fluent-bit

fluentBit:
enable: "true"
name: json-sidecar
tag: 1.8.x

fluentBitUrs:
enable: "true"
name: stdouturs-sidecar
tag: 1.8.x

fluentBitSs:
enable: "true"
name: stdoutss-sidecar
tag: 1.8.x

fluentBitOcs:
enable: "true"
name: stdoutocs-sidecar
tag: 1.8.x

fluentBitCs:
enable: "true"
name: stdoutcs-sidecar
tag: 1.8.x

tenant:

logging:
volumes:
log:
- name: log
jsonlLog:
- name: fluent-logs
emptyDir: {}
stdoutUrsLog:
- name: fluenturs-logs
emptyDir: {}
stdoutOcslLog:
- name: fluentocs-logs
emptyDir: {}
stdoutSslLog:

Tenant Service Private Edition Guide

43

Deploy Tenant Service

- name: fluentss-logs
emptyDir: {}
stdoutCslLog:
- name: fluentcs-logs
emptyDir: {}
fluentBconfigmap:
- configMap:
defaultMode: 420
name: tenants-fluent-bit-config
name: tenants-fluent-bit-config
fluentBconfigmapCs:
- configMap:
defaultMode: 420
name: tenants-fluent-bit-config-cs
name: tenants-fluent-bit-config-cs
fluentBconfigmapSs:
- configMap:
defaultMode: 420
name: tenants-fluent-bit-config-ss
name: tenants-fluent-bit-config-ss
fluentBconfigmapOcs:
- configMap:
defaultMode: 420
name: tenants-fluent-bit-config-ocs
name: tenants-fluent-bit-config-ocs
fluentBconfigmapUrs:
- configMap:
defaultMode: 420
name: tenants-fluent-bit-config-urs
name: tenants-fluent-bit-config-urs

mounts:
log:
- name: log
mountPath: /opt/genesys/logs/volume
- name: log
mountPath: /logs
jsonlLog:

- name: fluent-logs
mountPath: "/opt/genesys/logs/JSON"
stdoutUrslLog:
- name: fluenturs-logs
mountPath: "/opt/genesys/logs/URS"
stdoutSslLog:
- name: fluentss-logs
mountPath: "/opt/genesys/logs/SS"
stdoutOcslLog:
- name: fluentocs-logs
mountPath: "/opt/genesys/logs/0CS"
stdoutCslLog:
- name: fluentcs-logs
mountPath: "/opt/genesys/logs/confserv"

fbJsonLog:
- name: fluent-logs
mountPath: "/mnt/logs"
fbstdoutUrsLog:
- name: fluenturs-logs
mountPath: "/mnt/logs"
fbstdoutSsLog:
- name: fluentss-logs
mountPath: "/mnt/logs"
fbstdoutOcsLog:
- name: fluentocs-logs

Tenant Service Private Edition Guide

44

Deploy Tenant Service

mountPath: "/mnt/logs"
fbstdoutCsLog:
- name: fluentcs-logs
mountPath: "/mnt/logs"

fluentBconfigmap:
- mountPath: /fluent-bit/etc/
name: tenants-fluent-bit-config
fluentBconfigmapCs:
- mountPath: /fluent-bit/etc/
name: tenants-fluent-bit-config-cs
fluentBconfigmapSs:
- mountPath: /fluent-bit/etc/
name: tenants-fluent-bit-config-ss
fluentBconfigmapOcs:
- mountPath: /fluent-bit/etc/
name: tenants-fluent-bit-config-ocs
fluentBconfigmapUrs:
- mountPath: /fluent-bit/etc/
name: tenants-fluent-bit-config-urs

You can deploy Persistent Volume/Persistent Volume Claim (PV/PVC) in two ways:

1. Enable ReadWriteOnce (RWO) from the tenant Helm chart, which maintains unique PVCs for each pod/
replica from the same Tenant.

2. Enable ReadWriteMany (RWX) from the tenant-monitor Helm chart, which has multiple Tenant pods
sharing the same PVC.

To enable RWO PV/PVC logging from individual Tenant pods in Statefulset, make the following
modifications to override the values in the tenant-values.yaml file. RWO Persistent Volume is
disabled by default.

logging
volumes:
logPvc:
enabled: "true"
logClaimSize: "5Gi"
accessModes: "ReadWriteOnce"

logStorageClass: "" #Replace the storage class that's relevant to the Openshift
Cluster

Enabling GWS integration (the secret should be created as described in the Genesys Authentication
backend secrets section):

tenant:

gws:
enable: Enable GWS registeration about tenant
tls: Enable/Disable Secure connection to GWS
authEndpoint: GWS auth end point
envEndpoint: GWS env end point for Registeration
db: Pass DB infromation for GWS to connect to PSQL DB for read and store data
enable: "true"
tls: false
authEndpoint: "gauth-auth.gauth.svc.cluster.local"
envEndpoint: ""
db:
enable: "false"
read: "false"

Tenant Service Private Edition Guide 45

Deploy Tenant Service

init: "false"

secrets:
gws

enabled: true
user:

secretName: "/opt/genesys/gauth-client-id/clientid"
pwd:

secretName: "/opt/genesys/gauth-client-token/clientsecret"
volumes:

- name: gauth-client-id

secret:

secretName: gauthclientid
- name: gauth-client-token
secret:
secretName: gauthclientsecret
mounts:
- name: gauth-client-id
readOnly: true
mountPath: "/opt/genesys/gauth-client-id"
- name: gauth-client-token
readOnly: true
mountPath: "/opt/genesys/gauth-client-token"

To mount the PVC to store Tenant logs, make the following modifications to override the values in the

tenant-values.yaml file:

tenant:

logging:
mounts:
log:
- name: log
mountPath: /opt/genesys/logs/volume
- name: log
mountPath: /logs

Validate the deployment

Content coming soon

Tenant Service Private Edition Guide

46

Upgrade, roll back, or uninstall Tenant Service

Upgrade, roll back, or uninstall Tenant
Service

Contents

e 1 Supported upgrade strategies
* 1.1 Single region/location/cluster

* 1.2 Multiple regions/locations/clusters

2 Backend upgrade
e 3 Timing

* 3.1 Scheduling considerations
* 4 Monitoring

* 5 Preparatory steps

6 Rolling Update
* 6.1 Rolling Update: Upgrade
* 6.2 Rolling Update: Verify the upgrade
* 6.3 Rolling Update: Rollback
* 6.4 Rolling Update: Verify the rollback

¢ 7 Uninstall

Tenant Service Private Edition Guide

47

Upgrade, roll back, or uninstall Tenant Service

Learn how to upgrade, roll back, or uninstall Tenant Service.

Related documentation:

RSS:

e For private edition

The instructions on this page assume you have deployed the services in service-
specific namespaces. If you are using a single namespace for all private edition
services, replace the namespace element in the commands on this page with the
name of your single namespace or project.

Supported upgrade strategies

Tenant Service supports the following upgrade strategies:

Service Upgrade Strategy Notes

Tenant Service Rolling Update

For a conceptual overview of the upgrade strategies, refer to Upgrade strategies in the Setting up
Genesys Multicloud CX Private Edition guide.

Tenant Service uses a rolling upgrade process. When multiple Tenant nodes are deployed, you can
perform an upgrade to your existing deployment without causing a complete service outage. Tenant
instances are rolled over, one by one, affecting only a portion of your agents each time.

Upgrading the master Tenant instance (node "0", which is responsible for write access to the

provisioning data) causes a temporary degradation of functionality with no write access until
instance "0" is restored.

Single region/location/cluster

Genesys recommends performing a backup of the backend database for Tenant Service before
upgrading.

Tenant Service Private Edition Guide 48

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Upgrade, roll back, or uninstall Tenant Service

To perform an upgrade, follow the deployment process - use the same helm upgrade command and
the same mandatory parameters. Remember to update the Tenant image(s) and Helm charts version
tags in the values.yaml file. The upgrade is performed automatically, one node at a time (if node

count is > 1). When you upgrade the primary node, the Tenant configuration updates automatically.

For information about the deployment process, see Deployment scenarios and Deploy the service.
Multiple regions/locations/clusters

Genesys recommends performing a backup of the backend database for Tenant Service before you
upgrade the master region.

To perform an upgrade, follow the deployment process - use the same helm upgrade command and
the same mandatory parameters. Remember to update the Tenant image(s) and Helm charts version
tags in the values.yaml file for every location. When you upgrade the master node in the master
region, the Tenant configuration updates automatically.

For information about the deployment process, see Deployment scenarios and Deploy the service.

Backend upgrade

When you perform an upgrade to Tenant Service, Tenant Service provisioning is done automatically,
as part of the helm upgrade step. There is no need to make any provisioning changes, unless noted
in Release Notes for a particular version.

If you must perform an upgrade or maintenance to the database management system (DBMS) that
Tenant Service uses to store its provisioning data, then the DBMS upgrade or maintenance can be
performed in place, separate from Tenant Service. Perform the DBMS upgrade according to the
vendor's instructions, making sure that:

e Tenant Service is disconnected from the backend during maintenance, and

¢ you specify the same parameters that were provisioned during the Tenant Service upgrade in order for
Tenant Service to access the updated database.

Be aware that the Tenant Service is in a degraded state (no write access to provisioning) during the
database upgrade.

If the database upgrade involves moving to a new DBMS instance with new parameters, then you
trigger this as part of the Tenant Service upgrade. Both the new database and the new values for the
database parameters (specified in the values.yaml file used for the helm upgrade step) must be
ready and available before you trigger the Tenant Service upgrade.

If you're performing an upgrade or maintenance to the Redis backend that is shared with the core
Voice platform, and you require a change to the Redis connection parameters, first scale Tenant
Service down to a single instance (setting the replicaCount parameter in the values.yaml file),
then perform the Redis backend maintenance or upgrade, and finally, trigger a restart of the Tenant
Service. After that's complete, you can scale up Tenant Service again.

Tenant Service Private Edition Guide 49

Upgrade, roll back, or uninstall Tenant Service

Timing

A regular upgrade schedule is necessary to fit within the Genesys policy of supporting N-2 releases,
but a particular release might warrant an earlier upgrade (for example, because of a critical security
fix).

If the service you are upgrading requires a later version of any third-party services, upgrade the third-
party service(s) before you upgrade the private edition service. For the latest supported versions of
third-party services, see the Software requirements page in the suite-level guide.

Scheduling considerations

Genesys recommends that you upgrade the services methodically and sequentially: Complete the
upgrade for one service and verify that it upgraded successfully before proceeding to upgrade the
next service. If necessary, roll back the upgrade and verify successful rollback.

Monitoring

Monitor the upgrade process using standard Kubernetes and Helm metrics, as well as service-specific
metrics that can identify failure or successful completion of the upgrade (see Observability in Tenant
Service).

Genesys recommends that you create custom alerts for key indicators of failure — for example, an
alert that a pod is in pending state for longer than a timeout suitable for your environment. Consider
including an alert for the absence of metrics, which is a situation that can occur if the Docker image
is not available. Note that Genesys does not provide support for custom alerts that you create in your
environment.

Preparatory steps

Ensure that your processes have been set up to enable easy rollback in case an upgrade leads to
compatibility or other issues.

Each time you upgrade a service:
1. Review the release note to identify changes.

2. Ensure that the new package is available for you to deploy in your environment.

3. Ensure that your existing -values.yaml file is available and update it if required to implement changes.

Tenant Service Private Edition Guide 50

Upgrade, roll back, or uninstall Tenant Service

Rolling Update

Rolling Update: Upgrade

Execute the following command to upgrade :

helm upgrade --install -f -values.yaml -n

Tip: If your review of Helm chart changes (see Preparatory Step 3) identifies that the only update you
need to make to your existing -values.yaml file is to update the image version, you can pass the
image tag as an argument by using the - -set flag in the command:

helm upgrade --install -f -values.yaml --set .image.tag=

When you perform an upgrade to Tenant Service, Tenant Service provisioning is done automatically,
as part of the helm upgrade step. There is no need to make any provisioning changes, unless noted
in Release Notes for a particular version.

Rolling Update: Verify the upgrade

Follow usual Kubernetes best practices to verify that the new service version is deployed. See the
information about initial deployment for additional functional validation that the service has
upgraded successfully.

Rolling Update: Rollback

Execute the following command to roll back the upgrade to the previous version:
helm rollback

or, to roll back to an even earlier version:

helm rollback

Alternatively, you can re-install the previous package:

1. Revert the image version in the .image.tag parameter in the -values.yaml file. If applicable, also
revert any configuration changes you implemented for the new release.

2. Execute the following command to roll back the upgrade:
helm upgrade --install -f -values.yaml

Tip: You can also directly pass the image tag as an argument by using the --set flag in the
command:

helm upgrade --install -f -values.yaml --set .image.tag=

Rolling Update: Verify the rollback

Verify the rollback in the same way that you verified the upgrade (see Rolling Update: Verify the
upgrade).

Tenant Service Private Edition Guide 51

Upgrade, roll back, or uninstall Tenant Service

Uninstall

Warning

Genesys recommends that you contact Genesys Customer Care before uninstalling
any private edition services, particularly in a production environment, to ensure that
you understand the implications and to prevent unintended consequences arising
from, say, unrecognized dependencies or purged data.

Execute the following command to uninstall :

helm uninstall -n

Uninstalling a service removes all Kubernetes resources associated with that service.

Tenant Service Private Edition Guide

52

Observability in Tenant Service

Observability in Tenant Service

Contents

e 1 Monitoring
* 1.1 Enable monitoring
¢ 1.2 Configure metrics
e 2 Alerting

* 2.1 Configure alerts

¢ 3 Logging

Tenant Service Private Edition Guide

53

Observability in Tenant Service

Learn about the logs, metrics, and alerts you should monitor for Tenant Service.

Related documentation:

RSS:

e For private edition

Monitoring

Private edition services expose metrics that can be scraped by Prometheus, to support monitoring
operations and alerting.

e As described on Monitoring overview and approach, you can use a tool like Grafana to create
dashboards that query the Prometheus metrics to visualize operational status.

e As described on Customizing Alertmanager configuration, you can configure Alertmanager to send
notifications to notification providers such as PagerDuty, to notify you when an alert is triggered
because a metric has exceeded a defined threshold.

The services expose a number of Genesys-defined and third-party metrics. The metrics that are

defined in third-party software used by private edition services are available for you to use as long as
the third-party provider still supports them. For descriptions of available Tenant Service metrics, see:

¢ Tenant Service metrics

See also System metrics.

Tenant Service supports various metrics in Prometheus format, exposed via a dedicated endpoint.

Enable monitoring

Tenant Service deployment supports the creation of a Prometheus monitor resource in order to
scrape the monitoring endpoint; this feature is disabled by default. For information about the
parameters that enable a Prometheus monitoring resource, see Monitoring and observability.

. CRD or Endpoint/ Metrics update
Service annotations? Port Selector interval
Tenant Service PodMonitor 15000 /metrics 30 seconds

Tenant Service Private Edition Guide 54

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Observability in Tenant Service

CRD or Port Endpoint/ Metrics update

rvi . L
RT3 annotations? Selector interval

(Applicable for any
metric(s) that
Tenant Service
exposes. The
update interval is
not a property of
the metric; itis a
property of the
optional
PodMonitor that
you can create.)

(http://:15000/
metrics)

Configure metrics

The metrics that are exposed by the Tenant Service are available by default. No further configuration
is required in order to define or expose these metrics. You cannot define your own custom metrics.

The Metrics pages linked to above show some of the metrics the Tenant Service exposes. You can also
query Prometheus directly or via a dashboard to see all the metrics available from the Tenant Service.

Alerting

Private edition services define a number of alerts based on Prometheus metrics thresholds.

You can use general third-party functionality to create rules to trigger alerts based on
metrics values you specify. Genesys does not provide support for custom alerts that
you create in your environment.

For descriptions of available Tenant Service alerts, see:

e Tenant Service alerts

Configure alerts

Private edition services define a number of alerts by default (for Tenant Service, see the pages linked
to above). No further configuration is required.

The alerts are defined as PrometheusRule objects in a prometheus-rule.yaml file in the Helm
charts. As described above, Tenant Service does not support customizing the alerts or defining
additional PrometheusRule objects to create alerts based on the service-provided metrics.

Tenant Service Private Edition Guide 55

Observability in Tenant Service

Logging

The Tenant Service Helm Chart values.yaml files include the following configurable log volume
options:

Persistent Volume Claim (PVC) with RWX storage: This creates a shared RWX volume in tenant-monitor;

this volume is then claimed across all pods of all tenants. For more information, see tenant-monitor and
Samples and references.

Persistent Volume (PV)/PVC with RWO storage for logging from individual Tenant pods: Mount the PVC
from the Tenant StatefulSet volume claim template, instead of using tenant-monitor. For more
information about Statefulsets, see Statefulsets in the Kubernetes documentation.

For more information about the Tenant Service RWO PV/PVC log volume configuration, see tenant-
monitor and Samples and references.

Ephemeral volume (emptyDir) with a Fluent Bit logging sidecar that tails log files and sends them to
standard output (stdout). The optional log forwarding to stdout is disabled by default. To enable the log
forwarding option, see tenant-monitor.
For general information about forwarding logs from internal components to stdout, see Sidecar
processed logging in the Genesys Multicloud CX Private Edition Operations guide.

Tenant Service Private Edition Guide 56

Tenant Service metrics and alerts

Tenant Service metrics and alerts

Contents

e 1 Metrics

e 2 Alerts

Tenant Service Private Edition Guide

57

Tenant Service metrics and alerts

Find the metrics Tenant Service exposes and the alerts defined for Tenant Service.

Related documentation:

RSS:

e For private edition

Service b or Port
annotations?
Tenant Service PodMonitor 15000

See details about:

e Tenant Service metrics

¢ Tenant Service alerts

Metrics

Endpoint/Selector

/metrics

(http://:15000/metrics)

Metrics
update
interval

30 seconds
(Applicable for
any metric(s)
that Tenant
Service
exposes. The
update interval
is not a property
of the metric; it
is a property of
the optional
PodMonitor that
you can create.)

You can query Prometheus directly to see all the metrics that the Tenant Service exposes. The
following metrics are likely to be particularly useful. Genesys does not commit to maintain other

currently available Tenant Service metrics not documented on this page.

Metric and description
tenant_service_health_level Unit: N/A

Metric details
Health

Indicator of

Tenant Service Private Edition Guide

58

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Tenant Service metrics and alerts

Metric and description Metric details Indicator of

Health level of the tenant node. Values
are -1 (fail), O (starting), 1 (degraded), 2
(pass).

When the value is 2, the tenant Tenant
Service node is fully functional.

When the value is 1, the tenant might
have issues with some of its internal
functions and external dependencies, but
is still capable of providing

some services. When a value of 1 is
reported, additional investigation is
needed, via tenant logs, to troubleshoot
and recover.

Type: gauge
Label:
Sample value: 2

A value of 0 or -1 indicates an inoperable
node, either pending start or it has failed.

Alerts

If you enable a Tenant PodMonitor to expose the Tenant health metric, then you
can create a basic alert rule for the Tenant Service using a template like the
following:

apiVersion: monitoring.coreos.com/vl
kind: PrometheusRule
metadata:
name: "custom-tenant-alert-rules"
spec:
- alert: HealthFailFor5min
expr: (max by (tenant) (tenant service health level{namespace="",6pod=~""}))

Enter your values where there are placeholders in the preceding template; the
placeholders are:

Values are based on how you deployed tenant(s); in other words, what you used for override values.

No alerts are defined for Tenant Service.

Tenant Service Private Edition Guide

59

	Tenant Service Private Edition Guide
	Table of Contents
	About the Tenant Service
	Architecture
	High availability and disaster recovery
	Before you begin
	Configure the Tenant Service
	Provision the Tenant Service
	Deploy Tenant Service
	Upgrade, roll back, or uninstall Tenant Service
	Observability in Tenant Service
	Tenant Service metrics and alerts

