
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Tenant Service Private Edition Guide

2/8/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
Overview

About the Tenant Service 6
Architecture 8
High availability and disaster recovery 14

Configure and deploy
Before you begin 15
Configure the Tenant Service 20
Provision the Tenant Service 34
Deploy Tenant Service 35

Upgrade, roll back, or uninstall
Upgrade, roll back, or uninstall Tenant Service 47

Observability
Observability in Tenant Service 53
Tenant Service metrics and alerts 57

Contents

• 1 Overview
• 2 Configure and deploy
• 3 Upgrade, roll back, or uninstall
• 4 Observability

Tenant Service Private Edition Guide 3

Find links to all the topics in this guide.

Related documentation:
•
•
•
•

RSS:

• For private edition

The Tenant Service is a service available with the Genesys Multicloud CX private edition offering. The
Tenant Service is included with the Voice Microservices, however there is a separate Private Edition
Guide for the Voice Services. For information about the Voice Services, including provisioning,
configuration, and deployment information, see the Voice Microservices Private Edition Guide.

Overview
Learn more about the Tenant Service, its architecture, and how to support high availability and
disaster recovery.

• About the Tenant Service
• Architecture
• High availability and disaster recovery

Configure and deploy
Find out how to configure and deploy the Tenant Service.

• Before you begin
• Configure the Tenant Service
• Provision the Tenant Service
• Deploy Tenant Service

Tenant Service Private Edition Guide 4

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Upgrade, roll back, or uninstall
Find out how to upgrade, roll back, or uninstall Tenant services and to migrate the database.

• Upgrade, roll back, or uninstall Tenant Service

Observability
Learn how to monitor the Tenant Service with metrics and logging.

• Observability in Tenant Service
• Tenant Service metrics and alerts

Tenant Service Private Edition Guide 5

About the Tenant Service

Contents

• 1 Supported Kubernetes platforms
• 2 Service description

About the Tenant Service

Tenant Service Private Edition Guide 6

Learn about the Tenant Service and how it works in Genesys Multicloud CX private edition.

Related documentation:
•
•
•
•
•

RSS:

• For private edition

Supported Kubernetes platforms

Voice Tenant Service is supported on the following Kubernetes platforms:

• Azure Kubernetes Service (AKS)
• Google Kubernetes Engine (GKE)
• OpenShift Container Platform (OpenShift)

See the Voice Microservices Release Notes for information about when support was introduced.

Service description

The Voice Tenant Service is included with the Voice Microservices and is a core service of the Genesys
Multicloud CX platform. The Tenant Service is an application layer between front-end Genesys
Multicloud CX solutions and shared back-end core services in a region.

The Voice Tenant Service instances are dedicated to a tenant of the Genesys Multicloud CX platform
and provide these main functions:

• Provisioning of tenant resources, such as agents and DNs.
• Routing of interactions within a tenant.
• Execution of outbound campaigns for a tenant.
• Providing call control functionality.
• Participation in the authentication workflow for a tenant's agents.

About the Tenant Service

Tenant Service Private Edition Guide 7

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Architecture

Contents

• 1 Introduction
• 2 Architecture diagram — Connections
• 3 Connections table

Architecture

Tenant Service Private Edition Guide 8

Learn about Tenant Service architecture

Related documentation:
•
•
•
•
•

RSS:

• For private edition

Introduction

The following diagram shows an example of the high-level architecture specific to the Tenant Service.

For the high-level architecture that includes all of the Voice Microservices, see Voice Microservices
architecture.

For information about the overall architecture of Genesys Multicloud CX private edition, see the high-
level Architecture page.

See also High availability and disaster recovery for information about high availability/disaster
recovery architecture.

Architecture diagram — Connections

The numbers on the connection lines refer to the connection numbers in the table that follows the
diagram. The direction of the arrows indicates where the connection is initiated (the source) and
where an initiated connection connects to (the destination), from the point of view of Tenant Service
as a service in the network.

Architecture

Tenant Service Private Edition Guide 9

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Connections table

The connection numbers refer to the numbers on the connection lines in the diagram. The Source,
Destination, and Connection Classification columns in the table relate to the direction of the
arrows in the Connections diagram above: The source is where the connection is initiated, and the
destination is where an initiated connection connects to, from the point of view of Tenant Service as a
service in the network. Egress means the Tenant Service service is the source, and Ingress means the
Tenant Service service is the destination. Intra-cluster means the connection is between services in
the cluster.

Architecture

Tenant Service Private Edition Guide 10

/File:Pe_tenant_architecture_diagram.png
/File:Pe_tenant_architecture_diagram.png

Connection Source Destination Protocol Port Classification
Data that
travels on

this
connection

1 Billing Data
Service

Tenant
Service TCP 8888 Intra-cluster

Configuration
and
provisioning

2 Genesys
Pulse

Tenant
Service TCP 8888 Intra-cluster

Configuration
and
provisioning

3 Genesys
Pulse

Tenant
Service TCP 8000 Intra-cluster

Voice
Microservices
events

4 Interaction
Server

Tenant
Service TCP 8888 Intra-cluster

Configuration
and
provisioning

5 Tenant
Service

Interaction
Server TCP 7120 Intra-cluster

Multimedia
transactions
status

6 Interaction
Server

Tenant
Service TCP 2060 Intra-cluster

Agent status
for
multimedia

7
Genesys
Web
Services and
Applications

Tenant
Service TCP 8888

GWS
(Configuration
Service)
access to
provisioning

8
Genesys
Web
Services and
Applications

Tenant
Service TCP 8000 Intra-cluster

GWS call
control
events

9
Genesys
Web
Services and
Applications

Tenant
Service TCP 2060 Intra-cluster GWS

statistics

10
Genesys
Web
Services and
Applications

Tenant
Service TCP 5050 Intra-cluster

Outbound
campaign control through
GWS

11 Genesys
Authentication

Tenant
Service TCP 8888 Intra-cluster

Genesys
Authentication
access to
provisioning

12
Gplus
Adapters for
WFM

Tenant
Service TCP 8888 Intra-cluster

Configuration
and
provisioning

13
Gplus
Adapters for
WFM

Tenant
Service TCP 8000 Intra-cluster

Voice
Microservices
events

14 Prometheus Tenant HTTP 15000 Ingress Tenant

Architecture

Tenant Service Private Edition Guide 11

Connection Source Destination Protocol Port Classification
Data that
travels on

this
connection

Service

Service
provides
metrics for
monitoring
and alerting
with
Prometheus.

15 Tenant
Service PostgreSQL TCP 5432 Egress

Persistent
SQL storage
for
provisioning
data

16
Genesys
Engagement
Service

Tenant
Service HTTP 5580 Intra-cluster

Routing
requests and
events

17 Tenant
Service PostgreSQL TCP 5432 Egress

Persistent
storage for
outbound
campaigns
and calling
lists

18 Tenant
Service

Voice
Microservices

For
information,
see
connections
16, 27, and
32 in the
Voice
Microservices
.

19 Tenant
Service Kafka TCP 9092/9093 Egress Outbound

reporting

20 Tenant
Service Redis TCP 6379 Egress

Voice
Microservices
call control
events

21 Tenant
Service Redis TCP 6379 Egress

Tenant
configuration
and
provisioning
synchronization
for in-
memory
caching

22 Tenant
Service Redis TCP 6379 Intra-cluster

Cross-region
Voice
Microservices
call control
events in

Architecture

Tenant Service Private Edition Guide 12

Connection Source Destination Protocol Port Classification
Data that
travels on

this
connection
remote
Redis

Architecture

Tenant Service Private Edition Guide 13

High availability and disaster recovery

Find out how this service provides disaster recovery in the event the service goes down.

Related documentation:
•
•
•
•
•

RSS:

• For private edition

Service High Availability Disaster Recovery Where can you host
this service?

Tenant Service N = N (N+1) Active-spare Primary or secondary
unit

See High Availability information for all services: High availability and disaster recovery

High availability and disaster recovery

Tenant Service Private Edition Guide 14

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Before you begin

Contents

• 1 Limitations and assumptions
• 2 Download the Helm charts

• 2.1 Containers
• 2.2 Helm charts

• 3 Third-party prerequisites
• 4 Storage requirements
• 5 Network requirements
• 6 Browser requirements
• 7 Genesys dependencies

• 7.1 Specific dependencies

• 8 GDPR support

Before you begin

Tenant Service Private Edition Guide 15

Find out what to do before deploying the Tenant Service.

Related documentation:
•
•
•
•
•

RSS:

• For private edition

Limitations and assumptions

Not applicable

Download the Helm charts

For information about how to download the Helm charts, see Downloading your Genesys Multicloud
CX containers.

See Helm charts and containers for Voice Microservices for the Helm chart version you must
download for your release.

Containers
The Tenant Service has the following containers:

• Core tenant service container
• Database initialization and upgrade container
• Role and privileges initialization and upgrade container
• Solution specific: pulse provisioning container

Helm charts

• Tenant deployment
• Tenant infrastructure

Before you begin

Tenant Service Private Edition Guide 16

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Third-party prerequisites

For information about setting up your Genesys Multicloud CX private edition platform, see Software
Requirements.

The following table lists the third-party prerequisites for the Tenant Service.

Third-party services
Name Version Purpose Notes

Kafka 2.x Message bus.

Consul 1.13.x
Service discovery,
service mesh, and key/
value store.

Starting with version
100.0.100.0041, Tenant
Service supports Consul
1.10.

Redis 6.x

Used for caching. Only
distributions of Redis
that support Redis
cluster mode are
supported, however,
some services may not
support cluster mode.

PostgreSQL 11.x Relational database.

NOTE: Starting with
version 100.0.100.0041,
Tenant Service supports
PostgreSQL 11.x.

Before deploying Tenant
Service, you must provision a
PostgreSQL database for
Tenant Service using one of
the following methods:

• Create a PostgreSQL
database specifically
for use by Tenant
Service.

• Use the shared
PostgreSQL
database, which is
recommended in the
OpenShift platform.

Deploy a PostgreSQL
database using the
following commands:
helm repo add
bitnami
https://charts.bitnami.com/
bitnami

helm install -n
voice postgres

Before you begin

Tenant Service Private Edition Guide 17

https://kafka.apache.org/
https://www.consul.io/
https://redis.io/
https://www.postgresql.org/

Name Version Purpose Notes

bitnami/postgresql

During deployment, you
require the database
information, including
credentials. For the list
of database parameters
that you override in the
Tenant Helm chart
values.yaml file, see
Backend parameters in
Override Helm chart
values.

A container image
registry and Helm chart
repository

Used for downloading
Genesys containers and
Helm charts into the
customer's repository to
support a CI/CD
pipeline. You can use
any Docker OCI
compliant registry.

Storage requirements

For information about storage requirements for Voice Microservices, including the Tenant Service, see
Storage requirements in the Voice Microservices Private Edition Guide.

Network requirements

For general network requirements, review the information on the suite-level Network settings page.

Browser requirements

Not applicable

Genesys dependencies

For detailed information about the correct order of services deployment, see Order of services
deployment.

The following prerequisites are required before deploying the Tenant Service:

Before you begin

Tenant Service Private Edition Guide 18

• Voice Platform and all its external dependencies must be deployed before proceeding with the Tenant
Service deployment.

• PostgreSQL 10 database management system must be deployed and database shall be allocated
either as a primary or replica. For more information about the sample deployment of a standalone
DBMS, see Third-party prerequisites.

In addition, if you expect to use Agent Setup or Workspace Web Edition after the tenant is deployed,
Genesys recommends that you deploy GWS Authentication Service before proceeding with the
Tenant Service deployment.

Specific dependencies
The Tenant Service is dependent on the following platform endpoints:

• GWS environment API
• Interaction service core
• Interaction service vq

The Tenant Service is dependent on the following service component endpoints:

• Voice Front End Service
• Voice Redis (RQ) Service
• Voice Config Service

GDPR support

Not applicable.

Before you begin

Tenant Service Private Edition Guide 19

Configure the Tenant Service

Contents

• 1 Override Helm chart values
• 2 Configure Kubernetes
• 3 Configure security

• 3.1 Security context configuration
• 3.2 Configure service-specific secrets

Configure the Tenant Service

Tenant Service Private Edition Guide 20

Learn how to configure the Tenant Service.

Related documentation:
•
•
•
•
•

RSS:

• For private edition

Override Helm chart values

For additional information about overriding Helm chart values, see Overriding Helm Chart values in
the Genesys Multicloud CX Private Edition Guide.

This section describes the purpose and use case for each configurable parameter in a Tenant Service
deployment.

The content in the following tables is not intended to be actual values or the names of override
options for the Helm charts; you can extract those later from the values.yaml file for each Helm
chart.

Versioning
Group Name Purpose Comments

version Tenant image versions
Target image to install;
must use same version
for all init containers.

version Roles and permissions
version

Target version of roles
and permissions to
apply.

location Image location Target registry to pull
images from.

Identification
Group Name Purpose Comments

Tenant name Nickname of the tenant.
Human-readable name.
The default value is the
Helm release name.

Configure the Tenant Service

Tenant Service Private Edition Guide 21

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Group Name Purpose Comments

Tenant uuid
Unique identifier of all
instances of the Tenant
Service.

All nodes deployed to
handle the end-
customer environment
use that UUID that is
also registered. The
last four positions of the
UUID are used as the
short Tenant ID, when
applicable.

Backend parameters
Group Name Purpose Comments

postgres database host
A reference to the
backend DBMS into
which to persist the
service.

Either a direct value or a
file path that points to a
mapped volume with
file content to be used
as the DBMS name.

postgres database user
A reference to the
backend database into
which to persist the
service.

Either a direct value or a
file path that points to a
mapped volume with
file content to be used
as the database
username.

postgres database name
A reference to the
backend database into
which to persist the
service.

Either a direct value or a
file path that points to a
mapped volume with
file content to be used
as the database name.

postgres database password
parameters

Either direct value or
reference to a secret
name and key that hold
a value; depends on
relevant Kubernetes
secret flag and
Kubernetes secret env
map flag.

These parameters
control how password is
being extracted by
service. Direct value is
supported to testing
purposes. Secret name
can be specified if
password from external
secret will be mounted
as a volume and
password exposed via
file. Secret key can be
specified if password
will be mapped to
environment variable.

postgres Kubernetes secret
usage flags

Indication of Kubernetes
secret being used to
keep password and
whenever secret shall
be mounted to env
variable or expected to
be mapped as a

Boolean values that
force use of secret
(instead of direct
database password).

Configure the Tenant Service

Tenant Service Private Edition Guide 22

Group Name Purpose Comments
volume.

postgres ssl usage specify secure
connection preferences Allow or require TLS.

consul Kubernetes secret
usage flags

indication of Kubernetes
secret being used to
keep token and
whenever secret shall
be mounted to env
variable or expected to
be mapped as a volume

boolean values that
force use of secret
(instead of direct consul
token value).

consul consul token
parameters

either direct value or
reference to a secret
name and key that hold
a value, depends on
relevant Kubernetes
secret flag and
Kubernetes secret env
map flag

these parameters
control how token is
being extracted by
service. direct value is
supported to testing
purposes; secret name
can be specified if token
from external secret
shall be mounted as a
volume and token
exposed via file; secret
key can be specified if
password shall be
mapped to environment
variable

redis Kubernetes secret
usage flags

indication of Kubernetes
secrets being used to
keep connection strings
and whenever secrets
shall be mounted to env
variables or expected to
be mapped as a
volumes

boolean values that
forces use of secret
(instead of direct
connection strings).
applicable for all type of
redis connections
supported by tenant

redis redis connection string
for tenant stream

either direct value or
reference to a secret
name and key that hold
a value, depends on
relevant Kubernetes
secret flag and
Kubernetes secret env
map flag

these parameters
control how string is
being extracted by
service. direct value is
supported for testing
purposes; secret name
can be specified if value
from external secret
shall be mounted as a
volume and connection
parameters exposed
via file; secret key can
be specified if string
shall be mapped to
environment variable

redis redis connection string
for config cache

either direct value or
reference to a secret
name and key that hold
a value, depends on
relevant Kubernetes

these parameters
control how string is
being extracted by
service. direct value is
supported for testing

Configure the Tenant Service

Tenant Service Private Edition Guide 23

Group Name Purpose Comments

secret flag and
Kubernetes secret env
map flag

purposes; secret name
can be specified if
value from external
secret shall be mounted
as a volume and
connection parameters
exposed via file; secret
key can be specified if
string shall be mapped
to environment variable

redis cluster flag type of redis backend to
connect

indicate whenever
backend for redis is
cluster or standalone
server (same is used for
all types of redis
endpoints)

kafka Kubernetes secret
usage flags

indication of Kubernetes
secrets being used to
keep connection strings
and whenever secrets
shall be mounted to env
variables or expected to
be mapped as volumes

boolean values that
force use of secret
(instead of direct
connection strings).

kafka Kafka connection string

either direct value or
reference to a secret
name and key that hold
a value, depends on
relevant Kubernetes
secret flag and
Kubernetes secret env
map flag

these parameters
control how string is
being extracted by
service. direct value is
supported for testing
purposes; secret name
can be specified if value
from external secret
shall be mounted as a
volume and connection
parameters exposed via
file; secret key can be
specified if string shall
be mapped to
environment variable

Kubernetes parameters
Group name purpose comments

Auth and Autorization Service Account

Specify non-default
service account that
shall be associated with
all PODs of a tenant
service deployment

PODs will be assigned
default account if not
specified. If required, a
separate account will be
created during tenant
deployment and set to
use by all PODs. This
could be required if
consul registration of
tenant service relies on

Configure the Tenant Service

Tenant Service Private Edition Guide 24

Group name purpose comments
tenant's POD having
Kubernetes accounts
named after tenant
service being
registered. Service
account is being created
with name matching
service name of as
tenant (as visible in
consul)

Auth and Authorization security context Adjust security context
to run with random user

If random user is used
to launch tenant
containers, an
adjustment to security
context is needed for all
tenant containers.
Tenant is running as
user 500 in group/
fsgroup 500 by default
and it may use group/
fsgroup 0 for random
user. For more
information, see
Security context
configuration.

Auth and Autorization Pod identity

specify optional
annotation to associate
with POD in order to
access Kubernetes
resources

PODs may be assigned
an ADODB identity if
needed

Scheduling pod node selector
specify optional node
pool selector for tenant
PODs

PODs can be assigned
to a specific pool, if
needed. There is no
default Kubernetes pool
selections

Scheduling pod toleration
specify optional
toleration for tenant
PODs

PODs can be set to
tolerate specific taints,
There is no default
tolerations

Scheduling affinity
enable affinity of tenant
PODs to provide high
availability

PODs of same tenant
service may be forced
to schedule in different
locations (if supported
by underlying
infrastructure) using
failure-
domain.beta.kubernetes.io/
zone annotation when
this is enabled. There is
no affinity by default.

Scheduling priority class specify optional priority
class for tenant PODs

PODS may be assigned
specific priority class;
not set by default.

Configure the Tenant Service

Tenant Service Private Edition Guide 25

Logging parameters
Group name purpose comments

logging frameworks fluentbit
Specify usage of
fluentbit for tenant
console logging

Tenant PODs won't use
fluentbit logging
solution by
default. Tenant-specific
fluentbit configuration
can be enabled when
deploying tenant-
monitor resources, and
use of fluentbit sidecar
can be enabled on
tenant PODs afterward.

logging frameworks fluentbit config

Specify config map with
fluentbit sidecar
configuration that
should be mounted as a
volume.

If fluent is enabled in
both tenant-monitor and
tenant charts, a volume-
referencing config map
shall be specified, as
below (if custom config
map is created, map
name can be set
differently)

- name: tenants-
fluent-bit-config

configMap:

name: tenants-
fluent-bit-config

logging frameworks fluentbit local storage
Specify volume and
volume mount where
fluentbit logs will
accumulate.

If fluent bit is enabled,
the following volume is
added:

- name: fluent-logs

emptyDir: {}

and volume mount:

- name: fluent-
logs

mountPath:
"/opt/genesys/logs/
JSON"

file logging logging persistent
volume

Specify usage of
persistent volumes for
logging by tenant
components that
produce log files.

Tenant PODs won't use
persistent volume
claims by default and no
storage classes are
created. Persistent

Configure the Tenant Service

Tenant Service Private Edition Guide 26

Group name purpose comments
volume claims can be
added to tenant PODs
when this is enabled.

file logging logging persistent
volume storage class

If use of persistent
volume for logging has
been enabled, storage
class can be specified
for these volumes as
needed.

If tenant PODS are set
to use persistent
volume claims, storage
class can be specified
explicitly for volume
claims. Storage class is
not specified in PVC by
default.

file logging logging storage class

if logging to persistent
volume is enabled and
storage class has been
specified explicitly then
creation of storage class
can also be enabled as
needed

tenant-specific storage
class for persistent
volumes won't get
created by default, can
be enabled when
deploying tenant-
monitor resources and
later utilized by tenant
PODs using same
storage class name.
storage class name shall
be specified for this to
work

file logging logging empty directory
default logging mount
path pointing to a
Kubernetes empty
directory volume

part of default mounts
provided for tenant
service

Monitoring and observability
Group name purpose comments

prometheus Prometheus PodMonitor
Specify if PodMonitor to
scrape Prometheus
endpoints of tenant
pods should be created.

Tenant-monitor doesn't
create PodMonitor for
Prometheus by default.
Prometheus specific
monitor can be created
as part of infrastructure
deployment when this is
enabled.

prometheus Pod level annotations Alternative to enabling
pod monitor.

Integration
Group name purpose comments

GWS GWS endpoint

specify dedicated
endpoint to register
tenant service upon
initial deployment or
upgrade

when provided, define
contact address to
reach master GWS
environment service
that should be used to

Configure the Tenant Service

Tenant Service Private Edition Guide 27

Group name purpose comments
register tenant
resources to make them
available for GWS-based
applications. by default,
endpoint isn't specified
and localhost
connection attempt will
be made by tenant
container, GWS
endpoint shall be
reachable via service
mesh upstream

GWS GWS endpoint tls mode
enable https (secure)
connection mode to
contact GWS endpoint

when endpoint is
provided, use of this
parameter forces secure
connection when
accessing GWS on that
address. NOTE: not
available in initial
release, only http
connections are
supported

GWS Kubernetes secret
usage flags

indication of Kubernetes
secrets being used to
keep client id and token
and whenever secrets
shall be mounted to env
variables or expected to
be mapped as volumes

boolean values that
force use of secret
(instead of direct client
id and token).

GWS client id and token

either direct values or
references to secret
names and keys that
hold values, depends on
relevant Kubernetes
secret flag and
Kubernetes secret env
map flag

these parameters
control how client id and
token is being extracted
by service. direct value
is supported for testing
purposes; secret name
can be specified if value
from external secret
shall be mounted as a
volume and connection
parameters exposed via
file; secret key can be
specified if string shall
be mapped to
environment variables

Service Mesh upstream services

override upstream
service references used
by tenant instance to
locate intra-service and
platform dependencies
via consul

tenant POD has default
service references that
tenant service has to
access via consul
service mesh, this
parameter allow to
specify alternative
values to make consul
service names to tenant
POD local ports

Configure the Tenant Service

Tenant Service Private Edition Guide 28

Group name purpose comments
allocated for service
mesh.

voice sip domain
provide sip
communication domain
for voice /sbc
integration

customize SIP URI used
to deliver between
tenant and core voice
platform and / or SBC

Tenant service user provide name of service
user account

this account is being
used to manage all
parts of tenant service
provisioning and is
created at bootstrap

Tenant Kubernetes secret
usage flags

indicate usage of
Kubernetes secrets to
keep tenant service
account password

Tenant service user password

either direct value or
references to a secret
name and key that hold
values, depends on
relevant Kubernetes
secret flag and
Kubernetes secret env
map flag

these parameters
control how password
for internal admin
account is being
accessed service. direct
value is supported for
testing purposes; secret
name can be specified if
password from external
secret shall be mounted
as a volume and
password exposed as a
file; secret key can be
specified if password
shall be mapped to
environment variables

Scalability and redundancy parameters
Group name purpose comment

Tenant node count
manage number of
nodes deployed per
service instance

by default service
instance is being
deployed with single
node. if local high
availability is required,
additional nodes can be
added to as service by
value of this parameter
and re-running
deployment

Tenant master location

manage location where
master (writable) tenant
node can be found for
multi-regional
deployments

by default tenant
service is deployed as
master, and expects to
have writable local
database backend
accessible at its
location, this parameter
is required when

Configure the Tenant Service

Tenant Service Private Edition Guide 29

Group name purpose comment
deploying additional
regions of the same
tenant at other locations
and its content should
match with the name of
consul datacenter
where master tenant
nodes are deployed. it
shall be set the same
across all locations

Extended parameters
Group name purpose comment

postgres main volume mounts for
backend secrets

specify volumes and
volume mounts for main
tenant container that
reference secrets to
bound

usage of volumes and
volume mounts
depends on backend
parameters selected as
part of backend
provisioning. volumes
and mounts need to be
specified if backend
secrets are provisioned
to come from secrets
mapped as file
systems. Note: Tenant
has only one set of
volume and
volumeMounts entries in
parameters overrides,
all volumes for all
purposes must be
concatenated into one
entry

postgres init volume mounts for
backend secrets

specify volumes and
volume mounts for init
containers (which are
started as part of tenant
onboarding and require
secrets to operate)

Similar to volumes/
mounts of main tenant
container. Note: Tenant
has only one set of
initVolumes and
initVolumeMounts
entries in parameters
overrides, all volumes
for all purposes must be
concatenated into one
entry.

consul main volume mounts for
consul token

specify volume mounts
for main container to
bound for consul access
creds

usage of volumes and
volume mounts
depends on backend
parameters selected as
part of consul
provisioning. Volumes
and mounts need to be
specified if consul token
is being provisioned
from secret mapped as

Configure the Tenant Service

Tenant Service Private Edition Guide 30

Group name purpose comment
file systems. Note:
Tenant has only one set
of volume and
volumeMounts entries in
parameters overrides,
all volumes for all
purposes must be
concatenated into one
entry

consul init volume mounts for
consul token

specify volume mounts
for main container to
bound for consul access
creds

Similar to volumes/
mounts of main tenant
container. Tenant has
only one set of
initVolumes and
initVolumeMounts
entries in parameters
overrides, all volumes
for all purposes must be
concatenated into one
entry.

redis Only main container
needs to be bound

kafka Only main container
needs to be bound

Configure Kubernetes

For information, see the following resources:

• Override Helm chart values
• Configure security
• Configure service-specific secrets
• Deploy Tenant Service

Configure security

Before you deploy the Tenant Service, be sure to read Security Settings in the Setting up Genesys
Multicloud CX Private Edition guide.

Security context configuration
By default, the user and group IDs are set in the values.yaml file as 500:500:500, meaning the
genesys user.

Configure the Tenant Service

Tenant Service Private Edition Guide 31

containerSecurityContext:
primaryApp containers' Security Context
ref: https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-

security-context-for-a-container
Containers should run as genesys user and cannot use elevated permissions
readOnlyRootFilesystem: false
runAsNonRoot: true
base/centos7 uses uid=500
runAsUser: 500
runAsGroup: 500

securityContext:
ref: https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-

security-context-for-a-pod
fsGroup is only valid at pod level
fsGroup: 500

Arbitrary UIDs in OpenShift

If you want to use arbitrary UIDs in your OpenShift deployment, you must override the
securityContext settings in the values.yaml file, so that you do not define any specific IDs.

containerSecurityContext:
primaryApp containers' Security Context
ref: https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-

security-context-for-a-container
Containers should run as genesys user and cannot use elevated permissions
readOnlyRootFilesystem: false
runAsNonRoot: true
base/centos7 uses uid=500
runAsUser: null
runAsGroup: 0

securityContext:
ref: https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-

security-context-for-a-pod
fsGroup is only valid at pod level
fsGroup: null

Configure service-specific secrets
Postgres database backend

Database backend can be allocated as shared or dedicated. The Tenant Service requires a separate
database. Once deployed, secrets with details of Postgres backend parameters must be created as
follows:

kubectl create secret generic dbserver -n voice --from-literal="dbserver="
kubectl create secret generic dbname -n voice --from-literal="dbname="
kubectl create secret generic dbuser -n voice --from-literal="dbuser="
kubectl create secret generic dbpassword -n voice --from-literal="dbpassword="

Service account password

The default account that allows access to the Tenant Service config interface after initial deployment
can be supplied a password through a secret. If not provided, password will be used as a default
value (empty passwords are prohibited by the Tenant Service).

Configure the Tenant Service

Tenant Service Private Edition Guide 32

kubectl create secret generic svcuseraccount -n voice --from-literal="svcpassword="

Genesys Authentication backend secrets

Genesys Web Services (GWS)/Genesys Authentication integration requires a client ID and token to
allow the Tenant Service to register at GWS.

kubectl create secret generic gauthclientid -n voice --from-literal="clientid="

kubectl create secret generic gauthclientsecret -n voice --from-literal="clientsecret="

Configure the Tenant Service

Tenant Service Private Edition Guide 33

Provision the Tenant Service

• Administrator

Learn how to provision the Tenant Service.

Related documentation:
•
•
•
•
•

RSS:

• For private edition

There are no specific steps to provision Tenant Service itself. When you deploy Tenant Service or
perform an upgrade, Tenant Service provisioning is done automatically.

After you complete the deployment of Tenant Service, use Agent Setup to provision the agents, DNs,
and other objects that describe your environment and to enable features in your contact center. For
more information about Agent Setup and how to use it to provision and enable features and
functionality in your contact center, see Get started with Agent Setup.

When properly deployed, Tenant Service is immediately operational and ready to contain the
provisioning information for every feature of the platform.

Provision the Tenant Service

Tenant Service Private Edition Guide 34

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Deploy Tenant Service

Contents

• 1 Assumptions
• 2 Deployment scenarios

• 2.1 Single region/location/cluster
• 2.2 Multiple regions/locations/clusters: Basic deployment

• 3 Deploy the service
• 3.1 Prerequisites
• 3.2 Location-specific deployment steps
• 3.3 Service-specific deployment steps: Single service at one location

• 4 Samples and references
• 5 Validate the deployment

Deploy Tenant Service

Tenant Service Private Edition Guide 35

Learn how to deploy Tenant Service into a private edition environment.

Related documentation:
•
•
•
•
•

RSS:

• For private edition

Assumptions

• The instructions on this page assume you are deploying the service in a service-specific namespace,
named in accordance with the requirements on Creating namespaces. If you are using a single
namespace for all private edition services, replace the namespace element in the commands on this
page with the name of your single namespace or project.

• Similarly, the configuration and environment setup instructions assume you need to create namespace-
specific (in other words, service-specific) secrets. If you are using a single namespace for all private
edition services, you might not need to create separate secrets for each service, depending on your
credentials management requirements. However, if you do create service-specific secrets in a single
namespace, be sure to avoid naming conflicts.

For an overview of solution-level deployment, see the deployment tour.

Deployment scenarios

More than one deployment scenario is supported for Tenant Service, including single region,
redundant, and multi-region deployment as well as multi-Tenant deployment.

Single region/location/cluster
You deploy Tenant resources in a single Kubernetes cluster within the same or separate namespace
(project) with the Voice platform. If shared resources are being deployed across all Tenants, they must
also be added to the same target namespace.

The Tenant deployment process creates resources using a release name parameter, specified when
executing the Helm deployment step. When installed in a single namespace, you must make sure
that the release name value is distinct across all Tenants and other deployments.

Deploy Tenant Service

Tenant Service Private Edition Guide 36

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

For example, you might specify the Helm release name in the format t. Optionally, if you want the
Tenant service name to match other Voice services, you can prefix the Tenant name with voice- in
the Helm release name. So, in this example, you would specify the release name as voice-t during
Helm deployment. The value for is the last four characters of the Tenant UUID that you configure in
the values.yaml file. For more information about the identification parameters for the Tenant
service, see Identification.

If you plan to use Prometheus monitoring or Fluent Bit logging framework for Tenant, you must
execute the tenant-monitor module, as described in tenant-monitor. The module enables the
following features:

• Prometheus PodMonitor definition for all tenant pods.
• Common Fluent Bit framework configuration for all tenant pods.

Single Tenant: Basic deployment

Single-node deployment requires a single override file and one "tenant" module to deploy, with
reference implementation described at Single service at one location.

To increase the number of nodes, adjust the node count parameter. For more information, see
Scalability and redundancy parameters.

Upgrade

For information about upgrading Tenant Service, see Upgrade, rollback, or uninstall the Tenant
Service.

Multiple Tenants at one location: Basic deployment

You can deploy additional Tenants at the same location using the following guidelines:

• Each Tenant Service must have a unique tenant uuid, shortid, and nickname.
• Each Tenant Service is deployed or upgraded and adjusted independently.

Multiple regions/locations/clusters: Basic deployment
In multi-regional/multi-location deployments, one region/location is considered "master" (from the
Tenant perspective) and includes the database backend with write capabilities. Other regions/
locations have replicas of the database backend in read-only mode. A Tenant Service at each location
may be deployed to have one of its nodes running as master (write access to provisioning data
through the config API) or have all its nodes running only as replicas (read access to configuration).

Multi-regional deployments must be performed using the following steps (with prerequisites already
satisfied at each region/location):

• If required, deploy the tenant-monitor module at a location planned as a Master Tenant node.
• Complete the basic deployment of a Tenant Service in the Master region, including specification of DR

parameters for the Master, as per Scalability and redundancy parameters.
• Complete the deployment of the database backend with a replica of the Master database at the

location(s) where the replica Tenant nodes are expected to run, including provisioning of access keys/

Deploy Tenant Service

Tenant Service Private Edition Guide 37

secrets to access the local replica.
• If required, deploy the tenant-monitor module at location(s) where replicas are expected to run.
• Complete the basic Tenant deployment for additional region(s) and specify DR parameters for the

Master region (see Scalability and redundancy parameters).

The same customization scenarios described for Tenant nodes can be applied for each location
independently.

Upgrade

For information about upgrading Tenant Service, see Upgrade, rollback, or uninstall the Tenant
Service.

Deploy the service

This section provides reference commands with key parameters that are required to complete each
deployment step.

On this page, the tenant-values.yaml file refers to the values.yaml file in the Tenant Helm chart.
Likewise, the tenant-monitor-values.yaml file refers to the values.yaml file in the Tenant Monitor
Helm chart.

Prerequisites

• Read Before you begin for the full list of prerequisites required to deploy the Tenant Service.
• Mandatory parameter values for basic installation are:

• tenant uuid (v4)
• tenant nickname (becomes a Helm release name)
• all backend parameters (along with all secrets that may be required based on these parameters)

• Before proceeding with the Tenant Service deployment, ensure you have completed procedures in the
Configure security section of this guide.

• Ensure you have configured all required overrides in the Helm chart values.yaml files, including
specifying the correct SIP domain. For information, see Override Helm chart values.

Deploy Tenant Service

Tenant Service Private Edition Guide 38

Location-specific deployment steps
tenant-monitor

Monitoring/logging shared configuration and infrastructure deployment:
helm upgrade --install --force --wait --timeout 600s -n voice tenant-monitor https:///tenant-
monitor-$TENANT_MANIFEST_VERSION.tgz --username "$JFROG_USER" --password "$JFROG_PASSWORD"

To enable Prometheus monitoring, you can use the following overrides with tenant-monitor. Use the
following changes in the tenant-monitor-values.yaml file to implement the changes:

prometheus:
podMonitor:

create: "true"

To enable Fluent Bit to send additional logs to stdout in json format (for selected Tenant functions,
such as configuration audit) and/or raw format (such as from internal applications such as StatServer
and URS), modify the following changes to upgrade tenant-monitor. Use the following changes in the
tenant-monitor-values.yaml file to implement the changes.

fluent:
enable: "true"
rawlogs:

stdout:
enable: "true"

jsonlogs:
stdout:

enable: "true"

To enable RWX Persistent Volume Claim (PVC) in tenant-monitor to store Tenant logs shared across all
Tenant pods, make the following modifications to override values in the tenant-monitor-
values.yaml file:

tenant:
logging:

volume:
enabled: "true"
createSC: "false"
createpvClaim: "true"
logClaim: "tenant-logs-pvc"
logClaimSize: "5Gi"
logStorageClass: ""
Storageprovisioner: "TBD OC provisioner"
parameters: {}

RWX PV is disabled by default; no overrides are required in the tenant-monitor-values.yaml file to
disable it.

Service-specific deployment steps: Single service at one location
A PostgreSQL database must be available for the Tenant Service before you begin the service
deployment. For more information about the database requirements, see Third-party prerequisites. In
addition, after the PostgreSQL database is deployed and before you deploy the Tenant Service, you
must configure secrets that contain values for certain PostgreSQL database parameters. To configure

Deploy Tenant Service

Tenant Service Private Edition Guide 39

the secrets, see Service-specific secrets.

Use the following template if you are deploying with the tenant Helm chart. A single-service
deployment can be implemented with the following sample parameters in the tenant-values.yaml
file:

##UUID 4 format (Set a new UUID for new tenant deployment)
tenantid:

serviceAccount:
create: true

images:
imagePullSecrets: mycred
registry:
pullPolicy: Always
tenant:

tag:

pgdbInit:
tag:

rcsInit:
tag:
enable: "true"

pulseInit:
tag:
enable: "true"
pulseMode: "setup"

tenant:
general:

upstreamServices: voice-sipfe:9101,voice-config:9100,ixn-server-{{ $.Values.tenantid
}}:7120,ixn-vqnode-{{ $.Values.tenantid }}:7122"

pgdb:
dbhost: "/opt/genesys/dbserver/dbserver"
dbuser: "/opt/genesys/dbuser/dbuser"
dbname: "/opt/genesys/dbname/dbname"

securityContext:
fsGroup: 0

logging
....
volumes:

logPvc:
enabled: "true"
logClaimSize: "5Gi"
accessModes: "ReadWriteOnce"
logStorageClass: "" #Replace the storage class with a relevant storage class for

the cluster type

mounts:
log:

- name: log
mountPath: /opt/genesys/logs/volume

- name: log
mountPath: /logs

secrets:

Deploy Tenant Service

Tenant Service Private Edition Guide 40

pgdb:
pwd:

secretName: "/opt/genesys/dbpassword/dbpassword"
secretKey: "dbpassword"

volumes: |
- name: dbpassword

secret:
secretName: dbpassword

- name: dbserver
secret:

secretName: dbserver
- name: dbname

secret:
secretName: dbname

- name: dbuser
secret:

secretName: dbuser
mounts:

- name: dbpassword
readOnly: true
mountPath: "/opt/genesys/dbpassword"

- name: dbserver
readOnly: true
mountPath: "/opt/genesys/dbserver"

- name: dbname
readOnly: true
mountPath: "/opt/genesys/dbname"

- name: dbuser
readOnly: true
mountPath: "/opt/genesys/dbuser"

consul:
acl:

secretName: "/opt/genesys/consul-shared-secret/consul-consul-voice-token"
volumes:

- name: consul-shared-secret
secret:

secretName: consul-voice-token
mounts:

- name: consul-shared-secret
readOnly: true
mountPath: "/opt/genesys/consul-shared-secret"

redis:
configPwd:

secretName: "/opt/genesys/redis-config-secret/redis-config-state"
volumes:

- name: redis-config-secret
secret:

secretName: redis-config-token
mounts:

- name: redis-config-secret
readOnly: true
mountPath: "/opt/genesys/redis-config-secret"

streamPwd:
secretName: "/opt/genesys/redis-tenant-secret/redis-tenant-stream"
volumes:

- name: redis-tenant-secret
secret:

secretName: redis-tenant-token
mounts:

- name: redis-tenant-secret
readOnly: true

Deploy Tenant Service

Tenant Service Private Edition Guide 41

mountPath: "/opt/genesys/redis-tenant-secret"

kafka:
pwd:

secretName: "/opt/genesys/kafka-secrets/kafka-secrets"
volumes:

- name: kafka-secrets
secret:

secretName: kafka-secrets-token
mounts:

- name: kafka-secrets
mountPath: "/opt/genesys/kafka-secrets"

gws:
user:

secretName: "/opt/genesys/gauth-client-id/clientid"
pwd:

secretName: "/opt/genesys/gauth-client-token/clientsecret"
volumes:

- name: gauth-client-id
secret:

secretName: gauthclientid
- name: gauth-client-token

secret:
secretName: gauthclientsecret

mounts:
- name: gauth-client-id

readOnly: true
mountPath: "/opt/genesys/gauth-client-id"

- name: gauth-client-token
readOnly: true
mountPath: "/opt/genesys/gauth-client-token"

redis:
isCluster: true

In addition, use the following deployment command:

helm upgrade --install --force --wait --timeout 600s -n voice -f ./tenant-node-values.yaml t \
https:///tenant-.tgz \
--username "$JFROG_USER" --password "$JFROG_PASSWORD"

The preceding deployment will create a Tenant with the password of the service account set up
explicitly and without enabling GWS integration. See Samples and references for values that allow
you to reset the Tenant password upon deployment using a pre-generated value from the secret and
to enable automated GWS integration.

Samples and references

Enabling a service admin password (the secret should be created as described in the Service account
password section):

...
tenant:

serviceuser: "default"
svcpwdSecretName: "/opt/genesys/service-user-account/svcpassword"
...

Deploy Tenant Service

Tenant Service Private Edition Guide 42

volumes: |
- name: service-user-account

secret:
secretName: svcuseraccount

...
volumeMounts: |

- name: service-user-account
readOnly: true
mountPath: "/opt/genesys/service-user-account"

....
initVolumeMounts: |

- name: service-user-account
readOnly: true
mountPath: "/opt/genesys/service-user-account"

....

To enable stdout log output for all Tenant components, make the following modifications to override
values in the tenant-values.yaml file.

images
fbregistry: fluent/fluent-bit
...

fluentBit:
enable: "true"
name: json-sidecar
tag: 1.8.x

fluentBitUrs:
enable: "true"
name: stdouturs-sidecar
tag: 1.8.x

fluentBitSs:
enable: "true"
name: stdoutss-sidecar
tag: 1.8.x

fluentBitOcs:
enable: "true"
name: stdoutocs-sidecar
tag: 1.8.x

fluentBitCs:
enable: "true"
name: stdoutcs-sidecar
tag: 1.8.x

tenant:
...
logging:

volumes:
log:

- name: log
jsonLog:

- name: fluent-logs
emptyDir: {}

stdoutUrsLog:
- name: fluenturs-logs

emptyDir: {}
stdoutOcsLog:

- name: fluentocs-logs
emptyDir: {}

stdoutSsLog:

Deploy Tenant Service

Tenant Service Private Edition Guide 43

- name: fluentss-logs
emptyDir: {}

stdoutCsLog:
- name: fluentcs-logs

emptyDir: {}
fluentBconfigmap:

- configMap:
defaultMode: 420
name: tenants-fluent-bit-config

name: tenants-fluent-bit-config
fluentBconfigmapCs:

- configMap:
defaultMode: 420
name: tenants-fluent-bit-config-cs

name: tenants-fluent-bit-config-cs
fluentBconfigmapSs:

- configMap:
defaultMode: 420
name: tenants-fluent-bit-config-ss

name: tenants-fluent-bit-config-ss
fluentBconfigmapOcs:

- configMap:
defaultMode: 420
name: tenants-fluent-bit-config-ocs

name: tenants-fluent-bit-config-ocs
fluentBconfigmapUrs:

- configMap:
defaultMode: 420
name: tenants-fluent-bit-config-urs

name: tenants-fluent-bit-config-urs
mounts:

log:
- name: log

mountPath: /opt/genesys/logs/volume
- name: log

mountPath: /logs
jsonLog:

- name: fluent-logs
mountPath: "/opt/genesys/logs/JSON"

stdoutUrsLog:
- name: fluenturs-logs

mountPath: "/opt/genesys/logs/URS"
stdoutSsLog:

- name: fluentss-logs
mountPath: "/opt/genesys/logs/SS"

stdoutOcsLog:
- name: fluentocs-logs

mountPath: "/opt/genesys/logs/OCS"
stdoutCsLog:

- name: fluentcs-logs
mountPath: "/opt/genesys/logs/confserv"

fbJsonLog:
- name: fluent-logs

mountPath: "/mnt/logs"
fbstdoutUrsLog:

- name: fluenturs-logs
mountPath: "/mnt/logs"

fbstdoutSsLog:
- name: fluentss-logs

mountPath: "/mnt/logs"
fbstdoutOcsLog:

- name: fluentocs-logs

Deploy Tenant Service

Tenant Service Private Edition Guide 44

mountPath: "/mnt/logs"
fbstdoutCsLog:

- name: fluentcs-logs
mountPath: "/mnt/logs"

fluentBconfigmap:
- mountPath: /fluent-bit/etc/

name: tenants-fluent-bit-config
fluentBconfigmapCs:

- mountPath: /fluent-bit/etc/
name: tenants-fluent-bit-config-cs

fluentBconfigmapSs:
- mountPath: /fluent-bit/etc/

name: tenants-fluent-bit-config-ss
fluentBconfigmapOcs:

- mountPath: /fluent-bit/etc/
name: tenants-fluent-bit-config-ocs

fluentBconfigmapUrs:
- mountPath: /fluent-bit/etc/

name: tenants-fluent-bit-config-urs

You can deploy Persistent Volume/Persistent Volume Claim (PV/PVC) in two ways:

1. Enable ReadWriteOnce (RWO) from the tenant Helm chart, which maintains unique PVCs for each pod/
replica from the same Tenant.

2. Enable ReadWriteMany (RWX) from the tenant-monitor Helm chart, which has multiple Tenant pods
sharing the same PVC.

To enable RWO PV/PVC logging from individual Tenant pods in Statefulset, make the following
modifications to override the values in the tenant-values.yaml file. RWO Persistent Volume is
disabled by default.

logging
....
volumes:

logPvc:
enabled: "true"
logClaimSize: "5Gi"
accessModes: "ReadWriteOnce"
logStorageClass: "" #Replace the storage class that's relevant to the Openshift

Cluster

Enabling GWS integration (the secret should be created as described in the Genesys Authentication
backend secrets section):

tenant:
…
gws:

enable: Enable GWS registeration about tenant
tls: Enable/Disable Secure connection to GWS
authEndpoint: GWS auth end point
envEndpoint: GWS env end point for Registeration
db: Pass DB infromation for GWS to connect to PSQL DB for read and store data
enable: "true"
tls: false
authEndpoint: "gauth-auth.gauth.svc.cluster.local"
envEndpoint: ""
db:

enable: "false"
read: "false"

Deploy Tenant Service

Tenant Service Private Edition Guide 45

init: "false"
secrets:

……….
gws:

enabled: true
user:

secretName: "/opt/genesys/gauth-client-id/clientid"
pwd:

secretName: "/opt/genesys/gauth-client-token/clientsecret"
volumes:

- name: gauth-client-id
secret:

secretName: gauthclientid
- name: gauth-client-token

secret:
secretName: gauthclientsecret

mounts:
- name: gauth-client-id

readOnly: true
mountPath: "/opt/genesys/gauth-client-id"

- name: gauth-client-token
readOnly: true
mountPath: "/opt/genesys/gauth-client-token"

To mount the PVC to store Tenant logs, make the following modifications to override the values in the
tenant-values.yaml file:

.....

tenant:
...

logging:
mounts:

log:
- name: log

mountPath: /opt/genesys/logs/volume
- name: log

mountPath: /logs

Validate the deployment

Content coming soon

Deploy Tenant Service

Tenant Service Private Edition Guide 46

Upgrade, roll back, or uninstall Tenant
Service

Contents

• 1 Supported upgrade strategies
• 1.1 Single region/location/cluster
• 1.2 Multiple regions/locations/clusters

• 2 Backend upgrade
• 3 Timing

• 3.1 Scheduling considerations

• 4 Monitoring
• 5 Preparatory steps
• 6 Rolling Update

• 6.1 Rolling Update: Upgrade
• 6.2 Rolling Update: Verify the upgrade
• 6.3 Rolling Update: Rollback
• 6.4 Rolling Update: Verify the rollback

• 7 Uninstall

Upgrade, roll back, or uninstall Tenant Service

Tenant Service Private Edition Guide 47

Learn how to upgrade, roll back, or uninstall Tenant Service.

Related documentation:
•
•
•
•
•

RSS:

• For private edition

Important
The instructions on this page assume you have deployed the services in service-
specific namespaces. If you are using a single namespace for all private edition
services, replace the namespace element in the commands on this page with the
name of your single namespace or project.

Supported upgrade strategies

Tenant Service supports the following upgrade strategies:

Service Upgrade Strategy Notes
Tenant Service Rolling Update

For a conceptual overview of the upgrade strategies, refer to Upgrade strategies in the Setting up
Genesys Multicloud CX Private Edition guide.

Tenant Service uses a rolling upgrade process. When multiple Tenant nodes are deployed, you can
perform an upgrade to your existing deployment without causing a complete service outage. Tenant
instances are rolled over, one by one, affecting only a portion of your agents each time.

Upgrading the master Tenant instance (node "0", which is responsible for write access to the
provisioning data) causes a temporary degradation of functionality with no write access until
instance "0" is restored.

Single region/location/cluster

Genesys recommends performing a backup of the backend database for Tenant Service before
upgrading.

Upgrade, roll back, or uninstall Tenant Service

Tenant Service Private Edition Guide 48

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

To perform an upgrade, follow the deployment process – use the same helm upgrade command and
the same mandatory parameters. Remember to update the Tenant image(s) and Helm charts version
tags in the values.yaml file. The upgrade is performed automatically, one node at a time (if node
count is > 1). When you upgrade the primary node, the Tenant configuration updates automatically.

For information about the deployment process, see Deployment scenarios and Deploy the service.

Multiple regions/locations/clusters

Genesys recommends performing a backup of the backend database for Tenant Service before you
upgrade the master region.

To perform an upgrade, follow the deployment process – use the same helm upgrade command and
the same mandatory parameters. Remember to update the Tenant image(s) and Helm charts version
tags in the values.yaml file for every location. When you upgrade the master node in the master
region, the Tenant configuration updates automatically.

For information about the deployment process, see Deployment scenarios and Deploy the service.

Backend upgrade

When you perform an upgrade to Tenant Service, Tenant Service provisioning is done automatically,
as part of the helm upgrade step. There is no need to make any provisioning changes, unless noted
in Release Notes for a particular version.

If you must perform an upgrade or maintenance to the database management system (DBMS) that
Tenant Service uses to store its provisioning data, then the DBMS upgrade or maintenance can be
performed in place, separate from Tenant Service. Perform the DBMS upgrade according to the
vendor's instructions, making sure that:

• Tenant Service is disconnected from the backend during maintenance, and
• you specify the same parameters that were provisioned during the Tenant Service upgrade in order for

Tenant Service to access the updated database.

Be aware that the Tenant Service is in a degraded state (no write access to provisioning) during the
database upgrade.

If the database upgrade involves moving to a new DBMS instance with new parameters, then you
trigger this as part of the Tenant Service upgrade. Both the new database and the new values for the
database parameters (specified in the values.yaml file used for the helm upgrade step) must be
ready and available before you trigger the Tenant Service upgrade.

If you're performing an upgrade or maintenance to the Redis backend that is shared with the core
Voice platform, and you require a change to the Redis connection parameters, first scale Tenant
Service down to a single instance (setting the replicaCount parameter in the values.yaml file),
then perform the Redis backend maintenance or upgrade, and finally, trigger a restart of the Tenant
Service. After that's complete, you can scale up Tenant Service again.

Upgrade, roll back, or uninstall Tenant Service

Tenant Service Private Edition Guide 49

Timing

A regular upgrade schedule is necessary to fit within the Genesys policy of supporting N-2 releases,
but a particular release might warrant an earlier upgrade (for example, because of a critical security
fix).

If the service you are upgrading requires a later version of any third-party services, upgrade the third-
party service(s) before you upgrade the private edition service. For the latest supported versions of
third-party services, see the Software requirements page in the suite-level guide.

Scheduling considerations
Genesys recommends that you upgrade the services methodically and sequentially: Complete the
upgrade for one service and verify that it upgraded successfully before proceeding to upgrade the
next service. If necessary, roll back the upgrade and verify successful rollback.

Monitoring

Monitor the upgrade process using standard Kubernetes and Helm metrics, as well as service-specific
metrics that can identify failure or successful completion of the upgrade (see Observability in Tenant
Service).

Genesys recommends that you create custom alerts for key indicators of failure — for example, an
alert that a pod is in pending state for longer than a timeout suitable for your environment. Consider
including an alert for the absence of metrics, which is a situation that can occur if the Docker image
is not available. Note that Genesys does not provide support for custom alerts that you create in your
environment.

Preparatory steps

Ensure that your processes have been set up to enable easy rollback in case an upgrade leads to
compatibility or other issues.

Each time you upgrade a service:

1. Review the release note to identify changes.
2. Ensure that the new package is available for you to deploy in your environment.
3. Ensure that your existing -values.yaml file is available and update it if required to implement changes.

Upgrade, roll back, or uninstall Tenant Service

Tenant Service Private Edition Guide 50

Rolling Update

Rolling Update: Upgrade
Execute the following command to upgrade :

helm upgrade --install -f -values.yaml -n

Tip: If your review of Helm chart changes (see Preparatory Step 3) identifies that the only update you
need to make to your existing -values.yaml file is to update the image version, you can pass the
image tag as an argument by using the --set flag in the command:

helm upgrade --install -f -values.yaml --set .image.tag=

When you perform an upgrade to Tenant Service, Tenant Service provisioning is done automatically,
as part of the helm upgrade step. There is no need to make any provisioning changes, unless noted
in Release Notes for a particular version.

Rolling Update: Verify the upgrade
Follow usual Kubernetes best practices to verify that the new service version is deployed. See the
information about initial deployment for additional functional validation that the service has
upgraded successfully.

Rolling Update: Rollback
Execute the following command to roll back the upgrade to the previous version:

helm rollback

or, to roll back to an even earlier version:

helm rollback

Alternatively, you can re-install the previous package:

1. Revert the image version in the .image.tag parameter in the -values.yaml file. If applicable, also
revert any configuration changes you implemented for the new release.

2. Execute the following command to roll back the upgrade:
helm upgrade --install -f -values.yaml

Tip: You can also directly pass the image tag as an argument by using the --set flag in the
command:
helm upgrade --install -f -values.yaml --set .image.tag=

Rolling Update: Verify the rollback
Verify the rollback in the same way that you verified the upgrade (see Rolling Update: Verify the
upgrade).

Upgrade, roll back, or uninstall Tenant Service

Tenant Service Private Edition Guide 51

Uninstall

Warning
Uninstalling a service removes all Kubernetes resources associated with that service.
Genesys recommends that you contact Genesys Customer Care before uninstalling
any private edition services, particularly in a production environment, to ensure that
you understand the implications and to prevent unintended consequences arising
from, say, unrecognized dependencies or purged data.

Execute the following command to uninstall :

helm uninstall -n

Upgrade, roll back, or uninstall Tenant Service

Tenant Service Private Edition Guide 52

Observability in Tenant Service

Contents

• 1 Monitoring
• 1.1 Enable monitoring
• 1.2 Configure metrics

• 2 Alerting
• 2.1 Configure alerts

• 3 Logging

Observability in Tenant Service

Tenant Service Private Edition Guide 53

Learn about the logs, metrics, and alerts you should monitor for Tenant Service.

Related documentation:
•
•
•
•
•

RSS:

• For private edition

Monitoring

Private edition services expose metrics that can be scraped by Prometheus, to support monitoring
operations and alerting.

• As described on Monitoring overview and approach, you can use a tool like Grafana to create
dashboards that query the Prometheus metrics to visualize operational status.

• As described on Customizing Alertmanager configuration, you can configure Alertmanager to send
notifications to notification providers such as PagerDuty, to notify you when an alert is triggered
because a metric has exceeded a defined threshold.

The services expose a number of Genesys-defined and third-party metrics. The metrics that are
defined in third-party software used by private edition services are available for you to use as long as
the third-party provider still supports them. For descriptions of available Tenant Service metrics, see:

• Tenant Service metrics

See also System metrics.

Tenant Service supports various metrics in Prometheus format, exposed via a dedicated endpoint.

Enable monitoring
Tenant Service deployment supports the creation of a Prometheus monitor resource in order to
scrape the monitoring endpoint; this feature is disabled by default. For information about the
parameters that enable a Prometheus monitoring resource, see Monitoring and observability.

Service CRD or
annotations? Port Endpoint/

Selector
Metrics update

interval
Tenant Service PodMonitor 15000 /metrics 30 seconds

Observability in Tenant Service

Tenant Service Private Edition Guide 54

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Service CRD or
annotations? Port Endpoint/

Selector
Metrics update

interval

(http://:15000/
metrics)

(Applicable for any
metric(s) that
Tenant Service
exposes. The
update interval is
not a property of
the metric; it is a
property of the
optional
PodMonitor that
you can create.)

Configure metrics
The metrics that are exposed by the Tenant Service are available by default. No further configuration
is required in order to define or expose these metrics. You cannot define your own custom metrics.

The Metrics pages linked to above show some of the metrics the Tenant Service exposes. You can also
query Prometheus directly or via a dashboard to see all the metrics available from the Tenant Service.

Alerting

Private edition services define a number of alerts based on Prometheus metrics thresholds.

Important
You can use general third-party functionality to create rules to trigger alerts based on
metrics values you specify. Genesys does not provide support for custom alerts that
you create in your environment.

For descriptions of available Tenant Service alerts, see:

• Tenant Service alerts

Configure alerts
Private edition services define a number of alerts by default (for Tenant Service, see the pages linked
to above). No further configuration is required.

The alerts are defined as PrometheusRule objects in a prometheus-rule.yaml file in the Helm
charts. As described above, Tenant Service does not support customizing the alerts or defining
additional PrometheusRule objects to create alerts based on the service-provided metrics.

Observability in Tenant Service

Tenant Service Private Edition Guide 55

Logging

The Tenant Service Helm Chart values.yaml files include the following configurable log volume
options:

• Persistent Volume Claim (PVC) with RWX storage: This creates a shared RWX volume in tenant-monitor;
this volume is then claimed across all pods of all tenants. For more information, see tenant-monitor and
Samples and references.

• Persistent Volume (PV)/PVC with RWO storage for logging from individual Tenant pods: Mount the PVC
from the Tenant StatefulSet volume claim template, instead of using tenant-monitor. For more
information about Statefulsets, see Statefulsets in the Kubernetes documentation.

For more information about the Tenant Service RWO PV/PVC log volume configuration, see tenant-
monitor and Samples and references.

• Ephemeral volume (emptyDir) with a Fluent Bit logging sidecar that tails log files and sends them to
standard output (stdout). The optional log forwarding to stdout is disabled by default. To enable the log
forwarding option, see tenant-monitor.

For general information about forwarding logs from internal components to stdout, see Sidecar
processed logging in the Genesys Multicloud CX Private Edition Operations guide.

Observability in Tenant Service

Tenant Service Private Edition Guide 56

Tenant Service metrics and alerts

Contents

• 1 Metrics
• 2 Alerts

Tenant Service metrics and alerts

Tenant Service Private Edition Guide 57

Find the metrics Tenant Service exposes and the alerts defined for Tenant Service.

Related documentation:
•
•
•
•
•

RSS:

• For private edition

Service CRD or
annotations? Port Endpoint/Selector

Metrics
update
interval

Tenant Service PodMonitor 15000
/metrics
(http://:15000/metrics)

30 seconds
(Applicable for
any metric(s)
that Tenant
Service
exposes. The
update interval
is not a property
of the metric; it
is a property of
the optional
PodMonitor that
you can create.)

See details about:

• Tenant Service metrics
• Tenant Service alerts

Metrics

You can query Prometheus directly to see all the metrics that the Tenant Service exposes. The
following metrics are likely to be particularly useful. Genesys does not commit to maintain other
currently available Tenant Service metrics not documented on this page.

Metric and description Metric details Indicator of
tenant_service_health_level Unit: N/A Health

Tenant Service metrics and alerts

Tenant Service Private Edition Guide 58

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Metric and description Metric details Indicator of

Health level of the tenant node. Values
are -1 (fail), 0 (starting), 1 (degraded), 2
(pass).

When the value is 2, the tenant Tenant
Service node is fully functional.

When the value is 1, the tenant might
have issues with some of its internal
functions and external dependencies, but
is still capable of providing
some services. When a value of 1 is
reported, additional investigation is
needed, via tenant logs, to troubleshoot
and recover.

A value of 0 or -1 indicates an inoperable
node, either pending start or it has failed.

Type: gauge
Label:
Sample value: 2

Alerts
If you enable a Tenant PodMonitor to expose the Tenant health metric, then you
can create a basic alert rule for the Tenant Service using a template like the
following:
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:

name: "custom-tenant-alert-rules"
spec:

- alert: HealthFailFor5min
expr: (max by (tenant) (tenant_service_health_level{namespace="",pod=~""}))

Enter your values where there are placeholders in the preceding template; the
placeholders are:

•
•

Values are based on how you deployed tenant(s); in other words, what you used for override values.

No alerts are defined for Tenant Service.

Tenant Service metrics and alerts

Tenant Service Private Edition Guide 59

	Tenant Service Private Edition Guide
	Table of Contents
	About the Tenant Service
	Architecture
	High availability and disaster recovery
	Before you begin
	Configure the Tenant Service
	Provision the Tenant Service
	Deploy Tenant Service
	Upgrade, roll back, or uninstall Tenant Service
	Observability in Tenant Service
	Tenant Service metrics and alerts

