
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Operations

8/2/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
Observability

Monitoring overview and approach 6
Enabling monitoring in GKE Platform 10
System metrics 14
Summary of monitoring support 17
Sample Prometheus queries 22
Handling alerts 26
Grafana configuration 32
Monitoring Dashboards API 41

Logging
Logging overview and approaches 44
Kubernetes-supported structured logging 53
Sidecar processed logging 56
RWX logging 60
Sample Kibana queries 65
Sample Logs Explorer queries 68

Contents

• 1 Observability
• 2 Logging

Operations 3

Learn how to use your own logging and monitoring tools to maintain optimal performance of
Genesys Multicloud CX private edition services.

Related documentation:
•
•

RSS:

• For private edition

This guide provides the instructions and details for you to use your own logging and monitoring tools
for Genesys Multicloud CX private edition services. It provides information on how the cluster
administrators, developers, and other users specify how services and pods are monitored in projects.
It covers details on how to deploy application alerts and customize them, as required. The guide also
explains the logging approaches that the Genesys Multicloud CX private edition services use.

Observability
Learn about your monitoring tools, metrics, and handling alerts.

• Monitoring overview and approach
• Enabling monitoring in GKE Platform
• System metrics
• Summary of monitoring support
• Sample Prometheus queries
• Handling alerts
• Grafana configuration
• Monitoring Dashboards API

Logging
Find out the approaches of logging used by Genesys Multicloud CX services to write log files that
contain the important diagnostic information for various issues that may arise.

• Logging overview and approaches

Operations 4

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

• Kubernetes-supported structured logging
• Sidecar processed logging
• RWX (unstructured) logging
• Sample Kibana queries
• Sample Logs Explorer queries

Operations 5

Monitoring overview and approach

Contents

• 1 Metrics, alerts, and monitoring approach for services
• 1.1 Approach
• 1.2 GKE monitoring
• 1.3 AKS Monitoring

• 2 Enabling monitoring for your services

Monitoring overview and approach

Operations 6

Learn about the types of metrics, and the monitoring approach for your Genesys Multicloud CX
services that are used in private edition.

Related documentation:
•
•

RSS:

• For private edition

Metrics, alerts, and monitoring approach for services

Services provide the necessary interface to use your own monitoring and logging tools, Prometheus-
based metrics, and the endpoint that the Prometheus platform can scrape for alerting and
monitoring. The default operators do not scrape user workload or user-defined applications like
Genesys services. You must enable Prometheus to scrape user workload. Once enabled, Prometheus
scrapes all metrics from endpoints exposed by services.

Some services optionally use Pushgateway to push metrics from jobs that cannot be scraped.

Approach
In general, the monitoring approach in a private edition deployment is
Prometheus-based. Through Prometheus support, the metrics that are generated
by Genesys services are made available for visualization (using tools like
Grafana). For more details, see the respective sections based on your cloud
platform.

Important
If you are not using Prometheus or an APM tool that supports Prometheus CRDs and
PodMonitor or ServiceMonitor objects, then you must build your own solution until
Genesys includes the Prometheus annotation support.

There are two types of metrics: system and service.
• System metrics contain data pertaining to cluster performance and status such as CPU usage, memory

usage, network I/O pressure, disk usage, and so on. When Prometheus is deployed, by default the
system metrics are automatically collected. They provide monitoring of cluster components and ship

Monitoring overview and approach

Operations 7

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

with a set of alerts to immediately notify the cluster administrator about any occurring problems
• Service metrics contain data pertaining to Genesys services. For most services, you must enable 'user

workload monitoring', and then create ServiceMonitor or PodMonitor per your requirement. However,
services that do not use CRD or annotation, run the Pushgateway (Cron job) to collect metrics and push
them into the Prometheus gateway.

.

GKE monitoring
GKE monitoring enables you to identify issues related to the performance of your services, and
acquire visibility into containers, nodes, and pods within your GKE environment. There are two
approaches in GKE for monitoring: Google Cloud operations suite and Prometheus-based approach.
For more details, refer to the following sections:

Google Cloud operations suite

By default, GKE clusters are natively integrated with monitoring. When you create a GKE cluster,
monitoring is enabled by default. Cloud Monitoring collects metrics, events, and metadata from
Google Cloud. Refer to the following for more details:

• https://cloud.google.com/stackdriver/docs
• https://cloud.google.com/monitoring/docs

Prometheus-based approach

Prometheus is the monitoring tool that is often used with Kubernetes. Prometheus covers a full stack
of Kubernetes cluster components, deployed microservices, alerts, and dashboards. If you configure
Cloud Operations for GKE and include Prometheus support, then the metrics that are generated by
services using the Prometheus exposition format can be exported from the cluster and made visible
as external metrics in Cloud Monitoring. To know more about Prometheus toolkit, refer to the
following:

• https://prometheus.io/docs/introduction/overview

Click here to learn about deploying Prometheus.

AKS Monitoring
Azure Monitor is the native monitoring service for AKS. You can setup and use Container insights
feature in Azure Monitor to monitor the system and workloads.

Refer Genesys monitoring github for more detailed instructions.

Monitoring overview and approach

Operations 8

Enabling monitoring for your services

To set up monitoring for the cluster and your private edition services in cloud platforms, find
instructions here:

• Enabling monitoring in GKE Platform

Monitoring overview and approach

Operations 9

Enabling monitoring in GKE Platform

Contents

• 1 Setting up monitoring for your private edition services in GKE Platform
• 1.1 Google Cloud operations suite - Cloud Monitoring
• 1.2 Google Cloud Monitoring API

Enabling monitoring in GKE Platform

Operations 10

Learn how to enable monitoring in GKE Platform for the cluster and your private edition services.

Related documentation:
•
•

RSS:

• For private edition

Setting up monitoring for your private edition services in GKE
Platform

This section describes how to use Cloud Monitoring to monitor your Google Kubernetes Engine (GKE)
clusters. It also describes how to enable and authorize use of the Monitoring API

Google Cloud operations suite - Cloud Monitoring
Google Cloud's operations suite (formerly Stackdriver) enables a centralized capability of receiving
events, logs, metrics, and traces from your GKE platform resources.

Cloud Monitoring tracks metrics, events, and metadata from GKE platform, uptime probes, and
services. Stackdriver ingests that data and makes it available via dashboards, charts, and alerts.

For more details, refer to https://cloud.google.com/monitoring/docs.

Enabling monitoring in GKE Platform

Operations 11

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss
/File:CloudMonitoring.png
/File:CloudMonitoring.png

Enable cloud monitoring

Supported values for the --logging flag for the create and update commands.

Source Value Logs collected

System SYSTEM

Metrics from essential system
components required for
Kubernetes functionality. See a
complete list of these Kubernetes
metrics.

Workload WORKLOAD

Enable a fully managed pipeline
capable of collecting
Prometheus-style metrics
exposed by any GKE workload.
You must configure which metrics
to collect by deploying a
PodMonitor custom resource.

Console UI

To enable cloud monitoring through console UI, follow these steps:

1. Navigate to Console UI.
2. Select Clusters and then select the cluster instance.
3. Under Features > Cloud Monitoring, click the Edit icon.
4. Select Enable Cloud Monitoring and then select System and Workflow from the drop-down list.
5. Click SAVE CHANGES.

This section explains setting up Prometheus on a Kubernetes cluster for monitoring the Kubernetes
cluster.

GCloud CLI

To enable cloud monitoring through GCloud UI, follow these steps:

1. Log on to the existing cluster.
gcloud container clusters get-credentials --zone --project

2. Configure the logs to be sent to Cloud Monitoring by updating a comma-separated list of values to the
gcloud container clusters update with --monitoring flag. Here is an example:

gcloud container clusters update gke1 \
--zone=us-west1-a \
--monitoring==SYSTEM,WORKLOAD

Google Cloud Monitoring API
Google Cloud Monitoring API refers to the API that is provided with Google Cloud operations suite to
customize your Monitoring solution inside GKE platform.

Enabling monitoring in GKE Platform

Operations 12

Stackdriver reads this configuration to prescribe how it processes, manages, and responds to
monitored events generated in the cluster.

For more details, refer to Introduction to the Cloud Monitoring API.

Enabling monitoring in GKE Platform

Operations 13

System metrics

Contents

• 1 Kubernetes and Node metrics
• 2 Kubernetes metrics
• 3 Node metrics

System metrics

Operations 14

Find useful metrics provided by Kubernetes and other system resources to monitor the status and
performance of the cluster and nodes.

Related documentation:
•
•

RSS:

• For private edition

Kubernetes and Node metrics

In addition to the service-defined metrics described in the service-level guides (see links here),
standard Kubernetes and other system metrics are obviously important for monitoring the status and
performance of your cluster(s), nodes, and services.

• Kubernetes metrics
• Node metrics

Kubernetes metrics

For full information about all the cluster metrics Kubernetes provides, see the Kubernetes
documentation. Genesys recommends that you pay attention to the following cluster-related metrics
in particular.

Metric Prometheus formula Indicator of

Pod Restarts increase(kube_pod_container_status_restarts_total{namespace="$namespace",
pod=~"$service.*"})[1m]

The cgroup's total memory sum(container_memory_usage_bytes{namespace="$namespace",pod=~"$service-
.*", container!=""}) by (pod) Memory

The cgroup's CPU usage
sum (rate
(container_cpu_usage_seconds_total{namespace="$namespace",pod=~"$service-
.*", container!="POD"}[1m])) by
(pod) * 100

CPU utilization

Bytes transmitted over the
network by the container

rate(container_network_transmit_bytes_total{namespace="$namespace",pod=~"$service-
.*", container!=""}[1m])

Bytes received over the network
by the container

rate(container_network_receive_bytes_total{namespace="$namespace",pod=~"$service-
.*", container!=""}[1m])

System metrics

Operations 15

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Node metrics

Genesys recommends that you pay attention to the following node-related metrics in particular.

Metric Prometheus formula Indicator of
Process HEAP All {SERVICE_NAME}_process_heap_bytes{pod=~"$pod",service="$service"}Heap status

Process CPU All sum(rate({SERVICE_NAME}_process_cpu_seconds_total{pod=~"$pod",service="$service"}[30s])
* 100) by (pod) CPU utilization

Process Memory All: resident
memory {SERVICE_NAME}_process_resident_memory_bytes{pod=~"$pod",service="$service"}Memory

Process Memory All: virtual
memory {SERVICE_NAME}_process_virtual_memory_bytes{pod=~"$pod",service="$service"}Memory

System metrics

Operations 16

Summary of monitoring support

Find information about enabling monitoring for your respective services.

Related documentation:
•
•

RSS:

• For private edition

The service-level guides provide information about enabling monitoring for the respective services.
Click the link in the “Included service” column in the summary below to go to the applicable page for
service-specific information.

Service Included
service

CRD or
annotations? Port Endpoint/

Selector
Metrics
update
interval

Both —
ServiceMonitor
and
annotations

4004 nexus.nexus.svc.cluster.local/
metrics 15 seconds

CX Contact CX Contact API
Aggregator ServiceMonitor 9102 /metrics 15 seconds

CX Contact
CX Contact
Campaign
Manager

ServiceMonitor 3106 /metrics 15 seconds

CX Contact
CX Contact
Compliance
Manager

ServiceMonitor 3107 /metrics 15 seconds

CX Contact CX Contact
Dial Manager ServiceMonitor 3109 /metrics 15 seconds

CX Contact CX Contact Job
Scheduler ServiceMonitor 3108 /metrics 15 seconds

CX Contact CX Contact List
Builder ServiceMonitor 3104 /metrics 15 seconds

CX Contact CX Contact List
Manager ServiceMonitor 3105 /metrics 15 seconds

Summary of monitoring support

Operations 17

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Service Included
service

CRD or
annotations? Port Endpoint/

Selector
Metrics
update
interval

Designer
Designer
Application
Server

ServiceMonitor 8081
See selector
details on the
DAS metrics
and alerts page

10 seconds

Designer Designer ServiceMonitor 8888
See selector
details on the
DES metrics
and alerts page

10 seconds

Email Service Email Service
Both or either,
depends on
harvester

Default is 4024
(overridden by
values)

/iwd-email/v3/
metrics

15 sec
recommended,
depends on
harvester

Genesys
Authentication

Authentication
Service Annotations 8081 /prometheus Real-time

Genesys
Authentication

Environment
Service Annotations 8081 /prometheus Real-time

Genesys
Customer
Experience
Insights

Genesys CX
Insights ServiceMonitor 8180

See selector
details on the
GCXI metrics
and alerts page

15 minutes

Genesys
Customer
Experience
Insights

Reporting and
Analytics
Aggregates

PodMonitor and
PrometheusRule

metrics: 9100,
health: 9101

See selector
details on the
RAA metrics
and alerts page

metrics:
several
seconds,
health: up to 3
minutes

Genesys Info
Mart

GIM Config
Adapter PodMonitor 9249

See selector
details on the
GCA metrics
and alerts page

30 seconds

Genesys Info
Mart GIM PodMonitor 8249

See selector
details on the
GIM metrics
and alerts page

30 seconds

Genesys Info
Mart

GIM Stream
Processor PodMonitor 9249

See selector
details on the
GSP metrics
and alerts page

30 seconds

Genesys Pulse
Tenant Data
Collection Unit
(DCU)

PodMonitor 9091

See selector
details on the
Tenant Data
Collection Unit
(DCU) metrics
and alerts page

30 seconds

Genesys Pulse
Tenant Load
Distribution
Server (LDS)

PodMonitor 9091

See selector
details on the
Tenant Load
Distribution
Server (LDS)

30 seconds

Summary of monitoring support

Operations 18

Service Included
service

CRD or
annotations? Port Endpoint/

Selector
Metrics
update
interval

metrics and
alerts page

Genesys Pulse Pulse Web
Service ServiceMonitor 8090

See selector
details on the
Pulse metrics
and alerts page

30 seconds

Genesys Pulse
Tenant
Permissions
Service

Genesys Voice
Platform

Voice Platform
Configuration
Server

Service/Pod
Monitoring
Settings

Not applicable

See selector
details on the
Voice Platform
Configuration
Server metrics
and alerts page

Genesys Voice
Platform

Voice Platform
Media Control
Platform

Service/Pod
Monitoring
Settings

9116,
8080,

8200

See selector
details on the
Voice Platform
Media Control
Platform
metrics and
alerts page

Genesys Voice
Platform

Voice Platform
Service
Discovery

Automatic 9090

See selector
details on the
Voice Platform
Service
Discovery
metrics and
alerts page

Genesys Voice
Platform

Voice Platform
Reporting
Server

ServiceMonitor
/ PodMonitor 9116

See selector
details on the
Voice Platform
Reporting
Server metrics
and alerts page

Genesys Voice
Platform

Voice Platform
Resource
Manager

ServiceMonitor
/ PodMonitor 9116, 8200

See selector
details on the
Voice Platform
Resource
Manager
metrics and
alerts page

Interaction
Server (IXN)

Interaction
Server (IXN) PodMonitor

13131,
13133,

13139

option
ixnServer.ports.health
- default port
13131 -
Endpoint:
“/health/
prometheus/
all”

Default

Summary of monitoring support

Operations 19

Service Included
service

CRD or
annotations? Port Endpoint/

Selector
Metrics
update
interval

option
ixnNode.ports.default
- default port
13133 - Endpoint:
“/metrics”

option
ixnVQNode.ports.health
- default port
13139 - Endpoint:
“/metrics”

Note: The
above options
are references
to ports that
match
endpoints. Use
these options
to perform the
associated
query.

Tenant Service Tenant Service PodMonitor 15000
/metrics
(http://:15000/
metrics)

30 seconds
(Applicable for
any metric(s)
that Tenant
Service
exposes. The
update interval
is not a
property of the
metric; it is a
property of the
optional
PodMonitor
that you can
create.)

Voice
Microservices

Agent State
Service PodMonitor 11000 http://:11000/

metrics 30 seconds

Voice
Microservices

Call State
Service

Supports both
CRD and
annotations

11900 http://:11900/
metrics 30 seconds

Voice
Microservices Config Service

Supports both
CRD and
annotations

9100 http://:9100/
metrics 30 seconds

Voice
Microservices

Dial Plan
Service

Supports both
CRD and
annotations

8800 http://:8800/
metrics 30 seconds

Voice
Microservices

FrontEnd
Service

Supports both
CRD and
annotations

9101 http://:9101/
metrics 30 seconds

Voice ORS Supports both 11200 http://:11200/ 30 seconds

Summary of monitoring support

Operations 20

Service Included
service

CRD or
annotations? Port Endpoint/

Selector
Metrics
update
interval

Microservices CRD and
annotations metrics

Voice
Microservices

Voice Registrar
Service

Supports both
CRD and
annotations

11500 http://:11500/
metrics 30 seconds

Voice
Microservices

Voice RQ
Service

Supports both
CRD and
annotations

12000 http://:12000/
metrics 30 seconds

Voice
Microservices

Voice SIP
Cluster Service

Supports both
CRD and
annotations

11300 http://:11300/
metrics 30 seconds

Voice
Microservices

Voice SIP Proxy
Service

Supports both
CRD and
annotations

11400 http://:11400/
metrics 30 seconds

Voice
Microservices Voicemail

Supports both
CRD and
annotations

8081 http://:8081/
metrics 30 seconds

WebRTC Media
Service

WebRTC
Gateway
Service

PodMonitor 10052 /metrics 30s

Summary of monitoring support

Operations 21

Sample Prometheus queries

Sample Prometheus queries to collect metrics.

Related documentation:
•
•

RSS:

• For private edition

Here are some sample Prometheus queries to collect metrics. The result of each query in Prometheus
can either be shown as a graph or viewed as console output.

Query1: kubelet_http_requests_total

Output:

Graph

Sample Prometheus queries

Operations 22

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Console:

Query 2: sum(irate(sipproxy_requests_processed_self_total{pod=~"voice-sipproxy-0"}[5m])) by
(pod,method)

Output

Sample Prometheus queries

Operations 23

https://all.docs.genesys.com/File:PromQuery1.png
https://all.docs.genesys.com/File:PromQuery1.png
https://all.docs.genesys.com/File:PromQuery1C.png
https://all.docs.genesys.com/File:PromQuery1C.png

Graph:

Console:

Query 3: node_cpu_utilisation:avg1m

Sample Prometheus queries

Operations 24

https://all.docs.genesys.com/File:Q2graph.png
https://all.docs.genesys.com/File:Q2graph.png
https://all.docs.genesys.com/File:Q2console.png
https://all.docs.genesys.com/File:Q2console.png

Output

Graph:

Console:

Sample Prometheus queries

Operations 25

https://all.docs.genesys.com/File:Q3graph.png
https://all.docs.genesys.com/File:Q3graph.png
https://all.docs.genesys.com/File:Q3console.png
https://all.docs.genesys.com/File:Q3console.png

Handling alerts

Contents

• 1 Introduction
• 2 Alert rules
• 3 Prometheus / Alertmanager

• 3.1 Alerting Rules

• 4 Customizing Alertmanager configuration for notifications
• 4.1 Alertmanager configuration for Notifications

• 5 GKE platform
• 5.1 Google Cloud operations suite – Alerting
• 5.2 Google Cloud Monitoring API - Alert Policy

Handling alerts

Operations 26

Learn about deploying service alerts.

Related documentation:
•
•

RSS:

• For private edition

Introduction

Alerts notify you when certain metrics exceed specified thresholds. In some services, alerting is
enabled by default; in others, you must enable alerting when you deploy the service. See the
respective service guides (listed here) for details about service-specific support for alerting.

Alert rules

By default, most services define alerts for certain key operational parameters. The alerts are
PrometheusRule objects that are defined in a YAML file. The metrics collected from the applicable
service are evaluated based on the expression specified in the rule. An alert is triggered if the value
of the expression is true.

Private edition does not support custom alerts triggered by rules you define yourself. However, some
services — for example, Designer — enable you to modify certain parameters in the values.yaml file
to customize the predefined alerts by modifying the values that trigger the alert. See the respective
service-level guides for information about the limited customization each service might support.

Prometheus / Alertmanager

Enable ServiceMonitor or PodMonitor to scrape metrics from the cluster. To import custom alerts or
notification configurations, follow these steps.

Alerting Rules
This section describes how to create alert rules and import custom rules.

1. Create alert rules. These rules triggers alerts based on the values.

Handling alerts

Operations 27

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

apiVersion: "monitoring.coreos.com/v1"
kind: PrometheusRule
metadata:

name: -alertrules
labels:

genesysengage/monitoring: prometheus
service:
servicename:
tenant: --> Ex: shared

spec:
groups:
- name: -alert

rules:
- alert:

expr:
for: For ex: 5m
labels:

severity: For ex: critical
service:
servicename:

annotations:
summary: ""

2. Import the custom rule.
kubectl apply -f -n monitoring

Customizing Alertmanager configuration for notifications

Alertmanager sends notifications to the notification provider such as email or Webhook (PagerDuty)
when an alert is triggered.

Alertmanager configuration for Notifications
Alertmanager sends notifications to the notification provider (such as email or PagerDuty) when an
alert is triggered.

To add notification configuration, edit alertmanager.yaml using the following steps:

1. Load the configuration map into a file using the following command.
kubectl get configmap prometheus-alertmanager --namespace=monitoring -o yaml >
alertmanager.yaml

2. Add the configuration in alertmanager.yaml.
global:

resolve_timeout: 5m
route:

group_wait: 30s
group_interval: 5m
repeat_interval: 12h
receiver: default
routes:
- match:

alertname: Watchdog
repeat_interval: 5m

Handling alerts

Operations 28

receiver: watchdog
- match:

service:
routes:
- match:

receiver:
receivers:
- name: default
- name: watchdog
- name:

3. Save the changes in the file and replace the configuration map.
kubectl replace configmaps prometheus-alertmanager --namespace=monitoring -f
alertmanager.yaml

For more details about configuring receivers for alert notification and how the receiver types are
created/configured, refer to Configuring alert notifications.

GKE platform

Google Cloud operations suite – Alerting
Google Cloud operations suite is backed by Stackdriver which ingests and processes alerts based on
predefined policy configuration.

Stackdriver utilizes Google Cloud Monitoring API for management of metric and alert policies within
the operation suite.

Here are some key features provided by Google Cloud operation suite:

• Google Cloud API supports over 1,500 Cloud Monitoring metrics.
• Alert policies are configured as a resource object in cloud monitoring API.
• Unlike Alert Manager, policies are defined directly through GCP Cloud Monitoring API via REST or GRCP

request. There are no custom resource objects in Kubernetes for alert polices in GKE.
• Defining alert policies allows you to define specific conditions and actions to take in reaction to key

metrics and other criteria.
• Notification channels are used to specify where alerts should be sent when an incident occurs. For

example:
• Webhook
• Email
• PagerDuty

For more details, refer to the following Google document pages:

• Introduction to alerting

Handling alerts

Operations 29

• Resource: AlertPolicy
• Resource: NotificationChannel
• Resource: UptimeCheckConfig

Google Cloud Monitoring API - Alert Policy
Alert Policy REST API

All API requests to Google Cloud Monitoring API require proper authentication before you query and
apply configuration.

See Google authentication for further details.

Here are various functions that are available for creation of custom alert policy.

projects.alertPolicies.create

POST https://monitoring.googleapis.com/v3/{name}/alertPolicies

projects.alertPolicies.delete

DELETE https://monitoring.googleapis.com/v3/{name}

projects.alertPolicies.get

GET https://monitoring.googleapis.com/v3/{name}

projects.alertPolicies.list

GET https://monitoring.googleapis.com/v3/{name}/alertPolicies

projects.alertPolicies.patch

PATCH https://monitoring.googleapis.com/v3/{alertPolicy.name}

Alert Policy example

This example assumes you have created notification channel and uptime check prior to deployment.

AlertPolicy - NGINX Ingress Uptime Check
{

"displayName": "Uptime-Test uptime failure- Ingress",
"documentation": {

"content": "Indicates issue with NGINX Ingress availability. Check ingress-nginx-
controller-* in the 'ingress-nginx' namespace",

"mimeType": "text/markdown"
},
"conditions": [

{
"displayName": "Failure of uptime check_id uptime-test",
"conditionThreshold": {

"aggregations": [
{

Handling alerts

Operations 30

"alignmentPeriod": "1200s",
"crossSeriesReducer": "REDUCE_COUNT_FALSE",
"groupByFields": [

"resource.label.*"
],
"perSeriesAligner": "ALIGN_NEXT_OLDER"

}
],
"comparison": "COMPARISON_GT",
"duration": "60s",
"filter": "metric.type=\"monitoring.googleapis.com/uptime_check/check_passed\" AND

metric.label.check_id=\" pod " AND resource.type=\"k8s_service\"",
"thresholdValue": 1,
"trigger": {

"count": 1
}

}
}

],
"combiner": "OR",
"enabled": true,
"notificationChannels": [

"projects/gcpe0001/notificationChannels/"
]

}

Handling alerts

Operations 31

Grafana configuration

Contents

• 1 Grafana in GKE
• 1.1 Google Cloud Monitoring in Grafana
• 1.2 Deploying Prometheus
• 1.3 Deploying Grafana
• 1.4 Grafana Plugins
• 1.5 Creating Grafana Instance
• 1.6 Connecting Prometheus to custom Grafana

• 2 Grafana dashboards
• 2.1 Importing custom dashboards
• 2.2 Creating Grafana dashboards

Grafana configuration

Operations 32

Learn about how to use Grafana to set up a monitoring solution for your services.

Related documentation:
•
•

RSS:

• For private edition

Grafana enables you to query, visualize, alert on, and understand your metrics.

Important
Although some services have packaged dashboard configuration within their Helm
charts, Genesys Multicloud CX private edition does not currently support monitoring
dashboards. The following information is provided purely as guidance based on
Genesys experimentation, and does not represent a supported configuration.

Grafana in GKE

Google Cloud Monitoring in Grafana
For details about cloud monitoring in Grafana, refer to https://grafana.com/docs/grafana/latest/
datasources/google-cloud-monitoring/.

Deploying Prometheus
Prerequisites

• Create a namespace for deploying Prometheus operator.
• Clone or download source from https://github.com/prometheus-operator/kube-prometheus.
• Make sure you remove the Grafana files. Grafana is deployed using the operator.

Steps to deploy Prometheus

1. Run the setup from the root of downloaded source. This deploys the Prometheus operator and CRDs.
kubectl create -f manifests/setup

Grafana configuration

Operations 33

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

2. For Prometheus to scrape the cluster (all namespaces), edit prometheus-clusterRole.yaml.
metadata:

labels:
app.kubernetes.io/component: prometheus
app.kubernetes.io/name: prometheus
app.kubernetes.io/part-of: kube-prometheus
app.kubernetes.io/version: 2.30.0

name: prometheus-k8s
rules:
- apiGroups:

- ""
resources:
- nodes/metrics
verbs:
- get

- nonResourceURLs:
- /metrics
verbs:
- get

- apiGroups:
- ""
resources:
- services
- pods
- endpoints
verbs:
- get
- list
- watch

3. After the setup is complete, execute the following command:
kubectl create -f manifests/

This deploys the following components.

• Prometheus
• Alertmanager
• Prometheus node-exporter
• Prometheus Adapter for Kubernetes Metrics APIs
• kube-state-metrics

4. Deploy required components
kubectl create -f manifests/

Deploying Grafana
Configuring Grafana

The community-powered Grafana is deployed in a new namespace (ex. monitoring) . Follow the
instructions to deploy Grafana in GKE.

Installing using Command Line Interface

Download/clone the Grafana operator rom https://github.com/integr8ly/grafana-operator and change
the working directory to grafana-operator-xx.

Grafana configuration

Operations 34

Steps to deploy Grafana operator manually

1. Create a new namespace or switch to a namespace (for example: monitoring) where Prometheus is
deployed.

$ kubectl create -f config/crd/bases

2. Create operator roles.
$ kubectl create -f deploy/roles

3. Modify ClusterRoleBinding (cluster_role_binding_grafana_operator.yaml). The namespace must be
updated with the current namespace where Grafana is deployed (for example: monitoring).

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

name: grafana-operator

roleRef:

name: grafana-operator

kind: ClusterRole

apiGroup: ""

subjects:

- kind: ServiceAccount

name: grafana-operator

namespace: monitoring

4. Scan for dashboards in other namespaces you also need the cluster roles.
$ kubectl create -f deploy/cluster_roles

To scan dashboards deployed in all namespaces, --scan-all should be added to operator container
as argument.

--scan-all: watch for dashboards in all namespaces. This requires the operator service account to
have cluster wide permissions to get, list, update and watch dashboards.

5. Deploy the operator to that namespace you can use deploy/operator.yaml.
containers:

- name: grafana-operator

image: quay.io/integreatly/grafana-operator:vX.X.X

args:

- '--scan-all'

6. Deploy the operator to that namespace. You can use deploy/operator.yaml

Grafana configuration

Operations 35

$ kubectl create -f deploy/operator.yaml -n

7. Check the status of the operator pod.

Grafana Plugins
If a data source or dashboard requires a plugin, it can be added in the dashboard itself or it can be
added as custom environment variable to the Grafana deployment.

Install plugins using Grafana environment variable

The operator allows you to pass custom environment variable to the Grafana deployment. This
means that you can set the GF_INSTALL_PLUGINS flag, as described.

1. Create and deploy the secret kubectl create -f .yaml -n .
apiVersion: v1

kind: Secret

metadata:

name:

type: Opaque

stringData:

GF_INSTALL_PLUGINS:

Add the section to Grafana CR.

deployment:

envFrom:

'''-''' secretRef:

name:

Creating Grafana Instance

1. Modify Grafana.yaml with the required values before creating Grafana instance. Update name and add
hostname if ingress is enabled.

apiVersion: integreatly.org/v1alpha1

kind: Grafana

metadata:

name: grafana-app

spec:

client:

preferService: true

Grafana configuration

Operations 36

ingress:

enabled: True

hostname: "grafana.gke1-uswest1.gcpe001.gencpe.com"

pathType: Prefix

path: "/"

config:

log:

mode: "console"

level: "error"

log.frontend:

enabled: true

auth:

disable_login_form: False

disable_signout_menu: True

auth.anonymous:

enabled: True

service:

name: "grafana-service"

labels:

app: "grafana"

type: "grafana-service"

dashboardLabelSelector:

- matchExpressions:

- { key: app, operator: In, values: [grafana] }

resources:

Optionally specify container resources

limits:

cpu: 200m

memory: 200Mi

requests:

cpu: 100m

Grafana configuration

Operations 37

2. Create a new Grafana instance in the namespace.
$ kubectl create -f deploy/examples/Grafana.yaml -n

3. Retrieve the Grafana UI login admin credentials.
$ echo "User: admin"

$ echo "Password: $(oc get secret --namespace -o
jsonpath="{.data.GF_SECURITY_ADMIN_PASSWORD}" | base64 --decode)"

Connecting Prometheus to custom Grafana
Deploy Grafana data source kubectl create -f -n . If Grafana instance is deleted and redeployed, you
must delete and redeploy Grafana data source as well.

apiVersion: integreatly.org/v1alpha1
kind: GrafanaDataSource
metadata:

name: grafana-datasource
namespace: monitoring

spec:
datasources:

- access: proxy
editable: true
isDefault: true
name: Prometheus
type: prometheus
url: 'http://prometheus-k8s.monitoring.svc:9090'

name: grafana-datasource.yaml

Grafana dashboards

Importing custom dashboards
To import a custom Grafana dashboard from a JSON file within Grafana, click Import and then click
Upload Json file as shown in the following screenshot:

Grafana configuration

Operations 38

Creating Grafana dashboards
To create Grafana dashboard, use the following template:

apiVersion: integreatly.org/v1alpha1
kind: GrafanaDashboard
metadata:

name:
namespace:
labels:

app: grafana --> label should match the dashboardLabelSelector defined in Grafana operator
spec:

customFolderName: "folder name"
json:

""
configMapRef:

name:
key:

apiVersion: v1
kind: ConfigMap
metadata:

name: voice-sips-dashboard-from-cm
data:

: |-

Important

Grafana configuration

Operations 39

/File:ImportCusDashB.png
/File:ImportCusDashB.png

Each product has a set of dashboards that come with the service for you to enable/
disable as per your choice.

You can deploy new customized dashboards. You can either deploy them as Grafana dashboard in the
namespace or it can be directly loaded on to the Grafana UI. Refer to https://github.com/integr8ly/
grafana-operator/tree/master/deploy/examples/dashboards for more details about different ways to
deploy a dashboard.

Grafana configuration

Operations 40

Monitoring Dashboards API

Learn about Cloud Monitoring API used to create dashboards, update existing dashboards or delete
dashboards.

Related documentation:
•
•

RSS:

• For private edition

The Cloud Monitoring API provides a resource called projects.dashboards which offers a familiar set of
methods: create, delete, get, list, and patch.

Create

POST https://monitoring.googleapis.com/v1/{parent}/dashboards

Delete

DELETE https://monitoring.googleapis.com/v1/{name}

GET

GET https://monitoring.googleapis.com/v1/{name}

List

GET https://monitoring.googleapis.com/v1/{parent}/dashboards

Patch

PATCH https://monitoring.googleapis.com/v1/{dashboard.name}

Here is an example:

https://content-monitoring.googleapis.com/v1/projects//dashboards

Errors in Logs Dashboard: Using this example, you can find errors in logs.
{

Monitoring Dashboards API

Operations 41

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

"category": "CUSTOM",
"displayName": "Errors in Logs Dashboard",
"mosaicLayout": {

"columns": 12,
"tiles": [

{
"height": 4,
"widget": {

"alertChart": {
"name": "projects//alertPolicies/1502724684856373513"

}
},
"width": 6,
"xPos": 0,
"yPos": 0

},
{

"height": 4,
"widget": {

"title": "logging/user/Kubernetes-container-error-logs [SUM]",
"xyChart": {

"chartOptions": {
"mode": "COLOR"

},
"dataSets": [

{
"minAlignmentPeriod": "60s",
"plotType": "STACKED_BAR",
"targetAxis": "Y1",
"timeSeriesQuery": {

"apiSource": "DEFAULT_CLOUD",
"timeSeriesFilter": {

"aggregation": {
"alignmentPeriod": "60s",
"crossSeriesReducer": "REDUCE_NONE",
"perSeriesAligner": "ALIGN_RATE"

},
"filter": "metric.type=\"logging.googleapis.com/user/Kubernetes-container-

error-logs\" resource.type=\"k8s_container\"",
"secondaryAggregation": {

"alignmentPeriod": "60s",
"crossSeriesReducer": "REDUCE_SUM",
"groupByFields": [

"resource.label.\"pod_name\""
],
"perSeriesAligner": "ALIGN_NONE"

}
}

}
}

],
"timeshiftDuration": "0s",
"yAxis": {

"label": "y1Axis",
"scale": "LINEAR"

}
}

},
"width": 6,
"xPos": 6,
"yPos": 0

},
{

Monitoring Dashboards API

Operations 42

"height": 4,
"widget": {

"timeSeriesTable": {
"dataSets": [

{
"minAlignmentPeriod": "60s",
"tableDisplayOptions": {},
"timeSeriesQuery": {

"timeSeriesFilter": {
"aggregation": {

"alignmentPeriod": "60s",
"crossSeriesReducer": "REDUCE_NONE",
"perSeriesAligner": "ALIGN_RATE"

},
"filter": "metric.type=\"logging.googleapis.com/user/Kubernetes-container-

error-logs\" resource.type=\"k8s_container\" resource.label.\"namespace_name\"!=\"kube-
system\"",

"secondaryAggregation": {
"alignmentPeriod": "60s",
"crossSeriesReducer": "REDUCE_MAX",
"groupByFields": [

"resource.label.\"pod_name\""
],
"perSeriesAligner": "ALIGN_MAX"

}
}

}
}

]
},
"title": "logging/user/Kubernetes-container-error-logs (filtered) [99TH PERCENTILE]"

},
"width": 6,
"xPos": 0,
"yPos": 4

}
]

}
}

Monitoring Dashboards API

Operations 43

Logging overview and approaches

Contents

• 1 Overview and approaches
• 2 Solution-level logging approaches

• 2.1 AKS logging approach

• 3 GKE logging
• 3.1 Enable cloud logging
• 3.2 Accessing logs
• 3.3 Cloud Monitoring Console
• 3.4 GKE Console
• 3.5 Command-Line

Logging overview and approaches

Operations 44

Learn about the structured, unstructured, and Sidecar logging methods that Genesys Multicloud CX
private edition services use.

Related documentation:
•
•

RSS:

• For private edition

Overview and approaches

Application log files contain the important diagnostic information for various issues that may arise.
Support of Genesys services rely on access to these application logs. In Genesys Multicloud CX
private edition, the Genesys Multicloud CX services write these log files using different methods and
formats. Some services write to a standard out/standard error (stdout/stderr) console while others
write directly into an RWX shared storage. This data must be accessible outside of the cluster
environment for shipping diagnostic logs for further review.

By default, GKE clusters are natively integrated with Cloud Logging. When you create a GKE cluster,
Cloud Logging is enabled by default.

Solution-level logging approaches

Private edition services use one of the following approaches:

• Kubernetes-supported structured logging — The services write structured logs. These logs are
written in the standard stdout/stderr console and supported by Kubernetes. Fluentd collects these logs
from multiple nodes and formats them by appending Kubernetes pod and project metadata. For more
information, see Kubernetes-supported structured logging.

• Sidecar processed logging — The services write their logs in a log file. A sidecar container processes
these log files and then writes them to the stdout/stderr console. A log aggregator such as Fluentd
collects these logs from stdout/stderr and formats them by appending Kubernetes pod and project
metadata. For more information, see Sidecar processed logging.

• RWX logging (unstructured) — The services write unstructured logs. These unstructured logs can
neither be directly processed by a sidecar container nor be collected by Fluentd. These services write
their logs in a mounted Persistent Volume Claim (PVC) bound to Persistent Volume (PV) which is backed
by an RWX shared storage such as NFS or NAS for ease of access. For more information, see RWX
(unstructured) logging.

Logging overview and approaches

Operations 45

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Important
A Cluster Administrator must create appropriate PVCs and RWX shared storage path for the services that
use the RWX logging method. For more information about creating the log-specific storage, refer to the
related Genesys Multicloud CX private edition services.

RWX logging is deprecated. It will be phased out with the use of sidecars to facilitate legacy logging
behavior.

AKS logging approach
In Azure, the Log Analytics workspace feature in the Azure Monitor service collects log data from
multiple services and system. You can create a single or multiple workspaces and feed the
application logs into them.

For more detailed instructions, refer Genesys logging github.

GKE logging

Google Cloud's operations suite is backed by Google Stackdriver which controls logging, monitoring,
and alerting within Google Cloud Platform. System and user workload logs are captured using
Google’s own Fluentd DaemonSet called Google-Fluentd that runs on each node in your cluster. The
Daemon set parses container logs and pipes them to the stackdriver for processing.

Stackdriver provides built-in log metric capabilities that allows you to monitor specific log events for
building dashboards and alert policies.

By default, GKE clusters are natively integrated with cloud logging. When you create a GKE cluster,
cloud logging is enabled by default.

You can create a cluster with Logging enabled, or enable Logging in an existing cluster.

Logging overview and approaches

Operations 46

Enable cloud logging
The following table provides the supported values for the --logging flag for the create and update
commands.

Source Value Logs collected

System SYSTEM

Collects logs from:

• Pods running in namespaces
kube-system, istio-system,
knative-serving, gke-
system, and config-
management-system.

• Key services that are not
containerized including
docker/containerd runtime,
kubelet, kubelet-monitor,
node-problem-detector,

Logging overview and approaches

Operations 47

/File:GKE_Monitoring.png
/File:GKE_Monitoring.png

Source Value Logs collected

and kube-container-
runtime-monitor.

• The node's serial ports output,
if the VM instance metadata
serial-port-logging-
enable is set to true.

Workload WORKLOAD
All logs generated by non-system
containers running on user
nodes.

Console UI

To enable cloud logging through console UI, follow these steps:

1. Navigate to Console UI using: https://console.cloud.google.com/kubernetes/list/
overview?project=gcpe0001

2. Select Clusters and then select the cluster name.
3. Under Features, select Cloud Logging, and then click Edit.
4. Select Enable Cloud Logging and then select System and Workflow from drop-down.
5. Save the changes.

GCloud CLI

To enable cloud logging through GCloud CLI, follow these steps:

1. Log on to the existing GCloud cluster.

Logging overview and approaches

Operations 48

/File:ConsoleUI.png

gcloud container clusters get-credentials gke1 --zone us-west1-a --project gcpe0001

2. Configure the logs to be sent to Cloud Logging by updating a comma-separated list of values to the
gcloud container clusters update with --logging flag.

gcloud container clusters update gke1 \
--zone=us-west1-a \
--logging=SYSTEM,WORKLOAD

Accessing logs
Log Explorer

Log explorer is Google's central Logging UI. You can access logs for your Google cloud resources from
this console, including GKE, Cloud SQL, VM instances and so on. You can then use logging filters to
select the Kubernetes resources, such as cluster, node, namespace, pod, or container logs.

For more details about the console, click here.

Logging overview and approaches

Operations 49

/File:Console1.png
/File:Console1.png

Cloud Monitoring Console
Cloud Monitoring Console allows you to track metrics of resources within your GCP/GKE environment.
This console allows you to access your logs from a particular Cluster, Namespace, Node, and Pod.

Logging overview and approaches

Operations 50

/File:Console2.png
/File:Console2.png
/File:CMC1.png
/File:CMC1.png

GKE Console
GKE web console enables you to access to logs on individual pods actively running within a workload.

There is a filter option available to filter specific events, and a drop-down field to target specific
severity of log events.

Logs provide a link to access Logs Explorer from a given pod to access the main logs explorer page
for enhanced querying capabilities and other features.

Logging overview and approaches

Operations 51

/File:CMC2.png

Command-Line
The standard kubectl logs commands are supported in GKE. They provide actively running stdout
logs from containers.

Example:
kubebctl logs gvp-mcp-0 -n gvp -c fluentbit | more

Logging overview and approaches

Operations 52

/File:GKE_Console.png
/File:MicrosoftTeams-image_(3).png
/File:MicrosoftTeams-image_(3).png

Kubernetes-supported structured logging

Contents

• 1 GKE logging

Kubernetes-supported structured logging

Operations 53

A secondary method of logging required for standard stdout/stderr structured logging.

Related documentation:
•
•

RSS:

• For private edition

This logging method that is required for standard stdout/stderr structured logs that are generated by
containers within the Kubernetes environment. Therefore, this method is also called Kubernetes-
supported logging. Here, the container is writes stdout/stderr logs to a – var/log/containers
directory.

You will be given the option to choose the external log aggregator to implement the aggregation.

Services that use Kubernetes structured logging:

• Genesys Authentication

Kubernetes-supported structured logging

Operations 54

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss
/File:K8_logging.png
/File:K8_logging.png

• Web Services and Applications
• Genesys Engagement Services
• Designer

Important
Some services (such as Genesys Info Mart) use the Kubernetes logging approach with
an exception that the logs are written in an unstructured format.

GKE logging

Click here for details about GKE logging.

Kubernetes-supported structured logging

Operations 55

Sidecar processed logging

Contents

• 1 What does a sidecar container with a logging agent (like Fluent Bit) require?
• 1.1 Services support for Sidecar logging

Sidecar processed logging

Operations 56

Learn about the Sidecar processing of the structured logging to Stdout/Stderr that is available as an
option for private edition services.

Related documentation:
•
•

RSS:

• For private edition

Some Genesys service containers write logs to log files. This method is similar to that of the
structured logging in terms of the the log aggregation. Here, a sidecar to be applied to a sidecar
container that is applied to the service. The sidecar container processes this data and sends it to
stdout/stderr. Any log aggregator (such as Fluentd) picks up this data and applies the same
operations as that of standard structured logs.

Services that can log on to stdout/stderr can be ingested into Elasticsearch by using sidecar container
for processing the logs. The service writes the logs to EmptyDir and sidecar container collects and
processes the output to the /var/log/pods directory.

A log aggregator will scrape directory and post log data to the Elasticsearch index.

Sidecar processed logging

Operations 57

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

What does a sidecar container with a logging agent (like Fluent Bit) require?
You require a ConfigMap that contains the configuration to configure Fluent Bit. For more information
on configuring Fluent Bit, refer to Fluent Bit Documentation.

Here is a ConfigMap sample with Fluent Bit version 1.8.x:

FluenbtBit Configmap
apiVersion: v1
kind: ConfigMap
metadata:

name: fluent-bit-config
labels:

k8s-app: fluent-bit
data:

fluent-bit.conf: |
[SERVICE]

Flush 1
Log_Level debug
Daemon off
Parsers_File parsers.conf
HTTP_Server On
HTTP_Listen 0.0.0.0
HTTP_Port 2020

Sidecar processed logging

Operations 58

/File:Sidecar_logging_D2.jpg
/File:Sidecar_logging_D2.jpg

@INCLUDE input-kubernetes.conf
@INCLUDE output-stdout.conf

input-kubernetes.conf: |
[INPUT]

Name tail
Tag kube.*
Path
Parser docker
DB /var/log/flb_kube.db
Mem_Buf_Limit 5MB
Skip_Long_Lines On
Refresh_Interval 10

output-stdout.conf: |
[OUTPUT]

Name stdout
Match *

You also require a pod that has a sidecar container running Fluentd. The pod mounts a volume where
Fluentd can pick up its configuration data. Here is an example:

volumeMounts:
- name:

mountPath:
...
volumes:

- name:
configMap:

name:
...
image: 'fluent/fluent-bit:'

Services support for Sidecar logging

These services have the option use the Sidecar processed logging approach:

• Genesys Customer Experience Insights – GCXI
• Genesys Voice Platform – GVP
• Voice Microservice
• Voice Tenant Service
• Web Based Real-Time Reporting (Pulse)
• WebRTC Media Service
• Gplus WFM

Sidecar processed logging

Operations 59

RWX logging

Contents

• 1 RWX logging
• 2 Storage Prerequisites

• 2.1 Direct NFS Persistent Storage
• 2.2 Azure-Files Persistent Storage for ARO (NFS Backed)

RWX logging

Operations 60

Learn about the legacy logging method of writing logs to an RWX storage such as NFS or NAS server.

Related documentation:
•
•

RSS:

• For private edition

RWX logging

Important
RWX logging is deprecated. It will be phased out with the use of sidecars to facilitate
legacy logging behavior.

Some Genesys Multicloud CX services neither write structured logs in Kubernetes format nor do they
write to the stdout/stderr console. These services use RWX logging, which is the legacy logging
method of writing logs to an RWX storage such as NFS or NAS server.

Legacy Genesys Multicloud CX applications are not structured to be supported by logging capabilities
offered in Kubernetes, nor do they write to sufficient detail in stdout/stderr. To accommodate this type
of logging behavior, deployments must be provisioned to support mounting PVC/PV to NFS storage
for the application to write its logs. Each Service mounts to its own PV which is backed by an external
NFS share. After the logs are written to NFS share, the application controls the size and retention of
the file and files can be accessed externally from NFS share directly to package and provide to care.

RWX logging

Operations 61

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

The method of logging unstructured logs is not suitable for kubernetes-supported logging
aggregators such as Elasticsearch.

The sample procedures provided in the following section, help in setting up the RWX storage of your
choice.

Services that use the RWX logging approach:

• WebRTC
• GVP
• GCXI
• Voice Microservices
• Genesys Pulse
• Interaction Server
• Tenant Services

RWX logging

Operations 62

/File:RWX_Logging1.png
/File:RWX_Logging1.png

Storage Prerequisites

Direct NFS Persistent Storage
With Direct NFS approach, shares are mounted using NFS IP/FQDN and share path is mounted using
NFS-subdir-external-provisioner.

For more details about this provisioner, refer to NFS Subdir External Provisioner.

Prerequisite: You must have a dedicated NFS server to create NFS persistent storage.

Create StorageClass for NFS Retained Storage

Here is a sample configuration to create StorageClass for NFS persistent storage. The following
configuration is suitable for a bare metal server.

bare-metal-sc.yaml

provisioner: cluster.local/nfs-vce-c00ds-vol1-nfs-subdir-external-provisioner
mountOptions:
- nfsvers=3
- uid=500
- gid=500
parameters:
archiveOnDelete: 'false'
volumeBindingMode: Immediate metadata
name:
kind: StorageClass
reclaimPolicy: Retain
allowVolumeExpansion: true
apiVersion: storage.k8s.io/v1

oc apply -f bare-metal-sc.yaml

Create PVC to dynamically create and bind to PV

create-pvc.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: -pvc
namespace:

spec:
accessModes:
- ReadWriteOnce

resources:
requests:
storage: 10Gi
storageClassName:
volumeMode: Filesystem

Azure-Files Persistent Storage for ARO (NFS Backed)
For ARO type deployments you can map NFS directly. Therefore, you can create NFS share within

RWX logging

Operations 63

Azure using Azure-files. You need to create storage class of type Azure-Files:

• "recalimPolicy" set to "Retain"
• "parameters" set based on your specific Azure deployment

For more details, refer to:

• How to create an NFS share
• Dynamically create and use a persistent volume with Azure Files in AKS

Create Storage Class for retained Azure-File NFS storage

azure-file-retain-sc.yaml

allowVolumeExpansion: true
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: azure-files-retain

annotations:
description: azure-files-retain

provisioner: kubernetes.io/azure-file
parameters:
location: westus2
skuName: Standard_LRS

reclaimPolicy: Retain
volumeBindingMode: Immediate

oc apply -f azure-file-retain-sc.yaml

Create PVC to dynamically create and bind to PV

create-pvc.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: -pvc
namespace:
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 10Gi
storageClassName:
volumeMode: Filesystem

oc apply -f create-pvc.yaml

RWX logging

Operations 64

Sample Kibana queries

Sample Kibana queries to find logs

Related documentation:
•
•

RSS:

• For private edition

Here are some sample queries for you to understand what information could be searched for in
Kibana. The search is specific to the values in the query. It returns the log messages that matches the
query.

Query 1: To return podname , namespace , and container name

kubernetes.pod_name:"t100-0" AND kubernetes.namespace_name:"voice" AND
kubernetes.container_name.raw:"tenant"

Output:

Sample Kibana queries

Operations 65

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Query 2: Any string and logs listed with the string

"Voice-sip"

Output

Sample Kibana queries

Operations 66

/File:Query1.png
/File:Query1.png
/File:Query2.png
/File:Query2.png

Query 3: Any combination with service, service name, instance , name , version, any value
available in the logs

"service=ixn" AND "servicename=ixn-vqnode"

Output:

Query 4: CallUUID is consistent across interactions

kubernetes.pod_name."voice-sip-0" AND kubernetes.namespace_name."voice" AND
kubernetes.container_name.raw."voice-sip" AND
"CallUUID.00E5IM3D048KVE8LFG1862LAES0001SP"

Output:

Sample Kibana queries

Operations 67

/File:Query3.png
/File:Query3.png
/File:MicrosoftTeams-image.png
/File:MicrosoftTeams-image.png

Sample Logs Explorer queries

Contents

• 1 Sample queries to find important logs using the Logs Explorer
• 1.1 A sample query for int-id in MCP
• 1.2 A sample query for UUID in voice-sip
• 1.3 A sample query for UUID in ORS
• 1.4 A sample query for Call-ID for sip proxy
• 1.5 A sample query for GAUTH for user authentication

Sample Logs Explorer queries

Operations 68

Learn about the interface for analyzing logs data - the Logs Explorer, and take a look at some
sample Logs Explorer queries to find logs.

Related documentation:
•
•

RSS:

• For private edition

Sample queries to find important logs using the Logs Explorer

The Cloud Logging interface, the Logs Explorer, enables you to quickly and efficiently retrieve, view,
and analyze logs from your queries.

Here are some sample queries for you to understand how to find important logs using the Logs
Explorer in the Google Cloud Console.

A sample query for int-id in MCP
resource.type="k8s_container"

resource.labels.project_id=""

resource.labels.location=""

resource.labels.cluster_name=""

resource.labels.namespace_name="gvp"

labels.k8s-pod/app_kubernetes_io/instance="gvp-mcp"

labels.k8s-pod/app_kubernetes_io/log-monitor-name="gvp-mcp-log"

labels.k8s-pod/app_kubernetes_io/name="gvp-mcp"

00640220-10003852

A sample query for UUID in voice-sip
resource.type="k8s_container"

resource.labels.project_id=""

resource.labels.location=""

resource.labels.cluster_name=""

Sample Logs Explorer queries

Operations 69

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

resource.labels.namespace_name="voice"

labels.k8s-pod/app_kubernetes_io/instance="voice-sip"

A sample query for UUID in ORS
resource.type="k8s_container"

resource.labels.project_id=""

resource.labels.location=""

resource.labels.cluster_name=""

resource.labels.namespace_name="voice"

labels.k8s-pod/app_kubernetes_io/instance="voice-ors"

labels.k8s-pod/app_kubernetes_io/name="voice-ors"

00ESOD0T04905B2SK13CC2LAES00002Q

A sample query for Call-ID for sip proxy
resource.type="k8s_container"

resource.labels.project_id=""

resource.labels.location=""

resource.labels.cluster_name=""

resource.labels.namespace_name="voice"

labels.k8s-pod/app_kubernetes_io/instance="voice-sipproxy"

labels.k8s-pod/app_kubernetes_io/name="voice-sipproxy"

00154DB6-1D01-1202-AC5C-A046C60AAA77-9483@10.198.70.160

A sample query for GAUTH for user authentication
resource.type="k8s_container"

resource.labels.project_id="project ID"

resource.labels.location=""

resource.labels.cluster_name=""

resource.labels.namespace_name="gauth"

labels.k8s-pod/app_kubernetes_io/instance="gauth"

labels.k8s-pod/app_kubernetes_io/name="gauth"

"SAT_Prov_100_genesys@t100"

Sample Logs Explorer queries

Operations 70

	Operations
	Table of Contents
	Monitoring overview and approach
	Enabling monitoring in GKE Platform
	System metrics
	Summary of monitoring support
	Sample Prometheus queries
	Handling alerts
	Grafana configuration
	Monitoring Dashboards API
	Logging overview and approaches
	Kubernetes-supported structured logging
	Sidecar processed logging
	RWX logging
	Sample Kibana queries
	Sample Logs Explorer queries

