3 GENESYS

This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Genesys Customer Experience
Insights Private Edition Guide

Configure RAA

1/16/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

e 1 Override Helm chart values
e 2 Container deployment
* 2.1 Init containers
» 2.2 Pod containers
* 2.3 Test containers
¢ 3 Disk space requirements
* 3.1 GIM secret volume
* 3.2 Config volume
* 3.3 Health volume
¢ 4 Configure security

* 4.1 Arbitrary UIDs

Genesys Customer Experience Insights Private Edition Guide

Learn how to configure Reporting and Analytics Aggregates (RAA).

Related documentation:

RSS:

* For private edition

Override Helm chart values

Before you begin, download samples of the files used in this section: RAA configuration files. Within
those files:

¢ Container environment variables are declared beginning at line 114 of the Dockerfile. See the
comments accompanying each variable.

¢ Helm values are described in values.yaml. See the comments accompanying each Helm value.

You can override values in the Helm charts to configure Private Edition. For more information, see the
suite-level documentation about how to override Helm chart values: Overriding Helm chart values.

1. Override Helm Chart Image repository values.
raa:
image:
registry: 'pureengage-docker-staging.jfrog.io'
name: '{{- if $.Values.raa.image.registry -}}{{ $.Values.raa.image.registry

}¥/{{- end -}}gcxi/raa:{{ include "raa.imageVersion" $ }}'
pullSecrets:

2. Override Helm Chart GIM DB values.
The GIM database address and access parameters, base64 encoded, formatted as follows:

echo '{"jdbc url":"jdbc:postgresql://:5432/", "db username":"", "db password":""}' |
base64

raa:
env:
GCXI_GIM DB JSON:
eyJkY190b3N0bmFtZSI6InBvc3RncmVzLXI3LmluZnJhLnN2Yy5jbHVZzdGVyLmxvY2FsIiwiZGIfbmFtZSI6ImVObC1lhcm8iLCIkYl

ybmFtZSI6InBvc3RncmVzInOK

Genesys Customer Experience Insights Private Edition Guide 3

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

3. Use one of the following methods to deliver configuration changes into the container:
e Override Helm Chart config values using a TAR file:
1. Prepare confg.xml and custom *.ss files.
2. Compress the confg.xml and *.ss files into a tar(gzip) archive.
3. Convert the archive to base64.
4. Use the name of the compressed file in the override:

raa:

deployment:
configTar: H4sIADb/

OWAAA+2VXW+bMBSGua7U/+Bx1Vw4AcJA6pI JHMVZNSXN2uR1V8gJJ rHKR2Qgavv r59KkbRKpII3QTTrPDcjHPqOf+xxYJIHHC
Q6j /CWNEH3PBkM8CmocZwvg5QtbrkC/

009x1QA5xxP2BSpdLdTtSjNON1DST41WSC8z] j IKNDVWOGag9LeKx2t2t7vKjPDhgNJIPih/
kiKtNwGvIHhmXubWrsz4u8mcjzZS9rdEhbTecgw3VAeFm/

b10nxkqOdLIL1G7eHm3G+D81k403JyCly3RCiore5UHFe3f0OD63f3jvqjL35LnjKBfZpRHNF1IJ01PoVHS/
z3DNnb9b1i2JfvfsDQL+r8Jvuw3e3p+1pKFgF/
L40490NaKMOHFYvVwgX54V5dt1PJ5x0JULvIFmt26N94mRLvp/
tb1zF2v5Zt9hzkIsj9jj07nV6PnuKe3m7/

rYZRpmFUO1iBDdzw9vZUymTrdelL9m7sxtyFOpWK30HDKakKvh+F1z9XmrIGeUyFVzV81XLZdWyVItN9ZQFTZUf4WMR741cEV\
TgAAAAAAAAAAAAAAAAAAAAAAAAD49/gDz08AHWAOAAA=

5. Override Helm Chart init container values.
To enable the container, specify the name of the configDelivery container:

raa:

statefulset:
containers:
configDelivery:
name: '{{ $.Chart.Name }}-conf-delivery'

* Override Helm Chart volume configuration values using mapping:

1. The config and health volumes requires PVC, which are automatically created using the
storage class name.

raa
volumes:
config:
pv: {}
storageClassName: azure-files
pvc:
name: "gcxi-raa-config-pvc"
volumeName: ""

4. Override Helm Chart monitoring container values.
This container exposes two ports for scraping of aggregation metrics and health metric by
Prometheus or other monitoring tool. The monitor container is optional, and is disabled by default.

raa:
statefulset:
containers:

monitor:
name: "{{ $.Chart.Name }}-monitor"

Genesys Customer Experience Insights Private Edition Guide 4

toolcmd:
interval of checking for a new file with command
intervalSec: "20"

metrics:
portName: "metrics"
containerPort: "9100"

health:
portName: "health"
containerPort: "9101"

Container deployment

Deploy containers in the order they are described on this page.

Init containers

The RAA helm chart includes two explicit Init containers.

* configDelivery init container

The optional configDelivery init container delivers required *.xml configuration and *.ss files to the
RAA work dir. Those files must be contained in a GZIP archive encoded as base64, which is passed

by one of two methods:
e The option --set-file raa.deployment.configTar=config.tar.gz.b64 of helm install/update.

e The configTar value, specified in the YAML file.

Default conf.xml and user-data-map.ss are supplied with the YAML chart. If these files are
missing from the work directory, and are not provided by either of the methods described above,
the Init container automatically copies the default files to the work directory.

The configDelivery init container is disabled by default since you can manually create RAA
configuration files in the mounted config volume. Enabling the configDelivery init container is
useful in scenarios such as cloud deployments where access to the mounted work directory is
restricted due to security policies, or due to use of ephemeral storage for config volume. Specify

the container when you need to deploy a default configuration.

To enable the container, specify the container name using the configDelivery: parameter in
values.yaml:

raa:
statefulset:
containers:

..éonfigDelivery:
name: "{{ $.Chart.Name }}-conf-delivery"

¢ testRun init container

The optional testRun init container tests your configuration by running aggregation over an empty
time range. SQL execution, even on empty data, checks the presence of the expected tables and

Genesys Customer Experience Insights Private Edition Guide

columns, which helps you to detect configuration and customization problems. The testRun init
container is disabled by default, but Genesys recommends that you activate it to test your
configurations.

To enable the container, specify the container name using the testRun: parameter in
values.yaml:

raa:
statefulset:
containers:

testRun:
name: "{{ $.Chart.Name }}-test-run"

Logs and test results appear in the health volume test folder.

Pod containers

The RAA helm chart includes two explicit execution containers.

* aggregation container
RAA requires the aggregation container to perform aggregation. The aggregation container is
enabled by default.

To enable the container, specify the container name using the aggregation: parameter in
values.yaml:

raa:
statefulset:

containers:
aggregation:
name: "{{ $.Chart.Name }}"

* monitor container
The monitor container is an optional sidecar container that allows you to run the RAA tool
command from a file, using parameters placed in a work directory. This functionality is useful in
scenarios where you cannot use kubectl, for example due to security policies. The container also
exposes two ports for scraping aggregation metrics and health metric by a monitoring tool, such
as Prometheus. The monitor container is disabled by default.

To enable the container, specify the container name using the monitor: parameter in
values.yaml:

raa:
statefulset:
containers:

monitor:
name: "{{ $.Chart.Name }}-monitor"

toolcmd:
interval of checking for a new file with command
intervalSec: "20"

Genesys Customer Experience Insights Private Edition Guide

metrics:
portName: "metrics"
containerPort: "9100"

health:

portName: "health"
containerPort: "9101"

Test containers

The RAA helm chart includes two containers for the helm test command. Run these containers in
order (testRunCheck followed by healthCheck).

e testRunCheck container
The optional testRunCheck container watches for the execution of the testRun init container,
and reads the testRun results from the health volume. The testRunCheck container is enabled by
default. If the testRun init container is not enabled, Genesys recommends that you disable
testRunCheck.

The disable this container, clear the value from the testRunCheck parameter in the testPod
section of your values.yaml file:

raa:
iéétPods:
testRunCheck:
name: "{{ tpl .Values.raa.serviceName . }}-test-run-check"

container:
name: "{{ $.Chart.Name }}-test-run-check"

labels: {}

annotations:
"helm.sh/hook-weight": "100"
"helm.sh/hook": "test-success"
"helm.sh/hook-delete-policy": "before-hook-creation"

¢ healthCheck test container
The optional healthCheck test container runs healthCheck, displays healthCheck status
information to the console, and prints the content of the current configuration files and health files
to standard output. The container is enabled by default.

The disable this container, clear the value from the healthCheck parameter, in the testPod
section of your values.yaml file:

raa:
testPods:

healthCheck:
name: "{{ tpl .Values.raa.serviceName . }}-health-check"

container:
name: "{{ $.Chart.Name }}-health-check"

Genesys Customer Experience Insights Private Edition Guide 7

labels: {}

annotations:
"helm.sh/hook-weight": "200"
"helm.sh/hook": "test-success"
"helm.sh/hook-delete-policy": "before-hook-creation"

Disk space requirements

This section describes the storage requirements for various volumes.

GIM secret volume

In scenarios where raa.env.GCXI_GIM_DB__JSON is not specified, RAA mounts this volume to
provide GIM connections details.

1. Declare GIM database connection details as a Kubernetes secret in gimsecret.yaml:

apiVersion: vl
kind: Secret
metadata:
namespace: gcCxi
name: gim-secret
type: kubernetes.io/service-account-token
data:

json credentials:
eyJqZGJjX3VybCI6ImpkYmM6cG9zdGdyZXNxbDovLzxob3NOPjo1NDMyLzxnaWlfZGFOYWIhc2U+IiwgImRiX3VzZXJuYW1lIjoiPH!

2. Reference gimsecret.yaml in values.yaml:
raa
volumes:
éiﬁSecret:
name: "gim-secret-volume"

secretName: "gim-secret"
jsonFile: "json credentials"

Alternatively, you can mount the CSl secret using secretProviderClass, in values.yaml:

raa
volumes:
gimSecret:
name: "gim-secret-volume"

secretProviderClass: "gim-secret-class
jsonFile: "json credentials"

Genesys Customer Experience Insights Private Edition Guide

Config volume

RAA mounts a config volume inside the container, as the folder /genesys/raa_config. The folder is
treated as a work directory, RAA reads the following files from it during startup:

¢ conf.xml, which contains application-level config settings.
* custom *.ss files.

» JDBC driver, from the folder lib/jdbc_driver_.

RAA does not normally create any files in /genesys/raa_config at runtime, so the volume does not
require a fast storage class. By default, the size limit is set to 50 MB. You can specify the storage
class and size limit in values.yaml:

raa
volumes:
config:
capacity: 50Mi
storageClassName:

RAA helm chart creates a Persistent Volume Claim (PVC). You can define a Persistent Volume (PV)
separately using the gecxi-raa chart, and bind such a volume to the PVC by specifying the volume
name in the raa.volumes.config.pvc.volumeName value, in values.yaml:

raa
volumes:
config:
pvc:

volumeName: "my raa config volume"

Health volume

RAA uses the Health volume to store:

* Health files.
* Prometheus file containing metrics for the most recent 2-3 scrape intervals.

¢ Results of the most recent testRun init container execution.

By default, the volume is limited to 50MB. RAA periodically interacts with the volume at runtime, so
Genesys does not recommend a slow storage class for this volume. You can specify the storage class
and size limit in values.yaml:

raa
volumes:
health:

capacity: 50Mi

Genesys Customer Experience Insights Private Edition Guide

storageClassName:

RAA helm chart creates a PVC. You can define a PV separately using the gcxi-raa chart, and bind
such a volume to the PVC by specifying the volume name in the
raa.volumes.health.pvc.volumeName value, in values.yaml:

raa
volumes:
health:
pvc:
volumeName: "my raa helath volume"

Configure security

Arbitrary UIDs

If your OpenShift deployment uses arbitrary UIDs, you must override the securityContext settings in
the (gcxi-raa/) values.yaml file (line 89), so that you do not define any specific IDs:

optional
a security context assigned to each container in pod
securityContext:

runAsNonRoot: true

runAsUser: null

runAsGroup: null

fsGroup: null

The default values (user ID = 500) are suitable for many other deployment scenarios:

optional
a security context assigned to each container in pod
securityContext:

runAsNonRoot: true

runAsUser: 500

runAsGroup: 500

fsGroup: 0

Genesys Customer Experience Insights Private Edition Guide

10

	Genesys Customer Experience Insights Private Edition Guide

