
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Service Client API

Service Client API Reference

2/17/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

• 1 Getting started
• 2 Security configuration

• 2.1 Origin
• 2.2 Rate Limit
• 2.3 Attached Data Access

• 3 Working with the API
• 3.1 Notifications

• 4 Event Type references
• 4.1 Outbound events

• 5 Common actions with Service Client API
• 5.1 Controlling call recording from a third-party application
• 5.2 Embedding multiple third-party applications in Agent Workspace
• 5.3 Updating attached data from a third-party application
• 5.4 Enabling click-to-dial from a third-party application
• 5.5 Enabling Service Client API to invoke toast in Agent Workspace
• 5.6 Controlling case selection from a third-party application
• 5.7 Supporting multiple browser tabs

Service Client API Reference 2

Learn how to use the Service Client API to customize the way your web application integrates with
Agent Workspace.

Important
Depending on your environment, you might need to contact your Genesys
representative to complete the configuration described on this page.

Use the Service Client API to customize how your web application or website integrates with Agent
Workspace. This JavaScript API is based on window.postMessage and provides methods your
application can use to communicate cross domain with Agent Workspace while maintaining secured
isolation.

Getting started

Here's an overview of the steps to access the API:

1. You have a web application that you've integrated in Agent Workspace. See Enabling integration of web
applications in the agent interface.

2. Download the sample application from GitHub.
3. Copy the wwe-service-client-api.js file in the sample application to a location your web application

can access.
4. Set configuration options related to security. See Security configuration.
5. Review Working with the API for more information about how to use the API.
6. Review the methods and types available in each namespace:

• Agent Namespace
• Configuration Namespace
• Email Namespace
• Interaction Namespace
• Media Namespace
• System Namespace
• Voice Namespace
• Outbound Namespace
• Auth Namespace
• Messenger Namespace

Service Client API Reference 3

7. See Common actions with Service Client API for ideas about how to use the API.

Security configuration

The Service Client API involves two parties inside the agent's web browser: the service (the main web
page) and the client (in an iframe on the same web page as the service). In order for the client web
page to access the API, you need to set a few configuration options to work around web browser
security restrictions for cross-origin requests and to enable request limits. You set these options on
the WWEWS Cluster application only at the Application level; you can't set these options at the
Agent or Agent Group level. Check out the Enabling the Service Client API topic in the Workspace
Web Edition Configuration Guide for a full list of the options available to configure the API.

Origin
First, to work around web browser security restrictions set the service-client-api.accepted-web-
content-origins option to the domain you want to be able to access to the API. For example, if you
want to give access to a web page located at http://my-web-server/path/page.html, then you
would set service-client-api.accepted-web-content-origins to http://my-web-server.

If you have several pages that need access to the API and they're located at different domains, you
can also provide service-client-api.accepted-web-content-origins with a list. For example:
http://my-web-server, http://my-second-web-server, http://my-third-web-server.

Finally, if you want to allow any page to access the API, just set service-client-api.accepted-web-
content-origins to *.

You can also set the service-client-api.accepted-web-content-origins option to values that filter
by API request, using any of the following keywords:

• agent.get
• agent.getState
• agent.getStateList
• agent.setState
• email.create
• interaction.deleteUserData
• interaction.getByInteractionId
• interaction.getInteractions
• interaction.selectCaseByCaseId
• interaction.setUserData
• interaction.singleStepTransfer(interactionId, targetQuery, userData, extensions, succeeded, failed)
• interaction.singleStepConference(interactionId, targetQuery, userData, extensions, succeeded, failed)
• interaction.consult(interactionId, targetQuery, userData, extensions, succeeded, failed)
• interaction.completeTransfer(consultInteractionId, succeeded, failed)

Service Client API Reference 4

• interaction.completeConference(consultInteractionId, succeeded, failed)
• media.getMediaList
• media.setState
• voice.dial
• voice.dialEx(destination, userData, extensions, succeeded, failed)
• voice.pauseCallRecording
• voice.resumeCallRecording
• voice.startCallRecording
• voice.stopCallRecording

For example, you could set service-client-api.accepted-web-content-origins to http://my-web-
server0, http://my-web-server1 (*), http://my-web-server2 (agent.*, voice.dial),
http://my-web-server3 (agent.*, interaction.*). In this example, everything is allowed for the
http://my-web-server0 and http://my-web-server1. For the http://my-web-server2 domain,
only the agent.get, agent.getStateList, agent.setState, agent.getState and voice.dial
requests are allowed.

As seen in the example above, you can also filter by wildcards, using the asterisk in parenthesis. For
example, http://my-web-server1 (*) or http://my-web-server3 (agent.*, interaction.*).

Rate Limit
You can limit the maximum number of requests per minute on any Service Client API request by
setting the service-client-api.rate-limit option. For example, setting the value to 50 would restrict the
number of requests to 50 per minute. Set the value to 0 for unlimited requests.

If you want to limit the maximum number of requests per minute on a particular Service Client API
request, use service-client-api.rate-limit..

Consider the following sample configuration:

service-client-api.rate-limit=0
service-client-api.rate-limit.voice.dial=4
service-client-api.rate-limit.email.create=2

In this example, there are no limits globally, but voice.dial requests are limited to 4 requests per
minute and email.create requests are limited to 2 requests per minute.

Workspace calculates the limitation as a fixed interval of time, each minute (this is not calculated on
a costly sliding window).

When the number of requests reaches the limit, Workspace ignores all further requests of the same
type for a configurable period of time, known as the quarantine delay. In response, Workspace Web
Edition sends a result with an explicit error message to the first request it receives after the limit is
reached:

{
"errorMessage": "The rate limit for the request 'voice.dial' has been reached.\nFurther

requests of the same type will be ignored for 30 seconds.",
"request": "agent.getState"

Service Client API Reference 5

}

To specify the global quarantine delay, set the service-client-api.rate-limit-quarantine-delay option.
For example, setting the option to 60 means that Workspace Web Edition ignores requests for 60
seconds after the limit is reached. A value of 0 means that Workspace Web Edition ignores further
requests forever, so use this value carefully.

Attached Data Access
Workspace offers two configuration options to limit the read or write access to the key/value pairs in
user data:

• service-client-api.user-data.write-allowed specifies the list of keys in user data that can be written with
the interaction.setUserData() or interaction.deleteUserData() functions.

• service-client-api.user-data.read-allowed specifies the list of keys in user data that can be read. This
applies in the userData property of the interaction.deleteUserData() object returned by a function or an
event.

For example, consider the following configuration:

service-client-api.user-data.write-allowed=Key1,Key3
service-client-api.user-data.read-allowed=Key1,Key2,Key3

This configuration lets you read the attached data with they keys Key1, Key2, and Key3, but only
allows writes on keys Key1, and Key3.

Working with the API

After you've completed the setup and security steps, you're ready to start working with the Service
Client API. The first thing you need to do is add a tag to your web application that points to the wwe-
service-client-api.js file (remember, you stored it somewhere accessible in Step 3 above).

Now you can access the API through the genesys.wwe.service namespace. For
example:

Hello world

Here's an example of how you could modify attached data:
genesys.wwe.service.interaction.setUserData(

"1",
{

MyKEY1: "MyValue1",
MyKEY2: "MyValue2"

}
)

Service Client API Reference 6

In the above example, the request is interaction.setUserData and the parameters
are the interactionId of 1 and the keyValues of MyKEY1 and MyKEY2. All
methods provided in the Service Client API are asynchronous, so to get the
successful or failed result, just add the matching callback:
genesys.wwe.service.interaction.setUserData(

"1",
{

MyKEY1: "MyValue1",
MyKEY2: "MyValue2"

},
function(result){

console.debug("SUCCEEDED, result: " + JSON.stringify(result, null, '\t'));
},
function(result){

console.debug("FAILED, result: " + JSON.stringify(result, null, '\t'));
}

)

The global template for a service call is:
genesys.wwe.service..(<... function parameters ...>, [, []]);

The done() callback is called when a request is successfully sent without an
error.
The fail() callback is called when a request generates an error or an exception.

The result of these functions is provided in a JSON object as a unique parameter.

Notifications

Warning
You must call genesys.wwe.service.subscribe only once.

You can use the following code to subscribe to agent and interaction
notifications:
function eventHandler(message) {

console.debug("Event: " + JSON.stringify(message, null, '\t'));
}

genesys.wwe.service.subscribe(["agent", "interaction"], eventHandler, context);

In the above example, eventHandler is the event handler function and context
is an optional contextual object. Here's an example with an agent
STATE_CHANGED to Ready:
{

"event": "agent",
"data": {

Service Client API Reference 7

"eventType": "STATE_CHANGED",
"mediaState": "READY"

}
}

Here's an example with an agent STATE_CHANGED to Not Ready with a reason:
{

"event": "agent",
"data": {

"eventType": "STATE_CHANGED",
"mediaState": "NOT_READY_ACTION_CODE",
"reason": "Break",
"reasonCode": "1511"

}
}

Finally, here's an example with an ATTACHED_DATA_CHANGED event on a voice
interaction:
{

"event": "interaction",
"data": {

"eventType": "ATTACHED_DATA_CHANGED",
"media": "voice",
"interaction": {

"interactionId": "1",
"caseId": "4dda1ab6-aeab-4a33-f5d0-0153c9fdb43b",
"userData": {

"IWAttachedDataInformation": {
"DispositionCode.Label": "DispositionCode",
"Option.interaction.case-data.header-foreground-

color": "#FFFFFF",
"CaseDataBusinessAttribute": "CaseData",
"DispositionCode.Key": "ChooseDisposition",
"Option.interaction.case-data.frame-color": "#17849D"

},
"IW_CaseUid": "4dda1ab6-aeab-4a33-f5d0-0153c9fdb43b",
"IW_BundleUid": "dfaca66c-4149-42a1-7244-337e949a12b5"

},
"parties": [

{
"name": "5001"

}
],
"callUuid": "4L6JGNEE9H7DT671FRPTKE6CQ000000G",
"state": "DIALING",
"previousState": "UNKNOWN",
"isConsultation": false,
"direction": "OUT",
"callType": "Internal",
"dnis": "5001",
"isMainCaseInteraction": true

}
}

}

Event Type references

Service Client API Reference 8

The system eventType field can be one of the following:

eventType Description

CUSTOM_TOAST_BUTTON_CLICK

Uses the following parameters:

• customToastId: The identifier of the toast
where the button has been clicked. The
identifier is returned by the popupToast
method.

• buttonIndex: The index of the clicked button.
The index starts by 0.

REALTIME_CONNECTION

Uses the following parameters:

• state: The attribute can take any of the
following values:
• DISCONNECTED - The real-time connection

with the Genesys Web Services server is
disconnected.

• RECONNECTED - The real-time connection
with the Genesys Web Services server is
established after a disconnection.

• DOWN - The real-time connection with the
Genesys Web Services server is down for
more than one minute due to server
inactivity. In this situation, we can consider
the session as Down.

The interaction eventType field can be one of the following:
eventType Description

Common events to all interaction types
UNKNOWN An unknown event occurs.

ADDED The interaction has been added in the list of
interactions.

REMOVED The interaction has been removed from the list of
interactions.

ATTACHED_DATA_CHANGED The attached data have changed in the interaction.

CASE_OR_BUNDLE_ID_CHANGED The case or the bundle identifier of this interaction
has changed.

CASE_ID_CHANGED The case identifier of this interaction has changed.
NEW_MESSAGE This event represents a new message.
ERROR An error occurs in the interaction.

CONTACT_CHANGED A contact associated with the interaction is fully or
partially modified.

Voice events
CALL_RECORDING_STATE_CHANGED The call recording state changed.

Service Client API Reference 9

eventType Description
DIALING The outbound call starts ringing.
ESTABLISHED The call has been established.
HELD The call has been held.

PARTY_CHANGED The list of party has been changed in the
interaction.

RELEASED The call has been released.
RINGING The inbound call starts ringing.
OpenMedia events
ACCEPTED The open media interaction is accepted.

COMPLETED The open media interaction has been completed
(Mark as done).

COMPOSING The open media interaction is in composing mode.
CREATED The open media interaction has been created.

INSERT_STANDARD_RESPONSE A standard response has been inserted in the
interaction.

INVITED The open media interaction is an invitation.

INVITED_CONFERENCE The open media interaction receive a conference
invitation.

IN_QUEUE_FAILED The place in queue has failed.
IN_WORKBIN The interaction has been placed in the work-bin.
IN_WORKBIN_FAILED The place in work-bin has failed.
LEFT_CONFERENCE The open media interaction has left the conference.

PULLED The open media interaction has been pulled from a
work-bin.

PULL_FAILED The pull from the queue has failed.
PULL_WORKBIN_FAILED The pull from the work-bin has failed.
REVOKED The open media interaction has been revoked.

TRANSFER_COMPLETED The open media interaction has been transferred
and the transfer has been completed.

Chat events (inherit from OpenMedia events)

CANCELED The interaction is already accepted in another chat
session.

ENDED The chat has been ended.
JOIN_FAILED The connection with the chat server failed.
JOIN_PENDING The interaction is trying to join the chat session.
Outbound email events (inherit from OpenMedia events)
CANCELLED The outbound email has been cancelled.
SENT The outbound email has been sent.

Service Client API Reference 10

Outbound events
The Outbound preview events table lists the SCAPI event details for Pull Preview, Push Preview
and Direct Push Preview records.

Outbound preview events
Mode UI Event Event Type State Call Type Capabilities

Pull Preview

Preview record
received

ADDED PREVIEWING OUTBOUND_PREVIEW
CALL,
REJECT_RECORD,
CANCEL_RECORD

PREVIEWING PREVIEWING OUTBOUND_PREVIEW
CALL,
REJECT_RECORD,
CANCEL_RECORD

Make call from
preview

ADDED DIALING OUTBOUND HANGUP
DIALING DIALING OUTBOUND HANGUP
REMOVED IDLE OUTBOUND_PREVIEW-

Release and
mark done

RELEASED IDLE OUTBOUND MARK_DONE
MARKDONE_APPLYIDLE OUTBOUND MARK_DONE
REMOVED IDLE OUTBOUND -

Reject record STATE_CHANGE REJECTED OUTBOUND_PREVIEWMARK_DONE
Cancel record STATE_CHANGE CANCELED OUTBOUND_PREVIEWMARK_DONE

Regular Push
Preview

Record
received

ADDED INVITED OUTBOUND_PUSH_PREVIEWACCEPT,
REJECT

INVITED INVITED OUTBOUND_PUSH_PREVIEWACCEPT,
REJECT

Accepted PREVIEWING PREVIEWING OUTBOUND_PUSH_PREVIEW
CALL,
REJECT_RECORD,
CANCEL_RECORD

Rejected REMOVED REJECTED OUTBOUND_PUSH_PREVIEW-

Make call
ADDED DIALING OUTBOUND HANGUP
DIALING DIALING OUTBOUND HANGUP
ESTABLISHED TALKING OUTBOUND HANGUP, HOLD

Release and
mark done

RELEASED IDLE OUTBOUND MARK_DONE
MARKDONE_APPLYIDLE OUTBOUND MARK_DONE
REMOVED IDLE OUTBOUND_PUSH_PREVIEWMARK_DONE
REMOVED IDLE OUTBOUND -

Reject record STATE_CHANGE REJECTED OUTBOUND_PUSH_PREVIEWMARK_DONE
Cancel record STATE_CHANGE CANCELED OUTBOUND_PUSH_PREVIEWMARK_DONE

Direct Push
Preview

Record
received

ADDED INVITED OUTBOUND_PREVIEWACCEPT,
REJECT

INVITED INVITED OUTBOUND_PREVIEWACCEPT,
REJECT

Accepted PREVIEWING PREVIEWING OUTBOUND_PREVIEWCALL,

Service Client API Reference 11

Mode UI Event Event Type State Call Type Capabilities
REJECT_RECORD,
CANCEL_RECORD

Rejected REMOVED REJECTED OUTBOUND_PREVIEW-

Make call

ADDED DIALING OUTBOUND HANGUP
DIALING DIALING OUTBOUND HANGUP
ESTABLISHED TALKING OUTBOUND HANGUP
REMOVED IDLE OUTBOUND_PREVIEW-

Release and
mark done

RELEASED IDLE OUTBOUND MARK_DONE
MARKDONE_APPLYIDLE OUTBOUND MARK_DONE
REMOVED IDLE OUTBOUND -

Reject record STATE_CHANGE REJECTED OUTBOUND_PREVIEWMARK_DONE
Cancel record STATE_CHANGE CANCELED OUTBOUND_PREVIEWMARK_DONE

The Outbound campaign events table lists the possible events for outbound campaigns.

Outbound campaign events
EventType Trigger Example

CampaignLoaded When an outbound campaign is
loaded.

{
"event": "outbound",
"data": {

"eventType":
"CampaignLoaded",

"campaign": "Offer
of the Month"

},
"userAgent": "WWE

Server",
"protocolVersion": 2

}

CampaignUnloaded When an outbound campaign is
unloaded.

{
"event": "outbound",
"data": {

"eventType":
"CampaignUnloaded",

"campaign": "Offer
of the Month"

},
"userAgent": "WWE

Server",
"protocolVersion": 2

}

CampaignStarted When an outbound campaign
starts.

This event also has a "mode"
property that describes the mode
in which the campaign started.
{

Service Client API Reference 12

EventType Trigger Example

"event": "outbound",
"data": {

"eventType":
"CampaignStarted",

"campaign": "Offer
of the Month",

"mode": "Predictive
GVP"

},
"userAgent": "WWE

Server",
"protocolVersion": 2

}

CampaignStopped When an outbound campaign
stops.

{
"event": "outbound",
"data": {

"eventType":
"CampaignStopped",

"campaign": "Offer
of the Month"

},
"userAgent": "WWE

Server",
"protocolVersion": 2

}

Chain of records events

The RECORDS_RETRIEVED event is triggered on an outbound interaction when all of the records in
the interaction's chain of records have been retrieved.

Sample response

{
"event": "interaction",
"data": {

"eventType": "RECORDS_RETRIEVED",
"interaction": {

"interactionId": "1",
"caseId": "a26f59d2-2979-43c5-5c1d-b0757f9ab077",
"parentInteractionId": null,
"chainedRecords": [

{
Custom_Character: "c"
Custom_Datetime: "2021-03-17 14:42:39"
Custom_Float: "16.64"
Custom_Integer: 0
Custom_String_with_default: "Hi there! "
Custom_VarChar: ""
GSW_AGENT_ID: "+33298025000"
GSW_APPLICATION_ID: 139
GSW_ATTEMPTS: 0
GSW_CALLING_LIST: "Calling List Custom"
GSW_CALLING_LIST_DBID: 101
GSW_CALL_ATTEMPT_GUID: "003DC7H6HG84DBRT1KMIF1TAES000031"

Service Client API Reference 13

GSW_CALL_RESULT: 28
GSW_CAMPAIGN_GROUP_DBID: 101
GSW_CAMPAIGN_GROUP_DESCRIPTION: ""
GSW_CAMPAIGN_GROUP_NAME: "Outbound Campaign Custom@Agent Group Outbound"
GSW_CAMPAIGN_NAME: "Outbound Campaign Custom"
GSW_CHAIN_ID: 3
GSW_CONTACT_MEDIA_TYPE: "voice"
GSW_FROM: 0
GSW_PHONE: "+33647005"
GSW_PHONE_TYPE: 1
GSW_RECORD_HANDLE: 283
GSW_REFERENCE_ID: 3
GSW_SWITCH_DBID: 101
GSW_TZ_NAME: "ACT"
GSW_TZ_OFFSET: 34200
GSW_UNTIL: 86399
GSW_USER_EVENT: "PreviewRecord"
IW_BundleUid: "27458420-0348-4345-c693-45bd95b5c81f"
IW_CaseUid: "a26f59d2-2979-43c5-5c1d-b0757f9ab077"
InteractionSubtype: "OutboundNew"
InteractionType: "Outbound"
WWE_OUTBOUND_CAMP_TYPE: "PreviewRecord"

},
{

Custom_Character: "c"
Custom_Datetime: "2021-03-17 14:42:32"
Custom_Float: "51.69"
Custom_Integer: 0
Custom_String_with_default: "Hello General Kenobi"
Custom_VarChar: ""
GSW_AGENT_ID: "+33298025000"
GSW_APPLICATION_ID: 139
GSW_ATTEMPTS: 0
GSW_CALLING_LIST: "Calling List Custom"
GSW_CALLING_LIST_DBID: 101
GSW_CALL_ATTEMPT_GUID: "003DC7H6HG84DBRT1KMIF1TAES000031"
GSW_CALL_RESULT: 28
GSW_CAMPAIGN_GROUP_DBID: 101
GSW_CAMPAIGN_GROUP_DESCRIPTION: ""
GSW_CAMPAIGN_GROUP_NAME: "Outbound Campaign Custom@Agent Group Outbound"
GSW_CAMPAIGN_NAME: "Outbound Campaign Custom"
GSW_CHAIN_ID: 3
GSW_CONTACT_MEDIA_TYPE: "voice"
GSW_FROM: 0
GSW_PHONE: "+33647004"
GSW_PHONE_TYPE: 1
GSW_RECORD_HANDLE: 284
GSW_REFERENCE_ID: 4
GSW_SWITCH_DBID: 101
GSW_TZ_NAME: "ACT"
GSW_TZ_OFFSET: 34200
GSW_UNTIL: 86399
GSW_USER_EVENT: "ChainedRecord"
InteractionSubtype: "OutboundNew"
InteractionType: "Outbound"

}
],
"userData": {

"GSW_PHONE": "+33647005",
"GSW_PHONE_TYPE": "1",
"Custom_Character": "c",
"Custom_Datetime": "2021-03-17 14:42:39",
"Custom_Float": "16.64",

Service Client API Reference 14

"Custom_Integer": "0",
"Custom_String_with_default": "Hi there! ",
"Custom_VarChar": "",
"GSW_FROM": "0",
"GSW_UNTIL": "86399",
"GSW_TZ_OFFSET": "34200",
"GSW_CALLING_LIST": "Calling List Custom",
"GSW_CAMPAIGN_NAME": "Outbound Campaign Custom",
"InteractionType": "Outbound",
"InteractionSubtype": "OutboundNew",
"GSW_RECORD_HANDLE": "283",
"GSW_APPLICATION_ID": "139",
"GSW_CAMPAIGN_GROUP_DBID": "101",
"GSW_CALLING_LIST_DBID": "101",
"GSW_CAMPAIGN_GROUP_NAME": "Outbound Campaign Custom@Agent Group Outbound",
"GSW_CAMPAIGN_GROUP_DESCRIPTION": "",
"GSW_CHAIN_ID": "3",
"GSW_ATTEMPTS": "0",
"GSW_CALL_RESULT": "28",
"GSW_TZ_NAME": "ACT",
"GSW_CALL_ATTEMPT_GUID": "003DC7H6HG84DBRT1KMIF1TAES000031",
"GSW_CONTACT_MEDIA_TYPE": "voice",
"GSW_REFERENCE_ID": "3",
"GSW_SWITCH_DBID": "101",
"GSW_USER_EVENT": "PreviewRecord",
"GSW_AGENT_ID": "+33298025000",
"WWE_OUTBOUND_CAMP_TYPE": "PreviewRecord",
"IW_BundleUid": "27458420-0348-4345-c693-45bd95b5c81f",
"IW_CaseUid": "a26f59d2-2979-43c5-5c1d-b0757f9ab077"

},
"state": "PREVIEWING",
"previousState": "UNKNOWN",
"capabilities": [

"CALL",
"REJECT_RECORD",
"CANCEL_RECORD"

],
"parties": [

{
"name": "+33647005"

}
],
"startDate": null,
"endDate": null,
"callType": "OUTBOUND_PREVIEW",
"isMainCaseInteraction": true,
"isCaseSelected": true,
"isCaseExpanded": false

}
},
"userAgent": "WWE Server",
"protocolVersion": 2

}

Common actions with Service Client API

The following sections show some common actions you can perform with Service Client API:

Service Client API Reference 15

Controlling call recording from a third-party application
Review the following methods for details about call recording control:

• pauseCallRecording
• resumeCallRecording
• startCallRecording
• stopCallRecording

The call recording state is stored in the recordingState attribute on the interaction.Interaction
object.

Embedding multiple third-party applications in Agent Workspace
You can configure Agent Workspace to include more than one third-party web application, displayed
as either a tab, a popup window, in the background at the interaction level, or hidden. Configure the
following options:

• Set the interaction.web-content option to a list of option section names that correspond to web
extension views.

• Make sure that the service-client-api.accepted-web-content-origins option references all the websites
that should use the Service Client API.

Updating attached data from a third-party application
Review the following methods for details about updating attached data:

• deleteUserData
• getByInteractionId
• getInteractions
• setUserData

The user data is stored in the userData attribute on the interaction.Interaction object.

You should also set the options related to user data in the Service Client section
of Agent Setup or configure the service-client-api.user-data.read-allowed and
service-client-api.user-data.write-allowed options.

Enabling click-to-dial from a third-party application
If you configure Agent Workspace to display your web application in a new tab in the Agent
Workspace user interface, then the service API only gives access to the dial operation.

Enabling Service Client API to invoke toast in Agent Workspace
Review the following methods for details about enabling and updating toast:

Service Client API Reference 16

• system.popupToast
• system.updateToast
• system.closeToast

Controlling case selection from a third-party application
Review the following method for details about case selecting control:

• selectCaseByCaseId

The case selection state is stored in the isCaseSelected attribute and the isCaseExpanded attribute
on the interaction.Interaction object.

Supporting multiple browser tabs
Service Client API supports multiple browser tabs in a session. The API uses the concept of a leader
tab and following tab or tabs. When multiple tabs are open, certain actions (typically automatic) are
performed only by the leader tab, such as auto-answer for chat, email, and voice interactions, and
contact management in Universal Contact Server. The API also tracks which tab was the last active
because some actions are performed only by this tab, such as sounds, toasts, and supervisor-forced
log out.

The state of a given browser tab is determined by an internal election process, which can be
triggered when an agent closes a leader tab. The state is exposed through the data.frameState
property on system events. The frameState property has three possible values:

• LEADING: The election happened and this tab is the leader.
• FOLLOWING: The election happened and this tab is a follower.
• NEGOTIATING: The election is in progress and no tab is a leader or follower until the election is finished.

You can subscribe to system events as follows:
function eventHandler(message) {

switch (message.event) {
case 'system':

log('Received system event: ', JSON.stringify(message, null, '\t'));
break;

default:
break;

}
}

genesys.wwe.service.subscribe(['system'], eventHandler, this);

When an election is triggered, you should see these types of system events:
Received system event:
{

"event": "system",
"data": {

"frameState": "LEADING"
},
"userAgent": "WWE Server",

Service Client API Reference 17

"protocolVersion": 2
}

Received system event:
{

"event": "system",
"data": {

"frameState": "NEGOTIATING"
},
"userAgent": "WWE Server",
"protocolVersion": 2

}

Service Client API provides some helper functions through the System
namespace to determine the state of a tab:

• isFrameLeading
• isFrameFollowing
• isFrameNegotiating
• isFrameLeadingOrNegotiating
• isLastActiveFrame

Service Client API updates the attached data for an interaction in the leader tab with a new caseId
on eventType CASE_ID_CHANGED.

{
"event": "interaction",
"data": {

"eventType": "CASE_ID_CHANGED",
"caseId": "e6470563-af78-4942-657d-976a25dd9de3",
"previousCaseId": "5f7e5f3a-fb6e-43f3-c404-eaee21d64ef1"

},
"userAgent": "WWE Server",
"protocolVersion": 2

}

Service Client API Reference 18

	Service Client API Reference

