
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Genesys Widgets: Close the chat when an agent disconnects

Digital Channels Developer's Guide

1/9/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

• 1 How to implement the solution
• 2 Deploying the widget example

Digital Channels Developer's Guide 2

Learn how to finalize asynchronous chat interactions so that customers can no longer type in the
Genesys Widget after an agent marks a chat as done.

Related documentation:
•

Digital Channels supports an asynchronous chat model that lets your customers join or rejoin a chat
session at their convenience. This divides a chat session into multiple segments, which are
represented by separate interactions that agents can handle within your contact center. During these
interactions, an agent connects to a chat session and conducts the conversation with a customer.
Each interaction can be ended only from the agent side or, for chat bot conversations, a workflow.
The interaction ends when the agent sends a reply to the customer that isn't likely to generate an
immediate response, or when the customer goes offline (disconnects from chat or doesn't reply in a
timely manner). The next interaction in the chat is started by either a new message from the
customer or when an agent requests the creation of a new interaction to follow up with customer.
From the customer's perspective, these interactions are one large seamless and ongoing
conversation.

There are some edge cases when a customer might initiate a new segment of conversation by
sending a follow up that isn't actionable for the agent. For example, after being offline the customer
comes back and sends a thank you message after the agent has already closed the segment. This
follow up from the customer creates a new segment (interaction) to be routed to an agent.

The sections below describe a solution you can implement to modify the Chat Widget behavior to
prevent these non-actionable messages, by either notifying the customer or closing the chat window.

Note: It's possible that only one interaction is expected for the whole chat session, which resembles
non-asynchronous chat behavior. In this case, you must also adjust the Chat Widget's behavior
accordingly.

How to implement the solution

To handle this scenario in your Chat Widget, first set up the widget to respond to state changes from
Digital Channels using the Consumer Messaging API.

When Digital Channels detects a state change, it adds a System message to the chat session history
and returns it in the response of a long poll or history GET /chat/sessions/{sessionId}/messages
request.

For example:
{

"status": {
"code": "SUCCESS"

},
"data": {

Digital Channels Developer's Guide 3

"messages": [
{

"type": "System",
"from": {

"participantId": "00000000-0000-0000-0000-000000000000",
"type": "System"

},
"visibility": "All",
"id": "dba9117a-38d4-4c06-ad67-665409093314",
"event": "InteractionStateChange",
"data": {

"interactionState": "Finalizing"
},
"utcTime": "2021-07-09T10:25:38.829Z",
"streamId": "1625826338845-0",
"index": "1625826338845-0"

}
],
"lastDeliveredIndex": "1625826338845-0",
"chatEnded": false

},
"operationId": "69be0dc50e-de8a9-093ca-52684-51ce7aa716db743",
"referenceId": "1d9c9d1e-e518-446c-9889-57fadc98fd16"

}

The widget can capture this message by using the Widgets Bus API to subscribe
to the WebChatService.messageReceived event. The way you process this event
depends on whether the chat is asynchronous. See the table below for details:

State Notify customer Close the chat

Finalizing
OR

Completed

Inject a message into the widget
that says the chat interaction is
over. This leaves the option for
the customer to start a new
interaction.
Example message: "Thank you for your
query. Please do not respond to this
automated message if you do not have
additional questions."

End the chat on the widget side.
This removes the participant in
Digital Channels.

Deploying the widget example

The code below shows an example of how you could handle the event change. If the chat is
asynchronous, it posts a message to the customer when the agent closes the segment; otherwise, it
closes the chat window when the agent closes the segment.

The sample uses the global CXBus instance, but you can also use other methods
of accessing Widgets Bus.
// Widgets config and initialization code is omitted for clarity
// ...
CXBus.loadPlugin('widgets-core');

Digital Channels Developer's Guide 4

CXBus.subscribe('WebChatService.messageReceived', (event) => {
// taking the latest interaction state change event when fetching the history, for long-

poll there will be only one
const lastInteractionStateChange = event.data.originalMessages

.filter(message => message.type === 'System' && message.event ===
'InteractionStateChange')

.pop();

// nothing to do if no event found
if (!lastInteractionStateChange) return;

// digging for current interaction state
const interactionState = lastInteractionStateChange.data.interactionState;
if (!interactionState) return;

// processing the state
if (interactionState === 'Finalizing' || interactionState === 'Completed') {

// different handling for async and regular chat
const isAsync = window._genesys.widgets.webchat.transport.async &&

window._genesys.widgets.webchat.transport.async.enabled;
if (isAsync) {

CXBus.command('WebChat.injectMessage', {
type: 'text',
text: 'Thank you for your query. Please do not respond to this automated message if

you do not have additional questions.',
bubble: { time: false }

});
} else {

CXBus.command('WebChat.endChat');
}

}
});

Digital Channels Developer's Guide 5

	Digital Channels Developer's Guide

