
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Digital Channels Developer's Guide

2/1/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
Developer tasks

Genesys Widgets: Close the chat when an agent disconnects 5
Persistent Chat across Different Domains 9

Contents

• 1 Developer tasks
• 2 Digital Channels APIs

Digital Channels Developer's Guide 3

Find information about how to develop using the Digital Channels APIs.

Related documentation:
•

Digital Channels provides APIs you can use to build custom chat applications and deliver messages
between Digital Channels and third-party services such as SMS or email.

Developer tasks
Explore these topics for examples of how to use the Digital Channels APIs.

• Genesys Widgets: Close the chat when an agent disconnects
• Persistent Chat across Different Domains

Digital Channels APIs
Learn more about the Digital Channels APIs on the Genesys Multicloud CX Developer Center.

• Consumer Messaging API
• Third-Party Messaging API

Digital Channels Developer's Guide 4

Genesys Widgets: Close the chat when an
agent disconnects

Contents

• 1 How to implement the solution
• 2 Deploying the widget example

Genesys Widgets: Close the chat when an agent disconnects

Digital Channels Developer's Guide 5

Learn how to finalize asynchronous chat interactions so that customers can no longer type in the
Genesys Widget after an agent marks a chat as done.

Related documentation:
•

Digital Channels supports an asynchronous chat model that lets your customers join or rejoin a chat
session at their convenience. This divides a chat session into multiple segments, which are
represented by separate interactions that agents can handle within your contact center. During these
interactions, an agent connects to a chat session and conducts the conversation with a customer.
Each interaction can be ended only from the agent side or, for chat bot conversations, a workflow.
The interaction ends when the agent sends a reply to the customer that isn't likely to generate an
immediate response, or when the customer goes offline (disconnects from chat or doesn't reply in a
timely manner). The next interaction in the chat is started by either a new message from the
customer or when an agent requests the creation of a new interaction to follow up with customer.
From the customer's perspective, these interactions are one large seamless and ongoing
conversation.

There are some edge cases when a customer might initiate a new segment of conversation by
sending a follow up that isn't actionable for the agent. For example, after being offline the customer
comes back and sends a thank you message after the agent has already closed the segment. This
follow up from the customer creates a new segment (interaction) to be routed to an agent.

The sections below describe a solution you can implement to modify the Chat Widget behavior to
prevent these non-actionable messages, by either notifying the customer or closing the chat window.

Note: It's possible that only one interaction is expected for the whole chat session, which resembles
non-asynchronous chat behavior. In this case, you must also adjust the Chat Widget's behavior
accordingly.

How to implement the solution

To handle this scenario in your Chat Widget, first set up the widget to respond to state changes from
Digital Channels using the Consumer Messaging API.

When Digital Channels detects a state change, it adds a System message to the chat session history
and returns it in the response of a long poll or history GET /chat/sessions/{sessionId}/messages
request.

For example:
{

"status": {
"code": "SUCCESS"

},
"data": {

Genesys Widgets: Close the chat when an agent disconnects

Digital Channels Developer's Guide 6

"messages": [
{

"type": "System",
"from": {

"participantId": "00000000-0000-0000-0000-000000000000",
"type": "System"

},
"visibility": "All",
"id": "dba9117a-38d4-4c06-ad67-665409093314",
"event": "InteractionStateChange",
"data": {

"interactionState": "Finalizing"
},
"utcTime": "2021-07-09T10:25:38.829Z",
"streamId": "1625826338845-0",
"index": "1625826338845-0"

}
],
"lastDeliveredIndex": "1625826338845-0",
"chatEnded": false

},
"operationId": "69be0dc50e-de8a9-093ca-52684-51ce7aa716db743",
"referenceId": "1d9c9d1e-e518-446c-9889-57fadc98fd16"

}

The widget can capture this message by using the Widgets Bus API to subscribe
to the WebChatService.messageReceived event. The way you process this event
depends on whether the chat is asynchronous. See the table below for details:

State Notify customer Close the chat

Finalizing
OR

Completed

Inject a message into the widget
that says the chat interaction is
over. This leaves the option for
the customer to start a new
interaction.
Example message: "Thank you for your
query. Please do not respond to this
automated message if you do not have
additional questions."

End the chat on the widget side.
This removes the participant in
Digital Channels.

Deploying the widget example

The code below shows an example of how you could handle the event change. If the chat is
asynchronous, it posts a message to the customer when the agent closes the segment; otherwise, it
closes the chat window when the agent closes the segment.

The sample uses the global CXBus instance, but you can also use other methods
of accessing Widgets Bus.
// Widgets config and initialization code is omitted for clarity
// ...
CXBus.loadPlugin('widgets-core');

Genesys Widgets: Close the chat when an agent disconnects

Digital Channels Developer's Guide 7

CXBus.subscribe('WebChatService.messageReceived', (event) => {
// taking the latest interaction state change event when fetching the history, for long-

poll there will be only one
const lastInteractionStateChange = event.data.originalMessages

.filter(message => message.type === 'System' && message.event ===
'InteractionStateChange')

.pop();

// nothing to do if no event found
if (!lastInteractionStateChange) return;

// digging for current interaction state
const interactionState = lastInteractionStateChange.data.interactionState;
if (!interactionState) return;

// processing the state
if (interactionState === 'Finalizing' || interactionState === 'Completed') {

// different handling for async and regular chat
const isAsync = window._genesys.widgets.webchat.transport.async &&

window._genesys.widgets.webchat.transport.async.enabled;
if (isAsync) {

CXBus.command('WebChat.injectMessage', {
type: 'text',
text: 'Thank you for your query. Please do not respond to this automated message if

you do not have additional questions.',
bubble: { time: false }

});
} else {

CXBus.command('WebChat.endChat');
}

}
});

Genesys Widgets: Close the chat when an agent disconnects

Digital Channels Developer's Guide 8

Persistent Chat across Different Domains

Contents

• 1 Prerequisites
• 1.1 Third-party Cookie Notification

• 2 Overview of the solution
• 3 Step 1: Create and host an Iframe HTML file
• 4 Step 2: Include the Cookie Provider JavaScript file
• 5 Step 3: Create an Instance of Cookie Provider or Add Cookie Provider Extension in Widget

• 5.1 Create an Instance of Cookie Provider
• 5.2 Third-party Cookie Notification
• 5.3 Add Cookie Provider Extension in Widget
• 5.4 Complete Chat Initialization Sample

• 6 Limitations

Persistent Chat across Different Domains

Digital Channels Developer's Guide 9

Learn how to make chat conversations persistent across different domains.

Related documentation:
•

Important
• Mozilla Firefox browsers do not support this functionality since it requires Cookie

Partitioning.
• Starting from 2024, Chromium has announced its end of support for Cookie Partitioning

for both Chrome and Edge browsers. If you're using this feature with the
aforementioned browsers, Genesys recommends you update your integration to avoid
usage of third-party cookies.

Digital channels supports chat persistence across different domains, allowing your customers to
continue chat conversations with agents across the organization's sites they visit. It also allows your
organization to have a consistent group of agents to support customers visiting different domains.

The following sections describe how to implement a cross domain persistent chat.

Prerequisites
Before setting up persistent chat across different domains, ensure you configure the WebChatService.

Third-party Cookie Notification

Ensure that the third-party cookies are enabled on your customer's browser and you can suggest
them to enable cookies with your custom messages on your site or in the Widget.

Overview of the solution

Suppose that a customer started a chat on domain-a.com and intends to continue on domain-b.com,
Digital Channels persists the chat conversation, and the customer can continue the interaction with
the agent across the two domains.

The solution combines a third-party JavaScript file that you include on the webpages with a hidden
Iframe added to the webpages. The module uses a window.postMessage() function of HTML5 to
establish connections among the webpages and the Iframe site. The function sets the cookies and
saves them on the Iframe site.

Persistent Chat across Different Domains

Digital Channels Developer's Guide 10

To implement this solution, complete the configuration steps.

Step 1: Create and host an Iframe HTML file

Create a plain HTML page with no server-side dependencies and host this file on a webpage you own.
Include the attached iframe.min.js file and use the following sample iframe.html file. Modify the
TRUSTED_DOMAINS array with the list of websites you would like to implement the chat
persistence with agent.

iframe.min.js

For example:

After hosting the HTML file, note down the direct URL of the site such as

Persistent Chat across Different Domains

Digital Channels Developer's Guide 11

/File:Digital_Channels_.png
/File:Digital_Channels_.png

https://www.iframe.com/iframe.html. This URL is used in Step 3.

Step 2: Include the Cookie Provider JavaScript file

Include the attached cookie-provider.min.js across all the webpages (in our example, it was
domain-a.com and domain-b.com) where your Genesys chat widget is started.

cookie-provider.min.js

Step 3: Create an Instance of Cookie Provider or Add Cookie
Provider Extension in Widget

To start chat persistence across different websites, you can either

Create an Instance of Cookie Provider or

Add Cookie Provider Extension in Widget

Create an Instance of Cookie Provider
Create an instance of CookieProvider in the script where you configure your chat widget. While
creating an instance, the CookieProvider adds Iframe to your webpages. The following table describes
the parameters of the CookieProvider class.

Parameter Name Mandatory Description

SESSION_COOKIE_NAME Yes Add your own session cookie
name.

IFRAME_URL Yes Add the Iframe URL obtained
from Step 1.

showThirdPartyCookieNotification No

Add this parameter if you want to
show a message that third-party
cookies are disabled in the
customer's browser. For more
information about third-party
cookie notifications, see Third-
party Cookie Notification.

// provide your own SESSION_COOKIE_NAME (example 'customer-defined-session-cookie') and
IFRAME_URL (example 'https://iframe.com/iframe.html')
// showThirdPartyCookieNotification is an optional parameter to show message if third party
cookies are disabled
let cookieProvider = new CookieProvider(SESSION_COOKIE_NAME, IFRAME_URL,

Persistent Chat across Different Domains

Digital Channels Developer's Guide 12

showThirdPartyCookieNotification);
//load cookie
cookieProvider.loadCookie();

// chat initializing

After creating the instance, you can call the loadCookie method to receive your
newly created session cookie.
Save Cookie

To use the cookie across various websites, you must save the created cookie into
the Iframe. To do this, call the saveCookie method after your chat session
cookie is set. In the following example, the registered plugin is subscribed to the
WebChat.started event, to save the cookie inside the callback function.
var cookieProviderPlugin = window._genesys.widgets.bus.registerPlugin("CookieProvider");
cookieProviderPlugin.subscribe("WebChat.started", function (e) {

// call saveCookie when you want to save chat session cookie
cookieProvider.saveCookie();

});

Third-party Cookie Notification
You can check if third-party cookies are unavailable on your customer's browser
and suggest them to enable cookies with your custom messages.

Important
Mozilla Firefox browsers do not support this functionality.

// example of function to show if third party cookies are enabled
function showThirdPartyCookieNotification(isEnabled) {

// you can show here your own notification to enable third-party cookies
alert("Third-party cookies are " + isEnabled ? "enabled" : "disabled");

}

// you can call cookieProvider.cookieTest with callback
cookieProvider.cookieTest(showThirdPartyCookieNotification);
// or without parameter if you provide callback when created instance of CookieProvider
cookieProvider.cookieTest();

Add Cookie Provider Extension in Widget
The following option is an alternate solution to enable chat persistence across

Persistent Chat across Different Domains

Digital Channels Developer's Guide 13

different websites. In this approach, instead of creating an instance of
CookieProvider, add the CookieProviderExtension in the extensions field of your
Widget's configuration. As a part of an extension, you can call the callback
function in initCookieProviderExtension to check whether third-party cookies are
enabled in your customers' browser.
// add it in you init configuration
if (!window._genesys) window._genesys = {};

// EXAMPLE of options value
const IFRAME_URL = "http://domain-a/iframe.html";
const SESSION_COOKIE_NAME = "customer-defined-session-cookie";

// EXAMPLE of function to show notification for third-party cookies
function showThirdPartyCookieNotification(isEnable) {

if (!isEnable) {
alert("please enable your third-party cookies");

}
}

window._genesys = {
widgets: {

extensions: {
CookieProviderExtension: initCookieProviderExtension(SESSION_COOKIE_NAME,

IFRAME_URL, showThirdPartyCookieNotification)
}

}
}

// or add it separately after initialization
if(!window._genesys.widgets.extensions){

window._genesys.widgets.extensions = {};
}

window._genesys.widgets.extensions["CookieProviderExtension"] =
initCookieProviderExtension(SESSION_COOKIE_NAME, IFRAME_URL,
showThirdPartyCookieNotification);

Complete Chat Initialization Sample
The following code sample shows the chat configuration with chat persistence
across different websites.
const IFRAME_URL = "http://127.0.0.1:5500/iframe.html";
const SESSION_COOKIE_NAME = "customer-defined-session-cookie";

if (!window._genesys) window._genesys = {};

window._genesys = {
widgets: {

webchat: {
transport: {

type: "",
dataURL: "", // Provided by Genesys
endpoint: "", // Provided by Genesys
headers: {

"x-api-key": "", // Provided by Genesys
},
async: {

Persistent Chat across Different Domains

Digital Channels Developer's Guide 14

enabled: true,
getSessionData: function (sessionData, Cookie, CookieOptions) {

// Note: You don't have to use Cookies. You can, instead, store in a secured
location like a database.

Cookie.set(
SESSION_COOKIE_NAME,
JSON.stringify(sessionData),
CookieOptions

);
},
setSessionData: function (Open, Cookie, CookieOptions) {

// Retrieve from your secured location.
return Cookie.get(SESSION_COOKIE_NAME);

},
},

},
},
// you need add this option only if you use alternative connection
extensions: {

CookieProviderExtension
}

},
};

const widgetScriptElement = document.createElement("script");
const widgetBaseUrl = "https://apps.mypurecloud.de/widgets/9.0/";

// provide your own SESSION_COOKIE_NAME (example 'customer-defined-session-cookie') and
IFRAME_URL (example 'https://iframe.com/iframe.html')
let cookieProvider = new CookieProvider(SESSION_COOKIE_NAME, IFRAME_URL);
//load cookie
cookieProvider.loadCookie();

// chat initializing
widgetScriptElement.setAttribute("src", widgetBaseUrl + "cxbus.min.js");
widgetScriptElement.addEventListener("load", async function () {

await CXBus.configure({
debug: true,
pluginsPath: widgetBaseUrl + "plugins/",

});
await CXBus.loadPlugin("widgets-core");
await CXBus.command("WebChat.open");

// set cookie to iframe when chat started
var cookieProviderPlugin = window._genesys.widgets.bus.registerPlugin("CookieProvider");
cookieProviderPlugin .subscribe("WebChat.started", function (e) {
//save cookie
cookieProvider.saveCookie();

});
});

document.head.appendChild(widgetScriptElement);

Persistent Chat across Different Domains

Digital Channels Developer's Guide 15

Limitations

Chat persistence does not work when a browser is configured to disable third-party cookies. Each
browser manages and defines third-party cookies and data differently.

Mozilla Firefox and Apple Safari browsers block the third-party cookies and data by default, but they
allow you to set cookies manually. Google Chrome will stop supporting third-party cookies during
2024.

The following documents provide guidelines and settings for third-party cookies across different
browsers.

Browser URL
Google Chrome https://support.google.com/chrome/answer/95647

Mozilla Firefox https://support.mozilla.org/en-US/kb/third-party-
cookies-firefox-tracking-protection

Apple Safari https://support.apple.com/en-gb/guide/safari/
sfri11471/mac

Opera https://blogs.opera.com/news/2015/08/how-to-
manage-cookies-in-opera/

Persistent Chat across Different Domains

Digital Channels Developer's Guide 16

	Digital Channels Developer's Guide
	Table of Contents
	Genesys Widgets: Close the chat when an agent disconnects
	Persistent Chat across Different Domains

