
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Co-Browse Administrator's Guide

1/9/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
Contents

Getting Started 4
Genesys Co-browse DOM Restrictions Editor 7
Genesys Co-browse sessions 9
Genesys Co-browse Localization 18
Genesys Co-browse JavaScript API 21

Search the table of all articles in this guide, listed in alphabetical order, to find the article you need.

Related documentation:
•

Co-Browse Administrator's Guide 3

Getting Started

Contents

• 1 Getting started
• 1.1 What Genesys does for you
• 1.2 What you need to do
• 1.3 Using Co-browse without Genesys Widgets

Getting Started

Co-Browse Administrator's Guide 4

• Administrator
• Developer

Co-browse lets an agent see exactly what is happening on your customer's screen.

Related documentation:
•

Sometimes your customers need help when they are browsing your website. Maybe they can’t tell
exactly where to click—or perhaps they need help filling out a complex form. Genesys Co-browse lets
your agents use Agent Workspace to do some of the driving for them, by showing them what the
customer sees in their browser window (not the whole screen) and allowing the customer to give
them control of the web page.

Here are some of the main features of Genesys Co-browse:

• The agent and the customer can browse and navigate the same web page, at the same time.
• Browsing always happens on the customer side, and both the agent and the customer can take control

of the session.
• Co-browse sessions begin in Pointer Mode where the agent cannot enter information or navigate for the

customer.
• The agent can send the customer a request to enter Write Mode where the agent can enter information

for the customer.
• Sensitive data can be hidden and control of elements (buttons, check boxes, and so on) can be

restricted.

You can find some more details about Co-browse sessions here.

Getting started

There are a few steps to take in order to get up and running with Genesys Co-browse. Here are the
details:

What Genesys does for you
We configure Co-browse for you, based on the following information that you provided to us:

• Allowed origins (your domains and sites from which Co-browse can start)
• Allowed external domains (your domains where static resources for the site are stored)

Getting Started

Co-Browse Administrator's Guide 5

What you need to do
DOM restrictions

You must configure your DOM restrictions for your website. The Genesys Co-browse DOM Restrictions
Editor streamlines this process for you.

Genesys Widgets

You must install and configure Genesys Widgets on your website, in order for the end customer to
start a co-browse session with an agent (associated with a chat or a voice session). Everything you
need to know about Genesys Widgets is in the following pages:

• Genesys Widgets deployment guide

Here are some examples of Genesys Co-browse enabled in different Genesys Widgets.

Using Co-browse without Genesys Widgets
While Genesys Widgets is the preferred and recommended way to add Co-browse to your website,
you may have some scenarios where Genesys Widgets cannot be used. In this case, see the Genesys
Co-browse JavaScript API for details on how to deploy Co-browse to your website without using
Genesys Widgets. This is considered advanced functionality.

Getting Started

Co-Browse Administrator's Guide 6

Genesys Co-browse DOM Restrictions
Editor

• Administrator
• Developer

You can hide sensitive customer data from agents and restrict control of elements in a co-browse
session.

Related documentation:
•

The Genesys Co-browse DOM (Document Object Model) Restrictions Editor makes it easier for you to
hide sensitive customer data from agents and restrict control of elements in a co-browse session. The
Editor handles most of the configuration complexity behind the scenes and allows you to focus on
your restrictions. You can implement two types:

• DOM control—the agent sees the content but won't be able to interact with it. For example, clicking a
button or a link won't work for the agent, even when Co-browse is in Write Mode. The agent will see a
green border surrounding content with DOM control.

• Data masking—the agent sees masked content as asterisks (******) instead of characters, and masked
images will be grayed out. The agent will see a purple border surrounding masked characters and
images.

Important
Since masked content is also DOM controlled (non-interactive), the DOM Restrictions
Editor shows Data Masking as DOM Control and Data Masking.

With the DOM Restrictions Editor, you can easily

• create, edit, or delete a restriction.
• have an optional description.
• view a list of existing restrictions.
• logically group your restrictions.
• apply a restriction to all web pages, or to the page or set of pages that match the regular expression.

Genesys Co-browse DOM Restrictions Editor

Co-Browse Administrator's Guide 7

• view all restrictions on the current web page.

To allow users to log into the DOM Restrictions Editor, add them to the Administrators Access
Group.

Link to video

Watch the video tutorial on how to use the DOM Restrictions Editor.

Genesys Co-browse DOM Restrictions Editor

Co-Browse Administrator's Guide 8

https://player.vimeo.com/video/292237026?title=0&byline=0&portrait=0

Genesys Co-browse sessions

Contents

• 1 Session identifiers
• 2 Starting a session
• 3 Starting a co-browse session from Genesys Widgets
• 4 Stopping a co-browse session from Genesys Widgets
• 5 Participating in a co-browse session
• 6 Restricting visibility of sensitive data

Genesys Co-browse sessions

Co-Browse Administrator's Guide 9

• Administrator
• Developer

Co-browse sessions are the interactions between customers and agents, where privacy and security
are priorities.

Related documentation:
•

A session is initiated when a customer requests to co-browse. The session stays idle until the agent
joins, then the session is considered to be active. The session ends when one of the parties (the
customer or the agent) exits. It is not possible to re-join a co-browse session. If one party exits
accidentally, a new session must be initiated. An agent is limited to handling one co-browse session
at a time.

Session identifiers

Each live session has an identifier that can be used to track the session. This session ID is a sequence
of nine digits that is applicable only to live sessions.

Starting a session

A co-browse session can only be initiated by a customer. An agent does not have the option or ability
to send a co-browse request to a customer. This provides greater security to the customer. In order to
initiate a co-browse session, the customer must already be engaged in an interaction with an agent,
be it a voice call or a chat.

When the session is established, the agent's browser displays a view of the customer's browser. This
view that the agent sees is loaded from Genesys Co-browse. The agent is not a client of the website.
All actions taken by the agent are passed onto and "replayed" on the customer's side.

Starting a co-browse session from Genesys Widgets

Genesys Co-browse sessions

Co-Browse Administrator's Guide 10

A customer initiates a co-browse session through a Genesys Widget integrated into the website. You
can enable Genesys Co-browse in several Genesys Widgets.

Here is an example of starting a co-browse session from the WebChat Widget.

This example shows a customer and agent view of a co-browse session started
from the WebChat Widget.

Genesys Co-browse sessions

Co-Browse Administrator's Guide 11

/File:GCB_StartCobrowse5.png
/File:GCB_StartCobrowse5.png
/File:GCB_Cust_Agent_View_WebChatWidget.png
/File:GCB_Cust_Agent_View_WebChatWidget.png

And here is an example of starting a co-browse session from the ChannelSelector
Widget.

Genesys Co-browse sessions

Co-Browse Administrator's Guide 12

/File:GCB_New_Start_ChannelSelectorWidget.png
/File:GCB_New_Start_ChannelSelectorWidget.png

This example shows starting a co-browse session from the CallUs Widget with the
browse with you link as the co-browse option.

Genesys Co-browse sessions

Co-Browse Administrator's Guide 13

/File:GCB_CallUsWidget_CB_Option.png
/File:GCB_CallUsWidget_CB_Option.png

After clicking browse with you in the CallUs Widget the customer will see this
dialog.

Genesys Co-browse sessions

Co-Browse Administrator's Guide 14

/File:GCB_CallUsWidget_Dialog.png
/File:GCB_CallUsWidget_Dialog.png

Stopping a co-browse session from Genesys Widgets

Once a co-browse session has been established, both parties have the ability to terminate the
session. At any time, either party may click the Exit Co-browse session icon next to the session ID.
The agent can also exit by clicking Exit Session in Agent Workspace.

The other party will be notified that the session has ended, and the agent's browser will no longer
display a view of the customer's browser. Also, if the primary interaction (chat or voice call) is
terminated, the co-browse session terminates automatically. Sessions can also terminate due to

Genesys Co-browse sessions

Co-Browse Administrator's Guide 15

/File:GCB_Stop_Cobrowse1.png
/File:GCB_Stop_Cobrowse1.png
/PEC-AD/Current/Agent/ADcobrow#Scbs

inactivity, after a pre-configured timeout expires. Likewise, if the agent closes their browser, or
navigates to a third-party website, the session will terminate if the agent does not return to the
session page within the pre-configured timeout.

Once a session has been terminated, it cannot be reactivated. If the session was
deactivated accidentally, a new session has to be initiated, with a new session
identifier.

Participating in a co-browse session

Once a co-browse session begins, the agent can use his or her mouse pointer to guide the customer
through the web site. Agents start co-browse sessions in Pointer Mode. In Pointer Mode, the customer
and the agent can see each other's mouse pointer but the agent can not enter any information into
the web page, click buttons, or navigate the customer's browser. If the agent needs to enter
information into the web page or to navigate the browser, he or she can send the customer a request
to switch the co-browse session to Write Mode.

All actions (mouse clicks, key presses, and so on) are actually performed on the customer side. Any
actions taken by the agent are sent to the customer's browser. This ensures a secure approach, as all
browsing is done on one side—the customer's side. This approach also provides for greater
performance and a more seamless customer experience. Each participant can see the other
participant's mouse movements as well. This enables an agent to point to specific sections on the
web page to help direct the customer through their task.

Genesys Co-browse sessions

Co-Browse Administrator's Guide 16

Restricting visibility of sensitive data

You can limit which fields are visible to and editable by the agent and which elements are controlled
by agents. This configuration task is made much easier for you by using the Co-browse DOM
Restrictions Editor.

Some fields can have the data masked. For example, you might choose to hide the customer's user
name, email address, password, Social Security information, and so on, from the agent. The end user
can easily identify which information is hidden (data masked) from the agent. By default, all
passwords are masked.

At the same time, control for some elements can be disabled. By default, all
Submit buttons are deactivated for the agent. If he or she clicks on a Submit
button, nothing happens. The customer always has permission to submit any
web forms, just as they would while browsing normally.

Genesys Co-browse sessions

Co-Browse Administrator's Guide 17

/File:GCB90Data_masking_agent_customer.png
/File:GCB90Data_masking_agent_customer.png

Genesys Co-browse Localization

• Developer

You can localize the end-user Co-browse UI using the built-in German or French localization options.

Related documentation:
•

To localize the end-user Co-browse UI, configure the localization option in the
global configuration object in window._genesys.widgets.cobrowse.

Important
The Co-browse agent-facing UI inherits localization from the Agent Workspace locale
settings.

To set the end-user Co-browse UI language to German or French, add de or fr to
the instrumentation:
Example

window._genesys.widgets.cobrowse = {

src: APIGEE_GCB_URL+'/cobrowse/js/gcb.min.js?apikey=APIGEE_GCB_KEY',
url: APIGEE_GCB_URL+'/cobrowse/',
apikey: 'APIGEE_GCB_KEY'

lang: 'de'
};

If both lang and localization are provided, localization takes priority. This way it is possible to use
built-in German or French localization and override some fields as necessary.

Example

window._genesys.widgets.cobrowse = {
...
lang: 'de',
localization: {

"modalYes": "Natürlich!"
}

Genesys Co-browse Localization

Co-Browse Administrator's Guide 18

};

If you are using Co-browse outside of Genesys Widgets, use
window._genesys.cobrowse.localization instead of
window._genesys.cobrowse.widgets.localization.

Example

if(!window._genesys)window._genesys = {};

window._genesys.widgets = {
cobrowse: {

src: 'https://www.website.com/cobrowse/js/gcb.min.js',
url: 'https://www.website.com/cobrowse/',
localization: {

// Here we're just changing default "Session ID" to "Session token"
// You can use this mechanism to adjust default localization to your taste, not

necessarily just for other languages
'toolbarContent': 'Session token: {sessionId}'

}
}

};

Tip
You don't have to list all key-value pairs. Ones not listed are inherited from the
defaults.

Default values

{
"agentJoined": "Representative has joined the session",
"youLeft": "You have left the session. Co-browse is now terminated.",
"sessionTimedOut": "Session timed out. Co-browse is now terminated.",
"sessionInactiveTimedOut": "Session timed out. Co-browse is now terminated.",
"agentLeft": "Representative has left the session. Co-browse is now terminated.",
"sessionError": "Unexpected error occured. Co-browse is now terminated.",
"sessionsOverLimit": "Representative is currently busy with another Co-browse session. Co-

browse is now terminated.",
"serverUnavailable": "Could not reach Co-browse server. Co-browse is now terminated.",
"sessionStarted": "Your co-browse session ID is {sessionId}. Please spell it to our

representative to continue with co-browsing.",
"navRefresh": "Representative has refreshed the page. Reloading.",
"navBack": "Representative has pressed the \"Back\" button. Reloading page.",
"navForward": "Representative has pressed the \"Forward\" button. Reloading page.",
"navUrl": "Representative has requested navigation. Reloading page.",
"navFailed": "Navigation request by representative has failed.",
"toolbarContent": "Session ID: {sessionId}",
"contentMasked": "Content is hidden from representative",
"contentMaskedPartially": "Some content is hidden from representative",
"exitBtnTitle": "Exit Co-browse session",
"areYouOnPhone": "Are you on the phone with our representative?",
"areYouOnPhoneOrChat": "Are you on the phone or chat with our representative?",
"connectBeforeCobrowse": "You need to be connected with our representative to continue with

co-browsing. Please call us or start a live chat with us, and then start Co-browse again.",
"sessionStartedAutoConnect": "Co-browse session started. Waiting for representative to

connect to the session…",

Genesys Co-browse Localization

Co-Browse Administrator's Guide 19

"browserUnsupported": "Unfortunately, your browser is not currently supported. Supported
browsers are: Google Chrome, Mozilla Firefox, Internet Explorer 11 and above, and Safari 6
and above.",

"modalTitle": "Co-browse",
"modalYes": "Yes",
"modalNo": "No",
"writeModeInProgress": "Agent has control over the page.",
"downgradeMode": "Revoke control",
"modeUpgraded": "Co-browse session was upgraded. Agent has control over the page.",
"modeDowngraded": "Co-browse session was downgraded. Agent has no control",
"modeUpgradeRequested": "Agent requests upgrading Co-browse session to \"write\" mode. In

\"write\" mode agent will have control over the page."
}

Genesys Co-browse Localization

Co-Browse Administrator's Guide 20

Genesys Co-browse JavaScript API

Contents

• 1 Deploying Co-browse to your website
• 2 Configuring Co-browse

• 2.1 debug
• 2.2 disableBuiltInUI
• 2.3 primaryMedia
• 2.4 setDocumentDomain
• 2.5 disableBackForwardCache

• 3 Accessing the API
• 4 Using the API

• 4.1 Co-browse in iframes
• 4.2 Signals and Callbacks
• 4.3 Common API
• 4.4 Top Context API

• 5 Integrating Co-browse with Chat
• 5.1 initializeAsync(done)
• 5.2 sendCbSessionToken(token)
• 5.3 isAgentConnected()

Genesys Co-browse JavaScript API

Co-Browse Administrator's Guide 21

• Developer

For advanced users, deploying Co-browse to your website without using Genesys Widgets can give
you the control you want for your environment.

Related documentation:
•

Important
This article contains advanced functionality and assumes that you are not using
Genesys Widgets to add Co-browse to your website. Genesys Widgets is
recommended in most cases.

Deploying Co-browse to your website

Prerequisite: you must have Co-browse provisioned and an API Key provided to you.

A good starting point is this script:

Configuring Co-browse

Co-browse is configured via a global _genesys.cobrowse variable.

The following options are configurable as properties of an object passed to _genesys.cobrowse:

debug
Default: false

Set to true to enable debugging console logs.

window._genesys.cobrowse = {
debug: true;

};

disableBuiltInUI
Default: false

Genesys Co-browse JavaScript API

Co-Browse Administrator's Guide 22

Set to true to use a custom Co-browse UI. Use the Co-browse JavaScript API to implement a custom
UI.

window._genesys.cobrowse = {
disableBuiltInUI: true

};

You can still start the Co-browse session with just the configuration above, but the main components
of the UI, such as the toolbar and notifications, will be missing.

primaryMedia
Default: null

Used to pass an object implementing an external media adapter interface.

Example:

var myPrimaryMedia = {
initializeAsync: function(done) { /* initialize your media here and then call done() */ },
isAgentConnected: function() { /* return true or false depending on whether an agent is

connected */ },
sendCbSessionToken: function(token) { /* send the Co-browse session token to agent */ }

};

window._genesys.cobrowse = {
primaryMedia: myPrimaryMedia

};

See Integrating Co-browse with Chat for more details.

If Co-browse does not detect any primary media or detects that the agent is not connected with the
primary media, Co-browse will still ask the user, "Are you on the phone with representative?" before
starting the Co-browse session.

setDocumentDomain
Default: false

Determines if Co-browse sets the document.domain property. If set to true, Co-browse modifies the
document.domain property. If set to false, Co-browse does not modify document.domain.

Co-browse modifies document.domain to support cross-subdomain communication between iframes
and the topmost context. Setting setDocumentDomain to false stops synchronization of subdomain
iframes from working.

window._genesys.cobrowse = {
setDocumentDomain: true

};

disableBackForwardCache
Default: true

By default, Co-browse disables Safari's Back/Forward cache, which can stop Co-browse sessions from

Genesys Co-browse JavaScript API

Co-Browse Administrator's Guide 23

functioning.

Setting disableBackForwardCache to false can make Co-browse unusable in Safari when users click
the back or forward browser buttons.

window._genesys.cobrowse = {
disableBackForwardCache: false

};

Accessing the API

Since the main Co-browse JavaScript file is added to the page asynchronously, you cannot instantly
access the Co-browse APIs. Instead, you must use a function that will accept the APIs as an
argument.

For that, add a special .onReady property in _genesys.cobrowse configuration and set it to empty
array.

if(!window._genesys)window._genesys = {};
window._genesys.cobrowse = {

apikey: ,
onReady: []

};

Now, you can use _genesys.cobrowse.onReady.push(callbackFn) anywhere in your code. When
the Co-browse JavaScript is loaded and the API is available, Co-browse will call back the callbackFn
with the reference to the API object.

_genesys.cobrowse.onReady.push(function(cobrowseApi) {
// use the API here

});

Using the API

This API provides methods and callbacks to work with Co-browse and can be used to implement a
custom UI for co-browsing.

Co-browse in iframes
Co-browse synchronizes the content of any iframes that exist on the page, given:

• the iframe is on the same domain as the page
• the page in the iframe has Co-browse JavaScript

Some Co-browse UI elements, such as the toolbar, should not appear in an iframe. Common Co-
browse UI elements (such as notification that an element is masked) should appear whether or not
Co-browse is in an iframe. As such, there are two contexts for the Co-browse JavaScript API:

• Top context, available when Co-browse is not in an iframe but in "top" context.

Genesys Co-browse JavaScript API

Co-Browse Administrator's Guide 24

• Child context, used when a page is rendered in an iframe. For the child context, a subset of the top
context API is available.

isTopContext

You can use the isTopContext variable to determine which context Co-browse is rendered in.
isTopContext is passed to the onReady callback and equals true if Co-browse is rendered in the top
context and false in iframe.

Example:

_genesys.cobrowse.onReady.push(function(cobrowseApi, isTopContext) {
// common functionality
cobrowseApi.onMaskedElement.add(function() {/* deal with masked elements here*/});
if (!isTopContext) {

return;
}
// top context functionality goes below

});

See Accessing the API if you are unfamiliar with the onReady syntax above.

Signals and Callbacks
The Co-browse API exposes a number of signals in both the top and child contexts. Each signal is an
object with the following three methods:

• add(function)—adds a callback
• addOnce(function)—adds a callback that will be executed only once
• remove(function)—removes a callback

The naming convention for signal names begins with "on" and follows the format
onSomethingHappened.

Important
Signals act similar to deferred objects. If you add a callback to an event that has
already happened, the callback will be called immediately. For example, if you add a
callback to the onAgentJoined signal when the event has already happened, the
callback will be called immediately.

Session Object

Many callbacks receive a session object as an argument. This object has the following properties:

• token—String containing the session token shared with the agent and possibly shown in the UI. The
token is a 9 digit string such as "535176834".

• agents—Array of connected agents. Each element in the array is an object with no properties.

Genesys Co-browse JavaScript API

Co-Browse Administrator's Guide 25

Common API
The following elements and properties are available from both the top and child Co-browse contexts:

VERSION

String containing current JS version. For example, 9.0.002.02.

console.log(_genesys.cobrowse.VERSION);

onSessionStarted

This signal is dispatched when a Co-browse session is successfully started such as when the Co-
browse button is pressed or when startSession() is called.

Arguments:

• session—Session object representing the ongoing session.

Example:

function notifyCobrowseStarted(session) {
alert('Co-browse has started. Spell this session token to our representative: ' +

session.token);
}
cobrowseApi.onSessionStarted.add(notifyCobrowseStarted);

onSessionEnded

This signal is dispatched when a Co-browse session ends.

Arguments:

• details—Object with the follwing field:
• reason—Field with value of a string or undefined. Possible string values:

• self—The user has exited the session by clicking the Exit button or calling the exitSession()
API method.

• external—The agent has closed the session. Some server errors may also result in this value.
• timeout—The session has timed out such as when a user reopens a page with an expired Co-

browse cookie.
• intactivityTimeout—The agent did not join a session in the configured amount of time.
• serverUnavailable—The Co-browse server was unreachable.
• sessionsOverLimit—Agent is busy with another co-browse session and is prohibited from

starting another session at the same time.
• error—There is an error such as a critical misconfiguration.

Example:

var cbEndedMessages = {

Genesys Co-browse JavaScript API

Co-Browse Administrator's Guide 26

/PEC-COB/Current/Developer/GCBCobrowseJavaScriptAPI#sessobj

self: 'You exited Co-browse session. Co-browse terminated',
external: 'Co-browse session ended',
timeout: 'Co-browse session timed out',
inactivityTimeout: 'Agent did not join. Closing Co-browse session.',
serverUnavailable: 'Could not reach Co-browse server',
sessionsOverLimit: 'Agent is busy in another Co-browse session'

}
cobrowseApi.onSessionEnded.add(function(details) {

alert(cbEndedMessages[details.reason] {{!}} {{!}} 'Something went wrong. Co-browse
terminated.');

showCobrowseButton();
});

markServiceElement(element)

Service elements do not show up in the agent's view. This function is used to mark service elements
in a custom Co-browse UI.

Arguments:

• element—HTML element that will be masked.

Important
Elements must be marked as service elements before the Co-browse session begins.
If the Co-browse session has already started, service elements should be marked
before they are added to the DOM. It is also possible to mark elements as service
without using this function. Doing so is useful for static HTML content. To do so, add
an attribute data-gcb-service-node with value true.

Important
The markServiceElement() method should not be used to hide sensitive information.
Business functions like DOM Control and Data Masking should be used for sensitive
content such as private user data.

Example:

function createCustomCobrowseUI(cobrowseApi) {
var toolbar = document.createElement('div');
toolbar.className = 'cobrowseToolbar';
toolbar.textContent = 'Co-browse is going on';
cobrowseApi.markServiceElement(toolbar); // don't show the toolbar to agents
cobrowseApi.onConnected.add(function() {

document.body.appendChild(toolbar);
})

}

Static content example, without JS API usage:

...

Genesys Co-browse JavaScript API

Co-Browse Administrator's Guide 27

onMaskedElement

This signal is dispatched when Co-browse encounters an element that is subject to data masking.

Arguments:

• element—HTML Element

This signal is dispatched multiple times when Co-browse initiates and can be dispatched again if a
masked element is added to the page dynamically.

Example:

cobrowseApi.onMaskedElement.add(function(element) {
element.title = 'Content of this elements is masked for representatives.';

});

Top Context API
The following methods and properties are available only when Co-browse is rendered in the top
context.

isBrowserSupported()

This method checks for the presence of MutationObserver and a few other required APIs, not for
browser type and version. It returns true when the browser supports required APIs and false
otherwise.

startSession()

This method instantiates a new Co-browse session. It will throw an error if the browser is not
supported.

exitSession()

This method exits and ends an ongoing Co-browse session.

downgradeMode()

This method immediately switches the current session from Write Mode to Pointer Mode. The built-in
Co-browse UI executes this method when an end user clicks "Revoke Control" while in Write Mode.

See related signals: onModeUpgradeRequested and onModeChanged.

onInitialized

This signal is dispatched after the page is loaded and the Co-browse business logic is initialized.

Arguments:

• session— Session object representing the ongoing session or null if there is no ongoing session.

Genesys Co-browse JavaScript API

Co-Browse Administrator's Guide 28

Example:

cobrowseApi.onInitialized.add(function(session) {
if (!session) {

showCobrowseButton();
} else {

showCobrowseToolbar(session);
}

})

onAgentJoined

This signal is dispatched when an agent successfully joins a session.

Arguments:

• agent—Object representing the new agent. This object has no properties.
• session—Session object representing the ongoing session.

Example:

cobrowseApi.onAgentJoined.add(function(agent, session) {
alert('Representative has joined the session');

});

onAgentNavigated

This signal is dispatched when the agent initiates navigation such as refresh, back, forward, or enters
a URL into the agent Co-browse UI. Signal is dispatched a few seconds before the navigation
happens. This can be used, for example, to send a warning to the user or disable the Exit session
button before navigation.

Arguments:

• details—Object containing the following navigation detail fields:
• command—String with the value of back, refresh, forward, or url.
• url—Optional string that is present only if the command field has the value of url.

Example:

cobrowseApi.onAgentNavigated.add(function(details) {
if (details.url) {

alert('Representative has navigated to the page: ' + details.url);
} else {

alert('Representative has pressed the "' + details.command + '" button. Page will be
refreshed');

}
});

onNavigationFailed

This signal is dispatched when the navigation request from the agent fails to execute such as when
the agent navigates forward when there is no forward history. You can use this signal to to re-enable
the Exit button and/or show a notification.

Genesys Co-browse JavaScript API

Co-Browse Administrator's Guide 29

/PEC-COB/Current/Developer/GCBCobrowseJavaScriptAPI#sessobj

The callback receives no arguments.

Example:

cobrowseApi.onNavigationFailed.add(function() {
alert('Navigation request by representative has failed');

});

onModeUpgradeRequested

This signal is dispatched when an agent requests upgrading the Co-browse session to Write Mode.

Arguments:

• done—The function passed by the Co-browse code. Call it with true to allow the transition to Write
Mode, or with false to prohibit.

Example:

cobrowseApi.onModeUpgradeRequested.add(function(done) {
if (confirm('Representative requests control over the web page. Allow?') {

done(true); // allow upgrading to Write Mode
} else {

done(false); // disallow and stay in Pointer Mode
}

});

onModeChanged

This signal is dispatched when the Co-browse session Mode changes, either to Pointer or Write.

Arguments:

• mode—An object with two boolean properties:
• pointer—This is true if the session has switched from Write to Pointer Mode. Otherwise, it's false.
• write—This is true when the session has switched from Pointer to Write Mode.

Example:

cobrowseApi.onModeChanged.add(function(mode) {
if (mode.write) {

alert("Representative has now control over the page");
} else if (mode.pointer) {

alert("Representative can no longer control the page").
}

});

Genesys Co-browse JavaScript API

Co-Browse Administrator's Guide 30

Integrating Co-browse with Chat

External chat can be connected to Co-browse via an adapter object assigned to the
_genesys.cobrowse.primaryMedia option. Such object may implement the following methods:

initializeAsync(done)
Use this only if your chat initializes asynchronously and you cannot be sure it is ready before Co-
browse.

If the initializeAsync method is implemented, the Co-browse JavaScript will call the method and
pass it a done callback. You must call the done callback when your media finishes initialization.

var myChatAdapter = {
initializeAsync: function(done) {

waitForChatInitialization(function() {
// tell Co-browse chat is now ready
done();

});
}

};

sendCbSessionToken(token)
Co-browse will use it to pass the session token to the agent. The Co-browse session token is a string
consisting of nine digits.

Example:

myChatAdapter = {
sendCbSessionToken: function(sessionToken) {

myChat.sendMessage('User has started Co-browse session: ' + sessionToken);
}

};

If you use Genesys Agent Workspace, wrap the Co-browse token in a {start:}, then the agent will
join a Co-browse session as soon as he or she receives the token.

// For example:
myChatAdapter.sendCbSessionToken = function(token) {

myChat.sendMessage('{start:' + token + '}');
};

isAgentConnected()
This method must return a true or false.

Co-browse calls this method before calling the sendCbSessionToken. If isAgentConnected returns
true, Co-browse will call the sendCbSessionToken method. If isAgentConnected returns false, the
user will be asked to connect with an agent via phone before starting Co-browse. If the method is
absent, the user will be asked to connect with an agent via phone or chat before starting Co-browse.

Genesys Co-browse JavaScript API

Co-Browse Administrator's Guide 31

	Co-Browse Administrator's Guide
	Table of Contents
	Getting Started
	Genesys Co-browse DOM Restrictions Editor
	Genesys Co-browse sessions
	Genesys Co-browse Localization
	Genesys Co-browse JavaScript API

