3 GENESYS

This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Genesys Predictive Routing
Deployment and Operations Guide

Routing scenarios using GPR

1/31/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

¢ 1 High-Level Predictive Routing interaction flow
¢ 2 How the Strategy Subroutines work
* 3 Routing scenarios using Predictive Routing
* 3.1 Agent Surplus Flow
* 3.2 Interaction Surplus Flow
* 3.3 Using gpmStatus and gpmSuitableAgentsCount to Monitor Your Routing
¢ 3.4 How Interactions are Sorted within the Queue
¢ 4 Using GPR with agent reservation
e 5 Configure A/B comparison test ratios
* 5.1 Start A/B testing
* 5.2 Notes on how A/B testing works
¢ 6 Configure a 50/50 comparison test time split
* 6.1 Formula Used
« 7 Configure a non-50/50 comparison test time split

e 7.1 Formula Used

Genesys Predictive Routing Deployment and Operations Guide

e Administrator

Learn about Predictive Routing interaction flows, how the URS Strategy Subroutines work together to
score agents and identify a routing target, how URS ranks agents by score, and how GPR handles
agent reservation.

Related documentation:

If you would like to evaluate Genesys Predictive Routing for use with service-level routing or business-
objective routing, contact Genesys Professional Services for a review of your routing environment.

If your environment uses multiple URS instances receiving interactions from a single T-Server, the
only criterion used to select the next interaction for routing is priority.

This topic assumes that you are using a virtual agent group (VAG) as the target for your routing. If
you route using a skill expression to identify your targets, convert it to a VAG string expression using
the IRD MultiSkill or CreateSkillGroup function before passing the resulting string as an argument to
the ActivatePredictiveRouting subroutine. See Using Agent Skills for Ideal Agent Selection in the
Supplement to the Universal Routing 8.1 Reference Manual for more information.

High-Level Predictive Routing interaction flow

The graphic in this section shows a very general interaction flow using Predictive Routing.
Refinements to the flow depend greatly on details of your environment. Key aspects that differ in
various environments:

¢ Your data - That is, the interaction types supported and the applications that might have relevant
information. Genesys Info Mart is a key data source, but CRM systems and other applications in your
environment can also provide important data. See Set up data for import for more information.

e Your pre-routing data flow - This depends on the interaction type and the exact architecture in your
environment. For example, is this a chat interaction or a call? Do you use an IVR, and if so, what
information do you attach?

e The Genesys routing solution you are using - Predictive Routing supports routing with IRD/URS.

e Your reporting solution for Predictive Routing - Whether you are using GCXI, Genesys Pulse, or another
solution to present the data stored in Genesys Info Mart.

Genesys Predictive Routing Deployment and Operations Guide

3
2.
GPR consults a predictive model, configured to

optimize a specific metric and based on past data available agents based on expected outcomes for the
and real-time customer and agent attributes.

Using the model, the GPR scoring engine ranks the

actual combination of interaction and agent.

a.
When an agent becomes
available, Genesys routes
the best interaction for that 5.
agent. Agent and customer are
connected.

L e -
s W5,

l Results l
(=) -
Camtomar Age e
e Feriarmarcr K e,
s, C3AT) On, ae) Colacson}

A customer
initiates an
interaction

I Feedback] _//

7.
The GPR data pipeline draws result
data back into its dataset for
further learning and model tuning.

How the Strategy Subroutines work

6.
When the interaction is complete,
Genesys compiles outcome data from
various sources.

The following sequence provides a basic overview of the way the various GPR subroutines work
together to evaluate agent scores and determine the best match given the currently available agents

and the currently waiting interactions.

1. ActivatePredictiveRouting retrieves agent scores from the GPR Core Platform via REST API request and

stores them in the global map in URS memory. The name of the map is the interaction Connectionid
(the original ID, if the interaction is a consult). This map contains pairs of agent employee IDs as the
keys and their scores for the interaction as values. ActivatePredictiveRouting calls the
SetldealAndReadyCondition subroutine for further interaction processing.

. SetldealAndReadyCondition processes the different modes of Predictive Routing. It calls the
SetldealAgent IRD function to schedule the execution of the URS callback subroutines. It calls the
ScoreldealAgent subroutine to facilitate interaction queueing according to their scores, and calls
SetReadyCondition (if enabled) to call the isAgentScoreGood subroutine.
The parameters for these callback subroutines are retrieved and verified before any URS request is
invoked to enable the callbacks.

. After establishing a list of potential targets based on the target expression (Skill, Agent Group, and so
on) SetldealAndReadyCondition then executes the ScoreldealAgent callback subroutine.

. ScoreldealAgent retrieves the scores for the potential target agents from the global map set in Step 1.

. When an agent becomes ready, URS executes the isAgentScoreGood subroutine to determine whether
that target is acceptable. If you enabled agent hold-out, URS executes the isAgentScoreGood
subroutine when an agent becomes ready, which determines whether that agent reaches the specified
threshold score. If not, URS waits for a configured timeout period, then checks whether any agent now
satisfies the adjusted threshold value. See How Does GPR Score Agents? for a detailed discussion of
how agent hold-out routing works.

. Once the isAgentScoreGood subroutine locates an available agent who scores above the current
threshold, it sends the target details to URS to initiate routing.

Genesys Predictive Routing Deployment and Operations Guide

/File:GPMCallFlowBasic.png
/File:GPMCallFlowBasic.png

7. URS calls the GPRIxnCompleted subroutine as a custom step from a Routing Block in the strategy. It
collects the Predictive Routing outcome for the successfully routed interaction (the DBID of the agent to
whom it was distributed, the score of the agent, other interaction statistics relevant for the Predictive
Routing performance) and prepares the user data for Predictive Routing reporting.

8. URS calls the GPRIxnCleanup subroutine from both the success and failure exits from the Routing block,
or if the interaction is abandoned. The purpose of the subroutine is to publish the Predictive Routing

reporting user data and to clean up the ScoreldealAgent and isAgentScoreGood callback subroutines.
GPRIxnCleanup publishes reporting data in two ways:

* It sends a UserEvent containing the user data relevant for Predictive Routing to T-Server/SIP Server,
from which is enters the Genesys historic reporting solution flow.

e It can submit the same data Al Core Services via REST API request where it is stored in the score_log
and can be retrieve using an API request.

If your routing strategy uses the SelectDN and SuspendDN IRD functions instead of a
Routing Block, consult with Genesys Professional services about how the

ActivatePredictiveRouting, GPRIxnCompleted and GPRIxnCleanup subroutines can be
integrated into your strategy.

Genesys Predictive Routing Deployment and Operations Guide

profile data, call int

E ? I [S) | C VR Collects: Customer 1D,

Universal Routing Server:
strategy
Global Map

ActivatePredictiveRouting
subroutine

Calls subroutines to
determine best match
given current conditions
and configuration

Tells URSIstrateg}r@)
which is the
best-matched agent

ScoreldealAgent
subroutine

subroutine

Scores

isAgentScoreGood

ention

Scores are
written to
Global Map

& &

55 71

Yes

No

Ranks Do agents
agents by [g meet _—— 8
score Scurel minimum Score:
71 score level? 71
Min = 60
- g . g Yes
Score e
55 65)
— & - 2
Score Score:
34 34

Routing scenarios using Predictive Routing

Score: Score:

&8

Score:
34

When you are using Predictive Routing to route interactions, there are two main scenarios that affect

how this matching plays out:

¢ Agent Surplus - There are relatively few interactions, which means there could be a number of high-
score agents available. You can configure a minimum threshold so that, if the agents available are not
very highly ranked, the strategy keeps the interaction in queue until a better-scoring agent becomes

Genesys Predictive Routing Deployment and Operations Guide

/File:URSStratSubFlow.png
/File:URSStratSubFlow.png

available.

¢ Interaction Surplus - There are many interactions, so that most agents are busy and it might be more
difficult to find an ideal agent for each interaction. In such a scenario, you can have agents matched to
the interaction for which they have the highest probability of getting a positive result.

Agent Surplus Flow

In this case there are agents logged in and in the Ready state who can respond to interactions
immediately. From a Virtual Agent Group that is defined by skill expression, URS first tries to route an

interaction to an agent with the best score, using the following process to match agents and
interactions:

1. Aninteraction arrives at the routing strategy, which has a target group of agents.

2. The ActivatePredictiveRouting subroutine sends a request to the Predictive Routing scoring server via
HTTP request.

3. Predictive Routing returns scores for each agent in the target group based on the criteria you selected
in the active model.

4. The ActivatePredictiveRouting subroutine updates a global cache in URS memory, which keeps agent
scores for all interactions. When URS tries to route the current interaction to the agent group, it sorts

the agents according to their scores, in descending order, and routes to the agents with the best score
first.

When URS takes an interaction from the queue:
1. URS calls the ScoreldealAgent subroutine, which reads the agent scores in the target group from global

map and ranks the agents by score.

2. URS calls the IsAgentScoreGood subroutine, which selects the available agent with the highest score,
assuming the agent has a score high enough to be selected for this interaction.

In an agent-surplus scenario, it is typically not a problem to route to an agent with a good score.
For scenarios where this is not the case, see Interaction Surplus Flow, below.

3. URS calls the GPRIxnCompleted subroutine, which updates user data with the scoring result for storage
in Genesys Info Mart.

4. URS calls the PRRLog macro, which logs the result in the URS log file.

Interaction Surplus Flow

This scenario covers situations when all agents are already busy handling interactions and new
interactions are queued. When one of the agents becomes ready, the system selects the interaction

for which the agent has the best score. This is not necessarily the interaction that has been in the
queue longest.

When interactions are waiting, URS uses a number of criteria to decide the order in which it directs
the interactions to the best target. In general, URS uses the following hierarchy:

1. Interaction priority.

2. Best agent score.

Genesys Predictive Routing Deployment and Operations Guide 7

In scenarios where both scored and unscored interactions might have the same priority, scoring is
disregarded for all the interactions and the selection is based on the next differentiating criterion, time.

3. Time in queue, which can be based on age of interaction or time in queue and can incorporate predicted
wait time.

4. Interaction ID (URS selects the interaction with the lowest—oldest—ID). This is a rarely-used "tie-
breaker" criterion.

Using gpmStatus and gpmSuitableAgentsCount to Monitor Your Routing

gpmStatus and gpmSuitableAgentsCount are KVP values written in the Genesys Info Mart database

when an interaction is routed using the GPR subroutines. (You can also retrieve the values by using
the GPR API to query the score log.)

e gpmStatus indicates whether there was an agent-surplus or an interaction-surplus condition when the
interaction was routed.

e gpmSuitableAgentsCount indicates the number of agents who have scores returned from AICS greater
than or equal to the initial threshold value when the scoring response is received. If
gpmSuitableAgentsCount is 0, then no agents have eligible scores compared with the threshold value,

so the interaction must wait for a higher-scoring agent to become available or for the next threshold
relaxation step

These KVP values, when analyzed for different interactions over a representative day or week period
can help you understand your contact center traffic and GPR performance. The following table
indicates certain scenarios and how to interpret them.

KVP Values Inference
mStatus = caller-surplus Your GPR Model is returning useful scores with
6 P relation to the configured routing threshold, but
gpmSuitableAgentsCount > 0 agent staffing is not adequate to produce
satisfactory wait times.
gpmStatus = agent-surplus Analyze why the scores GPR returns are not

SuitableAqentsCount = 0 stent] | meeting the configured threshold. You might need
b apiefgentstoun or consistently a very sma to retrain your Model, adjust the scoring
expression, or reduce the threshold level.

How Interactions are Sorted within the Queue

As each interaction comes in, it is scored, and then assessed relative to the

interaction at the midpoint of the existing array of interactions. Should GPR route
it before or after the mid-point interaction?

Genesys Predictive Routing Deployment and Operations Guide 8

The order in which interactions are prioritized is called an array here. This is not
equivalent to a queue. These interactions might be from multiple queues, each of
which is submitting interactions for URS sorting and routing.

After this decision, URS compares the new interaction against the midpoint
within the selected region. Each time URS evaluates the interaction, it is

assigned to a smaller region with the total array, always relative to the midpoint
of the previous region.

The order in which interactions are prioritized is called an array here. This is not
equivalent to a queue. These interactions might be from multiple queues, each of
which is submitting interactions for URS sorting and routing.

e
WMETRCTOn

HEEEEEEEEEEANEEEEEEEEEEEEEEEEEn

v interaction placement in queue
midpoant 3

The sorting decision tree:

midpaint 1

Genesys Predictive Routing Deployment and Operations Guide 9

/File:GPRixnOrderArray.png
/File:GPRixnOrderArray.png

flow
Compare current call A
against call B in middle

of (sub)array
.a-"‘ffJH'H-
Call with highest no -~ Priority T._
. =
pricrity wins (*) hx‘“f‘fua__'lf’f
yes
Call with best ideal | yeq _—Bothcalls—
score (furthest [#——— haveldeal
from 0] wins “Score set?-—

based on Priority
Tumning for both

_—Bothcalls— no
=___ haweService

Objective?—

=)
F

Adjust wait times Call with longest

based on Service {adjusted) wait
Objective time wins (*}

Example 1

Three calls arrive at a contact center:
e C1 - priority = 1, agent score = 0.3, timestamp = 0:00, URSID =1
e C2 - priority = 1, agent score = n/a, timestamp = 0:05, URSID = 2
e C3 - priority = 1, agent score = 0.6, timestamp = 0:10, URS ID = 3

1. C1 arrives first and is placed into the empty array.

2. C2 arrives. URS compares it with the middle (in this case, only) call in the array, C1.
The priority is equal and, because C2 has no agent score, URS moves to the next decision criterion.

3. C2 has a shorter wait time, so is put behind C1.
With only two calls in the array, no further comparison is needed.

4. C3 arrives. URS compares it against the "middle" entry of the array, C1.
The priority is equal. C3 has better score (further from 0), so URS puts it in front of C1.

Outcome: C3, C1, C2 (the example assumes that interactions are taken from the left end of the array)
Example 2

Five calls arrive at a contact center and are placed in either the Predictive Routing queue or a

Genesys Predictive Routing Deployment and Operations Guide 10

/File:GPRixnDecisionTree.png
/File:GPRixnDecisionTree.png

conventional queue:

10.

11.
12.

C1 - priority = 1, agent score = n/a, timestamp = 0:00, URSID =1
C2 - priority = 1, agent score = 0.5, timestamp = 0:05, URSID =2

C3 - priority = 1, agent score = n/a, timestamp = 0:10, URS ID = 3

C4 - priority = 1, agent score = 0.75, timestamp = 0:15, URSID = 4
C5 - priority = 1, agent score = 0.95, timestamp = 0:20, URSID =5

. C1 arrives first. URS places it into the empty array.

. C2 arrives. URS compares it with the middle (in this case, only) call in the array, C1.

The priority is equal and, because C1 has no agent score, URS moves to the next decision criterion.

. C2 has a shorter wait time, so is put behind C1. (In this example,

Current order: C1 C2 (the example assumes that interactions are taken from the left end of the
array)

With only two calls in the array, no further comparison is needed.

. C3 arrives. URS compares it against the "middle" entry of the array, C2.

The priority is equal and, because C3 has no agent score, URS moves to the next decision criterion.

. C3 has a shorter wait time, so is put behind C2.

Current order: C1 C2 C3

. C4 arrives. URS compares it against the middle entry of the array, C2.

The priority is equal. C4 has a better score (further from 0), so URS places it before C2.

. Now URS must determine whether C4 should be before or after C1, which is also before C2.

The priority is equal and, because C3 has no agent score, URS moves to the next decision criterion.

C4 has a shorter wait time (a more recent timestamp), so URS places it behind C1.
Current order: C1 C4 C2 C3

. C5 arrives. URS compares it against the "middle" entry of the array, C2.

The priority is equal. C5 has a better score (further from 0), so URS places it before C2.

Now URS must determine whether C5 should be before or after C4, the "middle" call in the section of
the array before C2.
The priority is equal. C5 has a better score, so URS places it before C4.

Now URS must determine whether C5 should be before or after C1.

C5 has a shorter wait time, so URS places it behind C1.
Final order: C1 C5 C4 C2 C3

Using Agent Hold-Out

Agent hold-out enables you to have an interaction wait a specified time, even when an agent has
become available, if the available agent is has a low score for the interaction and there is a chance a
better-matched agent might become available within the configured time window. The interaction
flow is as follows:

1.

URS calls the IsAgentScoreGood subroutine, which determines whether any of the available agents
meet the threshold for handling the interaction.

Genesys Predictive Routing Deployment and Operations Guide 11

2. If available agents have low scores for this interaction and the interaction spent only a short time in the
queue, URS waits for a better agent to become ready.

3. The minimum acceptable score required for an agent for the interaction is gradually reduced, so if no
higher-scored agent becomes available, the lower-scored agent might finally be given the interaction.

After that determination occurs, the remainder of the flow is the same as that given in the agent-
surplus flow above. Use the relevant Predictive_Route_DataCfg Transaction List Object configuration
options to set up the priority increments.

Dynamic Interaction Priority Increments

To avoid having interactions lingering in a queue for an excessive amount of time, URS can trigger an
escalation in interaction priority after a time delay that you set. To speed up interaction handling, you
can incrementally relax the minimum skill level required for agents to handle the interaction or
expand the pool of agents to consider.

Each time a routing strategy tries to route an interactions, it calls the ActivatePredictiveRouting
subroutine. After each failed routing attempt, the strategy checks how long the interaction has been
waiting in the queue and, if the time in queue is above a certain threshold, it routes the interaction to
the next available agent, no matter their score for the interaction.

Use the relevant Predictive_Route DataCfg Transaction List Object configuration options to set up the
priority increments.

Using GPR with agent reservation

When your Genesys environment contains multiple URS nodes, they might compete to distribute
interactions to the same pool of agents. URS uses agent reservation functionality to resolve which
interaction should be routed to a particular agent. For details, see the agent_reservation option in
the Universal Routing 8.1 Reference Manual.

Note: If you are using Service Objective, or Prediction/What-if routing, consult Genesys Customer
Care for how to agent reservation works in these scenarios.

For agent reservation, a URS node sends an agent reservation request to a dedicated SIP Server/T-
Server application with three extensions: priority, ar-priority-1, and ar-priority-2. The value for the

extensions depends on whether this is a GPR interaction and what value you have set for the URS

automatic_ideal_agent option.

For GPR interactions:

e priority: The current interaction priority.

e ar-priority-1: The score assigned by URS to the agent for this interaction calculated using the following
formula: (100 - (max-score> -)). The value can be negative.

e ar-priority-2: The time the interaction spent in the strategy Target block, in milliseconds.

For non-GPR interactions when the URS automatic_ideal_agent option is set to a positive value (the
recommended configuration):

Genesys Predictive Routing Deployment and Operations Guide 12

e priority: The current interaction priority.

e ar-priority-1: The value for this extension is calculated as (100 - automatic_ideal_agent option>). The
value can be negative.

e ar-priority-2: The time the interaction spent in the strategy Target block, in milliseconds.
For non-GPR interactions when the URS automatic_ideal_agent option is set to false:

e priority: The current interaction priority.

e ar-priority-1: The integer part of the time spent by the interaction in the strategy Target block, in
seconds.

e ar-priority-2: The fractional part of a second of the time spent by the interaction in the strategy Target
block, in milliseconds (value range is 0-999).

Example 1

Two URS nodes send concurrent agent reservation requests to SIP Server/T-Server targeting the same
agent to handle GPR interactions. When SIP Server/T-Server resolves this race condition, it first
compares the interaction priority values (the values of the priority Extension key). If they are equal,
SIP Server/T-Server compares the values of the ar-priority-1 keys, which were calculated based on
agent scores for the interaction. If those values are also the same, SIP Server/T-Server assigns the
interaction waiting longer in the Target block, based on the values of the ar-priority-2 keys, to the
agent. URS fails the routing attempt for the other interaction and the routing strategy handles
rerouting it. GPR reports the failed routing attempt using the reporting key gpmResult=14.

Example 2a

Two URS nodes have the automatic_ideal_agent configuration option set to 45. Predictive Routing
has the max-score set to 100. URS node 1 targets a GPR interaction to an agent with an ar-
priority-1 score of 60 for the interacrion. Concurrently, URS node 2 targets a non-GPR interaction to
the same agent. The agent has an ar-priority-1 score of 55 for that interaction. Based on these
scores, the SIP Server/T-Server handling agent reservation assigns the GPR interaction from URS node
1 to the agent.

Example 2b

This example has a scenario similar to Example 2a, but the max-score and automatic_ideal_agent
have different values.

Two URS nodes have the automatic_ideal_agent option set to 4500. The Predictive Routing max-
score option is set to 10000. URS node 1 targets a GPR interaction to an agent for which the GPR
Core Platform has assigned a score of 6000. According to the formula for the calculation of ar-
priority-1 (see the beginning of this section), the agent's adjusted value is (100 - (10000 -
6000))=-3900. Concurrently, URS node 2 targets a non-GPR interaction to the same agent, who has
an ar-priority-1 value of (100 - 4500) = -4400 for that non-GPR interaction. Based on these values,
the SIP Server/T-Server handling agent reservation assigns the GPR interaction from URS node 1 to
the agent.

Example 3
Two URS nodes have the automatic_ideal_agent option set to false. Predictive Routing has the

max-score set to 100. URS node 1 targets a GPR interaction, Interaction 1, to an agent for which the
GPR Core Platform has assigned a score of 60. Concurrently, URS node 2 targets a non-GPR

Genesys Predictive Routing Deployment and Operations Guide 13

interaction, Interaction 2, to the to the same agent, who has the same ar-priority-1 value of 60 for
that non-GPR interaction. Interaction 1 spent 67.3 seconds in the strategy Target block while
Interaction 2 spent 180.5 seconds there. The SIP Server/T-Server handling agent reservation receives
the requests: one from URS node 1 with ar-priority-1=60, ar-priority-2=67300 and the other from

URS node 2 with ar-priority-1=180, ar-priority-2=500. As a result, Interaction 2 is routed to the
agent.

Configure A/B comparison test ratios

To test how GPR handles routing on your queues compared with skills-based routing, you can
configure an A/B (comparison) test. GPR handles a specified percentage of interactions (GPR on) and
the rest are routed by your original routing method (GPR off).

To start using comparison testing, set the prr-mode option to ab-test-time-sliced. This turns on
comparison testing mode.

Start A/B testing
Genesys recommends the following sequence:

1. Start with a fourteen-day, 50/50, hour-on hour-off comparison test in your test environment.
2. Based on a satisfactory result, turn GPR on for all interactions in your production environment.

3. (Optional) - To check that GPR continues to generate improvement, run a non-50/50 comparison test in
your production environment using a ratio such as 90/10 or 80/20. Such a split enables you to retain
most of the benefit from using GPR while verifying GPR performance compared with traditional routing.

Instructions for configuring both 50/50 and non-50/50 time splits follow.

Notes on how A/B testing works

* When configuring A/B test periods, Genesys recommends that the time slices should be no shorter than
3600 seconds (one hour) and, if you use longer time slices, that they should be multiples of one hour.

e To ensure that the A and B test slices are comparable, GPR alternates which routing method is on during
a specific time slice, both daily and weekly.

* Example 1 - With an hour-on, hour-off 50/50 test cycle (the default setting), Monday 8-9 uses A,
Tuesday 8-9 uses B. The slices are also switched weekly, so that in week 1 Monday 8-9 is A and in
week 2, Monday 8-9 is B. By the end of a two-week comparison period, each routing method has
been used for each time-slice period.

 Example 2 - With an eight hours on, two hours off 80/20 test cycle (as explained in the "Configure a
non-50/50 comparison test time split" section, below), Monday midnight - 8 am uses A, 8-10 uses B,
and so on. In this pattern, the times of day routed using each method shift automatically. This shift
produces a full cycle that uses each routing method for each time-slice period. Assuming your
environment is active twenty-four hours, a single full cycle takes six days. You must then adjust the
length of the comparison test depending on the nature of your environment and the KPI you specify.

¢ A comparison test should always run at least fourteen days. In most cases, you must run the test

significantly longer to ensure that you produce consistent results. The length of a comparison test
should take the following factors into account:

Genesys Predictive Routing Deployment and Operations Guide 14

* KPI type - A KPI such as AHT, which returns an immediate result, requires a shorter test period than
a KPI, such as first contact resolution, that takes time before the KPI outcome for an interaction is
available.

* Time ratio configured - Non-50/50 time splits require longer comparison tests. The further from
50/50, the longer the comparison test should be to achieve solid results.

* Improvement with GPR - The stronger the percent improvement using GPR, the shorter the
comparison test period can be.

« Example - In a test of AHT showing a 3% benefit using GPR, Genesys recommends that you run a
test with an 80/20 split for 30 days, and a 90/10 split for 44 days.

Note: A/B comparison testing is based on time-on/time-off segments. The number of calls routed by
each method might not exactly match the specified percentage because the number of calls coming
into the queue might vary throughout the comparison test period.

Configure a 50/50 comparison test time split

For a 50/50 comparison test split, set the ab-test-time-slice option to a positive value. This is the
time, in seconds, for each routing method to run (the time slice).

If you do not configure this option, A/B test periods are hourly by default. For more information, see
the complete description of the ab-test-time-slice option.

¢ Genesys recommends that your time slice be at least 3600 seconds in a production environment.
e For robust results, run a 50/50 comparison test time split for at least 14 days with the times slices no

shorter than one hour on, one hour off (this is the default setting).

Formula Used

GPR uses the following formula to determine the GPR Mode for a particular call when you configure a
50/50 test time split:

a = varStartTS mod (varABTestTimeSlice * 2)
if a = varABTestTimeSlice = GPR ON

where

e varABTestTimeSlice refers to the value set for the option, ab-test-time-slice.

e varStartTs refers to the date and time at which the interaction began as a Coordinated Universal Time
(UTC) value. The UTC time is formatted as Unix time value.
For example, if the call start time is Thursday, 5 May 2022 5:30:00 AM GMT+05:30, it is converted to
UTC time as Thursday, 5 May 2022 12:00:00 AM. Then the corresponding Unix timestamp is identified,
in this case, 1651708800 and will be used as the varStartTsS value.

Using this start timestamp and when the ab-test-time-slice option is set to 86400 seconds (24
hours), the result for the calculation will enable GPR for all interactions coming on this day. For the
next day, GPR will be turned off for the whole day.

Genesys Predictive Routing Deployment and Operations Guide 15

Default Configuration

By default, the ab-test-time-slice option is set to zero. This will toggle GPR on and off every hour.
The first hour, GPR will be enabled and in the second hour, it will be disabled and in the third hour,
GPR will be re-enabled.

The formula used in the default configuration is: varABTestTSUsePredictive = (dayOfyear % 2 +
hourOfDay % 2) % 2 where dayOfyear indicates the number of days elapsed since January 1 of
that year and the interaction date and hourOfDay indicates the hours elapsed since midnight.

Consider an example scenario where the timestamp value is 1653052118, the dayofyear value is
140, and the hourofday value is 13, applying the formula gives the values:

e dayofyear%2 =0
e hourofday%2 =1
e varABTestTSUsePredictive = 1

In this scenario, GPR is enabled.

Similarly, consider an example scenario where the timestamp value is 1653049472, the dayofyear
value is 140, and the hourofday value is 12, applying the formula gives the values:

¢ dayofyear%2 =0
¢ hourofday%?2 = 0
¢ varABTestTSUsePredictive = 0

In this scenario, GPR is disabled.

Configure a non-50/50 comparison test time split

If you would like to move GPR into production but monitor the benefit at the same time, Genesys
recommends using a non-50/50 split. To set the comparison test time periods to a non-50/50 split,
specify values that produce the desired time split in the following two configuration options:

e ab-test-gpr-on-period

* ab-test-gpr-off-period
If you leave these options at the default settings, the comparison test defaults to a 50/50 split, with
interactions routed half the time using GPR and half using skills-based routing. The on/off periods

(time slices) are defined by the value set in the ab-test-time-slice option.

Example configuration for a 90/10 split

* ab-test-gpr-on-period - 60*60*9 (9 hours ON)
* ab-test-gpr-off-period - 60*60*1 (1 hour OFF)

Example configuration for an 80/20 split

Genesys Predictive Routing Deployment and Operations Guide 16

* ab-test-gpr-on-period - 60*60*8 (8 hours ON)
¢ ab-test-gpr-off-period - 60*60*2 (2 hour OFF)
To get high-quality results from comparison testing, the test must run long enough to smooth out any

unusual occurrences or statistical anomalies in the data. The further the split is set from a 50/50
ratio, the longer the comparison test period should be to achieve a high-quality test.

Formula Used

GPR uses the following formula to determine the GPR Mode for a particular call when you configure a
non-50/50 test time split:

varStartTS mod (GPR ON PERIOD + GPR OFF PERIOD)
if a = GPR _OFF PERIOD = GPR ON

where

e GPR_ON_PERIOD refers to the value set for the option, ab-test-gpr-on-period
e GPR_OFF_PERIOD refers to the value set for the option, ab-test-gpr-off-period

e varStartTsS refers to the date and time at which the interaction began as a Coordinated Universal Time
(UTC) value. The UTC time is formatted as Unix time value.
For example, if the call start time is Thursday, 5 May 2022 5:30:00 AM GMT+05:30, it is converted to
UTC time as Thursday, 5 May 2022 12:00:00 AM. Then the corresponding Unix timestamp is identified,
in this case, 1651708800 and will be used as the varStartTS value.

Using this start timestamp and when the ab-test-gpr-on-period is set to 28800 seconds (8 hours)
and ab-test-gpr-off-period to 7200 seconds (2 hours), applying the formula will result in disabling
GPR for this interaction.

Genesys Predictive Routing Deployment and Operations Guide 17

	Genesys Predictive Routing Deployment and Operations Guide

