3 GENESYS

This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Running Containers and
Troubleshooting

1/14/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents

Running Containers
Running Containers

Troubleshooting
Troubleshooting

10

Search the table of all articles in this guide, listed in alphabetical order, to find the article you need.

Running Containers and Troubleshooting

Running Containers

Running Containers

Contents

* 1 Running Containers
» 2 Lifecycle
e 3 Starting and Stopping a Container

Running Containers and Troubleshooting

Running Containers

Instructions to run the Docker containers.

Warning

The following content has been deprecated and is maintained for reference only.

Running Containers

Note: At the end of this topic, you will be provided with a terminal to an environment that has all the prerequisites (such
and Kubernetes) up and running. You can practice your commands in this tutorial without any need to setup your own en

Containers are running instances of an Image. To run containers, follow these steps:

1. Create a container from the base image for the latest version of the Ubuntu that is available.

e If you do not have an Ubuntu base image installed locally, extract the latest one
for your local repository.

¢ You must start the container in interactive mode attached to the current terminal
and running the bash shell.

e After running, make sure you shut down the container by running 'exit".

Running Containers and Troubleshooting

Running Containers

@tcoxl ~]5 sudc - -
ing to pull 5 i f —
ulling from

4705: Pull

ID

de0bbe 7 days ago
run -it ubuntu:latest /bin/bash

2. Run the appropriate Docker command to obtain the name of the previously run container. Issue the
appropriate command to restart the container for which you obtained the name. Do NOT create a new
container. Restart the container that was just used.

4. Create (not run) a container called "my_container" by using the parameters that will allow the container
to run interactively, and get the terminal attached to the local console running the bash shell. Ensure
the container is not running

[

5. Start the container, and ensure the container is running. Run the following command to attach your
session to the running container to ensure you are logged on to the shell.

e t (s ner

Running Containers and Troubleshooting 6

/File:Code-1.JPG
/File:Code-1.JPG
/File:Code2.JPG
/File:Code2.JPG
/File:Code3.JPG
/File:Code3.JPG
/File:Code4.JPG
/File:Code4.JPG
/File:Code5.JPG
/File:Code5.JPG

Running Containers

Lifecycle

The following commands illustrate the Docker Lifecycle:

* docker create creates a container but does not start the container.
e docker rename allows the container to be renamed.

e docker run creates and starts a container in a single operation.

e docker rm deletes a container.

e docker update updates a container's resource limits.

Usually, when you run a container without options, it will start and stop immediately. If you want the
container to keep running, you can use the command, docker run -td container ID. This
command uses the option-t to allocate a pseudo-TTY session and option-d to detach the container
automatically (you can run container in background and print the container ID).

To have a transient container, use the command docker run —rm. This command will remove the
container after it stops.

To map a directory on the host to a docker container, use the command docker run -v
$HOSTDIR: $DOCKERDIR.

To remove the volumes associated with the container, the deletion of the container must include the
option-vswitch like in docker rm -v.

There is also a logging driver available for individual containers in docker 1.10. To run docker with a
custom log driver (that is syslog), use the command docker run --log-driver=syslog.

docker run --name yourname docker image is a useful command because when you specify - -
name inside the run command, you can start and stop a container by calling it with the name that you
specified when you created it.

Starting and Stopping a Container

Commands to start and stop a container:

e docker start starts a container so it is running.

e docker stop stops a running container.

e docker restart stops and starts a container.

e docker pause pauses a running container, "freezing" it in place.
e docker unpause unpauses a running container.

e docker wait blocks until running container stops.

e docker kill sends a SIGKILL signal to a running container.

¢ docker attach connects to a running container.

Running Containers and Troubleshooting 7

Running Containers

To integrate a container with a host process manager, start the daemon with the commands
-r=false and then use docker start -a.

You can practice the above-mentioned commands using the following widget:

Running Containers and Troubleshooting

Running Containers

Running Containers and Troubleshooting

Troubleshooting

Troubleshooting

Contents

e 1 Troubleshooting Docker Containers

* 2 Information on Running Docker Containers

Running Containers and Troubleshooting

10

Troubleshooting

How to troubleshoot docker containers

Warning

The following content has been deprecated and is maintained for reference only.

Troubleshooting Docker Containers

Note: At the end of this topic, you will be provided with a terminal to an environment that has all the prerequisites (such
and Kubernetes) up and running. You can practice your commands in this tutorial without any need to setup your own en

1. Get environment settings.
docker run --rm ubuntu env
2. Kill running containers.
docker kill $(docker ps -q)
3. Delete all containers (force!! running or stopped containers).
docker rm -f $(docker ps -qa)
4. Delete old containers.
docker ps -a | grep 'weeks ago' | awk '{print $1}' | xargs docker rm
5. Delete stopped containers.
docker rm -v $(docker ps -a -q -f status=exited)
6. Delete containers after stopping.
docker stop $(docker ps -aq) && docker rm -v $(docker ps -aq)
7. Delete dangling images.
docker rmi $(docker images -q -f dangling=true)
8. Delete all images.

docker rmi $(docker images -q)

Running Containers and Troubleshooting 11

Troubleshooting

9. Delete dangling volumes. As of Docker 1.9.0:
docker volume rm $(docker volume ls -q -f dangling=true)
In 1.9.0, the filter dangling=false does not work. It is ignored and lists all volumes.
10. Show image dependencies.
docker images -viz | dot -Tpng -o docker.png

11. Slim down Docker containers.
Cleaning APT in a RUN layer: This must be done in the same layer as that of the other APT
commands. If not, the previous layers will still contain the original information and your images will still
be large.

RUN {apt commands} \

&& apt-get clean \

& rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
Flatten an image:

ID=$(docker run -d image-name /bin/bash)

docker export $ID | docker import — flat-image-name
For backup:

ID=$(docker run -d image-name /bin/bash)

(docker export $ID | gzip -c > image.tgz)

gzip -dc image.tgz | docker import - flat-image-name

Information on Running Docker Containers

e docker ps displays running containers.

e docker logs gets logs from the container. (You can use a custom log driver, but logs are available only
for json-file and journald in 1.10).

e docker inspect inspects all the information of a container (including the IP address).
e docker events gets events from the container.

¢ docker port displays the public facing port of the container.

e docker top displays the running processes in container.

e docker stats displays the containers' resource usage statistics.

¢ docker diff displays the changed files in the container's FS.

e docker ps -adisplays running and stopped containers.

e docker stats --all displays a running list of containers.

¢ docker update updates a container's resource limits.

To check the CPU, memory, and network I/O usage of a single container:

Running Containers and Troubleshooting 12

Troubleshooting

docker stats

For all containers listed by ID:

docker stats $(docker ps -q)

For all containers listed by name:

docker stats $(docker ps --format '{{.Names}}')

For all containers listed by image:

docker ps -a -f ancestor=ubuntu

To remove all untagged images:

docker rmi $(docker images | grep “~” | awk '{split($0,a," "); print a[3]}")
To remove container by a regular expression:

docker ps -a | grep wildfly | awk '{print $1}' | xargs docker rm -f
To remove all exited containers:

docker rm -f $(docker ps -a | grep Exit | awk '{ print $1 }')

You can practice the above-mentioned commands using the following widget:

Running Containers and Troubleshooting

13

Troubleshooting

Running Containers and Troubleshooting

14

	Running Containers and Troubleshooting
	Table of Contents
	Running Containers
	Troubleshooting

