
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Docker Volumes

2/2/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
Docker Volumes

Understanding Volumes 4
Managing Volumes 8

Search the table of all articles in this guide, listed in alphabetical order, to find the article you need.

Understanding Docker Volumes

Docker Volumes 3

Understanding Volumes

Contents

• 1 Choose the -v or --mount flag
• 2 Escape Values from Outer CSV Parser
• 3 Differences between -v and --mount behavior

Understanding Volumes

Docker Volumes 4

This section explains what docker volumes are all about.

Warning
The following content has been deprecated and is maintained for reference only.

Volumes are the preferred mechanism for persisting data generated by and used by Docker
containers. While bind mounts are dependent on the directory structure of the host machine,
volumes are completely managed by Docker. Volumes have several advantages over bind mounts:

• Volumes are easier to back up or migrate than bind mounts.
• You can manage volumes using Docker CLI commands or the Docker API.
• Volumes work on both Linux and Windows containers.
• Volumes can be more safely shared among multiple containers.
• Volume drivers let you store volumes on remote hosts or cloud providers, to encrypt the contents of

volumes, or to add other functionality.
• New volumes can have their content pre-populated by a container.

In addition, volumes are often a better choice than persisting data in a container’s writable layer,
because a volume does not increase the size of the containers using it, and the volume’s contents
exist outside the life cycle of a given container.

Understanding Volumes

Docker Volumes 5

/File:V1.JPG
/File:V1.JPG

If your container generates non-persistent state data, consider using a tmpfs mount to avoid storing
the data anywhere permanently, and to increase the container’s performance by avoiding writing into
the container’s writable layer. Volumes use rprivate bind propagation, and bind propagation is not
configurable for volumes.

Choose the -v or --mount flag

Originally, the -v or --volume flag was used for standalone containers and the --mount flag was
used for swarm services. However, starting with Docker 17.06, you can also use --mount with
standalone containers. In general, --mount is more explicit and verbose. The biggest difference is
that the -v syntax combines all the options together in one field, while the --mount syntax separates
them. Here is a comparison of the syntax for each flag. New users should try --mount syntax which
is simpler than --volume syntax. If you need to specify volume driver options, you must use --
mount.

• -v or --volume: Consists of three fields, separated by colon characters (:). The fields must be in the
correct order, and the meaning of each field is not immediately obvious.
• In the case of named volumes, the first field is the name of the volume, and is unique on a given

host machine. For anonymous volumes, the first field is omitted.
• The second field is the path where the file or directory are mounted in the container.
• The third field is optional, and is a comma-separated list of options, such as ro. These options are

discussed below.

• --mount: Consists of multiple key-value pairs, separated by commas and each consisting of a key=
value tuple. The --mount syntax is more verbose than -v or --volume, but the order of the keys is not
significant, and the value of the flag is easier to understand.
• The type of the mount, which can be bind, volume, or tmpfs. This topic discusses volumes, so

the type is always volume.
• The source of the mount. For named volumes, this is the name of the volume. For anonymous

volumes, this field is omitted. May be specified as source or src.
• The destination takes as its value the path where the file or directory is mounted in the container.

May be specified as destination, dst, or target.
• The read-only option, if present, causes the bind mount to be mounted into the container as read-

only.
• The volume-opt option, which can be specified more than once, takes a key-value pair consisting of

the option name and its value.

Escape Values from Outer CSV Parser

If your volume driver accepts a comma-separated list as an option, you must escape the value from
the outer CSV parser. To escape a volume-opt, surround it with double quotes (") and surround the
entire mount parameter with single quotes (').

For example, the local driver accepts mount options as a comma-separated list in the o parameter.
This example shows the correct way to escape the list.

Understanding Volumes

Docker Volumes 6

$ docker service create \
--mount 'type=volume,src=,dst=,volume-driver=local,volume-opt=type=nfs,volume-

opt=device=:,"volume-opt=o=addr=,vers=4,soft,timeo=180,bg,tcp,rw"'
--name myservice \

The examples show that both --mount syntax and -v syntax are possible, and
that --mount is presented first.

Differences between -v and --mount behavior

As opposed to bind mounts, all options for volumes are available for both --mount and -v flags.When
using volumes with services, only --mount is supported.

Understanding Volumes

Docker Volumes 7

Managing Volumes

Contents

• 1 Create and Manage Volumes
• 2 Using a Volume Driver
• 3 Create a Volume using a Volume Driver
• 4 Start a Container Which Creates a Volume Using a Volume Driver
• 5 Backup, Restore, or Migrate Data Volumes

• 5.1 Backup a Container
• 5.2 Restore Container from Backup
• 5.3 Remove Volumes
• 5.4 Remove Anonymous Volumes
• 5.5 Remove All Volumes

Managing Volumes

Docker Volumes 8

This section explains how you can create and manage volumes outside the scope of any container.

Warning
The following content has been deprecated and is maintained for reference only.

Create and Manage Volumes
Note: At the end of this topic, you will be provided with a terminal to an environment that has all the
prerequisites (such as Docker and Kubernetes) up and running. You can practice your commands in this
tutorial without any need to setup your own environment.

Unlike a bind mount, you can create and manage volumes outside the scope of any container.

Create a Volume

$ docker volume create my-vol

List Volumes

$ docker volume ls

local my-vol

Inspect Volumes

$ docker volume inspect my-vol
[

{
"Driver": "local",
"Labels": {},
"Mountpoint": "/var/lib/docker/volumes/my-vol/_data",
"Name": "my-vol",
"Options": {},
"Scope": "local"

}
]

Remove a Volume

Managing Volumes

Docker Volumes 9

$ docker volume rm my-vol

Start a Service with Volumes

When you start a service and define a volume, each service container uses its own local volume.
None of the containers can share this data if you use the local volume driver. However, some volume
drivers do support shared storage. Docker for AWS and Docker for Azure both support persistent
storage using the Cloudstor plugin.

The following example starts a nginx service with four replicas, each of which uses a local volume
called "myvol2.

$ docker service create -d \
--replicas=4 \
--name devtest-service \
--mount source=myvol2,target=/app \
nginx:latest

Use docker service ps devtest-service to verify that the service is running:

$ docker service ps devtest-service

ID NAME IMAGE NODE DESIRED
STATE CURRENT STATE ERROR PORTS
4d7oz1j85wwn devtest-service.1 nginx:latest moby
Running Running 14 seconds ago

Remove the service to stop all its tasks:
$ docker service rm devtest-service

Removing the service does not remove volumes created by the service.

Using a Volume Driver

When you create a volume using docker volume create, or when you start a container which uses a
not-yet-created volume, you can specify a volume driver. The following examples use the vieux/
sshfs volume driver, first when creating a standalone volume, and then when starting a container
which creates a new volume.

Initial set-up

This example assumes that you have two nodes, the first of which is a Docker host and can connect
to the second using SSH.

On the Docker host, install the vieux/sshfs plugin:

$ docker plugin install --grant-all-permissions vieux/sshfs

Managing Volumes

Docker Volumes 10

Create a Volume using a Volume Driver

This example specifies a SSH password, but if the two hosts have shared keys configured, you can
omit the password. Each volume driver may have zero or more configurable options, each of which is
specified using an -o flag.

$ docker volume create --driver vieux/sshfs \
-o sshcmd=test@node2:/home/test \
-o password=testpassword \
sshvolume

Start a Container Which Creates a Volume Using a Volume Driver

This example specifies a SSH password, but if the two hosts have shared keys configured, you can
omit the password. Each volume driver may have zero or more configurable options. If the volume
driver requires you to pass options, you must use the --mount flag to mount the volume, rather than
-v.

$ docker run -d \
--name sshfs-container \
--volume-driver vieux/sshfs \
--mount src=sshvolume,target=/app,volume-opt=sshcmd=test@node2:/home/test,volume-

opt=password=testpassword \
nginx:latest

Backup, Restore, or Migrate Data Volumes

Volumes are useful for backups, restores, and migrations. Use the --volumes-from flag to create a
new container that mounts that volume.

Backup a Container
For example, in the next command, we:

• Launch a new container and mount the volume from the dbstore container
• Mount a local host directory as /backup
• Pass a command that tars the contents of the dbdata volume to a backup.tar file inside our /backup

directory.

$ docker run --rm --volumes-from dbstore -v $(pwd):/backup ubuntu tar cvf /backup/backup.tar
/dbdata

When the command completes and the container stops, we are left with a backup of our dbdata
volume.

Managing Volumes

Docker Volumes 11

Restore Container from Backup
With the backup just created, you can restore it to the same container, or another that you made
elsewhere.

For example, create a new container named dbstore2:

$ docker run -v /dbdata --name dbstore2 ubuntu /bin/bash
Then un-tar the backup file in the new container`s data volume:
$ docker run --rm --volumes-from dbstore2 -v $(pwd):/backup ubuntu bash -c "cd /dbdata && tar
xvf /backup/backup.tar --strip 1"

You can use the techniques above to automate backup, migration and restore testing using your
preferred tools.

Remove Volumes
A Docker data volume persists after a container is deleted. There are two types of volumes to
consider:

• Named volumes have a specific source form outside the container, for example awesome:/bar.
• Anonymous volumes have no specific source so when the container is deleted, instruct the Docker

Engine daemon to remove them.

Remove Anonymous Volumes
To automatically remove anonymous volumes, use the --rm option. For example, this command
creates an anonymous /foovolume. When the container is removed, the Docker Engine removes the
/foo volume but not the awesome volume.

$ docker run --rm -v /foo -v awesome:/bar busybox top

Remove All Volumes
To remove all unused volumes and free up space:

$ docker volume prune

$ docker volume prune

You can practice the above-mentioned commands using the following widget:

Managing Volumes

Docker Volumes 12

Managing Volumes

Docker Volumes 13

	Docker Volumes
	Table of Contents
	Understanding Volumes
	Managing Volumes

