3 GENESYS

This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Designer User's Guide

Variables

7/23/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

e 1 Tips
* 2 User Variables
* 3 Securing Variables
¢ 4 Tracing variables
e 5 System Variables
* 5.1 List of System Variables
* 5.2 Setting the MaxTime value
» 5.3 Setting the ExpirationTime value
* 5.4 VAR Metrics

6 Internal system variables
¢ 7 Assigning Values to Variables
e 7.1 Example 1: Simple Assignment

* 7.2 Example 2: Advanced Scripting

Designer User's Guide

B

e Administrator

Learn how to use variables in Designer.

Related documentation:

You can use two types of variables in Designer:

e User Variables - These are variables that you create. You can use these variables throughout the
application and in all phases.

e System Variables - These variables are created with the application and cannot be deleted.

Tips
Variable names must be alphanumeric, but not start with a numeric character. For example:

¢ Valid variable names = abcdef123 or c123badef

¢ Invalid variable names = 123abcdef or 3abcdef21l
Variable values may be:

e ECMAScript objects, such as Date().
e Valid ECMAScript expressions. Do not add an ending semi-colon (;) as typically required by ECMAScript.
e Simple values, such as numeric or string.

* If the value is a string, it must be surrounded by single quotes (for example, 'value'). If the value
also uses a single quote, you can use a backslash to escape the quote character (for example
'Joe\'s Pizza').

The block properties page will indicate if single quotes are required.

User Variables

Designer User's Guide

/PEC-ROU
/PEC-ROU

You can add user variables in the Initialize phase. You can assign initial values to these variables in
the Initialize phase, or by setting values in an Assign block in the Initialize phase.

You can also assign a system variable as the default value of a user variable. For example, you might
assign the system variable DNIS to a user variable you have created. (If the system variable does
not have a value at the time of the call, the default values are used.) This is also supported for Self
Service Shared Modules.

User variables may not be initialized correctly if their value is set to one or more
system variables in the Initialize phase itself. This phase should be used to declare
variables, but their values should be assigned later using an Assign block if the value
or the value expression involves a system variable.

Warning

You can delete a variable even if it is required by the application. Designer validates
the application when you click Publish, at which time it checks for deleted variables.

Securing Variables

Variable values can be captured in a variety of data sources when Designer applications run on the
Genesys platform. If a variable contains sensitive data or personally-identifiable information (PIl), you
can mark a variable as Secure to prevent the value from being logged or recorded as plain text in
Designer and the Genesys platform.

2 User Variables & System Variables

Specify User Variables. String values must be surrounded by single quotes.

+ Add Variable

MName Default Value Description Secure Trace Delete
varMyCompanyName ‘Joules Coulomb’ (] O 1]
varCreditCard O]

How secure variables work:

e Secure variable values are not captured by application logs.
e |If used to store the results of a user input, the user input is masked in platform logs.

e |f used to play back a prompt, the prompt message is masked in platform logs.

Designer User's Guide 4

/File:Des_secure_variables.png
/File:Des_secure_variables.png

e Secure variables are hidden from view to prevent them from being selected in blocks that record
reporting information, such as Call Data, Activity, and Milestone blocks. (See the Warning below for
more details.)

e Secure variables are not reported in Designer Analytics.

If you secure variables in an application that has already been published, you'll need to re-publish the
application for the new settings to take effect.

Warning

« DO NOT attach sensitive data, such as personally identifiable information (PIl) or secure
variables, to userdata in the Call Data block. Otherwise, this information is captured by
platform logs and reported in Designer Analytics.

* Designer normally hides secure variables to prevent them from being selected in blocks
that capture reporting information. However, if you secure a variable that was
previously selected in a block as a non-secure variable, Designer cannot remove the
variable from the block or prevent its value from being exposed. To protect those
values, you must create a new secure variable and re-publish your application.

Tracing variables

At this time, Genesys recommends not enabling the Trace option for variables. Instead, use a Debug
block.

Mame Default Value Description Secure Trace Delete
varAppKey ‘default’ CJ % [i]
i

System Variables

The Initialize phase has a second tab that lists system variables — these variables are created with
the application and cannot be deleted.

Most system variables are initialized with appropriate values when the application session starts and
can be used throughout the application, such as the ANI and DNIS. Other system variables, such as
Last Milestone, are populated as the application session progresses. For example, when the
application starts, the initial value of Last Milestone is an empty string. While the application runs,
the Last Milestone value is set to the last milestone that the application reached.

Designer User's Guide 5

/File:Des_variables_trace_do_not_use.png
/File:Des_variables_trace_do_not_use.png

Designer also uses certain internal system variables at various stages of the applications session.
These are intended only for internal use by Designer. For more information, see Internal Designer

system variables.

Do not update system variables in the Assisted Service phase while an asynchronous
Start Treatment is running. Instead, update system variables before the Start
Treatment starts or within the Self Service treatment itself.

List of System Variables

Variable Name

ChatEntryPoint

DNIS
ANI

MaxTime

Timezone
Language
AppLanguageName

Persona

RoutingSkills

RoutingVirtualQueue

Description

Holds the point of entry for a chat interaction. Can
be used in application logic at runtime to provide
alternative processing or to facilitate the use of
parallel testing environments.

Specifies the dialed number.
The number associated with the calling party.

Maximum time (in minutes) to keep this session
alive. For more information, see Setting the
MaxTime value.

The timezone used for this application, unless this
value is overridden in other blocks.

The default language for this application that is
used for announcements.

The name of the default language for this
application that is used for announcements.

The persona to be used for this application. For
more information, see Personas.

A set of skills that might be specified in some
blocks, such as Menu Option child blocks, that
determine how the call is routed. For example, if
you select a Skill in the Call Handling tab of a
Menu Option block, this selection is stored in the
RoutingSkills variable. Then, in a subsequent
Route Call block, you can enable the Use system
variables RoutingSkills and
RoutingVirtualQueue set already in Menu
Options check box to use the value of the
RoutingSkills variable.

A virtual queue that might be specified in some
blocks, such as Menu Option child blocks, that is
used for routing unless a different queue is
specified in Routing blocks. For example, if you
select a Virtual Queue in the Call Handling tab of
a Menu Option block, this selection is stored in
the RoutingVirtualQueue variable. Then, in a

Designer User's Guide

Variable Name

EstimatedWaitTime
TreatmentlterationCount
IVRProfileName

GVPTenantID

SelectedTarget

SelectedVirtualQueue

SelectedComponent

SelectedTargetObject

SelectedAgent

Access

Description

subsequent Route Call block, you can enable the
Use system variables RoutingSkills and
RoutingVirtualQueue set already in Menu
Options check box to use the value of the
RoutingVirtualQueue variable.

The estimated wait time for the interaction to be
routed to an agent.

Keeps track of how many times a treatment has
been executed.

The IVR Profile to associate the interactions with for
VAR reporting. The default value is 'auto’.

The tenant to associate the interactions with for
VAR reporting. The default value is 'auto"’.

The DN and the switch name of the target to which
the interaction was routed or should be routed to
definitively. The target format is
Name@SwitchName.Type.

The virtual queue that was selected.

The agent-level target to which the interaction was
routed or should be routed to definitively. If the
target selected for routing is of type Agent, Place,
Queue, or Routing Point, this variable contains
the target. If the desired target type is Agent
Group, Place Group, or Queue Group, the
function returns the agent, place, or queue from
the corresponding group to which the interaction
was sent. The target format is
Name@StatServerName.Type.

This is the high-level target to which the interaction
was routed or should be routed to definitively. If a
skill expression is used, the function returns:
?:SkillExpression@statserver.GA or
?GroupName:SkillExpression@statserver.GA.
The target format is Name@StatServerName. Type.

This is the Employee ID of the agent to which the
interaction was routed.

(Optional) When present, this is an ECMAScript
object that represents a switch access code. The
table below show its properties and the
corresponding switch access code fields:

Access property Switch access code

field
prefix Code
rtype Route Type
destination Destination Source
location Location Source
dnis DNIS Source

Designer User's Guide

Variable Name

CustomerSegment
Customerld
EnableSSRecording

CallbackReporting

PositionInQueue

AgentsTotalSize

AgentsLoginSize

AppCountry
AppCountryName
AppRegion
AppCallType
AppUserDisposition

AppUserDispositionCategory

AppDeflectionMessage

AppLastMilestone

AppStrikeoutMilestone
AppBailoutMilestone

AppDeflectionMilestone

ScriptID
AppSelfHelpedMilestone

SdrTracelLevel

Description

The segment to which the customer belongs, based
on information that the customer has provided.

A unique identifier for the customer, based on
information that the customer has provided.

Enable interaction recording in the Self Service
phase.

An object containing key-value pairs for callback
reporting.

The interaction's position in queue while waiting to
be routed to an agent. This variable is initialized
when the application enters a Route Call block. The
value is then updated periodically (every x
seconds) for as long as the interaction is queued
for a target inside the block. The updates stop
when the application exits the routing block.

The total number of agents that are potentially
available. For example, the total number of agents
in a specified Agent Group.

The number of agents that are actually logged in.

The country code for this interaction (can be
specified by the application).

The country name for this interaction (can be
specified by the application).

The region for this interaction (can be specified by
the application).

The type of interaction (can be specified by the
application).

A custom disposition that the application can use
to specify a user-specific outcome.

A custom disposition category that the application
can use to categorize user-specific outcomes.

The application can use this variable to track
deflections by specifying the message played when
a caller disconnected their call.

The last milestone that the application achieved.

The last milestone that the application achieved
before strikeout.

The last milestone that the application achieved
before the caller bailed out to an agent.

The last milestone that the application achieved
before the caller was deflected.

The ScriptID as reported by the routing engine.
Used to contain a self help milestone.

Enables users to set the recording level. This
variable accepts the following values:

Designer User's Guide

Variable Name

AppSessionType

EnableRouteCallRecording

GmsCallbackServiceName

GmsCallbackServicelD
survey sOffer
survey_iAgentScore
survey_iCompanyScore
survey_iCallScore

survey_iProductScore

survey_iRecommendScore

ApplicationRevisionSeriallD

ApplicationPath

InteractionSource

ReferrerURL

UserAgent
UserAgentOS

Interaction

Contact

Description

e 100 — Debug level and up. Currently, there are
no Debug messages.

e 200 — Standard level and up. This setting shows
the existing blocks array in the SDR.

e 300 — Important level and up. This setting
filters out all blocks except those containing
data that can change from call to call (such as
the User Input block).

The type of the session. The default value is
inbound for inbound calls. Survey applications
must use the value survey.

Set to true or false to enable or disable call
recording for routed calls in the Assisted Service
phase. Leave blank to use platform defaults.

The GMS Callback Service name.

The unique identifier that GMS assigns to a
scheduled callback.

Set by the Setup Survey block to specify if a survey
was offered, setup, or rejected.

Holds the user satisfaction score for the agent, if
this question is asked by the survey.

Holds the user satisfaction score for the company,
if this question is asked by the survey.

Holds the user satisfaction score for the overall
call, if this question is asked by the survey.

Holds the user satisfaction score for the product, if
this question is asked by the survey.

Holds the user's rating score (on a scale of 0-10) of
the company, product, or service. Used to calculate
Net Promoter Score (NPS).

A read-only variable that increments by 1 each
time an application is revised.

The absolute path to the application.

The source of the interaction. For example, this
value could be web (desktop and mobile browsers)
or mobile (apps).

The URL that the customer came from.

The type of browser that the customer is using, e.g.
Chrome, Mozilla, Opera, etc.

The type of operating system that the customer is
using, e.g. Windows, Mac, etc.

Details about the interaction, e.g. the interaction
subject and type.

Details about the customer contact (name, phone

Designer User's Guide

Variable Name Description

number, email address), stored as a JSON object.
For example:

{"PhoneNumber":"1234", "EmailAddress" : "name@domain.com", "Firs

Designer can obtain contact information from the interaction
call data or from other services in the Genesys Multicloud CX
solution (if the contact details are not available in the
interaction call data).

The default partition used to provide access control
DefaultPartition in GIR. This variable can be overridden by settings
in the Record block.

(Digital only) Specifies whether or not the
interaction is to be automatically terminated when
the session ends.

* |f set to true, the interaction is automatically
AutoStoplnteraction terminated just before the application session
wraps up.

* When set to auto (default), the application
decides whether to stop the interaction or not
based on the interaction media type.

The virtual queue that was queried for an
ChatOffervQ Estimated Wait Time (EWT) to determine if chat is
to be offered.

Total number of times (including this run) that the

AwEnnyEo: Designer application ran to process this interaction.

Maximum time (in minutes) from when the
interaction was first processed to keep the
interaction alive. For more information, see Setting
the ExpirationTime value.

ExpirationTime

This variable indicates how many times (if any) the

RSN e g interaction was parked.

LanguageForBots The default language to be used for bots.

Set as true to enable the interpretation of Speech
Synthesis Markup Language (SSML) tags in TTS

A ED bl (Text-to-Speech) prompts. For more information,
see Speech Synthesis Markup Language.

Set as true to remove SSML tags from chat
messages if an omnichannel application is using

removeSSMLInChat the same messages for both voice and chat
channels. For more information, see Speech
Synthesis Markup Language.

This variable is used to implement workstream
specific application logic. The valid values for this

stream variable are dev, ga, uat, live, and live b.

Note: Any applications using the stream UserData KVP must be
updated to use this System Variable instead.

Designer User's Guide 10

Setting the MaxTime value

The MaxTime value represents the maximum length of time (in minutes) that an interaction session
can remain active before being automatically terminated. The default setting is 240 minutes, but
Genesys strongly recommends that you keep this number higher than the longest possible wait time
your customers might experience. This is to prevent the session from being terminated before it is
completed normally, such as in cases where a customer has requested an ASAP callback. Designer
sees the initial call and the subsequent callback as a continuation of the same session, so if the
MaxTime expires before the callback is made, that session is lost. (Scheduled callbacks are not
affected, as they use a separate session for the callback.)

Recommendations for setting the MaxTime value:

e Use a value that is greater than the maximum wait time on your busiest day.

¢ Use a value that is also greater than the Callback Purge Time set for ASAP callbacks. (For more
information about callback settings, see the Callback Settings Data Table.)

Setting the ExpirationTime value

This system variable is typically more relevant to chat scenarios. It differs from the MaxTime
variable in that it specifies the duration of time (in minutes) to keep the interaction active, not the
overall application session. Typically, incoming chat interactions are much shorter in duration than
voice calls and are processed by multiple Designer applications, back-to-back, which means a single
chat interaction can often be associated with multiple sessions.

During the Finalize phase, if Designer detects that an interaction has been active longer than the
time specified by the ExpirationTime value, then Designer terminates both the interaction and the
session. If the session terminates and the chat is not routed, it gets automatically re-queued, a new
session starts, and so on. This could go on forever. Thus, when auto-stop logic is used by the
application (set by the AutoStoplnteraction system variable), the ExpirationTime system variable
triggers Designer to terminate the interaction.

Recommendations for setting the ExpirationTime value:

¢ For chats, use a value that is greater than the maximum interaction time required when processing the
chat with different applications or if the interaction is going to be looped within the same application.

VAR Metrics

VAR action IDs are stripped of spaces and pipe characters (|). This includes implicit
actions that are generated when a caller enters a shared module.

Use the IVRProfileName variable (User Data Key: gsw-ivr-profile-name) to associate the
application VAR metrics with an IVR Profile. Use a value of auto to auto-detect the IVR Profile.

Use the GVPTenantID variable (User Data Key: gvp-tenant-id) to associate the application VAR

Designer User's Guide 11

metrics with a tenant. Designer attaches the value to user data. Use a value of auto to auto-detect
the tenant.

These variables are listed in the properties of blocks once they are defined.

Internal system variables

During an application session, Designer also adds certain internal system variables at various stages.
These internal variables are recorded in Designer Analytics at the end of the application, along with
other system and user-defined variables. Thus, it is possible to see new variables in Analytics that are
not listed in the Initialize phase block.

Although these variables may appear in variable or call data objects in Session Detail Records (SDR),
they are intended only for internal use by Designer and should not be used in blocks for driving
application logic. These variables can change or be removed at any time, so attempting to use them
in applications can affect application resiliency and cause unexpected behavior. This type of usage is
not supported or recommended. If your business operations require new functionality, contact your
Genesys representative.

Assigning Values to Variables

Designer lets you assign values to variables in different ways. These examples show a few of the
methods you can use to assign different types of values to a variable, including a JSON value.

Example 1: Simple Assignment

The easiest (and recommended) way is to assign a value to a variable using the Assignments tab on
the Assign Variables block.

Click Add Assignment to add an assignment slot to the block, then choose a variable from the
Variable column. For the Expression, you can use the name of another variable whose value should
be copied in to the Variable column, a literal value (for example, "Sales Channel"), or an expression
whose value should be calculated first and the results assigned to the Variable.

Designer User's Guide 12

Properties - Prepare Welcome Prompt

This block can assian values of expressions to variables. Define a variable in the Initialize phase or block and
— select it in this block to asmlg_n it values or results of ECMAScnpt expressions. You can also call ECMAScnipt
-— utility functions, such as sorting an array, and provide an input to be run through the function.

G Assignments 1] Sort Function = Advanced Scripting

String values must be surrounded by single quotes.

+ Add Assignment

Variable Expression Delete
varCompany ¥ ‘Genesys' [i]
varCurrentDate ¥ new Date() i
varCustomerData v ({ customerid' : 'CUSTO001", 'customername’ : "Joge’ }) [i]
varSkillLevel v 7 [i]
varZipCode v ‘94014 [i]
varCustomerPrompt ¥ ‘Hello " + varCustomerData.customername + " Welcome to " + varCompany [i]
varDidScriptHaveErrors v false [i]

You must use single quotes (' ') when specifying string values, but you can assign numeric values
without quotes. Note that the varZipCode above is a string data type (the single quotes tell JavaScript
to treat it as a string), but it contains only numbers. It's important to remember that JavaScript treats
string and numeric data types differently. For example, 1 + 2 = 3, but ‘1" + 2 = ‘12",

JSON data (for example, varCustomerData) is typically retrieved from an external data source, but
you can also form a JSON string in the application. JSON strings must be enclosed in brackets () and
should follow the rules and syntax for JSON strings as defined by JavaScript. Note also that variables
can easily be used to form part of the JSON string (as represented by varCustIDFromCRM, in the
example shown below).

The varCustomerPrompt above shows a simple string expression, with the different string segments
linked together by a +. If used in a Play Message block, it will play “Hello Joe! Welcome to Genesys."

It accesses a property of the varCustomerData object using the “.” notation and combines it with the
welcome message.

Designer User's Guide 13

Although the terms ECMAScript and JavaScript are used interchangeably throughout
this Help, Designer technically supports ECMAScript and does not support JavaScript
functions that are typically used for web-browser based applications, such as pop-up
windows, alerts, and so on.

Here is another example of how you could build a JSON expression. It contains mostly hard-coded
strings, but also uses a variable to form part of the JSON string:

Properties - Prepare JSON

This block can assign values of expressions to variables. Define a variable in the Initialize phase or block and select it in this block to
— assign it values or results of ECMAScript expressions. You can also call ECMAScript utility functions, such as sorting an array, and
— provide an input to be run through the function.

@ Assignments 13 Sort Function = Advanced Scripting

String values must be surrounded by single quotes.
+ Add Assignment

Variable Expression Delete

varlyJSONData v ({ customerid' : varCustIDFromCRM, ‘customersegment’ : ‘Unknown’, ‘pendingOrders’: 3 }) m

Example 2: Advanced Scripting

If your application requires you to go beyond simple assignments and use JavaScript constructs like
loops or multiple nested conditions, you can use the Advanced Scripting tab, which allows you to
compose valid ECMAScript or JavaScript.

Advanced Scripting is an optional feature and might not be enabled on your system.
To enable this functionality, contact Genesys.

To use this feature, you need a basic level of familiarity and understanding of ECMAScript syntax and
rules. Any errors in the script can cause erratic behavior, so test your changes to make sure that your
script works correctly.

Warning

Use caution! Designer can check your script for syntax errors, but cannot validate it
nor check for runtime errors that might occur when the script runs during a call.

In this example, the script sets the variable varOrdersPrompt to "3 Laptop bags, 2 Phone chargers, 1
Super rare fish". Here's how it works:

Designer User's Guide 14

The sample script below first initializes JSON data in varOrderDetails so that it becomes an array of
three JSON objects. Each JSON object has properties — item, quantity, backordered. The script then
proceeds to loop through orders and forms a string to play back to the caller to notify them of their
order status.

Note that this script uses variables in two scopes:
e A scope exclusive or local to this script itself (“1"”). This variable remains available only while this script
runs, and then it disappears.

* Top level variables that were defined in the Initialize phase — these remain available throughout this
application flow, but not in any modules this application calls (such as varOrdersPrompt).

Properties - Prepare order details

This block can assign values of expressions to variables. Define a variable in the Initialize phase or block and select it in this block to
— assign it values or results of ECMAScript expressions. You can also call ECMAScript utility functions, such as sorting an array, and
— provide an input to be run through the function.

G Assignments £ Sort Function == Advanced Scripting

Write your ECMAScript here. Be careful - don't bum yourself!

1 [/assume this data was retrieved from an external system using HTTP REST
2~ varQOrderDetails = [

3 { "item" : "Laptop bag", quantity : 2, backordered : false },

4 { "item" : "Phone charger”, quantity : 2, backordered : false },

5 { "item" : "Super rare fish", quantity : 1, backordered : true }

6 I;

7

8 wvar i; // a local variable that exists only in this script

9 varOrdersPrompt = ""; // use a variable defined in Initialize phase

1@

11~ for (4 = @; 1 < varOrderDetails.length; ++i) {

12 ff 3 laptop bags give a space between quantity and item name

13 varOrdersPrompt += varOrderDetails[i].guantity + ' ' + varOrderDetails[i].item;
14 // its odd to hear 2 of phone charger (not chargers) - lets fix that
15 varOrdersPrompt += varOrderDetails[i].quantity » 1 ¥ *s" : '';

16

17 = if { 1 < varOrderDetails.length - 1) {

18 varOrdersPrompt += ', "; // add a comma to give TT5 & short pause
19 }

28 ¥

Store the outcome of the advanced scripting evaluation in this variable
varDidScriptHaveErrors \

The variable will be set to false if an error is thrown during advanced script evaluation, and true otherwise.

Designer User's Guide 15

	Designer User's Guide

