
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

ECMAScript Expressions

Designer User's Guide

1/9/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

• 1 Before you start
• 1.1 A few notes on syntax
• 1.2 General recommendations

• 2 Scripting examples
• 2.1 Building a Dynamic TTS Prompt
• 2.2 Controlling the Application Flow
• 2.3 Checking for numeric values
• 2.4 Declaring JSON payloads

• 3 Advanced scripting in Designer
• 4 Built-in user functions

• 4.1 setAttributes
• 4.2 isDataTableValueValid

Designer User's Guide 2

•

• Administrator

In certain blocks, you can use ECMAScript expressions to perform dynamic operations while an
application is running. For example, you can use ECMAScript expressions to assign values to
variables or perform certain functions, like sorting an array.

Related documentation:
•

Before you start

To use this feature, you must have a basic level of familiarity and understanding of ECMAScript
syntax and rules.

Although the terms ECMAScript and JavaScript are often used interchangeably, Designer technically
supports ECMAScript and does not support JavaScript functions that are typically used for web-
browser based applications, such as pop-up windows, alerts, and so on.

Designer blocks that support the use of ECMAScript expressions include:

• Assign Variables Block
• Menu Option Block
• Return Block
• Shared Module Block
• Data Tables
• Activity Block
• Milestone Block

In general, block properties do not support ECMAScript expressions unless otherwise stated. If
ECMAScript expressions are not supported, you must enter a value (a string that is taken as a literal).
This value is not evaluated at runtime. For example, in the Play Message block, the value of a TTS
prompt is interpreted as a literal string.

Important
ECMAScript support in Designer is provided by other services in the Genesys
Multicloud CX solution. Due to certain dependencies and limitations, not all

Designer User's Guide 3

/PEC-ROU
/PEC-ROU

ECMAScript functions are supported when used in Designer (for example, the
toLocaleString function is not supported at this time). For more information about
ECMAScript, see the ECMAScript page in the Orchestration Server Developer Guide.

A few notes on syntax
Some rules and guidelines to follow when using ECMAScript in Designer:

• Strings must be quoted ('). For example, 'hello' is a string, whereas hello is a reference to a variable
called hello.

• Single quotes (') are recommended, as opposed to double quotes (").
• When specifying an object in JSON notation, surround the JSON with parentheses. For example:

({'abc': 'def'}).

General recommendations

• Keep it simple. Don't overcomplicate your code.
• Minimize the declaration of temporary variables within Advanced Scripting.
• Use caution! Any errors in your script can cause erratic behavior, so test your changes to make sure

that your script works correctly before running it in your production environment. Designer can check
your script for syntax errors, but cannot validate it nor check for runtime errors that might occur when
the script is executed.

Scripting examples

Below are examples of how ECMAScript expressions can be used in Designer applications. Some tips
and general recommendations are also provided.

Building a Dynamic TTS Prompt
You can use the Assign block to concatenate a string to be spoken by the application. For example,
the expression below reads the caller's phone number or ID:

'You are calling from ' + ANI

Controlling the Application Flow
A Segmentation block can take ECMAScript expressions that evaluate to a Boolean value, and thus
control the flow of the application.

For example, you might want to inform your customers about upcoming seasonal events and you
need a way to determine the current season and whether the event is occurring within the coming
week. The expression below determines whether the call was received within seven days of the

Designer User's Guide 4

event, and whether the current season is summer or autumn:

numDays > 7 && (isSummer | | isAutumn)

Checking for numeric values
When using scripting to check for numeric values, always use double "equals" signs (==). This
compares the numeric values no matter which data type is being used.

For example:

var a = '1234'; (string data type)
var b = 1234; (numeric data type)
var c = (a == b);

In this example, the value of c will be true, as the actual numeric values are compared, not the string
and numeric data types.

However, this does not work for Boolean values. For example, the expression

(true == 'true')

would not produce a result of true. In this case, you would need to use an expression such as the
following:

(vResult == true || vResult == 'true' || vResult)

Declaring JSON payloads
Keep your code as simple as possible. For example, the following code is unnecessarily complex:

{
vAPIInputCRM = new Object();
vAPIInputCRM.IT_SEARCH = new Object();
vAPIInputCRM.IT_SEARCH.item = new Object();
vAPIInputCRM.IT_SEARCH.item.TYPE = 'ZPH';
vAPIInputCRM.IT_SEARCH.item.VALUE = vANI;
vAPIInputCRM.IV_LANGUAGE = 'IT';
vAPIInputCRM.IV_MARKET = 'IT';
}
catch(exception)
{}

This is much better:

vHTTPInput = {};
vHTTPInput.tid = vAccountInfo.Result.participantDetails.tid;
vHTTPInput.firstName = vAccountInfo.Result.participantDetails.firstName;
vHTTPInput.lastName = vAccountInfo.Result.participantDetails.lastName;
vHTTPInput.emailAddress = vAccountInfo.Result.participantDetails.primaryEmailId;
vHTTPInput.emailType = 'ADDRESSCHANGE';
vHTTPInput.interactionId = vInteractionID;

Designer User's Guide 5

Advanced scripting in Designer

In blocks where it is supported, you can use use the Advanced Scripting tab to compose more
complex ECMAScript constructs, such as loops or multiple nested conditions.

Let's take a look at how advanced scripting could be used to assign a value to a variable. Here, some
script has been added to the Advanced Scripting tab of an Assign Variables Block:

In this example, the script sets the variable varOrdersPrompt to 3 Laptop bags, 2 Phone
chargers, 1 Super rare fish.

Here's how it works:

The sample script first initializes JSON data in varOrderDetails so that it becomes an array of three
JSON objects. Each JSON object has properties — item, quantity, and backordered. The script then
proceeds to loop through orders and forms a string to play back to the caller to notify them of their
order status.

The script uses variables in two scopes:

• A scope exclusive or local to this script itself (i). This variable remains available only while this script
runs, and then it disappears.

• Top-level variables that were defined in the Initialize phase remain available throughout this

Designer User's Guide 6

/File:Des_assignvar_advanced_ex2.png
/File:Des_assignvar_advanced_ex2.png

application flow, but not in any modules this application calls (such as varOrdersPrompt).

Important
Advanced Scripting is an optional feature and might not be enabled on your system.
To enable this functionality, contact Genesys.

Built-in user functions

Designer also has built-in ECMAScripts that you can invoke from a Designer application, such as from
an Assign or Segmentation block, to perform certain functions at runtime.

setAttributes
You can use this function to add arbitrary key-value pairs to the Session Detail Record (SDR):

setAttributes(key, value)

• If key is a string, a property with key = value is added to the attributes object in the SDR.
• If key is an object, all of its properties are added as individual properties in the attributes object in the

SDR. In this case, value is ignored.

Example
// set first key value pair
setAttributes('key1', 'Success')

// add a second one using variables in the application
var varKeyName = "key3"
var varKeyValue = "value3"
setAttributes(varKeyName, varKeyValue)

// lets add an object which will overwrite "key1" and add "key2"
var myObject = { "key1" : "value1", "key2" : "value2" }
setAttributes(myObject)

// All these statements will finally generate this data:
attributesList {

"key1" : "value1",
"key2" : "value2",
"key3" : "value3"

}

Usage and limitations

You can use this function in all phases of Default and Digital applications, in both Self Service and
Assisted Service. However, you must adhere to the following rules:

Designer User's Guide 7

• Do not log Personally Identifiable Information (PII).
• Do not log secure variables.
• Keep the data size less than 25Kb.

Warning
Reading is not supported. Use application variables when both read and write access
is required.

isDataTableValueValid
You can use this function to determine if a value returned from a data table query is valid. For
example, you might use the following function in an Assign block:

isDataTableValueValid(value, datatype)

This function has two arguments:

• value is a single value returned from a data table query
• datatype is the data type of the data table column, such as 'string', 'boolean', 'integer', 'announcement',

or 'numeric' (this argument is optional)

If the data table value is valid, the script returns true. Here is a list of values that this function can
return:

• isDataTableValueValid(varStr, 'string') on a valid (or empty) string returns true. Anything else
returns false.

• isDataTableValueValid(varNum, 'numeric') on a valid number or 0 returns true. Anything else
returns false.

• isDataTableValueValid(varNum, 'integer') on a valid integer or 0 returns true. Anything else
returns false.

• isDataTableValueValid(varBool, 'boolean') on true or false returns true. Anything else returns
false.

• isDataTableValueValid(varAudio, 'announcement') on a valid (or null) announcement returns
true. Anything else returns false.

Designer User's Guide 8

	Designer User's Guide

