3 GENESYS

This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Designer User's Guide

Bot Block

1/17/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

¢ 1 About bots in Designer
* 1.1 See how it works
¢ 2 Using this block
* 3 Intents and Slots tab
» 3.1 Configure Bot details
¢ 3.2 Configure intents
* 3.3 Intents and Slots assignment
* 3.4 Select a variable to send context to the Bot Session
¢ 3.5 Invoking a Dialogflow ES bot with events
* 3.6 Invoking a Dialogflow CX bot with events
* 4 Input Settings tab
¢ 5 Retry tab
¢ 5.1 Use application-wide retry
* 5.2 Allow retries
* 5.3 Send No Input Event to Bot
* 6 Results tab
* 6.1 Bot responses
* 6.2 Bot status flags
* 6.3 Additional bot information
* 6.4 Viewing the results data

¢ 7 Adding logic for handling intents

Designer User's Guide

B

e Administrator

Use the Bot block to add a chatbot to your application.

Related documentation:

About bots in Designer

Bots are software applications that leverage natural language processing and natural language
understanding to recognize input and respond to customers in a way that resembles a conversation
with a live agent. They can determine what a customer wants to do based on natural language input
and then proceed with collecting the information required to fulfill the request or intent.

If you have a bot configured with a supported bot service provider, you can add it to the Designer Bot
Registry. You can then use a Bot block to integrate the bot service with a Designer application.

The Bot block typically collects input from the customer, sends it to the external bot service, and
waits for a response. This response may trigger completion of the Bot block (i.e. success or error) or
it may trigger another turn of playing back a prompt to the customer and collecting additional input,
which is again sent to the external bot service. These turns are handled internally in the Bot block
and there is no need for the application developer to add more blocks to handle these.

See how it works

Watch this video to learn more about using bots in Designer applications.

Link to video

Using this block

The Bot block is located in the User interaction section of the palette. Add it to the Self Service phase
of a Default application when you want to use a bot in your application. If the application is enabled
for omni-channel, the same bot can service both voice and chat customers.

You can use multiple bots in an application. Simply add a Bot block for each bot you want to use.

Designer User's Guide 3

/PEC-ROU
/PEC-ROU
https://player.vimeo.com/video/439401643?title=0&byline=0&portrait=0

For voice calls, the Bot block plays questions and responses that are returned from the
external bot via text-to-speech (TTS) prompts. With the exception of Dialogflow CX
bots (which can be configured to use media sources that contain recorded audio),
using pre-recorded audio prompts with the Bot block is not supported.

Intents and Slots tab

Use these settings to tell Designer about the bot resource you want to use in
your application.

Configure Bot details

Specify the Bot provider and Name:

Configure Bot details

Bot provider Dialogflow v O

Bot Hame DesignerDialogflowlintegrath w

Once selected, Designer can automatically populate the block properties with intents and slots for
the specified bot resource. Intent child blocks are hidden by default, but you can view these by
clearing the Do not use intent child blocks checkbox:

Configure intents

Do not use intent child blocks

The intents that you enable (see Configure intents) are then added as intent child blocks.

This option is not displayed if you are using a Dialogflow CX bot. Intent child blocks
are not applicable to Dialogflow CX bots.

Designer User's Guide

/File:Des_bot_intents_bot_details.png
/File:Des_bot_intents_bot_details.png
/File:Des_bot_block_do_not_use_child_intents.png
/File:Des_bot_block_do_not_use_child_intents.png

Configure intents

For Google Dialogflow CX bots

* You can skip the settings in the Configure intents section as these are not applicable
to Google Dialogflow CX bots.

e Intent child blocks (or any other type of nested or child blocks) are not supported for
Dialogflow CX bots, even if they are shown by Designer. The Error Handler block,
however, is supported and should be used to handle errors. All other exits from the Bot
block will proceed directly to the next block.

An intent is something that the customer wants to accomplish, such as booking a trip or making a
reservation. These are defined in the bot and the bot is set up to collect the information it needs to
fulfill these intents, typically referred to as slots. Slots (also known as entities) provide additional
context to the intent.

For example, let's say a bot detects that a customer wants to schedule an appointment. It now has
the intent, but it also needs to know other details about the customer's request, such as the time,
date, and the type of appointment. These are the slots, which the bot uses to determine the
questions it needs to ask in order to collect the information needed to fulfill the customer's intent.

Select the intents you want to enable for the bot:

Configure intents

Intent Enabled
Default Fallback Intent
options CJ
exit]
Default Welcome Intent
order.drink_different_card]
Schedule Appointment

For each intent that you enable, Designer automatically creates a corresponding Bot Option child
intent block in the application flow.

Designer User's Guide

/File:Des_bot_intents_configure_intents.png
/File:Des_bot_intents_configure_intents.png

@ DialogFlow bot =

s Error Handler

D Default Welcome Intent

D Default Fallback Intent

D Schedule Appointment

Once the external bot tells the Designer application it has identified an intent, Designer executes that
specific intent's child block and any child blocks below that intent block (remember that intent child
blocks are not supported for Dialogflow CX, even if they are shown by Designer). This works best for
a small number of intents and is not recommended for bots that have more than 10 intents. Instead,
for bots with larger numbers of intents, use a Segmentation block immediately following the Bot

block to process specific intents and execute fulfillment (for more information, see Adding logic for
handling intents).

Intents and Slots assignment

For Google Dialogflow CX bots

* You can skip the settings in the Intents and Slots assignment section as these are
not applicable to Google Dialogflow CX bots.

This tab allows you select variables to store values for the selected Intent and
the related Slots.

Designer User's Guide 6

/File:Des_bot_option_blocks.png
/File:Des_bot_option_blocks.png

Intents and Slots assignments

Store selected Intent in this variable

varBotintent v
Schedule Appointment
Slot Name Type Variable Description
time @sys.time — choose variable - @ b
date @sys.date — choose variable — hd
AppointmentType @AppointmentType — choose variable — v

It is recommended to do this only for bots that have a small number of intents
and slots. For bots that have more than 10 intents, it is recommended to use the
Results tab to capture all of the information returned from the bot and then use it
in Assign blocks. This keeps the Bot block relatively isolated from the structure of
the bot.

Select a variable to send context to the Bot Session

This option enables you to pass an initial slot (or entity) value to a Lex or, Dialogflow ES or CX bot.
This can be useful when an attribute is known before the interaction starts, such as the customer's
name, phone number, or email address. With this slot already filled, the bot won't need to prompt the
customer to provide this information if the Bot block sends it to the external bot.

To use this option, you'll need to set up a variable that contains a JavaScript
object that defines the value you want to pass to the bot. Then, select this
variable from the dropdown. This also requires some configuration with your bot
service provider, as you'll need to define an input context (or session attribute)
for the slot and assign it a default value that corresponds to the JavaScript
object. We've included an example that shows how to do this with a Dialogflow
bot, but you can refer to the documentation from your bot service provider for
additional information.

Warning

If a Dialogflow CX Bot is configured with slots that have the same name as an
attribute passed as context from Designer, Designer will reset the Dialogflow CX slot
value back to the original value defined in the context attribute on every turn.
Defining Designer context attributes with the same name as the Dialogflow CX slots
therefore causes undesirable behavior and is not recommended.

Designer User's Guide 7

/File:Des_bot_intents_assignments.png
/File:Des_bot_intents_assignments.png

Example (Dialogflow ES)

For a quick example of how this works, let's set this up with a Dialogflow ES bot. First, we'll go to the
Intents section of the bot and add a new Context. In this example, we've created an intent called
Intent with context and added an input context to it, called ExampleContext.

Dialogflow .. e |ntent with context e
Essentials
Coffee-Shop v Contexts @ ~
[en]

ExampleContext G0 Add input context

3 intents

Then, for the slot that we want to pass an initial value to, we need to set a default value for an
attribute of the context. To do this, we'll go to the Action and parameters section and add the

details for the slot we want to fill with an initial value. In this case, we'll add details for the phone
number attribute.

To assign the default value, we'll hover on the right-side of the row to reveal the additional options
menu and click it to open the Default value setting:

Action and parameters

el
4
REQURED @ PARAMETERNAME @ ENTITY @ VALUE Sl
2]
Default value
-
D phone-number ([@sys.phone-number Sphone-number D :

@ Delete

Now we can set the default value to match the name of the context and the attribute we want to fill:

Designer User's Guide

/File:Des_bot_block_context_01.png
/File:Des_bot_block_context_01.png
/File:Des_bot_block_context_03.png
/File:Des_bot_block_context_03.png

Default value for "phone-number”

NAME ENTITY VALUE

#ExampleContext phone-number |
CLOSE

In Designer, we'll create a user-defined variable called varlnput. For its value, we'll add a JavaScript

object called ExampleContext that passes an initial value of 1234567 to the phone-number
attribute.

Tip
For Dialogflow ES bots, the JavaScript object must contain the context name. Lex bots,

however, do not use contexts. JavaScript objects for a Lex bot can use any name, but

if multiple contexts are passed to the bot, it only accepts the first one and ignores the
others.

'"ExampleContext':{
'attributes': {
'phone-number': '1234567'

}I
'lifetime': 1
}
Tip
Dialogflow CX bots support additional functionality using this method. See Invoking a
Dialogflow CX bot with events.
)

In the Bot block, we can then select this variable as the context to pass to the bot:

Designer User's Guide

/File:Des_bot_block_context_02.png
/File:Des_bot_block_context_02.png

Select a variable to send context to the Bot Session

varinput hd

Another example of how you could use this option is to pass an initial message to the bot to start a
chat conversation. In the JavaScript Object, add a field called content that contains the message you
want to send (e.g. "l want to book a hotel room."):

"ExampleContext':{
'attributes': {
'phone-number': '1234567'

}
}I
'content': 'I want to book a hotel room.',
'lifetime': 1
)
Warning

The word content is a reserved keyword. Do not use content as the name of the
variable that is passing context to the bot.

Invoking a Dialogflow ES bot with events

You can use an Event to initiate a bot interaction with a Dialogflow ES bot without requiring the
customer to provide any input. The context is still passed normally when invoking the bot with an
event. To invoke the bot with an event, go to your Dialogflow bot settings and set the Event field of
the context object to the name of the event you want to invoke. For example, we'll add an event
called sample-event to an intent:

Designer User's Guide 10

/File:Des_bot_input_settings_context.png
/File:Des_bot_input_settings_context.png

* Intent with context ®

Contexts @ A

ExampleContext & Add inpu

Events @ A

sample-event

)

This is what the JavaScript Object looks like for the above example:

{
'"ExampleContext':{
'attributes': {
"phone-number': '1234567'
}
}I
'event': 'sample-event',
'lifetime': 1
}

If you set both an event and an initial message in the JavaScript Object, the bot ignores the initial
message and uses the event.

Invoking a Dialogflow CX bot with events

You can also use an Event to initiate a bot interaction with a Dialogflow CX bot without requiring the
customer to provide any input. The context is still passed normally when invoking the bot with an
event. The functionality is similar to that of Dialogflow ES bots, but the structure of the JSON object
has additional fields and certain naming conventions must also be observed (noted below).

Example:

{
'parameters’':{
'attributes': {
"phone-number': '1234567'

}
+
'content': 'I want to book a hotel.',
'lifetime': 1

Designer User's Guide 11

/File:Des_bot_block_event_df1.png
/File:Des_bot_block_event_df1.png

Context fields for Dialogflow CX bots

You can use the JSON object to pass the following properties to the Dialogflow CX bot:

JSON Object Property

parameters.attributes object

event

content

webhookHeaders

webhookPayload

Input Settings tab

Capability

Passes known context to the bot.

Invokes an intent directly in the
external bot.

A string that contains an initial
message.

A JSON object that is passed from
the CX bot to Designer and then
passed back to the bot from
Designer.

A JSON object that is passed from
the CX bot to Designer and then
passed back to the bot from
Designer.

Description

Each property of this object is
sent to the external bot, which
enables it to pre-fill certain slots
with these values. Note: This
property must be named
parameters.

This skips the first input
collection and allows the bot to
process attributes that are
passed to it directly without
having to rely on customer input.

This passes the string as the first
input to the bot as if it was
collected from the customer.

These values can be used by the
bot fulfillment code to call an
external API, query a database,
etc.

These values can be used by the
bot fulfillment code to call an
external API, query a database,
etc.

Use this tab to configure settings and options related to the inputs customers provide to the bot

service.

Designer User's Guide

12

Properties - Bot

This block can be used to initiate a Bot conversation with user to collect input in natural language and take !
@ actions based on the dialog state of the conversations
[]

7) Intents and Slots 4 Input Settings 4 Retry 1 Results

Configure Input settings

¥ Use Streaming Audio
Disable barge-in
Lise barge-in settings from Bot
Enable Sentiment Analysis
Send DTMF input to the Bot

Input timeout
Wait for 5 second(s) before assuming that no voice input was received
Wait for 300 second(s) before assuming that no chat input was received.

Confidence Level

. —

If you are setting up a Google Dialogflow bot, you can select Use Streaming Audio to have
Designer stream the audio inputs directly to the bot services provider. (Note that Google Dialogflow
CX bots use streaming audio only.)

If Use Streaming Audio is enabled, you can also select a barge-in option. Select Disable barge-in
to prevent customers from interrupting the playback of bot prompts with voice or DTMF inputs. If you
want the bot service to manage how barge-in is handled, you can select Use barge-in settings
from Bot to override the Designer settings.

The Beep before listening for input option is available only if Use Streaming Audio is not
enabled. When enabled, a tone is played after the bot asks the customer for input. The Bot block
only recognizes the input that is received from the customer after the beep has played. You can then
adjust the Input timeout values for both voice and chat inputs. These settings tell Designer how
long to wait (in seconds) before assuming that the customer did not provide any input to the bot.

For Google Dialogflow CX bots

Genesys recommends using the No speech timeout configured in Google Dialogflow CX and the
corresponding no input handlers to control no inputs, instead of the Designer voice Wait for timeout and

Designer User's Guide 13

/File:Des_bot_input_settings_4.png
/File:Des_bot_input_settings_4.png

Retry prompting in the Bot block. To ensure the Google Dialogflow CX configuration is used, the Designer
Bot block voice Wait for timeout should be set to a high value of at least the sum of the following:

e Longest possible prompt that might be played in a Google Dialogflow CX turn
* Google Dialogflow CX No speech timeout duration
e 3s buffer

If you are using a Google Dialogflow CX bot, you can also manage the following options (these are not
available for other bot types):

* Enable Sentiment Analysis
You can enable this option if the Dialogflow CX bot is performing sentiment analysis while detecting
intents. The bot service analyzes the input to determine the overall attitude of the customer (e.g.
positive, negative, or neutral) and returns the result to Designer in a variable.

¢ Send DTMF input to the bot
If your Dialogflow CX bot is configured to accept DTMF inputs, enabling this option allows both voice
and DTMF inputs to be sent to the bot. You can then configure the Input termination character,
Interdigit Timeout, and Terminating Timeout settings (see DTMF settings for more information
about these settings). When this option is enabled, customers can provide DTMF input at any point in
the conversation where they would typically provide voice input. If both voice and DTMF input are
provided simultaneously, the DTMF input is given priority and the voice input is ignored.

No Input timeout settings apply to both voice and DTMF inputs. After the first DTMF input is provided,
the Input termination character and Interdigit Timeout settings are used to determine when the
DTMF input has ended.

¢ Use Inband DTMF is available when the Send DTMF input to the bot option is enabled. When this is
enabled, DTMF settings configured in the Google Dialogflow CX bot are respected.

The Confidence Level slider can be used to adjust the confidence level threshold for the Bot block.
This property is not sent to the bot provider; it is used only by Designer to determine if a response
from the bot is a No Match. If the confidence received from the bot is less than the specified
threshold level, then Designer treats it as a No Match. Otherwise, the response is handled normally.

If the Confidence Level slider is set to 0 (zero), Designer never generates a No
Match for the Bot block.

Designer User's Guide 14

Retry tab

Retry handling in the Bot block works a bit differently than it does in other blocks with retry settings,
such as Menu or User Input. Bot services typically have their own retry behavior already built-in. For
example, the bot automatically asks the customer to repeat a response that it didn't understand.
Rather than handling retries based on a single question and a single response (as in Menu or User
Input blocks), the Retry settings on the Bot block are based on the conversation taking place
between the bot and customer. This conversation can consist of several questions and responses, all
encapsulated within one Bot block.

You can use the settings on this tab to set up the Bot block to control retry handling (see below) or
trigger an event that allows the external bot service to control all retry handling (see Send No Input
Event to Bot).

Use application-wide retry

Select this option if you want to use the retry settings that are specified on the Global Retry tab in the
Application Settings.

Properties - Bot

This block can be used to initiate a Bot conversation with user to collect input in natural language and take actions based on the dialog 7
@ state of the conversations :
(]

9) Intents and Slots + Input Settings ¢ Retry A1 Results

¥ Use application-wide retry

Allow retries

Select this option to specify retry rules for this block. When enabled, you can set the following
options:

Number of No Input retries allowed

Select the number of retries to allow for each question and response sequence that occurs in the
conversation between the bot service and the customer.

Specify a retry prompt and destination if the user's input isn’t recognized
¥ Allow Retries

Mumber of Mo Input retries allowed 3 v

Mumber of Mo Match retries allowed 3 v

For each retry, you can specify whether a prompt is played by clicking the corresponding section
beneath this field. For example, if you allow two no-input retries and you want to play a prompt after

Designer User's Guide 15

/File:Des_bot_retry_use_app.png
/File:Des_bot_retry_use_app.png
/File:Des_bot_block_retry_allow.png
/File:Des_bot_block_retry_allow.png

the first retry, select the No Input #1 line and add a prompt. Enable the Play original menu
prompt after this retry prompt check box to repeat the menu prompts for the customer.

Mo Input #1

+ Add Prompt

Type Var? Value Play as Actions
T8 ~ Mo input one. text At T4 8@

Number of No Match retries allowed

Most bots will follow-up with the customer if they don't understand the input that's been provided.
For example, the bot will simply ask the customer to repeat the information until it successfully
captures the response. As this type of handling is typically built-into the bot by the bot services
provider, you may not need to specify this setting in the Bot block.

After Final No Input

Add the prompt to play after the maximum number of permitted No Input retries is reached. As this
block is in the Self Service phase, you can also specify a target destination for the application to jump
to, such as another block in the Self Service phase or to the Assisted Service or Finalize phase of the
application.

After Final No Match

Add the prompt to play after the maximum number of permitted No Match retries is reached. As this
block is in the Self Service phase, you can also specify a target destination for the application to jump
to, such as another block in the Self Service phase or to the Assisted Service or Finalize phase of the

application.

After Final No Match

+ Add Prompt
Type Var? Value Play as Actions
TTS N Mo match final. text v + 48
(®) By Name By Type By Description By Comment

Assisted Service

Send No Input Event to Bot
(This option is supported for Google Dialogflow ES bots only.)

If the external bot service is handling retry behavior, you can select this option to send a No Input
event to the bot service.

Designer User's Guide 16

/File:Des_bot_block_retry_no_input.png
/File:Des_bot_block_retry_no_input.png
/File:Des_bot_block_retry_final_no_match.png
/File:Des_bot_block_retry_final_no_match.png

Send Mo Input Event to Bot

Event Mame:

NO_INPUT

In this scenario, all retry handling is performed by the external bot service. The Bot block sends the
specified Event Name to the external bot, which then customizes the retry behavior for each
conversational turn.

If the external bot service is handling all retries, the No Input and No Match totals
are not tracked in the Session Detail Records (SDR).

Results tab

Specify the variables that will hold various results data, as returned to the Bot block from the bot
services provider. Each variable is described in more detail below.

Designer User's Guide

17

/File:Des_bot_block_no_input_event.png
/File:Des_bot_block_no_input_event.png

Properties - DialogFlow bot

This block can be used to initiate a Bot conversation with user to collect input in natural language and
@ take actions based on the dialog state of the conversations

9) Intents and Slots + Input Settings #) Retry

Bot responses (Latest conversation)

Store latest response from Bot

Store Bot invocation result code

Bot status flags

Bot invocation or system error
(true/false)

Bot engine execution error
(true/falze)

Bot responses

Store latest response from bot

varBotLatestResponse

varBotinvocationCode

varBotlsSystemError

varBotIsExecutionError

This variable stores details about the latest conversation that the bot engine had with a customer. For

example, the results for a Dialogflow bot used to book a ghost removal service might look like this

(JSON formatted):

"status": {
"code": 0O,
"message": null
}I
"data": {
"botName": "MySampleServiceBookingBot",
"botAlias": null,
"sessionId": "ABC123",
"state": "SUCCESS",
"intent": "Book a Ghostbuster",
"intentScore": 1,
"slots": {
"neighbourhoods": "Queens",
"location": "backyard",
"date": "2020-01-11T12:00:00-05:00",
"ghost": "Zuul the Gatekeeper"
}I

"slotsData": null,

Designer User's Guide

18

/File:Des_bot_results_tab.png
/File:Des_bot_results_tab.png

"inputTranscript": "today",
"message": "",
"attributes": {},
"error": null,
"recognitionConfidence": null,
"stability": null
}
)

In the example above, some of the details that were returned include:

e botName - name of the bot that was invoked.

e sessionID - unique ID assigned to the session.

e state - indicates SUCCESS if everything worked.

e intent - the intent that was detected (i.e. what the customer wanted to do).

¢ slots - the details that the bot collected from the customer to fill the associated slots (or entities) for
the intent.

e inputTranscript - the utterance (voice or chat input) that the bot received from the customer.

Store bot invocation result code

This variable stores the HTTP status code received from the bot when it was last invoked by the
application. For example, a result code of 200 (OK) indicates that the bot was successfully invoked.

Other result codes, such as 401 (Unauthorized) or 403 (Forbidden), can indicate there was a problem
reaching the bot service.

Bot status flags
Bot invocation or system error

If true, this indicates that Designer was able to successfully invoke the bot service without any
errors. If false, an error was encountered and the bot was not successfully invoked. There might be
an issue with the system, bot service, or you might need to check the credentials provided for your
bot service in the Bot Registry.

Bot engine execution error

If this value is undefined, this indicates that no errors occurred. If true, this indicates that Designer
was able to communicate with the bot, but an error occurred while the bot engine was processing the
request. For example, the bot returned an incorrect response and triggered the Error Handler block.
If it returns false, it means that there was an error with the bot or the system.

Additional bot information

The variables in this section are applicable only to Dialogflow CX type bots. Dialogflow CX bots
manage conversations differently than other types of bots. If you are using a Dialogflow CX bot, you
can set these variables to capture additional details about the interaction.

These properties may be supported for other bot types in future versions of Designer.

Designer User's Guide 19

Store all slots from the bot

This variable stores an object (JSON formatted) that contains all of the slots that were returned from
the bot provider at the end of the last turn with the external bot. It does not contain intents. For
example:

{
"operation": "Purchase Item",
"order unit": "phone",
"location": {
"original": "main st",
"street-address": "main st"
}I
"operation complete": false,
"admin-area": null,
"is returning": true,
"zip-code": null,
"city": null,
"is logged in": false,
"cart": "Nest Thermostat, phone",
"has welcomed user": true
}

Capture slots information with every intent

This variable captures slots organized by intents as these intents were identified in chronological
order. Each intent captures slots as they were at the time the intent was identified. This give an
additional perspective into the conversation with the bot. For example:

[

{
"intent": "Default Welcome Intent",
"slots": {
"has welcomed user": true
}
}I
{
"intent": "retail.purchase item initiate",
"slots": {
"operation complete": false,
"operation": "Purchase Item",
"has welcomed user": true,
"is returning": true
}
}I
{
"intent": "small talk.confirmation.proceed as guest",
"slots": {
"has welcomed user": true,
"operation complete": false,
"is returning": true,
"is logged in": false,
"operation": "Purchase Item"
}
}

Designer User's Guide 20

Store the reason the interaction ended

If the bot conversation is successful (it does not error out), this variable stores information about how
the bot session ended. There are two possible result values:

« END_INTERACTION - the session ended normally.

e LIVE_AGENT_HANDOFF - the customer should be transferred to a live agent and the application should
try to move to Assisted Service. This must be handled by the application logic. There is no in-built
behavior that would start Assisted service once this result is returned by the external bot.

If the bot does not return a SUCCESS state (for example, the bot experienced an error), this variable
is not updated.

Viewing the results data

You can view the results data in Designer Analytics by going to the Session Detail Records dashboard.
In the All Events panel, find the application instance you want to check and then filter or search for
the data you want to view.

For example:
variables.varBotinvocationResultC Q @ = 200
ode
variables.varBotlsExecutionError - Q, @ m false
variables.varBotlsSystemError Q @uu false
variables.varBotLatestResponse QQu {"status"{"code".0message”.null}"data"{"botName™"w29-agt8-Ghostbusters-

GDFbotAlias™nullsessionld""01 LHORINNSF3B5BMISBKG2LAESOOTAS3" state""SUCCESS intent""Book a Ghostbuster'intentScore™1slots":
{"neighbourhoods™ Queens™location” backyard"'date’*2020-05-11T12:00:00-05:00"'ghost"*Zuul the

Adding logic for handling intents

To specify additional logic for handling intents, Genesys recommends using a Segmentation block to
define different pathways for the application to take when certain intents are detected.

In this example, a segmentation block is configured as Intent Fulfillments, with conditions added
based on intents:

Designer User's Guide 21

/File:Des_bot_results_sample.png
/File:Des_bot_results_sample.png

@ DialogFlow bot
¥ Error Handler
(O Default welcome Intent

O pefault Fallback Intent

D Schedule Appointment

~

it Intent Fulfillments ~
O pefault Fallback Intent ~

= Extract Utterance
&5 Check Utterance availability ~
D Utterance Available ~

W Milestone

@' shared Module (GKC Query)

O et v
v

O representative

Properties - Intent Fulfillments

This block is used to evaluate expressions and take different paths in the application based on the outcome. E.q varZipGode==34014 can 7’
f:‘i be used {0 take & different path vs varZipCoda==85125. 4

9) Conditions M Milestone

+ Add Condition

Segment Label

Default Fallback Intent
exit

representative
complaint

balance

payment

options

bot problem

Condition Expression Delete
varBotintent == 'Default Fallback Intent’ T4
varBotintent == exit’ e
varBotintent == representative e
varBotintent == 'complaint” e
wvarBotintent == 'balance’ T4
varBotintent == ‘payment’ T4
varBotintent == options’ && varAppNLU '= Dialogflow’ e
false e

For each intent added as a condition, Designer creates a corresponding Segment block in the
application flow. You can then build additional logic for an intent by placing child blocks under these
Segment blocks. For example, you might want to call a Shared Module that fulfills that intent.

For more information about setting up segmentation blocks and condition expressions, see the

Segmentation block page.

Designer User's Guide

22

/File:Des_bot_intent_fulfillments.png
/File:Des_bot_intent_fulfillments.png

	Designer User's Guide

