
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Deploy Designer (versions v9012214 and above)

Designer Deployment Guide

2/3/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

• 1 1. About this document
• 1.1 1.1 Intended audience
• 1.2 1.2 Before you begin

• 2 2. Product overview
• 2.1 2.1 Designer
• 2.2 2.2 Designer Application Server (DAS)
• 2.3 2.3 Deployment architecture
• 2.4 2.4 High Availability (HA), Disaster Recovery (DR), and Scalability

• 3 3. Prerequisites
• 3.1 3.1 Mandatory prerequisites
• 3.2 3.2 Optional prerequisites

• 4 4. Deployment configuration settings (Helm values)
• 4.1 4.1 Designer deployment settings
• 4.2 4.2 DAS deployment settings

• 5 5. Post deployment Designer configuration settings
• 5.1 5.1 Flow settings
• 5.2 5.2 Tenant settings
• 5.3 5.3 DesignerEnv transaction list
• 5.4 5.4 Post deployment configuration settings reference table
• 5.5 5.5 Features
• 5.6 5.6 Adding a UI plugin to Designer

• 6 6. Logging
• 6.1 6.1 Log levels

• 7 7. Platform / Configuration Server and GWS settings
• 7.1 7.1 Create Roles for Designer
• 7.2 7.2 Create the DesignerEnv transaction list
• 7.3 7.3 Platform settings
• 7.4 7.4 GWS configuration

• 8 8. Deployment
• 8.1 8.1 Preparation

Designer Deployment Guide 2

• 8.2 8.2 Set up Ingress
• 8.3 8.3 Set up Application Gateway (WAF) for Designer
• 8.4 8.4 Storage
• 8.5 8.5 Set up Secrets
• 8.6 8.6 Deployment strategies
• 8.7 8.7 Rolling Update deployment
• 8.8 8.7.1 Designer
• 8.9 8.7.2 DAS
• 8.10 8.8 Blue-Green deployment
• 8.11 8.8.1 Designer
• 8.12 8.8.2 DAS
• 8.13 8.9 Canary
• 8.14 8.10 Validations and checks

• 9 9. Post deployment procedures
• 9.1 Upgrading the Designer workspace
• 9.2 Updating the flowsettings file

• 10 10. Enabling optional features
• 10.1 10.1 Enable Designer Analytics and Audit Trail
• 10.2 10.2 Enable Personas
• 10.3 Update application settings

• 11 11. Cleanup
• 11.1 11.1 Elasticsearch maintenance recommendations

• 12 12. Limitations

Designer Deployment Guide 3

Learn how to deploy Designer as a service in a Kubernetes cluster (for DesDepMnfst v9012214
and above).

1. About this document

This document guides you through the process of deploying and configuring Designer and Designer
Application Server (DAS) as a service in a Kubernetes (K8s) cluster.

Information on the following topics is provided:

• Overview of Designer and DAS
• Configuration details
• Deployment process
• Enabling optional features
• Cleanup
• Known limitations

1.1 Intended audience
This document is intended for use primarily by system engineers and other members of an
implementation team who will be involved in configuring and installing Designer and DAS, and
system administrators who will maintain Designer and DAS installations.

To successfully deploy and implement applications in Designer and DAS, you must have a basic
understanding of and familiarity with:

• Network design and operation
• Network configurations in your organization
• Kubernetes
• Genesys Framework architecture and functions

1.2 Before you begin

1. Install Kubernetes. Refer to the Kubernetes documentation site for installation instructions. You can also
refer to the Genesys Docker Deployment Guide for information on Kubernetes and High Availability.

2. Install Helm according to the instructions outlined in the Helm documentation site.

After you complete the above mandatory procedures, return to this document to complete an on-
premise deployment of Designer and DAS as a service in a K8s cluster.

Designer Deployment Guide 4

2. Product overview

The following sections provide a brief overview of Designer and DAS.

2.1 Designer
The Designer service provides a web UI to build and manage VXML and SCXML based self-service and
assisted service applications for a number of media types. It stores data on the local file system and
is synchronized across instances by using services like Network File System (NFS). Genesys
customers can build applications using a simple drag and drop method, and assign contact points
(Route Points and other media endpoints) to applications directly from the Designer UI. Insights into
runtime behavior of applications and troubleshooting aid is provided by Designer Analytics, which
includes a rich set of dashboards based on session detail records (SDR) from data stored in
Elasticsearch.

Designer offers the following features:

• Applications for working with phone, chat, email, SMS (text messages), Facebook, Twitter, and open
media types.

• Bots, ASR, TTS capabilities for self-service.
• Assisted service or routing.
• Callback.
• Business Controls.
• Audio, message management.
• Grammars management.
• Contact points management - route points, chat end points, email pop-client/mailboxes.
• Analytics dashboards through embedded Kibana.

Designer is an Express/Node.js application. The UI is designed using Angular powered Bootstrap.
Application data (SCXML and VXML) is stored as a file system. Designer Analytics and Audit data is
stored in Elasticsearch.

2.2 Designer Application Server (DAS)
Designer Application Server (DAS) hosts and serves the Designer generated application files (SCXML
and VXML), audio, and grammars. It also provides:

• Runtime evaluation of Business Controls (business hours, special days, emergency flags and data
tables).

• Callback interface to GES.

DAS uses built-in NGINX to front requests. It consists of 3 modules: NGINX, PHP, and Node.js.

• Requests for static workspace content (SCXML, VXML, JS, audio, grammar, etc) are handled by the
NGINX module.

Designer Deployment Guide 5

• Requests for PHP content are processed by the FastCGI PHP module.
• SDR (Analytics) processing requests are handled by the DAS Node.js module.

Important
Files generated by Designer can be served only by DAS. Designer will work only with
DAS.

2.3 Deployment architecture
The below architecture diagram illustrates a sample premise deployment of Designer and DAS:

Designer Deployment Guide 6

2.4 High Availability (HA), Disaster Recovery (DR), and Scalability
Designer and DAS must be deployed as highly available in order to avoid single points of failure. A
minimum of 2 replicas of each service must be deployed to achieve HA.

The Designer and DAS service pods can be automatically scaled up or down based on metrics such as
CPU and memory utilization. The Deployment configuration settings section explains how to

Designer Deployment Guide 7

/File:Premise-Designer-DAS-architecture.png
/File:Premise-Designer-DAS-architecture.png

configure HA and auto-scaling.

Refer to the Genesys Docker Deployment Guide for more information on general HA recommendation
for Kubernetes.

3. Prerequisites

Before deploying Designer, ensure the following resources are deployed, configured, and accessible:

3.1 Mandatory prerequisites

• Kubernetes 1.12+
• Helm 3.0
• Docker

• To store Designer and DAS docker images to the local docker registry.

• Ingress Controller
• If Designer and DAS are accessed from outside of a K8s cluster, it is recommended to deploy/

configure an ingress controller (for example, NGINX), if not already available. Also, the Blue-Green
deployment strategy works based on the ingress rules.

• The Designer UI requires Session Stickiness. Configure session stickiness in the annotations
parameter in the values.yaml file during Designer installation.

• Persistent Volumes (PVs)
• Create persistent volumes for workspace storage (5 GB minimum) and logs (5 GB minimum)
• Set the access mode for these volumes to ReadWriteMany.
• The Designer manifest package includes a sample YAML file to create Persistent Volumes required

for Designer and DAS.
• Persistent volumes must be shared across multiple K8s nodes. Genesys recommends using NFS to

create Persistent Volumes.

• Shared file System - NFS
• For production, deploy the NFS server as highly available (HA) to avoid single points of failure. It is

also recommended that the NFS storage be deployed as a Disaster Recovery (DR) topology to
achieve continuous availability if one region fails.

• By Default, Designer and DAS containers run as a Genesys user (uid:gid 500:500). For this reason,
the shared volume must have permissions that will allow write access to uid:gid 500:500. The
optimal method is to change the NFS server host path to the Genesys user: chown -R
genesys:genesys.

• The Designer manifest package includes a sample YAML file to create an NFS server. Use this only
for a demo/lab setup purpose.

• Azure Files Storage - If you opt for Cloud storage, then Azure Files Storage is an option to consider
and has the following requirements:
A Zone-Redundant Storage for RWX volumes replicated data in zone redundant (check this), shared

Designer Deployment Guide 8

across multiple pods.
• Provisioned capacity : 1 TiB
• Baseline IO/s : 1424
• Burst IO/s : 4000
• Egress Rate : 121.4 MiBytes/s
• Ingress Rate : 81.0 MiBytes/s

• Genesys Web Services (GWS) 9.x
• Configure GWS to work with a compatible version of Configuration Server.

• Other Genesys Components
• ORS ORS 8.1.400.x
• Nexus 9.x
• URS 8.1.400.x

3.2 Optional prerequisites

• Elasticsearch 7.8.0
• Elasticsearch is used for Designer Analytics and audit trail.

• Redis 3.2.x
• Redis is used for resource index caching and multi-user collaboration locks on Designer resources.

4. Deployment configuration settings (Helm values)

This section provides information on the various settings that have to be configured in Designer and
DAS. The configuration settings listed below will be used during the deployment of Designer and DAS.
That is, these settings will be used during initial deployment / upgrade. These settings can be
configured in the values.yaml Helm file.

4.1 Designer deployment settings
The following table provides information on the Designer deployment settings. These settings are
configured in the designer-values.yaml file.

Parameter Description Mandatory? Default Value

designer.deployment.replicaCountNumber of service
instances to be created. Mandatory 2

designer.deployment.maxreplicaCount

The maximum number
of replicas to be
created. It is
recommended to
configure this setting if

Optional 10

Designer Deployment Guide 9

auto-scaling is used.

designer.deployment.strategy

The deployment
strategy to follow. This
determines which type
of resources are
deployed. Valid values
are: rollingupdate,
blue-green, blue-
green-volume, blue-
green-ingress,
grafana.

• rollingupdate -
default Kubernetes
update strategy
where resources will
be updated using
the rolling upgrade
strategy.

• blue-green - for
deploying and
upgrading the
Designer service
using the blue-green
strategy.

• blue-green-volume
- for the blue/green
upgrade, this is to
create a Persistent
Volume Claim (PVC)
for the very first
time.

• blue-green-ingress
- for the blue/green
upgrade, this is to
create an ingress for
the first time and
update the ingress
during a service
cutover.

• grafana - for
deploying the
Grafana dashboard.

Mandatory rollingupdate

designer.deployment.color

This is to deploy/
upgrade the Designer
service in a blue-green
upgrade strategy. Valid
values are: blue,
green.

Optional

designer.deployment.type
This is to specify the
type of deployment.
Valid value:

Optional Deployment

Designer Deployment Guide 10

Deployment.

designer.image.registry
The registry that the
organization uses for
storing images.

Mandatory

designer.image.repository
Docker repository that
contains the images for
Designer.

Mandatory

designer.image.tag Designer image version. Mandatory 9.0.110.07.7

designer.image.PullPolicy

Designer image pull
policy (imagePullPolicy).
Valid values: Always,
IfNotPresent, Never.

• Always - always pull
the image.

• IfNotPresent - pull
the image only if it
does not already
exist on the node.

• Never - never pull
the image.

Mandatory IfNotPresent

designer.image.imagePullSecrets
Secret name containing
credentials for
authenticating access to
the Docker repository.

Mandatory

designer.volumes.workspacePvc.create
If a persistent volume is
to be created, this value
has to be true.

Mandatory true

designer.volumes.workspacePvc.mountPath
The path where the
workspace volume is to
be mounted inside the
Designer container.

Mandatory
/designer/workspace

(Changing this value is not
recommended.)

designer.volumes.workspacePvc.claim
Persistent volume claim
name for the
workspace.

Mandatory designer-managed-
disk

designer.volumes.workspacePvc.claimSize

Size of the persistent
volume claim for the
workspace.
The persistent volume must
be equal to or greater than
this size.

Mandatory

designer.volumes.workspacePvc.storageClass

storageClassName
provided in the
persistent volume that
is created for the
Designer workspace
(example, nfs).

Mandatory

designer.volumes.logsPvc.createIf a PVC volume is to be
created, this value has Mandatory true

Designer Deployment Guide 11

to be true, else false.

designer.volumes.logsPvc.mountPath
The path where the
Designer logs volume is
to be mounted inside
the Designer container.

Mandatory /designer/logs

designer.volumes.logsPvc.claimPersistent volume claim
name for logs. Mandatory designer-logs

designer.volumes.logsPvc.claimSize

Size of the persistent
volume claim for the
Designer logs.
The persistent volume must
be equal to or greater than
this size.

Mandatory

designer.volumes.logsPvc.storageClass

storageClassName
provided in the
persistent volume that
is created for the
Designer logs
(example, nfs).

Mandatory

designer.podVolumes

Log and workspace
persistent volume claim
names and name of the
volumes attached to the
pod.

Mandatory

designer:
podVolumes:

- name: designer-
pv-volume

persistentVolumeClaim:
claimName:

designer-managed-disk
- name: designer-

log-volume

persistentVolumeClaim:
claimName:

designer-logs

designer.volumeMounts
Name and mount path
of the volumes to be
attached to the
Designer pods.

Mandatory

volumeMounts:
- name: designer-

pv-volume
mountPath:

/designer/workspace
- name: designer-

log-volume
mountPath:

/designer/logs

designer.livenessProbe.pathDesigner liveness probe
API path. Mandatory /health

designer.livenessProbe.containerPortPort running the
container. Mandatory 8888

designer.livenessProbe.startupDelay
The liveness probe will
be started after a given
delay as specified here.

Mandatory 20

designer.livenessProbe.checkIntervalThe interval between Mandatory 5

Designer Deployment Guide 12

each liveness probe
request.

designer.livenessProbe.failureCount

Number of liveness
probe failures after
which, to mark the
container as unstable or
restart.

Mandatory 5

designer.readinessProbe.pathDesigner readiness
probe API path. Mandatory /health

designer.readinessProbe.containerPortPort running the
container. Mandatory 8888

designer.readinessProbe.startupDelay
The readiness probe will
be started after a given
delay as specified here.

Mandatory 20

designer.readinessProbe.checkInterval
The interval between
each readiness probe
request.

Mandatory 5

designer.readinessProbe.failureCount

Number of readiness
probe failures after
which, to mark the
container as unstable or
restart.

Mandatory 5

designer.designerSecrets.enabled

This enables providing
the GWS Client ID and
Secret as an input to the
Designer pods.
Kubernetes Secrets is
used to store the GWS
client credentials.

Mandatory true

designer.designerSecrets.secrets

GWS Client ID and GWS
Client Secret. Create a
new GWS Client if it
does not exist. A link to
information on creating
a new GWS Client is
provided in the Platform
settings section.

Mandatory

designer.service.enabled
Set to true if the
service must be
created.

Optional true

designer.service.type
Service type. Valid
values are: ClusterIP,
NodePort,
LoadBalancer.

Mandatory NodePort

designer.service.port
The Designer service
port to be exposed in
the cluster.

Mandatory 8888

designer.service.targetPort
The Designer
application port running
inside the container.

Mandatory http

designer.service.nodePortPort to be exposed in Mandatory for 30180

Designer Deployment Guide 13

case service type is
NodePort. designer.service.type=NodePort.

designer.service.termination_grace_period
The period after which
Kubernetes starts to
delete the pods after
service termination.

Optional 30 seconds.

designer.ingress.enabled

Set to true to enable
ingress.
Ingress should be enabled for
all cases except for a lab/
demo setup.

Mandatory true

designer.ingress.annotations

Annotations added for
ingress. The Designer UI
requires Session
Stickiness if the replica
count is more than 1.
Configure Session
Stickiness based on the
ingress controller type.
Configuration specific to
ingress such as Session
Stickiness can be
provided here.

Optional

designer.ingress.paths Ingress path Mandatory [/]

designer.ingress.hosts
Hostnames to be
configured in ingress for
the Designer service.

Mandatory
- .example.com
- .blue.example.com
- .green.example.com

designer.ingress.tls TLS configuration for
ingress. Optional []

designer.resources.limits.cpu
Maximum amount of
CPU that K8s allocates
for the container.

Mandatory 600m

designer.resources.limits.memory
Maximum amount of
memory that K8s
allocates for the
container.

Mandatory 1Gi

designer.resources.requests.cpu
Guaranteed CPU
allocation for the
container.

Mandatory 500m

designer.resources.requests.memory
Guaranteed memory
allocation for the
container.

Mandatory 512Mi

designer.securityContext.runAsUser

This setting controls
which user ID the
containers are run with.
This can be configured
to run Designer as a
non-root user. You can
either use the Genesys
user or arbitrary UIDs.

Optional

Designer Deployment Guide 14

Both are supported by
the Designer base
image. 500 is the ID of
the Genesys user.
The file system must reside
within the Genesys user
account in order to run
Designer as a Genesys user.
Change the NFS server host
path to the Genesys user:
chown -R genesys:genesys.

designer.securityContext.runAsGroup

Controls which primary
group ID the containers
are run with. This can
be configured to run
Designer as a non-root
user. You can either use
the Genesys userGroup
(GID - 500) or arbitrary
GIDs. Both are
supported by the
Designer base image.

Optional

designer.nodeSelector
To allow pods to be
scheduled based on the
labels assigned to the
nodes.

Optional

Default value:
nodeSelector: {}
Sample value:

nodeSelector:
:

designer.affinity

The K8s standard node
affinity and anti-affinity
configurations can be
added here. Refer to the
this topic in the
Kubernetes
documentation site for
sample values.

Optional {}

designer.tolerations

Tolerations work with
taints to ensure that
pods are not scheduled
on to inappropriate
nodes. Refer to the
Taints and Tolerations
topic in the Kubernetes
documentation site for
sample values.

Optional []

designer.podDisruptionBudget.enabled
Set to true if a pod
disruption budget is to
be created.

Optional false

designer.podDisruptionBudget.minAvailable
The number of pods
that should always be
available during a
disruption.

Optional 1

designer.dnsPolicy The DNS policy that Optional

Designer Deployment Guide 15

should be applied to the
Designer pods.

designer.dnsConfig
The DNS configuration
that should be applied
to the Designer pods.

Optional

designer.priorityClassName
The priority class name
that the pods should
belong to.

Optional

designer.hpa.enabled

Enables K8s Horizontal
Pod Autoscaler (HPA). It
automatically scales the
number of pods based
on average CPU
utilization and average
memory utilization. For
more information on
HPA refer to this topic in
the Kubernetes
documentation site.

Optional false

designer.hpa.targetCPUPercent

The K8s HPA controller
will scale up or scale
down pods based on the
target CPU utilization
percentage specified
here. It scales up or
scales down pods
between the range -
designer.deployment.replicaCount
and
designer.deployment.maxreplicaCount.

Optional 70

designer.hpa.targetMemoryPercent

The K8s HPA controller
will scale up or scale
down pods based on the
target memory
utilization percentage
specified here. It scales
up or scales down pods
between the range -
designer.deployment.replicaCount
and
designer.deployment.maxreplicaCount.

Optional 70

designer.labels
Labels that will be
added to the Designer
pods.

Optional {}

designer.annotations Annotations added to
the Designer pods. Optional {}

designer.prometheus.enabled
Set to true if
Prometheus metrics
must be enabled.

Optional false

designer.prometheus.tagName
Label key assigned to
the pods/service to filter
out.

Optional service

Designer Deployment Guide 16

designer.prometheus.tagValue
Label value assigned to
the pods/service to filter
out.

Optional designer

designer.prometheus.instance Optional ❴❴instance❵❵

designer.prometheus.serviceMonitor.enabled

Set to true if a
service monitor
resource is needed
to monitor the pods
through the
Kubernetes service.

Optional false

designer.prometheus.serviceMonitor.pathThe path in which the
metrics are exposed. Optional /metrics

designer.prometheus.serviceMonitor.interval

The scrape interval
specified for the
Prometheus server. That
is, the time interval at
which the Prometheus
server will fetch metrics
from the service.

Optional 10s

designer.prometheus.serviceMonitor.labels
Labels to be specified
for the service monitor
resource.

Optional

designer.prometheus.alerts.enabled
Set to true if
Prometheus alerts
must to be created.

Optional false

designer.prometheus.alerts.customalerts
Any custom alerts that
are created must be
specified here.

Optional

designer.prometheus.alerts.labelsLabels to be specified
for the alerts resource. Optional

designer.prometheus.alerts.
Scenarios for which
alerts need to be
created.

Optional

designer.prometheus.alerts

containerRestartAlert:
interval: 3m
threshold: 5

AlertPriority:
CRITICAL

MemoryUtilization:
interval: 1m
threshold: 70

AlertPriority:
CRITICAL

endpointAvailable:
interval: 1m

AlertPriority:
CRITICAL

CPUUtilization:
interval: 1m
threshold: 70

Designer Deployment Guide 17

AlertPriority:
CRITICAL

containerReadyAlert:
interval: 1m
readycount: 1

AlertPriority:
CRITICAL

WorkspaceUtilization:
interval: 3m
threshold: 80

workspaceClaim:
designer-managed-disk

AlertPriority:
CRITICAL

AbsentAlert:
interval: 1m

AlertPriority:
CRITICAL

Health:
interval: 3m

AlertPriority:
CRITICAL

WorkspaceHealth:
interval: 3m

AlertPriority:
CRITICAL

ESHealth:
interval: 3m

AlertPriority:
CRITICAL

GWSHealth:
interval: 3m

AlertPriority:
CRITICAL

designer.grafana.enabled
Set to true if the
Grafana dashboard is to
be created.

Optional true

designer.grafana.labels
Labels that have to be
added to the Grafana
ConfigMap.

Optional

designer.grafana.annotations
Annotations that have
to be added to the
Grafana ConfigMap.

Optional

annotations Enables Kubernetes
Annotations and adds it Optional {}

Designer Deployment Guide 18

to all the resources that
have been created.
For more information, refer to
the Annotations topic in the
Kubernetes documentation
site.

labels

Any custom labels can
be configured here. It is
a key and value pair, for
example, key:"value".
These labels are added
to all resources.

Optional {}

podLabels
Labels that will be
added to all application
pods.

Optional {}

podAnnotations
Annotations that will be
added to all application
pods.

Optional {}

4.1.1 Designer ConfigMap settings

The following table provides information on the environment variables and service-level settings
stored in the Designer ConfigMap.

Parameter Description Mandatory? Default Value

designer.designerConfig.create

This enables providing
environment variables
as an input to the
Designer pods. It uses a
ConfigMap to store the
environment variables.

Mandatory true

designer.designerConfig.envs.DES_PORT

Designer port for
container ("port" in
flowsettings.json). The
input should be a string,
within double quotes.

Mandatory "8888"

designer.designerConfig.envs.DES_APPSERVER_HOST
DAS hostname
("applicationHost" in
flowsettings.json).

Mandatory das

designer.designerConfig.envs.DES_APPSERVER_PORT

DAS port
("applicationPort" in
flowsettings.json). The
input should be a string,
within double quotes.

Mandatory "80"

designer.designerConfig.envs.DES_DEPLOY_URL

This is normally not
changed. It is the
relative path to the
workspace on DAS. The
default value
"/workspaces" should
be used always
("deployURL" in

Mandatory "/workspaces"

Designer Deployment Guide 19

flowsettings.json).

designer.designerConfig.envs.DES_USE_HTCC

Set to "true" so
Designer works with
GWS. If set to "false",
Designer defaults to a
local mode and may be
used temporarily if GWS
is unavailable
("usehtcc" in
flowsettings.json). Input
should be "true" or
"false".

Mandatory "false"

designer.designerConfig.envs.DES_HTCC_SERVER

GWS server host
("htccserver" in
flowsettings.json). For
example,
"gws.genhtcc.com". The
input should be a string,
within double quotes.

Mandatory " "

designer.designerConfig.envs.DES_HTCC_PORT

GWS server port
("htccport" in
flowsettings.json). For
example, "80". The
input should be a string,
within double quotes.

Mandatory " "

designer.designerConfig.envs.DES_ENABLE_ANALYTICS

To enable or disable
Designer Analytics
("enableAnalytics" in
flowsettings.json). Input
should be "true" or
"false".

Optional "false"

designer.designerConfig.envs.DES_ES_URL

Elasticsearch URL
("esUrl" in
flowsettings.json). For
example, "http://es-
service:9200". The input
should be a string,
within double quotes.

Optional " "

designer.designerConfig.envs.DES_ES_SERVER

Elasticsearch Server
Host Name ("esServer"
in flowsettings.json). For
example, "es-
service"). The input
should be a string,
within double quotes.

Optional " "

designer.designerConfig.envs.DES_ES_PORT

Elasticsearch port
("esPort" in
flowsettings.json). For
example, "9200". The
input should be a string,
within double quotes.

Optional " "

designer.designerConfig.envs.DES_FILE_LOGGING_ENABLEDEnable file logging. If
not enabled, Designer Mandatory "false"

Designer Deployment Guide 20

will create only verbose
logs. Input should be
"true" or "false".

designer.designerFlowSettings.create

Set to true to include
the contents of the
flowsettings.yaml file in
a separate ConfigMap.
Input should be true or
false.

Optional false

designer.designerFlowSettings.envs

The flowsettings.yaml
file should contain these
keys, so that the file's
contents will be
included in the
ConfigMap. Refer to the
Updating the
flowsettings file section
in the Deploy Designer
topic for more
information on this.

Optional {}

4.2 DAS deployment settings
The following table provides information on the DAS deployment settings. These settings are
configured in the das-values.yaml file. DAS Deployment Settings

Parameter Description Mandatory? Default Value

das.deployment.replicaCountNumber of pods to be
created. Mandatory 2

das.deployment.maxreplicaCount

The maximum number
of replicas to be
created. It is
recommended to
configure this setting if
auto-scaling is used.

Optional 10

das.deployment.strategy

The deployment
strategy to follow. This
determines which type
of resources are
deployed. Valid values
are: rollingupdate,
blue-green, blue-
green-ingress, blue-
green-service,
canary.

• rollingupdate -
default Kubernetes
update strategy
where resources will
be updated using
the rolling update

Mandatory rollingupdate

Designer Deployment Guide 21

strategy.
• blue-green - for

deploying and
upgrading the DAS
service using the
blue-green strategy.

• blue-green-ingress
- for the blue-green
upgrade, this is to
create an ingress for
the first time.

• blue-green-service
- for the blue-green
upgrade, this is to
create a service for
the first time, and
update the service
during a service
cutover.

• canary - to deploy
canary pods along
with the blue-green
pods.

das.deployment.color

This is to deploy/
upgrade the DAS
service using the blue-
green upgrade strategy.
Valid values are: blue,
green.

Mandatory for blue-
green and blue-green-
service strategies.

das.deployment.type

Type of Kubernetes
controller. Valid value is:
Deployment

• Deployment - if the
Designer workspace
is stored in the local
filesystem (same
network where
Designer is running)
and mounted as
NFS.

Optional StatefulSet

das.image.repository
Docker repository that
contains the images for
DAS.

Mandatory

das.image.tag DAS image version. Mandatory

das.image.pullPolicy
DAS image pull policy
(imagePullPolicy). Valid
values are: Always,
IfNotPresent, Never.

Optional IfNotPresent

Designer Deployment Guide 22

• Always - always pull
the image.

• IfNotPresent - pull
the image only if it
does not already
exist on the node.

• Never - never pull
the image.

das.image.imagePullSecrets
Secret name containing
the credentials for
authenticating access to
the Docker repository.

Mandatory

das.podVolumes

Provides the name of
the volume and name of
the persistent volume
claim to be attached to
the pods

Mandatory

das:
podVolumes:
- name: workspace

persistentVolumeClaim:
claimName: designer-

managed-disk
- name: logs

persistentVolumeClaim:
claimName: designer-

logs

das.volumes.podPvc.create

This volume is usually
created to mount a local
disk to a DAS container
for syncing data in case
cloud storage is used for
storing Designer files.
This value has to be
true or false
depending on whether
the local disk is needed
or not

Optional false

das.volumes.podPvc.mountPath
The path where the
workspace volume is to
be mounted inside the
DAS container.

Optional

das.volumes.podPvc.claimPersistent volume claim
name for the volume. Optional local-workspace

das.volumes.podPvc.claimSize

Size of the persistent
volume claim for the
pod.
The persistent volume must
be equal to or greater than
this size.

Optional

das.volumes.podPvc.storageClassstorageClassName
provided in the Optional

Designer Deployment Guide 23

persistent volume that
is created for DAS
(example, nfs).

das.volumes.podPvc.accessModes

The read/write
priveleges and mount
priveleges of the
volume claim with
respect to the nodes.
Valid types are:
ReadWriteOnce,
ReadOnlyMany,
ReadWriteMany.

• ReadWriteOnce -
the volume can be
mounted as read-
write by a single
node.

• ReadOnlyMany -
the volume can be
mounted as read-
only by many nodes.

• ReadWriteMany -
the volume can be
mounted as read-
write by many
nodes.

For more information, refer to
the access modes topic in the
Kubernetes documentation
site.

Optional ReadWriteOnce

das.volumeMounts
The name of the volume
and the mount path to
be used by the pods.

Mandatory

volumeMounts:
- mountPath: /das/
www/workspaces
name: workspace
- mountPath: /das/log
name: logs

das.dasSecrets.enabled
Set to true if
Kubernetes secrets
must be created to store
keys/credentials/tokens.

Optional false

das.dasSecrets.secrets
Key and value pairs
containing the secrets,
such as a username and
password.

Optional

das.livenessProbe.path DAS liveness probe API
path. Mandatory /health

das.livenessProbe.containerPortPort running the
container. Mandatory 8081

das.livenessProbe.startupDelayThe liveness probe will Mandatory 10

Designer Deployment Guide 24

be started after a given
delay as specified here.

das.livenessProbe.checkInterval
The interval between
each liveness probe
request.

Mandatory 5

das.livenessProbe.failureCount

Number of liveness
probe failures after
which, to mark the
container as unstable or
restart.

Mandatory 3

das.readinessProbe.pathDAS readiness probe API
path. Mandatory /health

das.readinessProbe.containerPortPort running the
container. Mandatory 8081

das.readinessProbe.startupDelay
The readiness probe will
be started after a given
delay as specified here.

Mandatory 10

das.readinessProbe.checkInterval
The interval between
each readiness probe
request.

Mandatory 5

das.readinessProbe.failureCount

Number of readiness
probe failures after
which, to mark the
container as unstable or
restart.

Mandatory 3

das.service.enabled
Set to true if the
service must be
created.

Optional true

das.service.type
Service type. Valid
values are: ClusterIP,
NodePort,
LoadBalancer.

Mandatory NodePort

das.service.port
The DAS service port to
be exposed in the
cluster.

Mandatory 80

das.service.targetPort
The DAS application
port running inside the
container.

Mandatory http

das.service.nodePort
Port to be exposed in
case service type is
NodePort.

Mandatory if
das.service.type is
NodePort.

30280

das.service.termination_grace_period
The period after which
Kubernetes starts to
delete the pods in case
of deletion.

Optional 30 seconds.

das.ingress.enabled

Set to true to enable
ingress.
Ingress should be enabled for
all cases except for a lab/

Optional false

Designer Deployment Guide 25

demo setup.

das.ingress.annotationsAnnotations added for
the ingress resources. Optional

das.ingress.paths Ingress path. Optional [/]

das.ingress.hosts
Hostnames to be
configured in ingress for
the DAS service.

Mandatory if ingress is
enabled.

das.ingress.tls TLS configuration for
ingress. Optional []

das.resources.limits.cpu
Maximum amount of
CPU that K8s allocates
for the container.

Mandatory 600m

das.resources.limits.memory
Maximum amount of
memory that K8s
allocates for the
container.

Mandatory 1Gi

das.resources.requests.cpu
Guaranteed CPU
allocation for the
container.

Mandatory 400m

das.resources.requests.memory
Guaranteed memory
allocation for the
container.

Mandatory 512Mi

das.securityContext.runAsUser

This setting controls
which user ID the
containers are run with
and can be configured
to run DAS as a non-root
user. You can either use
the Genesys user or
arbitrary UIDs. Both are
supported by the DAS
base image. 500 is the
ID of the Genesys user.
For more information refer to
the Security Context topic in
the Kubernetes
documentation site.

Optional

das.securityContext.runAsGroup

This setting controls
which primary group ID
the containers are run
with and can be
configured to run DAS
as a non-root user. You
can either use the
Genesys userGroup
(GID - 500) or arbitrary
GIDs. Both are
supported by the DAS
base image.

Optional

das.nodeSelector To allow pods to be Optional Default value:

Designer Deployment Guide 26

scheduled based on the
labels assigned to the
nodes.

nodeSelector: {} Sample
value:

nodeSelector:
:

das.affinity

The K8s standard node
affinity and anti-affinity
configurations can be
added here. Refer to the
this topic in the
Kubernetes
documentation site for
sample values.

Optional {}

das.tolerations

Tolerations work with
taints to ensure that
pods are not scheduled
on to inappropriate
nodes. Refer to the
Taints and Tolerations
topic in the Kubernetes
documentation site for
sample values.

Optional []

das.podDisruptionBudget.enabled
Set to true if a pod
disruption budget is to
be created.

Optional false

das.podDisruptionBudget.minAvailable
The number of pods
that should always be
available during a
disruption.

Optional 1

das.dnsPolicy
The DNS policy that
should be applied to the
DAS pods.

Optional

das.dnsConfig
The DNS configuration
that should be applied
to the DAS pods.

Optional

das.priorityClassName
The priority class name
that the pods should
belong to.

Optional

das.hpa.enabled
Set to true if a K8s
Horizontal Pod
Autoscaler (HPA) is to be
created.

Optional false

das.hpa.targetCPUPercent

The K8s HPA controller
will scale up/down pods
based on the target CPU
utilization percentage
specified. It scale up/
down pods between the
range
deployment.replicaCount
to
deployment.maxReplicas

Optional 75

Designer Deployment Guide 27

das.hpa.targetMemoryPercent

The K8s HPA controller
will scale up or scale
down pods based on the
target CPU utilization
percentage specified
here. It scales up or
scales down pods
between the range -
deployment.replicaCount
and
deployment.maxReplicas.

Optional 70

das.labels Labels that will be
added to the DAS pods. Optional {}

das.annotations Annotations added to
the DAS pods. Optional {}

das.prometheus.enabled
Set to true if
Prometheus metrics
must be enabled.

Optional false

das.prometheus.tagName
Label key assigned to
the pods/service to filter
out.

Optional service

das.prometheus.tagValue
Label key assigned to
the pods/service to filter
out.

Optional designer

das.prometheus.pod Optional ❴❴pod❵❵
das.prometheus.instance Optional ❴❴instance❵❵

das.prometheus.serviceMonitor.enabled

Set to true if a
service monitor
resource is needed
to monitor the pods
through the
Kubernetes service.

Optional false

das.prometheus.serviceMonitor.pathThe path in which the
metrics are exposed. Optional /metrics

das.prometheus.serviceMonitor.interval

The scrape interval
specified for the
Prometheus server. That
is, the time interval at
which the Prometheus
server will fetch metrics
from the service.

Optional 10s

das.prometheus.serviceMonitor.labels
Labels to be specified
for the service monitor
resource.

Optional

das.prometheus.alerts.enabled
Set to true if
Prometheus alerts
must to be created.

Optional false

das.prometheus.alerts.labelsLabels to be specified
for the alerts resource. Optional

das.prometheus.alerts.customalertsAny custom alerts that Optional

Designer Deployment Guide 28

are created must be
specified here.

das.prometheus.alerts.
Scenarios for which
alerts need to be
created.

Optional

das.prometheus.alerts.

containerRestartAlert:
interval: 3m
threshold: 5

AlertPriority:
CRITICAL

MemoryUtilization:
interval: 1m
threshold: 75

AlertPriority:
CRITICAL

endpointAvailable:
interval: 1m

AlertPriority:
CRITICAL

CPUUtilization:
interval: 1m
threshold: 75

AlertPriority:
CRITICAL

containerReadyAlert:
interval: 5m
readycount: 1

AlertPriority:
CRITICAL

rsyncContainerReadyAlert:
interval: 5m
readycount: 1

AlertPriority:
CRITICAL

WorkspaceUtilization:
interval: 3m
threshold: 70

workspaceClaim:
designer-managed-disk

AlertPriority:
CRITICAL

AbsentAlert:
interval: 1m

AlertPriority:
CRITICAL

LocalWorkspaceUtilization:

Designer Deployment Guide 29

interval: 3m
threshold: 70

AlertPriority:
CRITICAL

Health:
interval: 3m

AlertPriority:
CRITICAL

WorkspaceHealth:
interval: 3m

AlertPriority:
CRITICAL

PHPHealth:
interval: 3m

AlertPriority:
CRITICAL

ProxyHealth:
interval: 3m

AlertPriority:
CRITICAL

PhpLatency:
interval: 1m
threshold: 10

AlertPriority:
CRITICAL

HTTPLatency:
interval: 1m
threshold: 60

AlertPriority:
CRITICAL

HTTP4XXCount:
interval: 5m
threshold:

100

AlertPriority:
CRITICAL

HTTP5XXCount:
interval: 5m
threshold:

100

AlertPriority:
CRITICAL

das.grafana.enabled
Set to true if the
Grafana dashboard is to
be created.

Optional true

das.grafana.labels
Labels that must be
added to the Grafana
ConfigMap.

Optional

Designer Deployment Guide 30

das.grafana.annotations
Annotations that must
be added to the Grafana
ConfigMap.

Optional

annotations

Enables Kubernetes
Annotations and adds it
to all the resources that
have been created.
For more information, refer to
the Annotations topic in the
Kubernetes documentation
site.

Optional {}

labels

Any custom labels can
be configured here. It is
a key and value pair, for
example, key:"value".
These labels are added
to all resources.

Optional {}

podLabels
Labels that will be
added to all application
pods.

Optional {}

podAnnotations
Annotations that will be
added to all application
pods.

Optional {}

4.2.1 DAS ConfigMap settings

Parameter Description Mandatory? Default Value

das.dasConfig.create

This setting enables
providing environment
variables as an input to
the DAS pods. It uses a
ConfigMap to store the
environment variables.

Mandatory true

das.dasConfig.envs.DAS_FILE_LOGGING_ENABLED

Enables file logging.
DAS supports only std
out logging. This should
always be set to false.
Input should be "true"
or "false".

Mandatory "false

das.dasConfig.envs.DAS_LOG_LEVEL

Enables log levels. Valid
values are: "FATAL",
"ERROR", "WARN",
"INFO", "DEBUG",
"TRACE".

Optional "DEBUG"

das.dasConfig.envs.DAS_STDOUT_LOGGING_ENABLE
Enables standard output
console logging. Input
should be "true" or
"false".

Mandatory "true"

das.dasConfig.envs.DAS_SERVICES_ELASTICSEARCH_ENABLED
To enable Designer
Analytics. This
configuration is required
for DAS to initialize ES

Optional "false"

Designer Deployment Guide 31

templates. Input should
be "true" or "false".

das.dasConfig.envs.DAS_SERVICES_ELASTICSEARCH_HOST

Elasticsearch server
host name with http://
prefix. For example,
http://es-service. The
input should be a string,
within double quotes.

Optional " "

das.dasConfig.envs.DAS_SERVICES_ELASTICSEARCH_PORT
Elasticsearch port. For
example, "80". The
input should be a string,
within double quotes.

Optional " "

5. Post deployment Designer configuration settings

Post deployment, Designer configuration is managed from the following 3 locations:

5.1 Flow settings
Flow Settings is used for controlling global Designer settings that are applicable to all tenants and it
contains bootstrap configuration settings such as port, GWS info, and DAS URL.

Configuration path - /workspace/designer/flowsettings.json.

This will be configured using the helm install. Refer to the Updating the flowsettings file section under
9. Post deployment procedures for more information on updating the flowsettings.json file.

5.2 Tenant settings
These are tenant specific settings if the Designer service is configured with multi-tenancy .

Configuration path - workspace//config/tenantsettings.json.

The user should logout and log back in after any changes to the tenantsettings.json file. The
Designer UI will continue to show the older features until the user logs out and logs back in.

Tenant specific settings are configured by directly editing the file in the above path.

5.3 DesignerEnv transaction list
The DesignerEnv transaction list is available in Configuration Server (Tenant/Transactions/
DesignerEnv). This is mostly used to control the run-time settings. Any change to the DesignerEnv
transaction list does not require the application to be published again or a new build for the
application.

The user should log out and log back in for the changes to reflect in the Designer UI.

The DesignerEnv transaction list is configured using Agent Setup.

Designer Deployment Guide 32

5.4 Post deployment configuration settings reference table
Category: Analytics
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

enableAnalytics
(optional) Yes Yes No

This flag
enables or
disables the
analytics
feature.

Sample value:
true
Default value:
false

esUrl
(optional) Yes Yes No Elasticsearch

URL
Sample value:
http://es-
spot.usw1.genhtcc.com:80

esServer
(optional) Yes Yes No

Elasticsearch
server host
name (for
example, es-
service).

Sample value:
es-
spot.usw1.genhtcc.com

esPort
(optional) Yes Yes No Elasticsearch

port.
Sample value:
80

ReportingURL
(optional) No No

Yes
Section: reporting

URL of
Elasticsearch
where
Designer
applications
will report
data.

Sample value:
http://es-
spot.usw1.genhtcc.com:80

esMaxQueryDuration
(optional) Yes Yes No

The maximum
time range (in
days) to query
in Designer
Analytics. Each
day's data is
stored in a
separate index
in
Elasticsearch.

Sample value: 90
Default value: 90

sdrMaxObjCount
(optional) Yes Yes No

The maximum
count of nested
type objects
that will be
captured in
SDRs. When
set to -1, which
is the default
value, no
objects will be
trimmed. All
the milestones
or activities
visited in
runtime are
expected to be

Sample value: 20

Designer Deployment Guide 33

captured in an
SDR.

SdrTraceLevel
(optional) Yes Yes No

Value are:

• 100 —
Debug level
and up.
Currently,
there are
no Debug
messages.

• 200 —
Standard
level and
up. This
setting will
show all
blocks that
are entered
during a
call in the
blocks
array.

• 300 —
Important
level and
up. This
setting
filters out
all blocks
from the
blocks
array,
except
those
containing
data that
will change
from call to
call (such
as the
Menu block
and User
Input
block).

Sample value: 300
Default value: 300

Category: Audit
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

enableESAuditLogs
(optional) Yes Yes No

Enable or
disable audit
logs captured
in
Elasticsearch.

Sample value:
false
Default value:
false

Designer Deployment Guide 34

enableFSAuditLogs
(optional) Yes Yes No

Enable or
Disable audit
logs captured
in the file
system under
the logs
directory or in
standard
output.

Sample value:
true
Default value: true

maxAppSizeCompare
(optional) Yes Yes No

The maximum
size of data
object for
which a
difference will
be captured in
the audit logs,
value in bytes.
That is, the
difference
between the
Designer
object's old
value and new
value.

Sample value:
1000000
Default value:
1000000

enableReadAuditLogs
(optional) Yes Yes No

Control
whether
reading of
Designer
objects is
captured in
audit trails. If
enabled any
Designer
object viewed
in the UI will be
recorded in the
audit logs.

Sample value:
false
Default value:
false

Category: Authorization
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

disableRBAC
(optional) Yes Yes No

Controls if
Designer reads
and enforces
permissions
associated with
the logged in
user's roles.

Sample value:
false
Default value:
false

rbacSection
(optional) Yes Yes No

In a Role
object, the
name of the
section within
the Annex
where the
privileges are
stored.

Sample value:
CfgGenesysAdministratorServer
Default value:
CfgGenesysAdministratorServer

Designer Deployment Guide 35

disablePBAC
(optional) Yes Yes No

Controls if
Designer
allows
partitioning of
the Designer
workspace and
restricts a
user's access
to Designer
objects in the
user's
partitions.

Sample value:
false
Default value:
false

Category: Collaboration
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

locking
(optional) Yes No No

The type of
locking used, in
an editing
session for
applications,
modules, or
data tables.
Valid values
are: file,
redis, none.

• none -
resources
are not
locked and
can be
edited
simultaneously
by multiple
users which
can result
in one user
overwriting
another
user's
changes.

• file - uses
files to
keep track
of locks and
relies on
shared
storage (for
example,
NFS) to
make lock
files
available to
each
Designer

Sample value:
file
Default value: file

Designer Deployment Guide 36

pod. Lock
files are
stored in
the same
location as
the user's
Designer
workspace.

• redis - uses
Redis for
storing
resource
locks and is
recommended
for
production
environments.

Category: DAS
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

applicationHost
(mandatory) Yes No No

The server
name Designer
uses to
generate the
URL to the
application.
ORS and MCP
fetch the
application
code and other
resources from
this URL.

Sample value:
das.usw1.genhtcc.com
Default value:
localhost

applicationPortYes No No

The
corresponding
port to be used
with
applicationHost.

Sample value: 80
Default value: 80

deployURL Yes No No

This is
normally not
changed. It is
the relative
path to the
workspace on
DAS.

Sample value:
/workspace
Default value:
/workspace

Category: Digital
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

rootsSRL
(optional) Yes Yes No

If specified,
this is used to
filter which
Root
Categories to
display when

Sample value: Any
REGular
EXpression
(REGEX).

Designer Deployment Guide 37

selecting
Standard
Responses.

maxFlowEntryCount
(optional) Yes No

Yes
Section:
flowsettings

Specify how
many times
the same
application can
process a
specific digital
interaction.

Sample value: 20
Default value: 20

Category: External APIs
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

httpProxy
(optional) Yes Yes

Yes
Secion:
flowsettings

Specify the
proxy used for
external
requests and
nexus API calls
(if
enable_proxy
is true).

Sample value:
[http://vpcproxy-000-int.geo.genprim.com:8080

redundantHttpProxy
(optional) Yes Yes

Yes
Section:
flowsettings

Specify the
backup proxy
used for
external
requests and
nexus API calls
(if
enable_proxy
is true), when
httpProxy is
down.

Sample value:
[http://vpcproxy-001-int.geo.genprim.com:8080

Category: Features
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

features Yes Yes No

This is an
object. See the
5.5 Features
section for a
list of
supported
features.

Default value:

{
nexus:

true,

enableBulkAudioImport:
true
}

Category: GWS
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

usehtcc Yes No No

Set to true so
that Designer
works with
GWS. If set to
false,
Designer
defaults to a

Sample value:
true
Default value:
false

Designer Deployment Guide 38

local mode and
may be used
temporarily if
GWS is
unavailable.

htccServer Yes No No GWS Server
Sample value: gws-
usw1-int.genhtcc.com
Default value: gws-
usw1-int.genhtcc.com

htccport Yes No No GWS port. Sample value: 80
Default value: 80

ssoLoginUrl Yes No No

URL of GWS
authentication
UI. Designer
redirects to
this URL for
authentication.

Sample value:
https://gws-
usw1.genhtcc.com
Default value:
https://gws-
usw1.genhtcc.com

maxConcurrentHTCCRequest
(optional) Yes No No

For batch
operations to
GWS, the max
number of
concurrent
requests that
Designer will
send to GWS.

Sample value: 5
Default value: 5

batchOperationResultTTL
(optional) Yes No No

For batch
operations to
GWS, the time,
in milliseconds,
for which
duration
Designer stores
the results of a
batch
operation on
the server,
before deleting
them.

Sample value:
100000
Default value:
100000

Category: Help
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

docsMicroserviceURL
(optional) Yes No No

URL for
Designer
documentation.

Default value:
https://docs.genesys.com/
Documentation/
PSAAS/Public/
Administrator/
Designer

Category: IVR
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

Designer Deployment Guide 39

recordingType
(optional) Yes Yes No

Specify the
recording type
to be used in
Record block.
Set as GIR. If
the option is
missing or
blank, Full
Call
Recording
type will be
used.

Sample value: GIR
Default value: GIR

Category: Logging
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

logging: {
designer: {
level:
debug },
audit: {
level:
trace},
auditdebug:
{ level:
debug },
cli: {
level: debug
}
}

(optional)

Yes No No

Specify
Designer log
levels. Each
field has valid
values: trace,
debug, info,
warn, error,
or fatal.

• designer -
log level of
Designer.

• audit - log
level of
audit.

• auditdebug
- log level
of audit
debug, this
will log
detailed
audit
information.

• cli - log
level for cli
commands
executed
on
Designer.

Sample value:

logging: {
designer: {
level:
debug},
audit: {
level: trace
},
auditdebug:
{ level:
debug},
cli: {
level: debug
}
}

Default value:
logging: {
designer: {
level: debug
},
audit: {
level: trace
},
auditdebug:
{ level:
debug },
cli: {
level: debug
}
}

Category: Nexus
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

url
(optional) No No

Yes
Section: nexus

URL of Nexus
that typically
includes the
API version
path. For
example,

Default value:
http://nex-
dev.usw1.genhtcc.com

Designer Deployment Guide 40

https://nexus-
server/nexus/
api/v3.

password
(optional) No No

Yes
Section: nexus

The Nexus x-
api-key created
by Nexus
deployment.

Default value:
dc4qeiro13nsof569dfn234smf

enable_proxy
(optional) No No

Yes
Section: nexus

Boolean value
to indicate if
httpProxy is
used to reach
Nexus.
Default value:
false

profile
(optional) No No

Yes
Section: nexus

Enable Contact
Identification
via Nexus (for
example, to
enable Last
Called Agent
routing).

Category: Process
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

port Yes No No

Designer
process port in
the container.
Normally, the
default value
should be left
as is.

Sample value:
8888
Defualt value: 3000

Category: Provisioning
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

primarySwitch
(optional) Yes Yes No

Specify the
primary switch
name if more
than one
switch is
defined for the
tenant.
Designer
fetches and
works with
route points
from this
switch.

Default value: us-
west-1

Category: Routing
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

ewtRefreshTimeout
(optional) NO No

Yes
Section:

Specify the
interval (in
seconds) at

Sample value: 5
Default value: 1

Designer Deployment Guide 41

flowsettings

which to
refresh the
Estimated
Waiting Time
when routing
an interaction.

Category: Redis
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

redis: {
host: "",
port: "",
tlsEnabled:
true,
lockTimeout:
120,
listTimeout:
1800
}

(optional)

Yes No No

Used by
Designer for
resource index
caching and
multi-user
collaboration
locks on
Designer
resources.
It is a separate
object that
contains:

• host - Redis
host name.

• port - Redis
port.

• tlsEnabled
- TLS
enabled or
not.

• lockTimeout
- Timeout,
in seconds,
before a
resource
lock is
released for
an editing
session of
applications,
modules, or
data tables.

• listTimeout
- The cache
expiry
timeout (in
seconds) of
the
application
list and
shared
modules
list. By

Sample value:

redis: {
host: "",
port: "",
tlsEnabled:
true,
lockTimeout:
120,
listTimeout:
1800
}

Default value:
redis: {
host:
redis.server.genhtcc.com,
port: 6379,
tlsEnabled:
true,
lockTimeout:
120,
listTimeout:
1800
}

Designer Deployment Guide 42

default, it is
30 minutes.
That is, any
new
application/
modules
created in
the UI will
be seen in
the listing
page after
30 mins. It
can be
reduced to
a smaller
value. This
is to
improve
the page
loading
performance
of the
Applications
and Shared
Modules
page. A
better
performance
is achieved
with a
higher
value.

Category: Security
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

zipFileSizeLimitInMegaBytes
(optional) Yes Yes No

Defines the
maximum
zipFile size
limit (in
megabytes)
during bulk
audio import.

Sample value: 50

disableCSRF
(optional) Yes Yes No

Disable CSRF
attack
protection. For
more
information,
refer to this
topic in the
CWE site.
By default, CSRF
attack protection is
enabled. It can be
disabled by setting

Sample value:
false
Default value:
false

Designer Deployment Guide 43

this flag to true.

disableSecureCookie
(optional) Yes No No

Disables the
secure cookies
header.

Sample value:
false
Default value:
false

Category: Session
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

idleTimeout
(optional) Yes Yes No

Idle timeout, in
seconds,
before a user
session is
terminated
while editing
applications,
modules, or
data tables.

Sample value: 840
Default value: 840

lockTimeout
(optional) Yes Yes No

Timeout, in
seconds,
before a
resource lock is
released, for
an editing
session of
applications,
modules, or
data tables.

Sample value: 120
Default value: 120

lockKeepalive
(optional) Yes Yes No

Interval, in
seconds,
before the
client sends a
ping to the
server, to
refresh the lock
for an editing
session of
applications,
modules, or
data tables.

Sample value: 15
Default value: 15

Category: Workflow
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

maxBuilds
(optional) Yes Yes No

Specify the
maximum
number of
builds allowed
per application.

Sample value: 20
Default value: 20

enablePTE
(optional) No No

Yes
Section:
flowsettings

Boolean value
to indicate if
PTE objects are
enabled at
runtime.

Sample value:
true
Default value:
false

Designer Deployment Guide 44

5.5 Features
The features specified in this section are configured under the features object in the
flowsettings.json file or the tenantsettings.json file.

For example,

"features": {
"nexus": true,

..
}

Important
These features are configured only in the flowsettings.json file and the
tenantsettings.json file, and not in the DesignerEnv transaction list.

Category
Feature
Setting
Name

Mandatory flowsettings.jsontenantsettings.jsonDescription Default
Value

Audio

enableBulkAudioImportOptional Yes Yes

Enable/
disable the
bulk audio
import
feature.

false

grammarValidationOptional Yes yes

If this
feature is
enabled,
Designer will
validate
invalid
grammar
files during
grammar
upload and
you can
upload only
valid
grammar
files (GRXML
or Nuance
compiled
binary
grammar
files).

false

externalAudioSupportOptional Yes Yes

If this
feature is
enabled, a
new audio
type,
External
Audio, is

false

Designer Deployment Guide 45

available in
the Play
Message
block. It
accepts a
single
variable that
contains a
URL to the
audio
resource.
MCP will
fetch this
resource
directly and
play it. The
only
supported
value of
Play As is
Audio URI.
There is no
automatic
language
switching for
this audio
type.

Nexus nexus Optional Yes Yes
Enable/
disable the
Nexus
feature.

false

Survey survey Optional Yes Yes
Enable/
disable the
survey
feature.

true

UI Plugins

plugins Optional Yes Yes

Plugin
configuration
details.
(Steps are
given below the
table.)

{}

plugins Optional Yes Yes
Enable or
disable the
plugin
feature.

false

Milestone enableImplicitModuleMilestonesOptional Yes Yes

Enable
reporting
each Shared
Module call
as an
internal
milestone. If
disabled,
Shared

false

Designer Deployment Guide 46

Module calls
will not
generate a
milestone.

Bots enableDialogFlowCXBotOptional Yes Yes

When
enabled,
Dialogflow
CX bot type
is added to
the bot
registry and
available for
selection in
the Bot
provider
drop-down
when you
configure a
new bot.

false

5.6 Adding a UI plugin to Designer

1. Add the plugins array object in the flowsettings.json file (/ofs/designer/flowsettings.json).
The plugins object contains all the input properties for the plugin app. This is a required property.
Whenever there is a change in this object, refresh the browser for the changes to take effect.
Example:
"plugins": [

{
"url": "http://genesysexample.com/",
"displayName": "Nexus PII Management",
"placement": "messageCollections",
"id": "nexuspii",
"mappings": {

"prod": {
"G1-AUS4": "https://genesysexample.com/admin/ux"

},
"staging": {

"G1-USW1": "http://genesysexample.com/"
},

}
},
{

...
}]

2. Add the csplist array object in the flowsettings.json file (/ofs/designer/flowsettings.json).
The cspList object contains the URL forms to be allowed by Designer's security policy. This is a
required property. Whenever there is a change in this object, re-start the node container for the
changes to take effect.
Example:
If the URL is http://genesysexample.com/, the cspList would be:
"cspList": ["*.genexample1.com:*", "*.genexample2.com:*", "*.genexample3.com:*"]

3. Turn on the plugins and nexus feature flags in the Designer tenantSettings.json file (/ofs//config/
tenantSettings.json).
This is a required property. Whenever there is a change in this object, log out of Designer and log in

Designer Deployment Guide 47

again for the changes to take effect.

Important
If you want to enable the plugins feature for all tenants, add this feature flag in the flowsettings.json file.
The feature is enabled for all the tenants under that bucket.

Example:
{

"features": {
"plugins": true,
"nexus": true

}}

4. Add the url_ property under the plugins section, in Agent Setup. If there is no plugins section, create
one. This section is for the tenant URL override. If the DesignerEnv setting (Transactions/Internal/
DesignerEnv) is not provided, the plugin URL from the flowsettings.json file is considered.
This is an optional property. Whenever there is a change in this object, log out of Designer and log in
again for the changes to take effect.
Example:
{"url_" : "https://plugin-genesysexample.com"}

6. Logging

Designer and DAS support console output (stdout) logging. Genesys recommends configuring console
output logging to minimize the host IOPs and PVCs consumption by using log volumes. Console
output logs can be extracted using log collectors like fluentbit/fluentd and Elasticsearch.

Ensure the below setttings are configured in the respective values.yaml overrides for console
logging:

1. Designer
designerEnv.envs.DES_FILE_LOGGING_ENABLED = false

2. DAS
dasEnv.envs.DAS_FILE_LOGGING_ENABLED = false
dasEnv.envs.DAS_STDOUT_LOGGING_ENABLE = true

6.1 Log levels
Post deployment, Designer and DAS log levels can be modified as follows:

6.1.1 Designer

1. Configure the logging setting in the flowsettings override (flowsettings.yaml) - Refer to the 5.4 Post
deployment configuration settings reference table section for option descriptions.

2. Execute the steps in the Flowsettings.json update section (see Designer under 8.8 Blue-Green
deployment) for the changes to take effect .

Designer Deployment Guide 48

6.1.2 DAS

1. Configure the dasEnv.envs.DAS_LOG_LEVEL setting in the Helm das-values.yaml file. Refer to section
4.2 DAS deployment settings for setting descriptions.

2. Execute the steps in the Upgrade non production color section (see DAS under 8.8 Blue-Green
deployment). The same DAS version running in production can be used for the upgrade,

3. Execute the steps in the Cutover section (see DAS under 8.8 Blue-Green deployment).

7. Platform / Configuration Server and GWS settings

This section explains the Configuration Server objects and settings required for Designer.

7.1 Create Roles for Designer
Designer uses roles and access groups to determine permissions associated with the logged-in user.
To enable this, you must make these changes in GAX or CME.

Designer supports a number of bundled roles suitable for various levels of users.

• Designer Developer - Most users fall into this category. These users can create Designer applications,
upload audio, and create business controls. They have full access to Designer Analytics.

• Designer Business User - These users cannot create objects but they can manage them (for example,
upload audio, change data tables, and view analytics).

• Designer Analytics - These users only have access to Designer Analytics.

• Designer Admin - These users can set up and manage partitions associated with users and Designer
objects.

• Designer Operations - Users with this role have full access to all aspects of the Designer workspace.
This includes the Operations menu (normally hidden), where they can perform advanced operational
and maintenance tasks.

To create these roles, import the .conf files included in the Designer Deployment package. They
are located in the packages/roles/ folder.

In addition, ensure the following for user accounts that need access to Designer:

• The user must have read permissions on its own Person object.
• Users must be associated with one or more roles via access groups.
• The on-Premises user must have at least read access on the user, access group(s), and roles(s).
• The access groups must have read/write permissions to the Agent Setup folders - Scripts and

Transactions.

Designer Deployment Guide 49

7.2 Create the DesignerEnv transaction list
Designer requires a transaction list for configuration purposes as described in other sections of this
document. To set this up:

1. Create a transaction list called DesignerEnv.
2. Import the file configuration/DesignerEnv.conf, located in the Designer Deployment Manifest

package.
3. Edit any values according to the descriptions provided in 5.4 Post deployment configuration settings

reference table.
4. Save the list.
5. Ensure Designer users have at least read access to the DesignerEnv transaction list.

7.3 Platform settings
The platform settings listed below must be configured if the Designer application is used for voice
calls.

Component Config Key Value Description
SIP Switch -> Voip
Services -> msml
service

userdata-map-format sip-headers-encoded
Option needs to set to
pass JSON data as user
data in SIPS.

SIP Switch -> Voip
Services -> msml
service

userdata-map-filter *
To allow userdata
passing to MSML
service.

SIPServer --> TServer

divert-on-ringing false RONA is handled by the
platform.

agent-no-answer-
timeout 12

agent-no-answer-action notready
agent-no-
answeroverflow "" No value, empty.

after-routing-timeout 24
sip-treatments-
continuous true

msml-record-support true
To allow routed calls
recording via the Media
Server.

Switch object annex -->
gts ring-divert 1

ORS --> orchestration new-session-on-reroute false
Required for SIPS
Default Routing (Default
Routing handling
(Voice)).

MCP [vxmli] transfer.allowed TRUE Required for Transfer
block (allows VXML

Designer Deployment Guide 50

Transfer in MCP).

MCP [cpa] outbound.method NATIVE
Required for Transfer
block (allow CPA
detection for Transfer).

UCS [cview] enabled TRUE Enables Customer
Context Services.

7.4 GWS configuration
Ensure that the following steps are performed in GWS.

7.4.1 Create Contact Center

Create a contact center in GWS if it is not already created. Refer to the GWS documentation for more
information on this.

7.4.2 Create GWS Client

Create new GWS client credentials if they are not already created . Refer to the GWS documentation
for more information on this.

8. Deployment

This section describes the deployment process for Designer and DAS.

8.1 Preparation
Before you deploy Designer and DAS using Helm charts, complete the following preparatory steps:

1. Ensure the Helm client is installed.
2. Set up an Ingress Controller, if not already done.
3. Setup an NFS server, if not already done.
4. Create Persistent Volumes - a sample YAML file is provided in the Designer manifest package.
5. Download the Designer and DAS docker images and push to the local docker registry.
6. Download the Designer package and extract to the current working directory.
7. Configure Designer and DAS value overrides (designer-values.yaml and das-values.yaml); ensure

the mandatory settings are configured. If the Blue-Green deployment process is used, Ingress settings
are explained in the 8.8 Blue-Green deployment section.

8.2 Set up Ingress
Given below are the requirements to set up an Ingress for the Designer UI:

• Cookie name - designer.session.

Designer Deployment Guide 51

• Header requirements - client IP & redirect, passthrough.
• Session stickiness - enabled.
• Allowlisting - optional.
• TLS for ingress - optional (should be able to enable or disable TLS on the connection).

8.3 Set up Application Gateway (WAF) for Designer
Designer Ingress must be exposed to the internet using Application Gateway enabled with WAF.

When WAF is enabled, consider the following exception in the WAF rules for Designer:

• Designer sends a JSON payload with data, for example, {profile . {} }. Sometimes, this is detected
as OSFileAccessAttempt, which is a false positive detection. Disable this rule if you encounter a
similar issue in your WAF setup.

8.4 Storage
8.4.1 Designer storage

Designer requires storage to store designer application workspaces. Designer
storage is a shared file storage that will be used by the Designer and DAS
services.

Important
This storage is critical. Ensure you take backups and snapshots at a regular interval,
probably, each day.

A Zone-Redundant Storage system is required to replicate data from the RWX
volumes and must be shared across multiple pods:

• Capacity - 1 TiB
• Tier - Premium
• Baseline IO/s - 1424
• Burst IO/s - 4000
• Egress Rate - 121.4 MiBytes/s
• Ingress Rate - 81.0 MiBytes/s

8.4.2 Permission considerations for Designer and DAS storage

NFS

For NFS RWX storages, the mount path should be owned by genesys:genesys, that is, 500:500 with

Designer Deployment Guide 52

0777 permissions. It can be achieved by one of the below methods:

• From the NFS server, execute the chmod -R 777 and chown -R 500:500 commands to set the
required permissions.

• Create a dummy Linux based pod that mounts the NFS storage. From the pod, execute the chmod -R
777 and chown -R 500:500 commands. This sets the required permissions. However, this method
might require the Linux based pods to be run as privileged.

SMB / CIFS

For SMB / CIFS based RWX storages, for instance, Azure file share, the below mountOptions must be
used in the StorageClass or the PersistentVolume template:

mountOptions
- dir_mode=0777
- file_mode=0777
- uid=500
- gid=500
- mfsymlinks
- cache=strict

8.5 Set up Secrets
Secrets are required by the Designer service to connect to GWS and Redis (if you are using them).

GWS Secrets:

• GWS provides a Client ID and secrets to all clients that can be connected. You can create Secrets for the
Designer client as specified in the Set up secrets for Designer section below.

Redis password:

• If Designer is connected to Redis, you must provide the Redis password to Designer to authenticate the
connection.

8.5.1 Set up Secrets for Designer

Use the designer.designerSecrets parameter in the values.yaml file and configure Secrets as
follows:

designerSecrets:
enabled: true
secrets:

DES_GWS_CLIENT_ID: xxxx
DES_GWS_CLIENT_SECRET: xxxx
DES_REDIS_PASSWORD: xxxxx

8.6 Deployment strategies
Designer supports the following deployment strategies:

• Rolling Update (default).

Designer Deployment Guide 53

• Blue-Green (recommended).

DAS (Designer Application Server) supports the following deployment strategies:

• Rolling Update (default).
• Blue-Green (recommended).
• Canary (must be used along with Blue-Green and is recommended in production).

8.7 Rolling Update deployment
The rolling update deployment is the standard default deployment to Kubernetes. It works slowly, one
by one, replacing pods of the previous version of your application with pods of the new version
without any cluster downtime. It is the default mechanism of upgrading for both Designer and DAS.

8.7.1 Designer
Initial deployment

To perform the initial deployment for a rolling upgrade in Designer, use the Helm command given
below. The values.yaml file can be created as required.

• helm upgrade --install designer -f designer-values.yaml designer-100.0.112+xxxx.tgz --
set designer.image.tag=9.0.1xx.xx.xx

The values.yaml overrides passed as an argument to the above Helm upgrade command:

designer.image.tag=9.0.1xx.xx.xx - This is the new Designer version to be installed, for example,
9.0.111.05.5.

Upgrade

To perform an upgrade, the image version has to be upgraded in the designer-values.yaml file or
can be set using the --set flag through the command given below. Once the designer-values.yaml
file is updated, use this Helm command to perform the upgrade:

• helm upgrade --install designer -f designer-values.yaml designer-100.0.112+xxxx.tgz --
set designer.image.tag=9.0.1xx.xx.xx

The values.yaml overrides passed as an argument to the above Helm upgrade command:

designer.image.tag=9.0.1xx.xx.xx - This is the new Designer version to be installed, for example,
9.0.111.05.5.

Rollback

To perform a rollback, the image version in the designer-values.yaml file can be downgraded. Or
you can use the --set flag through the command given below. Once the designer-values.yaml file
is updated, use this Helm command to perform the rollback:

• helm upgrade --install designer -f designer-values.yaml designer-100.0.112+xxxx.tgz --

Designer Deployment Guide 54

set designer.image.tag=9.0.1xx.xx.xx

The values.yaml overrides passed as an argument to the above Helm upgrade command:

designer.image.tag=9.0.1xx.xx.xx - This is the Designer version to be rolled back to, for example,
9.0.111.05.5.

8.7.2 DAS
Initial deployment

To perform the initial deployment for a rolling upgrade in DAS, use the Helm command given below.
The values.yaml file can be created as required.

• helm upgrade --install designer-das -f designer-das-values.yaml designer-
das-100.0.112+xxxx.tgz --set das.image.tag=9.0.1xx.xx.xx

The values.yaml overrides passed as an argument to the above Helm upgrade command:

das.image.tag=9.0.1xx.xx.xx - This is the new DAS version to be installed, for example,
9.0.111.05.5.

Upgrade

To perform an upgrade, the image version has to be upgraded in the designer-das-values.yaml file
or can be set using the --set flag through the command given below. Once the designer-das-
values.yaml file is updated, use this Helm command to perform the upgrade:

• helm upgrade --install designer-das -f designer-das-values.yaml designer-
das-100.0.112+xxxx.tgz --set das.image.tag=9.0.1xx.xx.xx

The values.yaml overrides passed as an argument to the above Helm upgrade command:

das.image.tag=9.0.1xx.xx.xx - This is the new DAS version to be installed, for example,
9.0.111.05.5.

Rollback

To perform a rollback, the image version in the designer-das-values.yaml file can be downgraded.
Or you can use the --set flag through the command given below. Once the designer-das-
values.yaml file is updated, use this Helm command to perform the rollback:

• helm upgrade --install designer-das -f designer-das-values.yaml designer-
das-100.0.112+xxxx.tgz --set das.image.tag=9.0.1xx.xx.xx

The values.yaml overrides passed as an argument to the above Helm upgrade command:

das.image.tag=9.0.1xx.xx.xx - This is the DAS version to be rolled back to, for example,
9.0.111.05.5.

Designer Deployment Guide 55

8.8 Blue-Green deployment
Blue-Green deployment is a release management technique that reduces risk and minimizes
downtime. It uses two production environments, known as Blue and Green or active and inactive, to
provide reliable testing, continuous no-outage upgrades, and instant rollbacks.When a new release
needs to be rolled out, an identical deployment of the application will be created using the Helm
package and after testing is completed, the traffic is moved to the newly created deployment which
becomes the active environment, and the old environment becomes inactive. This ensures that a fast
rollback is possible by just changing route if a new issue is found with live traffic. The old inactive
deployment is removed once the new active deployment becomes stable.

8.8.1 Designer
Service cutover is done by updating the Ingress rules. The diagram below shows the high-level
approach to how traffic can be routed to Blue and Green deployments with Ingress rules.

Preparation

Before you deploy Designer using the blue-green deployment strategy, complete the following
preparatory steps:

1. Create 3 hostnames as given below. The blue service hostname must contain the string blue. For
example, designer.blue.example.com or designer-blue.example.com. The green service hostname must
contain the string green. For example, designer.green.example.com or designer-green.example.com.
The blue/green services can be accessed separately with the blue/green hostnames:
• designer.example.com - For the production host URL, this is used for external access.
• designer.blue.example.com - For the blue service testing.
• designer.green.example.com - For the green service testing.

2. Configure the hostnames in the designer-values.yaml file under ingress. Annotations and paths can
be modified as required.

Designer Deployment Guide 56

/File:DesBlueGreenDep.png
/File:DesBlueGreenDep.png

ingress:
enabled: true
annotations: {}
paths: [/]
hosts:

- designer.example.com
- designer.blue.example.com
- designer.green.example.com

Initial deployment

The resources - ingress and persistent volume claims (PVC) - must be created initially before
deploying the Designer service as these resources are shared between blue/green services and they
are required to be created at the very beginning of the deployment. These resources are not required
for subsequent upgrades. The required values are passed using the -- set flag in the following
steps. Values can also be directly changed in the values.yaml file.

1. Create Persistent Volume Claims required for the Designer service (assuming the volume service name
is designer-volume).
helm upgrade --install designer-volume -f designer-values.yaml designer-9.0.xx.tgz --
set designer.deployment.strategy=blue-green-volume
The values.yaml overrides passed as an argument to the above Helm upgrade command:
designer.deployment.strategy=blue-green-volume - This denotes that the Helm install will create a
persistent volume claim in the blue/green strategy.

2. Create Ingress rules for the Designer service (assuming the ingress service name will be designer-
ingress):
helm upgrade --install designer-ingress -f designer-values.yaml
designer-100.0.112+xxxx.tgz --set designer.deployment.strategy=blue-green-ingress --
set designer.deployment.color=green
The values.yaml overrides passed as an argument to the above Helm upgrade command:
designer.deployment.strategy=blue-green-ingress - This denotes that the Helm install will create
ingress rules for the Designer service.
designer.deployment.color=green - This denotes that the current production (active) color is green.

3. Deploy the Designer service color selected in step 2. In this case, green is selected and assuming the
service name is designer-green:
helm upgrade --install designer-green -f designer-values.yaml
designer-100.0.112+xxxx.tgz --set designer.deployment.strategy=blue-green --set
designer.image.tag=9.0.1xx.xx.xx --set designer.deployment.color=green

Upgrade

1. Identify the current production color by checking the Designer ingress rules (kubectl describe
ingress designer-ingress). Green is the production color in the below example as the production
host name points to the green service.

Designer Deployment Guide 57

2. Deploy the Designer service on to the non-production color. In the above example, blue is the non-
production color and assuming the service name will be designer-blue:
helm upgrade --install designer-blue -f designer-values.yaml
designer-100.0.112+xxxx.tgz --set designer.deployment.strategy=blue-green --set
designer.image.tag=9.0.1xx.xx.xx --set designer.deployment.color=blue
The values.yaml overrides passed as an argument to the above Helm upgrade command:
designer.deployment.strategy=blue-green - This denotes that the Designer service is installed
using the blue-green strategy.
designer.image.tag=9.0.1xx.xx.xx - This denotes the new Designer version to be installed, for
example, 9.0.116.08.12.
designer.deployment.color=blue - This denotes that the blue color service is installed.
The non-production color can be accessed with the non-production host name (for example,
designer.blue.example.com). Testing can be done using this URL.

NodePort Service

The designer-green release creates a service called designer-green and the designer-blue
release creates a service called designer-blue. If you are using NodePort services, ensure that the
value of designer.service.nodePort is not the same for both the releases. In other words, you
should assign dedicated node ports for the releases. The default value for
designer.service.nodePort is 30180. If this was applied to designer-green, use a different value
for designer-blue, for example, 30181. Use the below helm command to achieve this:

helm upgrade --install designer-blue -f designer-values.yaml
designer-100.0.112+xxxx.tgz --set designer.deployment.strategy=blue-green --set
designer.image.tag=9.0.1xx.xx.xx --set designer.deployment.color=blue --set
designer.service.nodePort=30181

Cutover

Once testing is completed on the non-production color, traffic can be moved to the new version by
updating the Ingress rules:

1. Update the Designer Ingress with the new deployment color by running the following command (in this
case, blue is the new deployment color, that is, the non-production color):
helm upgrade --install designer-ingress -f designer-values.yaml
designer-100.0.112+xxxx.tgz --set designer.deployment.strategy=blue-green-ingress --
set designer.deployment.color=blue
The values.yaml overrides passed as an argument to the above Helm upgrade command:
designer.deployment.strategy=blue-green-ingress - This denotes that the helm install will create
ingress rules for the Designer service.
designer.deployment.color=blue - This denotes that the current production (active) color is blue.

2. Verify the ingress rules by running the following command:

Designer Deployment Guide 58

/File:DesUpgStep1.png
/File:DesUpgStep1.png

kubectl describe ingress designer-ingress
The production host name must point to the new color service.

Rollback

If the upgrade must be rolled back, the ingress rules can be modified to point to the old deployment
pods (green, in this example) by performing a cutover again.

1. Perform a cutover using the following command:
helm upgrade --install designer-ingress -f designer-values.yaml
designer-100.0.112+xxxx.tgz --set designer.deployment.strategy=blue-green-ingress --
set designer.deployment.color=green
The values.yaml overrides passed as an argument to the above Helm upgrade command:
designer.deployment.strategy=blue-green-ingress - This denotes that the Helm install will create
Ingress rules for the Designer service.
designer.deployment.color=green - This denotes that the the current production (active) color is
green.

2. Verify the Ingress rules by running the following command:
kubectl describe ingress designer-ingress
The production host name must point to the green service.

8.8.2 DAS
As with Designer, the Blue-Green strategy can be adopted for DAS as well. The Blue-Green
architecture used for DAS is given below. Here, the cutover mechanism is controlled by Service, the
Kubernetes manifest responsible for exposing the pods. The Ingress, when enabled, will point to the
appropriate service based on the URL.

Designer Deployment Guide 59

Ingress setup

Important
Ingress for DAS must be enabled only if DAS has to be reached from outside the
Kubernetes cluster. If you don't intend to expose DAS outside the cluster, then ingress
need not be enabled and you can skip these steps.

1. Configure Ingress Host names for DAS.
Create 3 hostnames as follows: The blue service host name must contain the string blue; for
instance, das.blue.example.com or das-blue.example.com, The green service host name must
contain the string green; for instance, das.green.example.com or das-green.example.com. The
green/blue services can be accessed separately with these blue/green hostnames.

* das.example.com - This is the production host url, and is used for external access.

* das.blue.example.com - This is for blue service testing.

* das.green.example.com - This is for green service testing.

2. Configure the hostnames in the das-values.yaml file under ingress, annotations, and paths (can be
modified based on the requirement).

Designer Deployment Guide 60

/File:DASBlueGreenDep.png
/File:DASBlueGreenDep.png

ingress:
enabled: true
annotations: {}
paths: ["/"]
hosts:

- das.example.com
- das.blue.example.com
- das.green.example.com

Initial deployment

The Ingress must be created initially before deploying the DAS service since it is shared between
blue/green services and it is required to be created at the very beginning of the deployment. The
Ingress is not required for subsequent upgrades. The required values are passed using the -- set
flag in the following steps. Values can also be directly changed in the values.yaml file.

1. Deploy initial DAS pods and other resources by choosing an active color, in this example, green. Use the
below command to create a designer-das-green service:
helm upgrade --install designer-das-green -f designer-das-values.yaml designer-
das-100.0.106+xxxx.tgz --set das.deployment.strategy=blue-green --set das.image.tag=
9.0.1xx.xx.xx --set das.deployment.color=green
The values.yaml overrides passed as an argument to the above Helm upgrade command:
das.deployment.strategy=blue-green - This denotes that the DAS service will be installed using the
blue-green deployment strategy.
das.image.tag=9.0.1xx.xx.xx - This denotes the DAS version to be installed, for example,
9.0.111.04.4.
das.deployment.color=green - This denotes that the green color service is installed.

2. Once the initial deployment is done, the pods have to be exposed to the designer-das service. Execute
the following command to create the designer-das service:
helm upgrade --install designer-das designer-das-100.0.106+xxx.tgz -f designer-das-
values.yaml --set das.deployment.strategy=blue-green-service --set
das.deployment.color=green
The values.yaml overrides passed as an argument to the above helm upgrade
das.deployment.strategy=blue-green-service - This denotes that the designer-das service will be
installed and exposed to the active color pods.
das.deployment.color=green - This denotes that the designer-das service will point to green pods.

3. Create ingress rules for the DAS service (assuming the ingress service is das-ingress):

helm upgrade --install das-ingress designer-das-100.0.106+xxxx.tgz -f designer-das-
values.yaml --set das.deployment.strategy=blue-green-ingress

The values.yaml overrides passed as an argument to the above command
das.deployment.strategy=blue-green-ingress - This denotes that the helm install will create
ingress rules for the DAS service.

Important
Step 3 is required only when ingress is to be created to expose DAS outside the
cluster.

NodePort Service

Designer Deployment Guide 61

The designer-das-green release creates a service called designer-das-green and the designer-
das-blue release creates a service called designer-das-blue. If you are using NodePort services,
ensure that the value of designer.service.nodePort is not the same for both the releases. In other
words, you should assign dedicated node ports for the releases. The default value for
designer.service.nodePort is 30280. If this was applied to designer-das-green, use a different
value for designer-das-blue, for example, 30281. Use the below helm command to achieve this:
helm upgrade --install designer-das designer-das-100.0.106+xxx.tgz -f designer-das-
values.yaml --set das.deployment.strategy=blue-green-service --set
das.deployment.color=green --set das.service.nodePort=30281

8.9 Canary
Canary is optional and is only used along with Blue-Green. It is recommended in production. Canary
pods are generally used to test new versions of images with live traffic. If you are not opting for
Canary, skip the steps in this section.

Canary deployment

1. Identify the current production color by checking the designer-das service selector labels (kubectl
describe service designer-das). Green is the production color in the below example as the selector
label is color=green.

2. To deploy canary pods, the das.deployment.strategy value must be set to canary in the designer-
das-values.yaml file or using the -- set flag as shown in the command below:
helm upgrade --install designer-das-canary -f das-values.yaml designer-
das-100.0.106+xxxx.tgz --set das.deployment.strategy=canary --set das.image.tag=
9.0.1xx.xx.xx --set das.deployment.color=green
The values.yaml overrides passed as an argument to the above Helm upgrade command:
das.deployment.strategy=canary - This denotes that the Helm install will create canary pods.
das.deployment.color=green - This denotes that the current production (active) color is green.

Important
To make sure Canary pods receive live traffic, they have to be exposed to the designer-das service by
setting das.deployment.color=, which is obtained from step 1.

3. Once canary pods are up and running, ensure that the designer-das service points to the canary pods
using the kubectl describe svc designer-das command.

The IP address present in the Endpoints must match the IP address of the canary pod. The canary pod's
IP address is obtained using the kubectl describe pod command.

Designer Deployment Guide 62

/File:CanaryInDepStep1.png
/File:CanaryInDepStep1.png
/File:CanaryEndpoints.png
/File:CanaryEndpoints.png

Cleaning up

After completing canary testing, the canary pods must be cleaned up.

The das.deployment.replicaCount must be made zero and the release is upgraded. It can be
changed in the designer-das-values.yaml file or through the --set flag as follows:

• helm upgrade --install designer-das-canary -f das-values.yaml designer-
das-100.0.106+xxxx.tgz --set das.deployment.strategy=canary --set das.image.tag=
9.0.1xx.xx.xx --set das.deployment.color=blue --set das.deployment.replicaCount=0

Upgrade

1. Identify the current production color by checking the designer-das service selector labels (kubectl
describe service designer-das). Green is the production color in the below example as the selector
label is color=green.

2. Deploy the DAS service on to the non-production color. For the above example, blue is the non-
production color and assuming the service name is designer-das-blue):
helm upgrade --install designer-das-blue -f das-values.yaml designer-
das-100.0.106+xxxx.tgz --set das.deployment.strategy=blue-green --set das.image.tag=
9.0.1xx.xx.xx --set das.deployment.color=blue
The values.yaml overrides passed as an argument to the above Helm upgrade command:
das.deployment.strategy=blue-green - This denotes that the DAS service is installed using the blue-
green strategy.
das.image.tag=9.0.1xx.xx.xx - This denotes the new DAS version to be installed, for example,
9.0.111.05.5.
das.deployment.color=blue - This denotes that the blue color service is installed.
The non-production color can be accessed with the non-production service name.

Cutover

Once testing is completed on the non-production color, traffic can be moved to the new version by
updating the designer-das service.

1. Update the designer-das service with the new deployment color by executing the below command. In
this example, blue is the new deployment color (non-production color).
helm upgrade --install designer-das-service -f designer-das-values.yaml designer-
das-100.0.106+xxxx.tgz --set das.deployment.strategy=blue-green-service --set
das.deployment.color=blue

2. Verify the service by executing the kubectl describe service designer-das command. The type

Designer Deployment Guide 63

/File:CanaryIPs.png
/File:CanaryIPs.png
/File:DasBGUpgStep1.png
/File:DasBGUpgStep1.png

label must have the active color's label, that is, color=blue.

Rollback

1. If the upgrade must be rolled back, cutover has to performed again to make the service point to the old
deployment (green) again. Use the below command to perform the cutover:
helm upgrade --install designer-das-service -f designer-das-values.yaml designer-
das-100.0.106+xxxx.tgz --set das.deployment.strategy=blue-green-service --set
das.deployment.color=green
The values.yaml overrides passed as an argument to the above Helm upgrade command:
das.deployment.strategy=blue-green-service - This denotes that the Helm install will create
ingress rules for the DAS service.
das.deployment.color=green - This denotes that the current production (active) color is green.

2. Verify the service by executing the kubectl describe service designer-das the command. The type
label must have the active color's label, that is, color=green.

8.10 Validations and checks
Here are some common validations and checks that can be performed to know if the deployment was
successful.

• Check if the application pods are in running state by using the kubectl get pods command.

• Try to connect to the Designer or DAS URL as per the ingress rules from your browser. You must be able
to access the Designer and DAS webpages.

9. Post deployment procedures

Upgrading the Designer workspace

Warning
• It is mandatory to upgrade the Designer workspace for all Contact Center IDs.
• Genesys strongly recommends that you first back up the current workspace before

performing the upgrade. This ensures that you can rollback to a previous state, if
required.

Workspace resources must be upgraded after cutover. This will upgrade the system resources in the
Designer workspace:

1. Login to one of the Designer pods using the kubectl exec -it bash command.

Designer Deployment Guide 64

2. Execute the following migration command (this will create new directories/new files introduced in the
new version):
node ./bin/cli.js workspace-upgrade -m -t

3. Execute the workspace resource upgrade command (this will upgrade system resources, such as system
service PHP files, internal audio files and callback resources):
node ./bin/cli.js workspace-upgrade -t
In the above command, contact_center_id , is the Contact Center ID created in GWS for this tenant
(workspace resources are located under the Contact Center ID folder (/workspaces//workspace)).

Important
The above steps will also be used for further upgrades.

Updating the flowsettings file
Post deployment, the flowsettings.json file can be modified through a Helm install as follows:

1. Extract the Designer Helm Chart and find the flowsettings.yaml file under the Designer Chart >
Config folder.

2. Modify the necessary settings (refer to the Post deployment configuration settings reference table for
the different settings and their allowed values).

3. Execute the below Helm upgrade command on the non-production color service. It can be done as part
of the Designer upgrade by passing the flowsettings.yaml file using the --values flag. In this case, a
new Designer version can be used for the upgrade. If it is only a flowsettings.json update, the same
Designer version is used.
helm upgrade --install designer-blue -f designer-values.yaml -f flowsettings.yaml
designer-9.0.xx.tgz --set designer.deployment.strategy=blue-green --set
designer.image.tag=9.0.1xx.xx.xx --set designer.deployment.color=blue

4. Once testing is completed on the non-production service, perform the cutover step as mentioned in the
Cutover section (Designer Blue-Green deployment). After cutover, the production service will contain
the updated settings. The non-active color Designer must also be updated with the updated settings
after the cutover.

10. Enabling optional features

10.1 Enable Designer Analytics and Audit Trail
Post Designer deployment, features such as Analytics and Audit Trail can be enabled by performing
the below steps.

Important

Designer Deployment Guide 65

Ensure Elasticsearch is deployed before proceeding.

10.1.1 Designer changes

1. Configure the following settings in flowsettings override (flowsettings.yaml) - Refer to the 5.4 Post
deployment configuration settings reference table section for option descriptions.
• enableAnalytics: true
• enableESAuditLogs: true
• esServer
• esPort
• esUrl

2. Configure the below setting in the DesignerEnv transaction list:
ReportingURL in the reporting section.

3. Perform the steps in the Updating the flowsettings file section under 9. Post deployment procedures.

10.1.2 DAS changes

1. Configure the following settings in the helm das-values.yaml file. Refer to the 4.2 DAS deployment
settings section for setting descriptions.
dasEnv.envs.DAS_SERVICES_ELASTICSEARCH_ENABLED = true
dasEnv.envs.DAS_SERVICES_ELASTICSEARCH_HOST
dasEnv.envs.DAS_SERVICES_ELASTICSEARCH_PORT

2. Perform the steps in the Upgrade non production color section (see DAS under 8.8 Blue-Green
deployment). The same DAS version running in production can be used for the upgrade.

3. Perform the steps in the Cutover section (see DAS under 8.8 Blue-Green deployment).

10.2 Enable Personas
You can enable the Personas feature in Designer by following the below steps.

10.2.1 Deploy personas.json

• Deploy the personas.json file in the workspace location, /workspace/{tenantID}/workspace/
personas/personas.json.

• Create the personas directory if it does not exist.

Given below is a sample personas.json file:
[

{
"id": "1",
"name": "Samantha",
"gender": "female",
"tags": ["female", "middle-age", "default"],

Designer Deployment Guide 66

"displayPersona": "female, 30-40s, professional, calm",
"voice": [{

"name": "samantha",
"language": "en-US",
"ttsname": "Samantha",
"ttsengine": "NuanceTTS",
"displayName": "Samantha"

}, {
"name": "karen",
"language": "en-AU",
"ttsname": "Karen",
"ttsengine": "NuanceTTS",
"displayName": "Karen"

}, {
"name": "amelie",
"language": "fr-CA",
"ttsname": "Amelie",
"ttsengine": "NuanceTTS",
"displayName": "Amelie"

}, {
"name": "paulina",
"language": "es-MX",
"ttsname": "Paulina",
"ttsengine": "NuanceTTS",
"displayName": "Paulina"

}
],
"digital": {},
"email": {},
"chat": {},
"web": {}

},
{

"id": "2",
"name": "Tom",
"gender": "male",
"tags": ["male", "middle-age"],
"displayPersona": "male, 30-40s, polite, professional",
"voice": [{

"name": "tom",
"language": "en-US",
"ttsname": "Tom",
"ttsengine": "NuanceTTS",
"displayName": "Tom"

}, {
"name": "lee",
"language": "en-AU",
"ttsname": "Lee",
"ttsengine": "NuanceTTS",
"displayName": "Lee"

}, {
"name": "felix",
"language": "fr-CA",
"ttsname": "Felix",
"ttsengine": "NuanceTTS",
"displayName": "Felix"

}, {
"name": "javier",
"language": "es-MX",
"ttsname": "Javier",
"ttsengine": "NuanceTTS",
"displayName": "Javier"

}

Designer Deployment Guide 67

],
"digital": {},
"email": {},
"chat": {},
"web": {}

},
{

"id": "3",
"name": "Gabriela",
"gender": "female",
"tags": ["female", "young", "engaging"],
"displayPersona": "female, 20-30s, engaging",
"voice": [{

"name": "gabriela",
"language": "en-US",
"ttsname": "en-US-Standard-E",
"ttsengine": "GTTS",
"displayName": "Gabriela"

}, {
"name": "sheila",
"language": "en-AU",
"ttsname": "en-AU-Standard-A",
"ttsengine": "GTTS",
"displayName": "Sheila"

}, {
"name": "lili",
"language": "fr-CA",
"ttsname": "fr-CA-Standard-A",
"ttsengine": "GTTS",
"displayName": "Lili"

}
],
"digital": {},
"email": {},
"chat": {},
"web": {}

},
{

"id": "4",
"name": "Michael",
"gender": "male",
"tags": ["male", "young"],
"displayPersona": "male, 20-30s, curious, geeky",
"voice": [{

"name": "michael",
"language": "en-US",
"ttsname": "en-US-Standard-B",
"ttsengine": "GTTS",
"displayName": "Michael"

}, {
"name": "royce",
"language": "en-AU",
"ttsname": "en-AU-Standard-B",
"ttsengine": "GTTS",
"displayName": "Royce"

}, {
"name": "alexandre",
"language": "fr-CA",
"ttsname": "fr-CA-Standard-B",
"ttsengine": "GTTS",
"displayName": "Alexandre"

}
],

Designer Deployment Guide 68

"digital": {},
"email": {},
"chat": {},
"web": {}

},
{

"id": "5",
"name": "Diane",
"gender": "female",
"tags": ["female", "mature"],
"displayPersona": "female, 40-50s, soothing, silky",
"voice": [{

"name": "diane",
"language": "en-US",
"ttsname": "en-US-Standard-C",
"ttsengine": "GTTS",
"displayName": "Diane"

}, {
"name": "muriel",
"language": "en-AU",
"ttsname": "en-AU-Standard-C",
"ttsengine": "GTTS",
"displayName": "Muriel"

}, {
"name": "chloe",
"language": "fr-CA",
"ttsname": "fr-CA-Standard-C",
"ttsengine": "GTTS",
"displayName": "Chloe"

}
],
"digital": {},
"email": {},
"chat": {},
"web": {}

},
{

"id": "6",
"name": "David",
"gender": "male",
"tags": ["male", "mature"],
"displayPersona": "male, 40-50s, professional, confident",
"voice": [{

"name": "david",
"language": "en-US",
"ttsname": "en-US-Standard-D",
"ttsengine": "GTTS",
"displayName": "David"

}, {
"name": "austin",
"language": "en-AU",
"ttsname": "en-AU-Standard-D",
"ttsengine": "GTTS",
"displayName": "Austin"

}, {
"name": "pierre",
"language": "fr-CA",
"ttsname": "fr-CA-Standard-D",
"ttsengine": "GTTS",
"displayName": "Pierre"

}
],
"digital": {},

Designer Deployment Guide 69

"email": {},
"chat": {},
"web": {}

}
]

10.2.2 Update Designer flowsettings.json

• Enable the persona feature flag in the flowsettings.json override file.

"features": {
"persona": true

Update application settings
Perform the following steps to enable the persona in the required Designer application:

1. Open the required Designer application and navigate to the Settings tab.
2. In Application Settings, select the Enable Persona checkbox in the Persona tab.
3. Re-publish the application and create a new build.

11. Cleanup

11.1 Elasticsearch maintenance recommendations
To help you better manage your indexes and snapshots, and to prevent too many indexes from
creating an overflow of shards, Genesys recommends that you set up a scheduled execution of
Elasticsearch Curator with the following two actions:

• Delete indexes older than the given threshold according to the index name and mask.
• sdr-* (3 months)
• audit-* (12 months)

• Make a snapshot of each index:
• sdr-* (yesterday and older)
• audit-*

• kibana-int-*

12. Limitations

Designer currently supports multi-tenancy provided by the tenant Configuration Server. That is, each
tenant should have a dedicated Configuration Server, and Designer can be shared across the multiple
tenants.

Designer Deployment Guide 70

	Designer Deployment Guide

