3 GENESYS

This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Designer Deployment Guide

Deploy Designer (versions v9010005 and above)

2/18/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

e 1 1. About this document
* 1.1 1.1 Intended audience
* 1.2 1.2 Before you begin
e 2 2. Product overview
e 2.1 2.1 Designer
e 2.2 2.2 Designer Application Server (DAS)
* 2.3 2.3 Deployment architecture
e 2.4 2.4 High Availability (HA) and Scalability
¢ 3 3. Prerequisites
* 3.1 3.1 Mandatory prerequisites
e 3.2 3.2 Optional prerequisites

4 4. Deployment configuration settings (Helm values)
* 4.1 4.1 Designer deployment settings
* 4.2 4.2 DAS deployment settings
e 5 5. Post deployment Designer settings
¢ 5.1 5.1 Flow settings
* 5.2 5.2 Tenant settings
e 5.3 5.3 DesignerEnv transaction list
* 5.4 5.4 Configuration settings reference table
* 5.5 5.5 Features
* 6 6. Logging
* 6.1 6.1 Log levels
e 7 7. Platform / Configuration Server and GWS settings
e 7.1 7.1 Create Roles for Designer
e 7.2 7.2 Create the DesignerEnv transaction list
* 7.3 7.3 Platform Settings
* 7.4 7.4 GWS Configuration
* 8 8. Deployment
» 8.1 8.1 Preparation
* 8.2 8.2 Blue-Green deployment

Designer Deployment Guide

* 8.3 8.3 Rolling upgrade
* 8.4 8.4 Uninstall

¢ 9 9. Enabling optional features
* 9.1 9.1 Enable Designer Analytics and Audit Trail
¢ 10 10. Cleanup
* 10.1 10.1 Elasticsearch maintenance recommendations

e 11 11. Limitations

Designer Deployment Guide

Learn how to deploy Designer as a service in a Kubernetes cluster (for DesDepMnfst v9010005
and above).

1. About this document

This document guides you through the process of deploying and configuring Designer and Designer
Application Server (DAS) as a service in a Kubernetes (K8s) cluster.

Information on the following topics is provided:

e Overview of Designer and DAS
e Configuration details

¢ Deployment process

e Enabling optional features

¢ Cleanup

¢ Known limitations

1.1 Intended audience

This document is intended for use primarily by system engineers and other members of an
implementation team who will be involved in configuring and installing Designer and DAS, and
system administrators who will maintain Designer and DAS installations.

To successfully deploy and implement applications in Designer and DAS, you must have a basic
understanding of and familiarity with:

¢ Network design and operation

* Network configurations in your organization

¢ Kubernetes

¢ Genesys Framework architecture and functions

1.2 Before you begin

1. A Kubernetes cluster must be deployed. Refer to the Kubernetes documentation site for installation
instructions.

2. Install Helm according to the instructions outlined in the Helm documentation site.

After you complete the above mandatory procedures, return to this document to complete an on-
premise deployment of Designer and DAS as a service in a K8s cluster.

Designer Deployment Guide

2. Product overview

The following sections provide a brief overview of Designer and DAS.

2.1 Designer

The Designer service provides a web Ul to build and manage VXML and SCXML based self-service and
assisted service applications for a number of media types. It stores data on the local file system and
is synchronized across instances by using services like Network File System (NFS). Genesys
customers can build applications using a simple drag and drop method, and assign contact points
(Route Points and other media endpoints) to applications directly from the Designer Ul. Insights into
runtime behavior of applications and troubleshooting aid is provided by Designer Analytics, which
includes a rich set of dashboards based on session detail records (SDR) from data stored in
Elasticsearch.

Designer offers the following features:
e Applications for working with phone, chat, email, SMS (text messages), Facebook, Twitter, and open
media types.
e Bots, ASR, TTS capabilities for self-service.
» Assisted service or routing.
e Callback.
e Business Controls.
e Audio, message management.
e Grammars management.
* Contact points management - route points, chat end points, email pop-client/mailboxes.
¢ Analytics dashboards through embedded Kibana.
Designer is an Express/Node.js application. The Ul is designed using Angular powered Bootstrap.

Application data (SCXML and VXML) is stored as a file system. Designer Analytics and Audit data is
stored in Elasticsearch.

2.2 Designer Application Server (DAS)

Designer Application Server (DAS) hosts and serves the Designer generated application files (SCXML
and VXML), audio, and grammars. It also provides:

¢ Runtime evaluation of Business Controls (business hours, special days, emergency flags and data
tables).

¢ Callback interface to GES.

* Interface to External APIs.
DAS uses built-in NGINX to front requests. It consists of 3 modules: NGINX, PHP, and Node.js.

¢ Requests for static workspace content (SCXML, VXML, JS, audio, grammar, etc) are handled by the

Designer Deployment Guide 5

NGINX module.
¢ Requests for PHP content are processed by the FastCGl PHP module.

* SDR (Analytics) processing requests are handled by the DAS Node.js module.

Files generated by Designer can be served only by DAS. Designer will work only with
DAS.

2.3 Deployment architecture

The below architecture diagram illustrates a sample premise deployment of Designher and DAS:

Designer Deployment Guide

~

Elastic Search for
Designer Analytics

Customer's
Intranet /

/ Designer
Namespace

Designer\

ReplicaSet (Active)

Designer pod

4
1
HTTP 1 HTTP—| GES
HTTP(S——————> E— .
L — " ‘ 1
. Designer Designer TP
Designer Ul Ingress ClusterlP """ ® HTFP(S)—> GWS
= — - Y Designer pod
' e m e m =
o >
S|\I/|B SI:/IB
1 1 HTTP(S)
1 1
! 1 > Nexus
\/ \4
------ > ---- i@ PVC DAS
ReplicaSet (Active) HTTP(S)
. - 1 A
NFS File Persistent . 1
system Volume SMB V\ _sMB_ ______.
Ve e e e e e e e e . DAS pod
.>
— HTTP |
ORS HTTP(S) TP \
(Voice,eSvc) d —E— 1
DAS » @
DAS pod
DAS Clustertp "T° Po
MCP Ingress >
URS \ /
Platform b
Components Kubernetes
@% Cluster /

2.4 High Availability (HA) and Scalability

Designer and DAS must be deployed as highly available in order to avoid single points of failure. A
minimum of 2 replicas of each service must be deployed to achieve HA.

The Designer and DAS service pods can be automatically scaled up or down based on metrics such as
CPU and memory utilization. The Deployment configuration settings section explains how to

Designer Deployment Guide 7

/File:Premise-Designer-DAS-architecture.png
/File:Premise-Designer-DAS-architecture.png

configure HA and auto-scaling.

Refer to the Genesys Docker Deployment Guide for more information on general HA recommendation
for Kubernetes.

3. Prerequisites

Before deploying Designer, ensure the following resources are deployed, configured, and accessible:

3.1 Mandatory prerequisites

e Kubernetes 1.12+

Helm 3.0

Docker Registry

* Setup a local docker registry to store Designer and DAS docker images.

Ingress Controller

* If Designer and DAS are accessed from outside of a K8s cluster, it is recommended to deploy/
configure an ingress controller (for example, NGINX), if not already available. Also, the Blue-Green
deployment strategy works based on the ingress rules.

* The Designer Ul requires Session Stickiness. Configure session stickiness in the annotations
parameter in the values.yaml file during Designer installation.

Persistent Volumes (PVs)
* Create persistent volumes for workspace storage (5 GB minimum) and logs (5 GB minimum)
* Set the access mode for these volumes to ReadWriteMany.

e The Designer manifest package includes a sample YAML file to create Persistent Volumes required
for Designer and DAS.

* Persistent volumes must be shared across multiple K8s nodes. Genesys recommends using NFS to
create Persistent Volumes.

¢ Shared file System - NFS
* For production, deploy the NFS server as highly available (HA) to avoid single points of failure. It is
also recommended that the NFS storage be deployed as a Disaster Recovery (DR) topology to
achieve continuous availability if one region fails.

* By Default, Designer and DAS containers run as a Genesys user (uid:gid 500:500). For this reason,
the shared volume must have permissions that will allow write access to uid:gid 500:500. The
optimal method is to change the NFS server host path to the Genesys user: chown -R
genesys:genesys.

* The Designer manifest package includes a sample YAML file to create an NFS server. Use this only
for a demo/lab setup purpose.

¢ Genesys Web Services (GWS) 9.x

* Configure GWS to work with a compatible version of Configuration Server.

Designer Deployment Guide 8

¢ Other Genesys Components

* ORS ORS 8.1.400.x

¢ Nexus 9.x

* URS 8.1.400.x

3.2 Optional prerequisites

e Elasticsearch 7.8.0

» Elasticsearch is used for Designer Analytics and audit trail.

¢ Redis 3.2.x

e Redis is used for resource index caching and multi-user collaboration locks on Designer resources.

4. Deployment configuration settings (Helm values)

This section provides information on the various settings that have to be configured in Designer and
DAS. The configuration settings listed below will be used during the deployment of Designer and DAS.
That is, these settings will be used during initial deployment / upgrade. These settings can be
configured in the values.yaml Helm file.

4.1 Designer deployment settings

The following table provides information on the Designer deployment settings. These settings are
configured in the designer-values.yaml file.

Parameter

Description

Number of services to

deployment. replicaCountbe created

deployment.maxReplicas

deployment.strategy

Maximum number of
replicas created. It is
recommended to
configure this setting if
auto-scaling is used.

The strategy to select
which type of resources
to deploy. Valid values
are: default,

service, volume,
ingress.

¢ volume - for blue/
green upgrade, this
is to create a
Persistent Volume
Claim (PVC) for the
first time.

Mandatory?

Mandatory

Optional

Mandatory

Default Value

2

10

service

Designer Deployment Guide

deployment.green

desImage.repository

desImage.tag

desImage.pullPolicy

volumes.wo rkspaceMountP\é\yéE -

* ingress - for the
blue/green upgrade,
this is to create an
ingress for the first

time and update the

ingress during
service cutover.

¢ service - for
upgrading the blue/
green Designer
service.

e default - for
performing a rolling
upgrade

This is to deploy/
upgrade the Designer
service in a blue-green
upgrade strategy. Valid
values are: blue,
green.

Docker repository for
the Designer image.

Designer image version.

Designer image pull
policy (imagePullPolicy).
Valid values: Always,
IfNotPresent, Never.

¢ Always - always pull
the image.

¢ IfNotPresent - pull
the image only if it
does not already
exist on the node.

¢ Never - never pull
the image.

The path where the
space volume is to
ounted inside the
Designer container.

Persistent volume claim

volumes.workspaceClaim name for the

workspace.

Size of the persistent

volumes.workspaceClaimSialeme claim for the

workspace.

Optional

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

green

pureengage-docker-
staging.jfrog.io/
designer/designer

9.0.109.08.20

IfNotPresent

/designer/workspace

(Changing this value is not
recommended.)

designer-managed-disk

5Gi

Designer Deployment Guide

10

The persistent volume must
be equal to or greater than
this size.

storageClassName
provided in the

istent volume that
3ted for the
Designer workspace
(example, nfs).

volumes.workspaceSto raq%%crf Mandatory manual

The path where the
Designer logs volume is
to be mounted inside
the Designer container.

volumes.logMountPath Mandatory /designer/logs

Persistent volume claim

volumes.logClaim name for logs.

Mandatory designer-logs
Size of the persistent

volume claim for the

Designer logs.

volumes.logClaimSize Mandatory 5Gi
The persistent volume must

be equal to or greater than
this size.

storageClassName
provided in the
SDersistent volume that

volumes.logStorageClas < created for the Mandatory manual
Designer logs
(example, nfs).
/health
healthApi.path zsflgrﬁr el Clees Mandatory (Changing this value is not
path. recommended.)
8888
healthApi.containerPortContainer running port. Mandatory (Changing this value is not
recommended.)

Health check will be
healthApi.startupDelay started after a delay as Mandatory 20
specified in this setting.

The interval between
healthApi.checkIntervaleach health check Mandatory 5
request.

Number of health check
failures to be considered

healthApi.failureCount before marking the Mandatory 5
container as instable or
restart.
This enables providing true

environment variables
as an input to Designer
pods.

designerEnv.enabled Mandatory (Changing this value is not

recommended.)

Designer Deployment Guide

designerEnv.

designerEnv.

designerEnv.

designerEnv.

designerEnv.

designerEnv.

designerEnv.

designerEnv.

designerEnv.

designerEnv.

designerEnv.

envs.

envs.

envs.

envs.

envs.

envs

envs.

envs.

envs.

envs

envs.

It uses ConfigMap to store the
environment variables.

Designer port for
DES_PO®dntainer (port in
flowsettings.json).

DAS hostname
DES ARlapplicationHost in
flowsettings.json).

DAS port
DES APlapplicationPort in
flowsettings.json).

This is normally not
changed. It is the
relative path to the
workspace on DAS.
DES DEPLOY URL

" The default value
/workspaces should be
always be used (deployURL in
flowsettings.json).

Set to true so Designer

works with GWS. If set

to false. Designer

f to a local mode

DES—Usgéeﬁd %‘sy be used
temporarily if GWS is
unavailable (usehtcc in
flowsettings.json).

GWS server host
(htccserver in

.DES HTl@wSEeRViEks.json), for

example,
gws.genhtcc.com.

GWS server port
htccport in
owsettings.json), for

example, 80.

DES H

To enable or disable
gsignarMRalytics
enableAnalytics in

flowsettings.json).

Elasticsearch URL (for

)E@{‘nple, http://es-
DES—ES:ervll“ce:9200), esUrl in

flowsettings.json.

DES E

Elasticsearch Server

DES Eg;ﬁggwe (for example,

-service), esServer in
flowsettings.json.

lasticsearch port (for
DES—Eixaaar%‘EIe, 9200), esPort

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Optional

Optional

Optional

Optional

8888

das

80

/workspaces

true

(Changing this value is not
recommended.)

gws-
uswl-int.genhtcc.com

80

false

http://es-
spot.uswl.genhtcc.com

es-
spot.uswl.genhtcc.com

80

Designer Deployment Guide

12

in flowsettings.json.
Enable file logging. If

designerEnv.envs. DESfFf%%thgﬁgtﬁ%ﬁ?yﬁélgI@se Mandatory false
logs.

This enables providing
the GWS client ID /
secret as an input to

GDesigner pods.

designerSecrets.enable true

It uses Kubernetes Secrets to
store the GWS client
credentials.

GWS Client ID, create a
new GWS client if it

esn't exist, steps are
%)itpﬂ?adined in the
platform settings
section.

designerSecrets.GWS Cli Mandatory designer-secret

ZXh0ZXJuYWxfYXBpX2NsaWVudA==
designerSecrets.GWS_CliGWSé&dient secret Mandatory (This value is valid only for lab
deployments.)

Service type (either
service.type ClusterIP or NodePort Mandatory ClusterlP
or LoadBalancer).

Designer service port to

service.port be exposed in the Mandatory 8888
cluster.
Designer application

service.targetPort port running inside the Mandatory 8888
container.

Port to be exposed in
service.nodePort case Optional Sample value : 30180
service.type=NodePort.

Enable/Disable ingress.
Ingress should be

ingress.enabled enabled for all cases Mandatory true
except a lab/demo
setup.

ingress.paths Ingress path Mandatory [/

Hostnames to be
ingress.hosts configured in ingress for Mandatory ssdevl.genhtcc.com
the Designer service.

ingress.tls TLS config for ingress. Optional [1

Maximum amount of
CPU processing power

resources.limits.cpu that K8s allocates for Mandatory 600m
the container.
resources.limits.memoryMaximum amount of Mandatory 1Gi

Designer Deployment Guide 13

memory K8s allocates
for the container.

Guaranteed CPU

resources.requests.cpu allocation for the Mandatory 500m
container.
Guaranteed memory

resources.requests.memaaljocation for the Mandatory 512Mi
container.

Controls which user ID
the containers are run
with. This can be
configured to run
Designer as a non-root
user.

Currently, only a Genesys
user is supported by the
Designer base image.

secu rltycontext . rUnASU% is the ID of the Genesys Opt|0na| 500
user and it cannot be
modified.

The file system must reside
within the Genesys user
account in order to run
Designer as a Genesys user.
Change the NFS server host
path to the Genesys user:

chown -R genesys:genesys

Controls which primary
group ID the containers
are run with. This can
be configured to run
- Designer as a non-root
securityContext. runAsGr%Je?)rl Currently, only a
Genesys user group
(GID - 500) is supported
by the Designer base
image.

Optional 500

Default value:
To allow pods to be nodeSelector: {}
scheduled on the nodes . Sample value:
based labels assigned to Optional
the nodes. nodeSelector:

nodeSelector

The K8s standard node
affinity and anti-affinity
configurations can be
added here. Refer to
this K8s document for
sample values.

affinity Optional {}

Tolerations works with

Eolerations taints to ensure that

Optional []

Designer Deployment Guide

hpa.enabled

hpa.targetCPUPercent

hpa.targetMemoryPercen

annotations

labels

pods are not scheduled
onto inappropriate
nodes. Refer to this K8s
document for sample
values.

Enables K8s Horizontal
Pod Autoscaler (HPA). It
automatically scales the
number of pods based
on average CPU
utilization and average
memory utilization.

More information about HPA is
available here.

The K8s HPA controller
will scale up/down pods
based on the target CPU
utilization percentage
specified. It scales up/
down pods between the
range

Optional

Optional

deployment.replicaCount

to

deployment.maxReplicas.

The K8s HPA controller
will scale up/down pods
based on the target
memory utilization
tpercentage specified. It
scales up/down pods
between the range

Optional

deployment.replicaCount

to

deployment.maxReplicas.

Enables Kubernetes
Annotations. Refer to
this document for more
information on K8s
Annotations.

The Designer Ul requires
Session Stickiness if the
replica count is more than 1.
Configure session stickiness
based on the ingress
controller type. Ingress
configuration like session
stickiness can be configured
here.

Any custom labels can
be configured. It is a key
and value, for example,
key:value.

Optional

Optional

false

70

70

{}

tenant: shared

Designer Deployment Guide

15

4.2 DAS deployment settings

The following table provides information on the DAS deployment settings. These settings are

configured in the das-values.yaml file.

Parameter Description

deployment. replicaCounts:rprtéi';eO; services to

Maximum number of
replicas created. It is
deployment.maxReplicas recommended to
configure this setting if
auto-scaling is used.

The strategy to select
which type of resources
to deploy. Valid values
are : default,
service, volume,
ingress.

* ingress - for the
blue/green upgrade,
this is to create an
ingress for the first
time and update the
ingress during
service cutover.

deployment.strategy

e service - for
upgrading the blue/
green DAS service.

¢ default - for
performing a rolling
upgrade.

This is to deploy/
upgrade the DAS
service in a blue-green
upgrade strategy. Valid
values are: blue,
green.

deployment.green

dasImage.repository &%Cléit'sr?r%%zzory for

dasImage.tag DAS image version.

orkspace path
dasVolumes.wo rkapceMounl%elote\ﬁthe container.
Persistent volume claim
name for the workspace
dasVolumes .workspaceCla(lnrqnust be the same as

Designer's claim name).
dasVolumes. logMountPathDAS log path inside the

Mandatory?

Mandatory

Optional

Mandatory

Optional

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Default Value

2

10

service

green

pureengage-docker-
staging.jfrog.io/
designer/das

9.0.111.05.5

/das/www/workspaces

designer-managed-disk

/das/log

Designer Deployment Guide

dasVolumes.logClaim

dasHealthApi.path

container.

Persistent volume claim
name for logs (must be
the same as Designer's
claim name).

DAS Health Check API
path.

dasHealthApi.containerPo@aritainer running port.

Health check will be

dasHealthApi.startupDelsharted after a delay as

specified in this setting.
The interval between

dasHealthApi.checkInteraadh health check

request.

Number of health check
failures to consider

dasHealthApi. failureCouvdfore marking the

dasService. type

dasService.port

dasService.targetPort

dasService.nodePort

dasEnv.enabled

container as instable or
restart.

Service port (either
ClusterIP or NodePort
or LoadBalancer).

DAS service to be
exposed in the cluster.

DAS application port
running inside the
container.

Port to be exposed in
case

service.type=NodePort.

This enables providing
environment variables
as an input to DAS pods.

It uses ConfigMap to store the
environment variables.

Enable file logging. DAS

IS must

dasEnv.envs. DAS_FILE_Lq%gigﬁ%@rtE{ﬁAHKECﬁdOUt

dasEnv.envs.DAS LOG LE

always be false.

Enables log levels. Valid
\N._alues are: FATAL,
ERROR, WARN, INFO,
DEBUG, TRACE.

rd output
dasEnv.envs. DAS_STDOUTE@@?@%@Q&%E

To enable or disable

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Optional

Mandatory

Mandatory

Optional

Mandatory

dasEnv.envs. DAS_SERVIC%&%@@%@Wﬁﬁégﬂ%wmptionaI

uire
DAS to initialize ES

designer-logs

/health

8081

10

ClusterlP

8081

8081

Sample value : 30280

true

false

DEBUG

true

false

Designer Deployment Guide

17

templates.
Elasticsearch Server

or exam

dasEnv.envs. DASisERVIC%FC;%_'}\ g’l’itKREfEﬁ-I/dST Optional

http://es-service)

dasEnv.envs. DAS_SERVICEEL%EE%?S?%}RIQ&-IYP(‘)’RT Optional

dasresources

dasresources

dasresources

dasresources

.limits.cp

.limits.memmeynory K8s allocates

.requests.c . .
q gﬁjocatlon for container.

.requests . maiwmaation for the

Maximum amount of
CPU processing power
"*:hat K8s allocates for
the container.

Maximum amount of

for the container.
Guaranteed CPU

Guaranteed Memory

container.

Controls which user ID
the containers are run
with. This can be
configured to run DAS
as a non-root user.

securityContext. runAsUs@&irently, only a Genesys Optional

user is supported by the DAS
base image

500 is the ID of the Genesys
user and it cannot be
modified.

Controls which primary
group ID the containers
are run with. This can
be configured to run

securityContext.runAsGroAp as a non-root user. Optional

nodeSelector

affinity

Currently, only a
Genesys user group
(GID - 500) is supported
by the DAS base image.

To allow pods to be
scheduled on the nodes-

based labels assigned to Optional
the nodes.

The K8s standard node

affinity and anti-affinity Optional

configurations can be
added here. Refer to

Mandatory

Mandatory

Mandatory

Mandatory

http://designer-es-client-
service

9200

600m

1Gi

400m

512Mi

500

500

Default value:
nodeSelector: {}
Sample value:

nodeSelector:

{}

Designer Deployment Guide

18

this K8s document for
sample values.

Tolerations works with
taints to ensure that
pods are not scheduled
tolerations onto inappropriate Optional [1
nodes. Refer to this K8s
document for sample
values.

Enables K8s Horizontal
Pod Autoscaler (HPA). It
automatically scales the
number of pods based
on average CPU
utilization and average
memory utilization.

hpa.enabled Optional false

More information about HPA is
available here.

The K8s HPA controller
will scale up/down pods
based on the target CPU
utilization percentage
specified. It scales up/
down pods between the
range
deployment.replicaCount
to
deployment.maxReplicas.

The K8s HPA controller
will scale up/down pods
based on the target
memory utilization
tpercentage specified. It
scales up/down pods
between the range
deployment.replicaCount
to
deployment.maxReplicas.

hpa.targetCPUPercent Optional 75

hpa.targetMemoryPercen Optional 70

Enables Kubernetes
Annotations. Refer to
annotations this document for more Optional {}
information on K8s
Annotations.

Any custom labels can

labels be configured. It is a key
and value, for example,
key:value.

Optional tenant: shared

5. Post deployment Designer settings

Designer Deployment Guide

Post deployment, Designer configuration is managed from the following 3 locations:

5.1 Flow settings

Flow Settings is used for controlling global Designer settings that are applicable to all tenants and it
contains bootstrap configuration settings such as port, GWS info, and DAS URL.

Configuration path - /workspace/designer/flowsettings.json.

This will be configured using the helm install. The Flowsettings.json update section (8.2.2 Designer
deployment process) describes the steps to update the flowsettings.json file.

5.2 Tenant settings
These are tenant specific settings if the Designer service is configured with multi-tenancy .
Configuration path - workspace//config/tenantsettings.json.

The user should logout and log back in after any changes to the tenantsettings.json file. The
Designer Ul will continue to show the older features until the user logs out and logs back in.

Tenant specific settings are configured by directly editing the file in the above path.

5.3 DesignerEnv transaction list

The DesignerEnv transaction list is available in Configuration Server (Tenant/Transactions/
DesignerEnv). This is mostly used to control the run-time settings. Any change to the DesignerEnv
transaction list does not require the application to be published again or a new build for the
application.

The user should log out and log back in for the changes to reflect in the Designer Ul.

The DesignerEnv transaction list is configured using CME or GAX.

5.4 Configuration settings reference table

Tip
As the following table extends beyond the margin of the page, use the horizontal
scroll bar at the bottom of your browser window to view the complete table.

Category: Analytics

Setting DesignerEnv - Sample Default
Name flowsettings.jdenantsetting®psignerEnv Section Description Value Value

. This flag
enapIeAnaIytlgés Yes enables or true false
(optional) disables

Designer Deployment Guide 20

the
analytics
feature.

esUrl Elasticsearch http://es-
(optional) Yes Yes URL spot.uswl.genhtcc.com:80

Elasticsearch
Server
esServer HostName es-
(optional) = = (for spot.uswl.genhtcc.com
example,
es-service)
esPort Elasticsearch
(optional) Yes Yes port 80
URL of
Elasticsearch
where
Yes reporting Designer
applications
will report
data.

The
maximum
time range
(in days)
to query in
Designer

Yes Analytics. 90 90
Each day's
data is
stored in a
separate
index in
Elasticsearch.

The
maximum
count of
nested
type
objects
that will be
captured
in SDRs.
When set
Yes to -1, 20
which is
the default
value, no
objects will
be
trimmed.
All the
milestones
or
activities

ReportingURL
(optional)

http://es-
spot.uswl.genhtcc.com:80

esMaxQueryDyration
(optional) W'es

sdrMaxObjCoynt
(optional) Yés

Designer Deployment Guide 21

SdrTracelLeve
(optional) Hés

Yes

visited in
runtime
are
expected
to be
captured
in an SDR

It controls
the level
of SDR
detail that
is recorded
by the
blocks
array for
each
application.
Currently,
the valid
values are:

e 100 —
Debug
leve
and
up.
Currently,
there
are no
Debug
messages.

e 200 — 300
Standard
leve
and
up.

This
setting
will
show
all
blocks
that
are
entered
during
a call
in the
blocks
array.

* 300 —
Important
leve
and

up.

300

Designer Deployment Guide

22

Category: Audit

Setting
Name

enaNeESAud@ngs

(optional)

enaMeFSAud@L%gs

(optional)

maXAIOIOSIzeC%n pare

(optional)

lowsettings.jsbenantsetting®ssignerEnv DesignerEny

This
setting
filters
out all
blocks
from
the
blocks
array,
except
those

containing

data
that
will
change
from
call to
call
(such
as the
Menu
block
and
User
Input
block).

Description

Enable or
Disable
audit logs
captured
in

Elasticsearch.

Enable or
Disable
audit logs
captured
in the file
system
under the
logs
directory
orin
standard
output.

The
maximum
size of
data
object for

Sample
Value

false

true

1000000

Default
Value

false

true

1000000

Designer Deployment Guide

23

which a
difference
will be
captured
in the
audit logs,
value in
bytes.
That is,
the
difference
between
the
Designer
object's
old value
and new
value.

Control
whether
reading of
Designer
objects is
captured
in audit
trails. If
enableReadAuyditLogs enabled
(optional) %S Yes any
Designer
object
viewed in
the Ul will
be
recorded
in the
audit logs.

false false

Category: Authorization

Setting
Name

DesignerEnv
Section

Sample Default

flowsettings.jsenantsetting®pgignerenv Value Value

Description
Controls if
Designer
reads and
enforces
disableRBAC Yes Yes permissions
(optional) associated
with the
logged in
user's
roles.

false false

In a Role
object, the
rbacSection name of
(optional) Yes Yes the section
within the
Annex

CfgGenesysAdifygGishedpsBdraaristrator:

Designer Deployment Guide 24

disablePBAC

(optional) e

Category: Collaboration

Setting
Name

locking

(optional) Yes

Category: DAS

Setting
Name

applicationHost
(mandatory) Yes

Yes

flowsettings.jdenantsetting®psignerEnv

flowsettings.j¥enantsetting®gsignerEnv

DesignerEnv
Section

DesignerEnv
Section

where the
privileges
are stored.

Controls if
Designer
allows
partitioning
of the
Designer
workspace
and
restricts a
user's
access to
Designer
objects in
the user's
partitions.

Description

The type

of locking
used, for

an editing
session of
applications,
modules,

or data
tables.

Valid values :
file,
redis, none

Description

The server
name
Designer
uses to
generate
the URL to
the
application.
ORS and
MCP fetch
the
application
code and
other
resources
from this
URL.

false false
Sample Default
Value Value
file file
Sample Default
Value Value

das.uswl.genkuzlftosh

Designer Deployment Guide

25

The

corresponding
applicationPoies port to be 80 80

used with

applicationHost.

This is

normally

not

changed.
deployURL Yes It is the /workspace /workspace

relative

path to the

workspace

on DAS.

Category: Digital

Setting
Name

DesignerEnv
Section

Sample Default

flowsettings.j¥enantsetting®gsignerEnv Value Vellur

Description
If
specified,
this is
used to
filter which
rootsSRL Root
(optional) Yes Yes Categories
to display
when
selecting
Standard
Responses.

A REGular
EXpression
(REGEX).

Specify

how many

times the

same

application

can 20 20
process a

specific

digital

interaction.

maxFIowEnterCégunt

(optional) Yes flowsettings

Category: External APIs

Setting
Name

DesignerEnv
Section

Sample Default

flowsettings.jdenantsetting®psignerEnv VElUE VELLE

Description
Specify
the proxy
used for
external
Yes Yes Yes flowsettings requests http://vpcproxy-000-int.geo.genprim.co
and nexus

API calls (if

enable proxy

is true).

httpProxy
(optional)

redundantHttpProxy
(optional) 955

Specify

Yes Yes flowsettings e

http://vpcproxy-001-int.geo.genprim.co

Designer Deployment Guide 26

Category: Features

Setting
Name

features Yes

Category: GWS

Setting
Name

usehtcc Yes

htccServer Yes

htccport Yes

ssoLoginUrl Yes

flowsettings.jdenantsetting®psignerEnv

Yes

flowsettings.j4enantsetting®psignerEnv

DesignerEnv
Section

DesignerEnv
Section

backup
proxy used
for
external
requests
and nexus
API calls (if
enable proxy
is true),
when
httpProxy
is down.

Sample

Description Value

This is an
object.
See the
5.5
Features
section for
a list of
supported
features.

Sample

Description Value

Set to

true so
that
Designer
works with
GWS. If set
to false,
Designer
defaults to
a local
mode and
may be
used
temporarily
if GWS is
unavailable.

GWS gws-

true

Default
Value

{

nexus: true,

enableBulkAudiolmport:
true

}

Default
Value

false

gws-

Server uswl-int.genhisw.tdnt.genhtcc.com

GWS Port 80

URL of

GWS
authenticatio
Ul.

Designer
redirects

to this URL

80

IP}ttps://gws- https://gws-
uswl.genhtccusovi.genhtcc.com

Designer Deployment Guide

27

maxConcu rre%léiTCCRequest

(optional)

batchOperati%FS(esult'l'l'L
(optional)

Category: Help

Setting
Name

docsMicroseryjceURL
(optional) \%S

Category: IVR

Setting
Name

recordingTypeYes
(optional)

flowsettings.j¥enantsetting®pgsignerEnv DesignerEny

flowsettings.jdenantsetting®gsignerEnv DesignerEny

for
authentication.

For batch
operations
to GWS,
the max
number of
concurrent 5
requests
that
Designer
will send
to GWS.

For batch
operations
to GWS,
the time,
in
milliseconds,
for which
duration
Designer
stores the
results of a
batch
operation
on the
server,
before
deleting
them.

100000

Sample

Description Value

URL for
Designer
documentation.

Sample

Description Value

Specify
the
recording
type to be
used in
Record
block. Set
as GIR. If
the option
is missing

GIR

100000

Default
Value

https://docs.genesys.com
Documentation/

PSAAS/

Public/

Administrator/

Designer

Default
Value

GIR

Designer Deployment Guide

28

Category: Logging

Setting
Name

logging:
{

designer:
{ level:

debug },

audit: {
level:
trace},

auditdebug: ves

{ level:
debug 1},

cli: {

level:
debug }

}

(optional)

Category: Nexus

Setting
Name

ur
(optional)

password
(optional)

flowsettings.j$enantsetting®psignerEnv

flowsettings.jgenantsetting®psignerEnv

Yes

Yes

DesignerEnv
Section

DesignerEnv

Section

nexus

nexus

or blank,
Full Call
Recording
type will
be used.

— Sample
Description Value
Specify
Designer
log levels.

Each field

has valid

values - Loaqing:

trace, 0991ng:

QEbUQ' designer:

info, { level:

warn, debug},

error, or

fatal. audit: {
level:

designer - trace },

log level of

Designer. auditdebug:

audit - log { level:

level of audit. debug},

auditdebug cli: {
- log level of level:
audit debug, debu '}
this will log g
detailed audit
information.

cli - log level
for cli
commands
executed on
Designer.

Sample

Description Value

URL of
Nexus that
typically
includes
the API
version
path. For
example,
https://nexus-
server/
nexus/api/
V3.

nexus x-
api-key

Default
Value

logging:
{

designer:
{ level:
debug 1},

audit: {
level:
trace },

auditdebug:
{ level:
debug },
clis 4
level:
debug }

}

Default
Value

http://nex-
dev.uswl.genhtcc.com

dc4qeirol3nsof569dfn23/

Designer Deployment Guide

29

enable_proxy
(optional)

profile
(optional)

Category: Process

Setting
Name

port Yes

Category: Provisioning

Setting
Name

primarySwitc
(optional) I%s

Category: Routing

Yes

Yes

Yes

flowsettings.jdenantsetting®psignerEnv

flowsettings.j$enantsetting®psignerEnv

nexus

nexus

DesignerEnv
Section

DesignerEnv
Section

created by
Nexus
deployment

Boolean
value to
indicate if
httpProxy
is used to
reach
Nexus.

Enable
Contact
Identification
via Nexus
(for
example,

to enable
Last Called
Agent
routing).

Sample

Description Value

Designer

process

port in the
container.
Normally, 8888
the default

value

should be

left as is.

Sample

Description Value

Specify
the
primary
switch
name if
more than
one switch
is defined
for the
tenant.
Designer
fetches
and works
with route
points
from this
switch.

false

Default
Value

3000

Default
Value

us-west-1

Designer Deployment Guide

30

Setting
Name

ewtRefreshTimeout

(optional)

flowsettings.jdenantsetting®psignerEnv

Yes

Category: Redis

Setting
Name

redis: {
host: "",
port: "",
tlsEnabled:
true,

lockTimeout:

120,

listTimeout:

1800
}

(optional)

flowsettings.jgenantsetting®psignerkEnv

DesignerEnv
Section

flowsettings

DesignerEnv
Section

Description

Specify
the
interval (in
seconds)
at which to
refresh the
Estimated
Waiting
Time when
routing an
interaction.

Description

Used by
Designer
for
resource
index
caching
and multi-
user

collaboration

locks on
Designer
resources.

Itisa
separate
object and
contains:

host - Redis
host name.

port - Redis
port.

tisEnabled -
TLS enabled
or not.

lockTimeout
- Timeout, in
seconds,
before a
resource lock
is released
for an editing
session of
applications,
modules, or
data tables.

listTimeout
- The cache
expiry
timeout (in
seconds) of
the

Sample

Value

Sample
Value

redis: {
host: "",
port: ""
tlsEnabled:
true,
lockTimeout:
120,
listTimeout:
1800

)

Default

Value

Default

Value

redis: {
host:

redis.server.genhtcc.cor

port:

6379,
tlsEnabled:
true,
lockTimeout:
120,
listTimeout:
1800

}

Designer Deployment Guide

31

Category: Security

Setting
Name

flowsettings.jdenantsetting®psignerEnv

2|pF|IeS|z)eL|n\%QMegaByte§es

(optional

disableCSRF

(optional) =

Yes

DesignerEnv
Section

application
list and
shared
modules list.
By default, it
is 30
minutes. That
is, any new
application/
modules
created in
the Ul will be
seen in the
listing page
after 30
mins. It can
be reduced to
a smaller
value. This is
to improve
the page
loading
performance
of the
Applications
and Shared
Modules
page. A
better
performance
is achieved
with a higher
value.

Sample

Description Value

Defines

the

maximum
zipFile size

limit (in 50
megabytes)
during

bulk audio
import.

Disable
CSRF
attack
protection.

http://cwe.mitre.org/
data/

definitions/

352.html false

By default,
CSRF attack
protection is
enabled. It
can be
disabled by
setting this

Default
Value

No default.

false

Designer Deployment Guide

32

flag to true.

Disable
disabIeSecureYCe%okie the secure
(optional) cookies

header

false false

Category: Session

Setting
Name

DesignerEnv
Section

Sample Default

flowsettings.jdenantsetting®psignerEnv Value Value

Description
Idle
timeout, in
seconds,
before a
user
session is
Yes Yes terminated 840 840
while

editing

applications,

modules,

or data

tables.

idleTimeout
(optional)

Timeout,
in
seconds,
before a
resource
lock is
lockTimeout Yes Yes released,
(optional) for an
editing
session of
applications,
modules,
or data
tables.

120 120

Interval, in
seconds,
before the
client
sends a
ping to the
server, to
Yes Yes refresh the 15 15
lock for an
editing
session of
applications,
modules,
or data
tables.

lockKeepalive
(optional)

Category: Workflow
Setting flowsettings.jgenantsetting®psignerEnv DesignerEnv Description Sample Default

Designer Deployment Guide

Name

maxBuilds
(optional)

Yes

enablePTE
(optional)

5.5 Features

Yes

Yes

Section

flowsettings

Specify
the
maximum
number of
builds
allowed
per

application.

Boolean
value to
indicate if
PTE
objects are
enabled at
runtime.

Value

20

true

Value

20

false

The features specified here must be configured under the features object in the flowsettings.json

file.

For example,

features: {

callbackv2: true,

These features are configured only in the flowsettings.json file and the

tenantsettings.json file, and not in DesignerEnv.

}
Feature
Category Setting
Name
Audio

enableBulkAudiOlptjpord|

grammarValidatOptional

Mandatory

Yes

yes

flowsettings.jsobenantsettings.jP@scription

Enable/

disable the
bulk audio

import
feature.

If this

feature is

enabled,

Designer will

Default
Value

false

false

Designer Deployment Guide

34

externalAudioOytmorat
Nexus nexus Optional
Survey survey Optional

Yes

Yes

Yes

Yes

Yes

Yes

validate
invalid
grammar
files during
grammar
upload and
you can
upload only
valid
grammar
files (GRXML
or Nuance
compiled
binary
grammar
files).

If this
feature is
enabled, a
new audio
type,
External
Audio, is
available in
the Play
Message
block. It
accepts a
single
variable that
contains a
URL to the
audio
resource.
MCP will
fetch this
resource
directly and
play it. The
only
supported
value of
Play As is
Audio URI.
There is no
automatic
language
switching for
this audio
type.
Enable/
disable the

Nexus
feature.

Enable/
disable the

false

false

true

Designer Deployment Guide

35

Milestone enablelmplicitMOgtilmMilestone¥es Yes
Bots enableDialogFOptiofBdt Yes Yes
6. Logging

survey
feature.

Enable
reporting
each Shared
Module call
as an
internal
milestone. If
disabled,
Shared
Module calls
will not
generate a
milestone.

When
enabled,
Dialogflow
CX bot type
is added to
the bot
registry and
available for
selection in
the Bot
provider
drop-down
when you
configure a
new bot.

false

false

Designer and DAS support console output (stdout) logging. Genesys recommends configuring console

output logging to minimize the host IOPs and PVCs consumption by using log volumes. Console
output logs can be extracted using log collectors like fluentbit/fluentd and Elasticsearch.

Ensure the below setttings are configured in the respective values.yaml overrides for console

logging:

1. Designer
designerEnv.envs.DES FILE LOGGING ENABLED = false

2. DAS
dasEnv.envs.DAS FILE LOGGING ENABLED = false
dasEnv.envs.DAS STDOUT LOGGING ENABLE = true

6.1 Log levels

Post deployment, Designer and DAS log levels can be modified as follows:

Designer Deployment Guide

36

6.1.1 Designer

1. Configure the logging setting in the flowsettings override (flowsettings.yaml) - Refer to section 5.4

Configuration settings reference table for option descriptions.

2. Execute the steps in the Flowsettings.json update section (8.2.2 Designer deployment process) for the

changes to take effect .

6.1.2 DAS

7

. Configure the dasEnv.envs.DAS LOG LEVEL setting in the Helm das-values.yaml file. Refer to section

4.2 DAS deployment settings for setting descriptions.

. Execute the steps in the Upgrade non production color section (8.2.3 DAS deployment process). The

same DAS version running in production can be used for the upgrade,

. Execute the steps in the Cutover section (8.2.3 DAS deployment process).

Platform / Configuration Server and GWS settings

This section explains the Configuration Server objects and settings required for Designer.

7.1 Create Roles for Designer

Designer uses roles and access groups to determine permissions associated with the logged-in user.
To enable this, you must make these changes in GAX or CME.

Designer supports a number of bundled roles suitable for various levels of users.

DesignerDeveloper - Most users fall into this category. These users can create Designer applications,
upload audio, and create business controls. They have full access to Designer Analytics.

DesignerBusinessUser - These users cannot create objects but they can manage them (for example,
upload audio, change data tables, and view analytics).

DesignerAnalytics - These users only have access to Designer Analytics.

DesignerAdmin - These users can set up and manage partitions associated with users and Designer
objects.

DesignerOperations - Users with this role have full access to all aspects of the Designer workspace.
This includes the Operations menu (normally hidden), where they can perform advanced operational
and maintenance tasks.

To create these roles, import the .conf files included in the Designer Deployment Manifest
package. They are located in the packages/roles/ folder.

In addition, ensure the following for user accounts that need access to Designer:

¢ The user must have read permissions on its own Person object.

Designer Deployment Guide 37

e Users must be associated with one or more roles via access groups.

¢ The on-Premises user must have at least read access on the user, access group(s), and roles(s).

* The access groups must have read/write permissions to the CME folders - Scripts and Transactions.

7.2 Create the DesignerEnv transaction list

Designer requires a transaction list for configuration purposes as described in other sections of this

document. To set this up:

1. Create a transaction list called DesignerEnv.

2. Import the file configuration/DesignerEnv.conf, located in the Designer Deployment Manifest

package.

3. Edit any values according to the descriptions provided in the Designer settings section.

4. Save the list.

5. Ensure Designer users have at least read access to the DesignerEnv transaction list.

7.3 Platform Settings

The platform settings listed below must be configured if the Designer application is used for voice

calls.

Component

SIP Switch -> Voip
Services -> msml
service

SIP Switch -> Voip
Services -> msml
service

SIPServer --> TServer

Switch object annex -->
gts

URS

Config Key

userdata-map-format

userdata-map-filter

divert-on-ringing
agent-no-answer-
timeout
agent-no-answer-action

agent-no-
answeroverflow

after-routing-timeout

sip-treatments-
continuous

msml-record-support

ring-divert

'http' port, protocol =
'http'

Value

sip-headers-encoded

false

12

notready

24

true

true

Description

Option needs to set to
pass JSON data as user
data in SIPS.

To allow userdata
passing to MSML service

RONA is handled by the
platform.

no value, empty.

To allow routed calls
recording via the Media
Server

Required only for Route
Agent block to work.

Designer Deployment Guide

38

ORS --> orchestration

MCP

MCP

UcCs

new-session-on-reroute

[vxmli] transfer.allowed

[cpa] outbound.method

[cview] enabled

7.4 GWS Configuration

7.4.1 Create Contact Center

false

TRUE

NATIVE

TRUE

Required for SIPS
Default Routing (Default
Routing handling
(Voice))

Required for Transfer
block (allows VXML
Transfer in MCP)

Required for Transfer
block (allow CPA
detection for Transfer)

Enables Customer
Context Services

Create a contact center in GWS if it is not already created. Refer to the GWS documentation for more

information on this.

7.4.2 Create GWS Client

Create new GWS client credentials if they are not already created . Refer to the GWS documentation
for more information on this.

8. Deployment

This section describes the deployment process for Designer and DAS.

8.1 Preparation

Before you deploy Designer and DAS using Helm charts, complete the following preparation steps:

N o v A w N

Ensure the Helm client is installed.
Set up an Ingress controller, if not already done.

Setup an NFS server, if not already done.

Create Persistent Volumes - a sample YAML file is provided in the Designer manifest package.
Download the Designer and DAS docker images and push to the local docker registry.
Download the Designer manifest package and extract to the current working directory.

Configure Designer and DAS value overrides (designer-values.yaml and das-values.yaml) - please

ensure the mandatory settings are configured. If the blue-green deployment process is used, Ingress
settings are explained in the following section.

Designer Deployment Guide

39

8.2 Blue-Green deployment

Blue-Green deployment is a release management technique that reduces risk and minimizes
downtime. It uses two production environments, known as Blue and Green or active and inactive, to
provide reliable testing, continuous no-outage upgrades, and instant rollbacks. When a new release
needs to be rolled out, an identical deployment of the application will be created using a Helm
package and after the testing is completed, the traffic is moved to the newly created deployment,
which becomes the ACTIVE environment, and the old environment becomes INACTIVE. This way, a
fast rollback is possible by just changing route if a new issue is found with live traffic. The old inactive
deployment can be removed once the new active deployment becomes stable.

The service cutover is done by updating the Ingress rules. The below diagram shows the high level
approach on how the traffic can be routed to Blue and Green deployments with Ingress rules.

Designer

designer.blue.genhtce.com —— LR R T D Da‘mﬂ;::l
v
i
4
&
New version
s,
~——— designer.genhtcc.com —
Active VT
i : . Y N service desi Deployment
designer.green.genhtcc.com ice designer-green 4’»
DAS
] .) i Deployment
das.blue.genhtcc.com [+ DU R [T Blue Pods
E
i
4
New version
s
_—p das.genhtcc.com ——— -
Active version

das.green.genhtec.com — U T EE T 4"

Designer Deployment Guide 40

/File:BlueGreenDeployment.png
/File:BlueGreenDeployment.png

8.2.1 Preparation for Blue-Green deployment

Before you deploy Designer and DAS using the Blue-Green deployment strategy, complete the
following preparation steps:

1. Configure the Ingress host names for Designer. Create 3 host names as shown below.
The Blue service host name must contain the string blue, for example, designer.blue.genhtcc.com or
designer-blue.genhtcc.com. The Green service host name must contain the string green, for
example, designer.green.genhtcc.com or designer-green.genhtcc.com. The Blue/Green services
can be accessed separately with the Blue/Green host names as shown in this example:
designer.genhtcc.com (production host URL used for external access).
designer.blue.genhtcc.com (URL for Blue service testing).
designer.green.genhtcc.com (URL for Green service testing).

2. Configure the host names in the designer-values.yaml file under ingress. Annotations and paths can
be modified based on the requirement.
For example,
ingress:
enabled: true
annotations: {}
paths: [/]
hosts:

- designer.genhtcc.com
- designer.blue.genhtcc.com
- designer.green.genhtcc.com

3. Configure the Ingress host names for DAS. Create 3 host names as shown below.
The Blue service host name must contain the string blue, for example, das.blue.genhtcc.com or das-
blue.genhtcc.com. The Green service host name must contain the string green, for example,
das.green.genhtcc.comor das-green.genhtcc.com. he Blue/Green services can be accessed
separately with the Blue/Green host names as shown in this example:
das.genhtcc.com (the production host URL used for external access).
das.blue.genhtcc.com (URL for Blue service testing).
das.green.genhtcc.com (URL for Blue service testing).

4. Configure the host names in the das-values.yaml file under ingress. Annotations and paths can be
modified based on the requirement.
For example,
ingress:
enabled: true
annotations: {}
paths: [/]
hosts:

- das.genhtcc.com
- das.blue.genhtcc.com
- das.green.genhtcc.com

8.2.2 Designer deployment process

Initial deployment

The resources's ingress and persistent volume claims (PVC) must be created initially before deploying
the Designer service as these resources are shared between the Blue/Green services and must be
created at the very beginning of the deployment. They will not be needed for subsequent upgrades.

The required values are passed using the SET command as shown below or by modifying the
values.yaml file.

Designer Deployment Guide 41

1. Create Persistent Volume Claims required for the Designer service (assuming the volume service name

is designer-volume):

helm upgrade --install designer-volume -f designer-values.yaml designer-9.0.xx.tgz --
set deployment.strategy=volume

Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=volume - indicates that this helm install will create persistent volume claim.

2. Create ingress rules for the Designer service (assuming the ingress service name is designer-

3.

1.

2.

ingress):

helm upgrade --install designer-ingress -f designer-values.yaml designer-9.0.xx.tgz --
set deployment.strategy=ingress --set-string deployment.color=green

Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=ingress - indicates that this helm install will create ingress rules for the
Designer service.

deployment.color=green - indicates that the current production instance (active) color is Green.

Deploy the Designer service to the color selected in step 2. In this case, Green is selected and assuming
the service name is designer-green:

helm upgrade --install designer-green -f designer-values.yaml designer-9.0.xx.tgz --
set deployment.strategy=service --set desImage.tag=9.0.1xx.xx.xx --set-string
deployment.color=green

Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=service - indicates that the Designer service will be installed.
desImage.tag=9.0.1xx.xx.xx - indicates the Designer version to be installed, for example,
9.0.116.07.10.

deployment.color=green - indicates that the Green color service will be installed.

Upgrade non-production color

Identify the current production color by checking the Designer ingress rules (kubectl describe
ingress designer-ingress). Green is the production color in the below example as the production
host name points to the Green service.

kubectl describe ingress designer-ingress

Host Path Backends

designer.genhtecec.com ! designer-green:thttp (10.244.0.23:8888)
designer.green.genhtcc.com / designer-green:http (10.244.0.23:8888)
designer.blue.genhtcc.com ! designer-blue:http (10.244.0.45:8888)

Deploy the Designer service into the non-production color. In the above example, Blue is the non-
production color (assuming the service name is designer-blue):

helm upgrade --install designer-blue -f designer-values.yaml designer-9.0.xx.tgz --set
deployment.strategy=service --set desImage.tag=9.0.1xx.xx.xx --set-string
deployment.color=blue

Note: The overrides passed as an argument in the above helm upgrade:
deployment.strategy=service - indicates that the Designer service will be installed.
desImage.tag=9.0.1xx.xx.xx - indicates the Designer version to be installed, for example,
9.0.116.08.12.

deployment.color=blue - indicates that the Blue color service will be installed.

3. The non-production color can be accessed with the non-production host name (for example -

designer.blue.genhtcc.com), any testing can be done using this URL.

Designer Deployment Guide

42

/File:Upgrade_Non-Production_Color.png
/File:Upgrade_Non-Production_Color.png

Cutover

Once testing is completed on the non-production color, traffic can be moved to the new version by
updating the ingress rules.

1. Update the Designer Ingress with the new deployment color by running the below command (in this
case, Blue is the new deployment color, that is, the non-production color):

helm upgrade --install designer-ingress -f designer-values.yaml designer-9.0.xx.tgz --
set deployment.strategy=ingress --set-string deployment.color=blue
Note: The overrides passed as an argument to the above helm upgrade command:

deployment.strategy=ingress - indicates that this helm install will create ingress rules for the
Designer service.

deployment.color=blue - indicates that the current production (active) color is Blue.

2. Verify the ingress rules by executing the command kubectl describe ingress designer-ingress.
The production host name should point to the new color service.

Workspace upgrade

Workspace resources must be upgraded after cutover. This will upgrade the system resources in the
Designer workspace.

1. Log in to one of the Designer pods with the command: kubectl exec -it bash.

2. Execute the migration command (this will create new directories/new files introduced in the new
version):

node ./bin/cli.js workspace-upgrade -m -t

3. Execute the workspace resource upgrade command (this will upgrade system resources, such as system

service PHP files, internal audio files, and callback resources):
node ./bin/cli.js workspace-upgrade -t

contact center id is the contact center ID created in GWS for this tenant. The workspace resources
are located within the contact center ID folder (/workspaces//workspace).

The above steps - upgrade non production color, cutover, and workspace upgrade will also be used for further
upgrades.

Flowsettings.json update

Post deployment, the flowsettings.json file can be modified via helm install using the below steps:

Download the current flowsettings.json file from the location: /designer/flowsettings.json.
Modify the necessary settings (refer to section 5.4 Configuration settings reference table).

1.
2.
3. Create a new YAML file, for example, flowsettings.yaml.
4.

Copy and paste the above modified flowsettings.json content in the new flowsettings.yaml file:
flowsettings:

For example:
flowsettings: {
port:8888,

Designer Deployment Guide 43

5.

6.

usehtcc:true,
htccserver:gws-int-genhtcc.com,
htccport:80,

Run the below helm upgrade command on the non-production color service. It can be done as part of
Designer upgrade by passing the flowsettings.yaml in the extra argument - -values. In this case, the
new Designer version can be used for the upgrade. If it is only a flowsettings.json update, the same
Designer version will be used.

helm upgrade --install designer-blue -f designer-values.yaml designer-9.0.xx.tgz --set
deployment.strategy=service --set desImage.tag=9.0.1xx.xx.xx --set-string
deployment.color=blue --values flowsettings.yaml

The non-active color Designer will have updated settings after the above upgrade.

Once testing is completed on the non-production service, perform the cutover steps as mentioned in the
Cutover section. Now, the production service will contain the changed settings.

Rollback

* If any blocking issues are noticed in the current production service, traffic can be rolled back to the

previous active color by updating the ingress rules:

helm upgrade --install designer-ingress -f designer-values.yaml designer-9.0.xx.tgz --
set deployment.strategy=ingress --set-string deployment.color=green

Rollback of workspace resources is generally not required as the workspace resources shipped with
Designer are backward and forward compatible. If required, the workspace can be upgrade from the old
version, but it is not necessary. Future new version upgrades must run the workspace upgrade as per
the normal process.

Rollback of applications and shared modules is also not required as these resources are also backward
and forward compatible with Designer.

8.2.3 DAS deployment process

Initial deployment

The ingress must be created initially before deploying the DAS service as it is shared between the
Blue/Green services and must be created at the very beginning of the deployment. It will not be
needed for subsequent upgrades. The required values are passed using the SET command as shown
below or by modifying the values.yaml file.

1.

2.

Create ingress rules for the Designer service (assuming the ingress service name is das-ingress):
helm upgrade --install das-ingress -f das-values.yaml das-9.0.xx.tgz --set
deployment.strategy=ingress --set-string deployment.color=green

Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=ingress - indicates that this helm install will create ingress rules for the DAS
service.

deployment.color=green - indicates that the current production instance (active) color is Green.

Deploy the DAS service to the color selected in step 1. In this case, Green is selected and assuming the
service name is das-green:

helm upgrade --install das-green -f das-values.yaml das-9.0.xx.tgz --set
deployment.strategy=service --set dasImage.tag=9.0.1xx.xx.xx --set-string
deployment.color=green

Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=service - indicates that the DAS service will be installed.

Designer Deployment Guide 44

dasImage.tag=9.0.1xx.xx.xx - indicates the DAS version to be installed, for example, 9.0.111.04.4.
deployment.color=green - indicates that the Green color service will be installed.

Upgrade non-production color

1. Identify the current production color by checking the DAS ingress rules (kubectl describe ingress
das-ingress). Green is the production color in the below example as the production host name points
to the Green service.

kubectl describe ingress das-ingress

Host Path Backends
das.genhtcc.com ! das-green:http (10.244.0.5:8081)
das.green.genhtcc.com / das-green:http (10.244.0.5:8081)

das.blue.genhtcc.com ! das-blue:http (10.244.0.37:8081)

2. Deploy the DAS service into the non-production color. In the above example, Blue is the non-production
color (assuming the service name is das-blue):
helm upgrade --install das-blue -f das-values.yaml das-9.0.xx.tgz --set
deployment.strategy=service --set dasImage.tag=9.0.1xx.xx.xx --set-string
deployment.color=blue
Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=service - indicates that the DAS service will be installed.
dasImage.tag=9.0.1xx.xx.xx - indicates the DAS version to be installed , for example, 9.0.111.05.5.
deployment.color=blue - indicates that the Blue color service will be installed.

3. The non-production color can be accessed with the non-production host name (for example -
das.blue.genhtcc.com), any testing can be done using this URL.

Cutover

Once testing is completed on the non-production color, traffic can be moved to the new version by
updating the ingress rules.

1. Update the DAS Ingress with the new deployment color by running the below command (in this case,
Blue is the new deployment color, that is, the non-production color):
helm upgrade --install das-ingress -f das-values.yaml das-9.0.xx.tgz --set
deployment.strategy=ingress --set-string deployment.color=blue
Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=ingress - indicates that this helm install will create ingress rules for the DAS
service.
deployment.color=blue - indicates that the current production (active) color is Blue.

2. Verify the ingress rules by running the command kubectl describe ingress das-ingress. The production
host name should point to the new color service.

Designer Deployment Guide 45

/File:Upgrade_non-production_color_-_DAS.png
/File:Upgrade_non-production_color_-_DAS.png

The above steps - upgrade non production color and cutover will also be used for further upgrades.

Rollback

If any blocking issues are noticed in the current production service, traffic can be rolled back to the

previous active color by updating the ingress rules:

helm upgrade --install das-ingress -f das-values.yaml das-9.0.xx.tgz --set
deployment.strategy=ingress --set-string deployment.color=green

8.3 Rolling upgrade

A rolling upgrade is not recommended. Use the Blue/Green upgrade procedure.

8.4 Uninstall
To uninstall a service/volume/ingress rules:

helm uninstall

9. Enabling optional features

9.1 Enable Designer Analytics and Audit Trail

Post Designer deployment, features such as Analytics and Audit Trail can be
enabled by performing the below steps.

Ensure Elasticsearch is deployed before proceeding.

9.1.1 Designer changes
1. Configure the following settings in flowsettings override (flowsettings.yaml) - Refer to section 5.4
Configuration settings reference table for option descriptions.
* enableAnalytics: true
* enableESAuditLogs: true
* esServer

e esPort

Designer Deployment Guide

46

e esUrl

2. Configure the below setting in the DesignerEnv transaction list:
ReportingURL in the reporting section.

3. Perform the steps in the Flowsettings.json update section (8.2.1 Designer deployment process).

9.1.2 DAS changes

1. Configure the following settings in the helm das-values.yaml file. Refer to the 4.2 DAS deployment

settings section for setting descriptions.
dasEnv.envs.DAS SERVICES ELASTICSEARCH ENABLED = true
dasEnv.envs.DAS SERVICES ELASTICSEARCH HOST
dasEnv.envs.DAS SERVICES ELASTICSEARCH PORT

2. Perform the steps in the Upgrade non production color section (8.2.2 DAS deployment process). The
same DAS version running in production can be used for the upgrade.

3. Perform the steps in the Cutover section (8.2.2 DAS deployment process).

10. Cleanup

10.1 Elasticsearch maintenance recommendations

To help you better manage your indexes and snapshots, and to prevent too many indexes from
creating an overflow of shards, Genesys recommends that you set up a scheduled execution of
Elasticsearch Curator with the following two actions:

¢ Delete indexes older than the given threshold according to the index name and mask.

e sdr-* (3 months)

e audit-* (12 months)

¢ Make a snapshot of each index:
* sdr-* (yesterday and older)
e audit-*

e kibana-int-*

11. Limitations

Designer currently supports multi-tenancy provided by the tenant Configuration Server. That is, each
tenant should have a dedicated Configuration Server, and Designer can be shared across the multiple

tenants.

Designer Deployment Guide 47

	Designer Deployment Guide

