3 GENESYS

This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Designer Deployment Guide

Deploy Designer (versions v9010005 and above)

11/30/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

e 1 1. About this document
* 1.1 1.1 Intended audience
* 1.2 1.2 Before you begin
e 2 2. Product overview
e 2.1 2.1 Designer
e 2.2 2.2 Designer Application Server (DAS)
* 2.3 2.3 Deployment architecture
e 2.4 2.4 High Availability (HA) and Scalability
¢ 3 3. Prerequisites
* 3.1 3.1 Mandatory prerequisites
e 3.2 3.2 Optional prerequisites

4 4. Deployment configuration settings (Helm values)
* 4.1 4.1 Designer deployment settings
* 4.2 4.2 DAS deployment settings
e 5 5. Post deployment Designer settings
¢ 5.1 5.1 Flow settings
* 5.2 5.2 Tenant settings
e 5.3 5.3 DesignerEnv transaction list
* 5.4 5.4 Configuration settings reference table
* 5.5 5.5 Features
* 6 6. Logging
* 6.1 6.1 Log levels
e 7 7. Platform / Configuration Server and GWS settings
e 7.1 7.1 Create Roles for Designer
e 7.2 7.2 Create the DesignerEnv transaction list
* 7.3 7.3 Platform Settings
* 7.4 7.4 GWS Configuration
* 8 8. Deployment
» 8.1 8.1 Preparation
* 8.2 8.2 Blue-Green deployment

Designer Deployment Guide

* 8.3 8.3 Rolling upgrade
* 8.4 8.4 Uninstall

¢ 9 9. Enabling optional features
* 9.1 9.1 Enable Designer Analytics and Audit Trail
¢ 10 10. Cleanup
* 10.1 10.1 Elasticsearch maintenance recommendations

e 11 11. Limitations

Designer Deployment Guide

Learn how to deploy Designer as a service in a Kubernetes cluster (for DesDepMnfst v9010005
and above).

1. About this document

This document guides you through the process of deploying and configuring Designer and Designer
Application Server (DAS) as a service in a Kubernetes (K8s) cluster.

Information on the following topics is provided:

e Overview of Designer and DAS
e Configuration details

¢ Deployment process

e Enabling optional features

¢ Cleanup

¢ Known limitations

1.1 Intended audience

This document is intended for use primarily by system engineers and other members of an
implementation team who will be involved in configuring and installing Designer and DAS, and
system administrators who will maintain Designer and DAS installations.

To successfully deploy and implement applications in Designer and DAS, you must have a basic
understanding of and familiarity with:

¢ Network design and operation

* Network configurations in your organization

¢ Kubernetes

¢ Genesys Framework architecture and functions

1.2 Before you begin

1. A Kubernetes cluster must be deployed. Refer to the Kubernetes documentation site for installation
instructions.

2. Install Helm according to the instructions outlined in the Helm documentation site.

After you complete the above mandatory procedures, return to this document to complete an on-
premise deployment of Designer and DAS as a service in a K8s cluster.

Designer Deployment Guide

2. Product overview

The following sections provide a brief overview of Designer and DAS.

2.1 Designer

The Designer service provides a web Ul to build and manage VXML and SCXML based self-service and
assisted service applications for a number of media types. It stores data on the local file system and
is synchronized across instances by using services like Network File System (NFS). Genesys
customers can build applications using a simple drag and drop method, and assign contact points
(Route Points and other media endpoints) to applications directly from the Designer Ul. Insights into
runtime behavior of applications and troubleshooting aid is provided by Designer Analytics, which
includes a rich set of dashboards based on session detail records (SDR) from data stored in
Elasticsearch.

Designer offers the following features:
e Applications for working with phone, chat, email, SMS (text messages), Facebook, Twitter, and open
media types.
e Bots, ASR, TTS capabilities for self-service.
» Assisted service or routing.
e Callback.
e Business Controls.
e Audio, message management.
e Grammars management.
* Contact points management - route points, chat end points, email pop-client/mailboxes.
¢ Analytics dashboards through embedded Kibana.
Designer is an Express/Node.js application. The Ul is designed using Angular powered Bootstrap.

Application data (SCXML and VXML) is stored as a file system. Designer Analytics and Audit data is
stored in Elasticsearch.

2.2 Designer Application Server (DAS)

Designer Application Server (DAS) hosts and serves the Designer generated application files (SCXML
and VXML), audio, and grammars. It also provides:

¢ Runtime evaluation of Business Controls (business hours, special days, emergency flags and data
tables).

¢ Callback interface to GES.

* Interface to External APIs.
DAS uses built-in NGINX to front requests. It consists of 3 modules: NGINX, PHP, and Node.js.

¢ Requests for static workspace content (SCXML, VXML, JS, audio, grammar, etc) are handled by the

Designer Deployment Guide 5

NGINX module.
¢ Requests for PHP content are processed by the FastCGl PHP module.
* SDR (Analytics) processing requests are handled by the DAS Node.js module.

Files generated by Designer can be served only by DAS. Designer will work only with
DAS.

2.3 Deployment architecture

The below architecture diagram illustrates a sample premise deployment of Designher and DAS:

Error creating thumbnail: Unable to save thumbnail to destination
2.4 High Availability (HA) and Scalability

Designer and DAS must be deployed as highly available in order to avoid single points of failure. A
minimum of 2 replicas of each service must be deployed to achieve HA.

The Designer and DAS service pods can be automatically scaled up or down based on metrics such as
CPU and memory utilization. The Deployment configuration settings section explains how to
configure HA and auto-scaling.

Refer to the Genesys Docker Deployment Guide for more information on general HA recommendation
for Kubernetes.

3. Prerequisites
Before deploying Designer, ensure the following resources are deployed, configured, and accessible:
3.1 Mandatory prerequisites

e Kubernetes 1.12+
¢ Helm 3.0

Docker Registry

* Setup a local docker registry to store Designer and DAS docker images.

e Ingress Controller

» If Designer and DAS are accessed from outside of a K8s cluster, it is recommended to deploy/
configure an ingress controller (for example, NGINX), if not already available. Also, the Blue-Green
deployment strategy works based on the ingress rules.

Designer Deployment Guide 6

* The Designer Ul requires Session Stickiness. Configure session stickiness in the annotations
parameter in the values.yaml file during Designer installation.

¢ Persistent Volumes (PVs)

Create persistent volumes for workspace storage (5 GB minimum) and logs (5 GB minimum)

* Set the access mode for these volumes to ReadWriteMany.

The Designer manifest package includes a sample YAML file to create Persistent Volumes required
for Designer and DAS.

Persistent volumes must be shared across multiple K8s nodes. Genesys recommends using NFS to
create Persistent Volumes.

¢ Shared file System - NFS

* For production, deploy the NFS server as highly available (HA) to avoid single points of failure. It is

also recommended that the NFS storage be deployed as a Disaster Recovery (DR) topology to
achieve continuous availability if one region fails.

By Default, Designer and DAS containers run as a Genesys user (uid:gid 500:500). For this reason,
the shared volume must have permissions that will allow write access to uid:gid 500:500. The
optimal method is to change the NFS server host path to the Genesys user: chown -R
genesys:genesys.

e The Designer manifest package includes a sample YAML file to create an NFS server. Use this only
for a demo/lab setup purpose.

¢ Genesys Web Services (GWS) 9.x

* Configure GWS to work with a compatible version of Configuration Server.
¢ Other Genesys Components

* ORS ORS 8.1.400.x

* Nexus 9.x

* URS 8.1.400.x

3.2 Optional prerequisites

¢ Elasticsearch 7.8.0
* Elasticsearch is used for Designer Analytics and audit trail.

¢ Redis 3.2.x

* Redis is used for resource index caching and multi-user collaboration locks on Designer resources.

4 Deployment configuration settings (Helm values)

This section provides information on the various settings that have to be configured in Designer and
DAS. The configuration settings listed below will be used during the deployment of Designer and DAS.

That is, these settings will be used during initial deployment / upgrade. These settings can be
configured in the values.yaml Helm file.

Designer Deployment Guide

4.1 Designer deployment settings

The following table provides information on the Designer deployment settings. These settings are
configured in the designer-values.yaml file.

Parameter Description Mandatory? Default Value
deployment. replicaCountE:rprgirteO; services to Mandatory 2

Maximum number of
replicas created. It is
deployment.maxReplicas recommended to Optional 10
configure this setting if
auto-scaling is used.

The strategy to select
which type of resources
to deploy. Valid values
are: default,

service, volume,
ingress.

¢ volume - for blue/
green upgrade, this
is to create a
Persistent Volume
Claim (PVC) for the
first time.

* ingress - for the
deployment.strategy blue/green upgrade, Mandatory service
this is to create an
ingress for the first
time and update the
ingress during
service cutover.

e service - for
upgrading the blue/
green Designer
service.

e default - for
performing a rolling
upgrade

This is to deploy/
upgrade the Designer
service in a blue-green
upgrade strategy. Valid
values are: blue,
green.

deployment.green Optional green

pureengage-docker-
Mandatory staging.jfrog.io/
designer/designer

Docker repository for

desImage.repository the Designer image.

desImage.tag Designer image version. Mandatory 9.0.109.08.20

Designer Deployment Guide

desImage.pullPolicy

volumes

volumes

volumes

volumes

volumes.

volumes.

volumes.

volumes.

.workspaceMountP\g

.workspaceSto rag%‘acrtga

Designer image pull
policy (imagePullPolicy).
Valid values: Always,
IfNotPresent, Never.

¢ Always - always pull
the image.

¢ IfNotPresent - pull
the image only if it
does not already
exist on the node.

¢ Never - never pull
the image.

The path where the
%kspace volume is to
€ mounted inside the
Designer container.

Persistent volume claim

.workspaceClaim name for the

workspace.

Size of the persistent
volume claim for the
workspace.

.workspaceClaimSize

The persistent volume must
be equal to or greater than
this size.

storageClassName

provided in the

istent volume that
crédted for the

Designer workspace

(example, nfs).

The path where the
Designer logs volume is
to be mounted inside
the Designer container.

logMountPath

Persistent volume claim

logClaim name for logs.

Size of the persistent
volume claim for the
Designer logs.

logClaimSize)
The persistent volume must

be equal to or greater than
this size.

storageClassName
provided in the
logStorageClasspersistent volume that
is created for the
Designer logs

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

IfNotPresent

/designer/workspace

(Changing this value is not
recommended.)

designer-managed-disk

5Gi

manual

/designer/logs

designer-logs

5Gi

manual

Designer Deployment Guide

healthApi.

healthApi.

healthApi.

healthApi.

healthApi.

path

(example, nfs).

Designer Health Check
API path.

containerPortContainer running port.

Health check will be

startupDelay started after a delay as

specified in this setting.
The interval between

checkIntervaleach health check

failureCount

designerEnv.enabled

designerEnv.

request.

Number of health check
failures to be considered
before marking the
container as instable or
restart.

This enables providing
environment variables
as an input to Designer
pods.

It uses ConfigMap to store the
environment variables.

Designer port for

envs.DES PORdntainer (port in

flowsettings.json).
DAS hostname

designerEnv.envs.DES ARlapplicationHost in

flowsettings.json).
DAS port

designerEnv.envs.DES ARlapplicationPort in

flowsettings.json).

This is normally not
changed. It is the

relative path to the
workspace on DAS.

designerEnv.envs.DES DEPLOY URL

The default value
/workspaces should be
always be used (deployURL in
flowsettings.json).

Set to true so Designer
works with GWS. If set
to false. Designer

designerEnv.envs.DES USkeRLAE to a local mode

and may be used
temporarily if GWS is
unavailable (usehtcc in

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

/health

(Changing this value is not
recommended.)

8888

(Changing this value is not
recommended.)

20

true

(Changing this value is not
recommended.)

8888

das

80

/workspaces

true

(Changing this value is not
recommended.)

Designer Deployment Guide

10

designerEnv.

designerEnv.

designerEnv.

designerEnv.

designerEnv.

designerEnv.

designerEnv.

designerSecrets.enable

designerSec rets.GWS_CIigr?t

envs.

envs.

envs.

envs.

envs.

envs.

envs.

DES_HTX\.

flowsettings.json).

GWS server host
(htccserverin

DES HTilawSERViEgs.json), for

example,
gws.genhtcc.com.

GWS server port
htccport in
owSettings.json), for
example, 80.

To enable or disable

DES ENRBSINATARaltics

enableAnalytics in
flowsettings.json).

Elasticsearch URL (for

DES ES<-:‘>fﬁ{|rh1ple, http://es-

service:9200), esUrl in
flowsettings.json.

Elasticsearch Server

oEs_e<GENae (for example,

es-service), esServer in
flowsettings.json.

Elasticsearch port (for

DES ESekdRiple, 9200), esPort

in flowsettings.json.

Enable file logging. If

oes_FifR SIRERE RROERT.

logs.

This enables providing
the GWS client ID /
secret as an input to
c]Designer pods.

It uses Kubernetes Secrets to
store the GWS client
credentials.

GWS Client ID, create a
new GWS client if it
e?crift exist, steps are
éxplained in the
platform settings
section.

designerSecrets.GWS_CliGWSd&dreht secret

service.type

service.port

Service type (either
ClusterIP or NodePort
or LoadBalancer).

Designer service port to

Mandatory

Mandatory

Optional

Optional

Optional

Optional

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

gws-
uswl-int.genhtcc.com

80

false

http://es-
spot.uswl.genhtcc.com

es-
spot.uswl.genhtcc.com

80

false

true

designer-secret

ZXh0ZXJuYWxfYXBpX2NsaWVudA==

(This value is valid only for lab
deployments.)

ClusterlP

8888

Designer Deployment Guide

11

service.targetPort

service.nodePort

ingress.enabled

ingress.paths
ingress.hosts

ingress.tls

resources.limits.cpu

be exposed in the
cluster.

Designer application
port running inside the
container.

Port to be exposed in
case

service.type=NodePort.

Enable/Disable ingress.
Ingress should be
enabled for all cases
except a lab/demo
setup.

Ingress path

Hostnames to be
configured in ingress for
the Designer service.

TLS config for ingress.

Maximum amount of
CPU processing power
that K8s allocates for
the container.

Maximum amount of

resources.limits.memorymemory K8s allocates

for the container.
Guaranteed CPU

resources.requests.cpu allocation for the

container.

Guaranteed memory

resources.requests.memaaljocation for the

container.

Controls which user ID
the containers are run
with. This can be
configured to run
Designer as a non-root
user.

Currently, only a Genesys
user is supported by the
Designer base image.

securityContext. runAsUsRp is the ID of the Genesys

user and it cannot be
modified.

The file system must reside
within the Genesys user
account in order to run
Designer as a Genesys user.
Change the NFS server host
path to the Genesys user:

chown -R genesys:genesys

Mandatory

Optional

Mandatory

Mandatory
Mandatory

Optional

Mandatory

Mandatory

Mandatory

Mandatory

Optional

8888

Sample value : 30180

true

(/1

ssdevl.genhtcc.com

(1

600m

1Gi

500m

512Mi

500

Designer Deployment Guide

12

securityContext. runAsG

nodeSelector

affinity

tolerations

hpa.enabled

hpa.targetCPUPercent

Controls which primary
group ID the containers
are run with. This can
be configured to run
Designer as a non-root
ro&&. Currently, only a
Genesys user group
(GID - 500) is supported
by the Designer base
image.

Optional

To allow pods to be
scheduled on the nodes
based labels assigned to
the nodes.

Optional

The K8s standard node
affinity and anti-affinity
configurations can be
added here. Refer to
this K8s document for
sample values.

Optional

Tolerations works with

taints to ensure that

pods are not scheduled

onto inappropriate Optional
nodes. Refer to this K8s

document for sample

values.

Enables K8s Horizontal
Pod Autoscaler (HPA). It
automatically scales the
number of pods based
on average CPU
utilization and average
memory utilization.

Optional

More information about HPA is
available here.

The K8s HPA controller
will scale up/down pods
based on the target CPU
utilization percentage
specified. It scales up/
down pods between the
range
deployment.replicaCount
to
deployment.maxReplicas.

The K8s HPA controller

Optional

hpa.targetMemoryPercentwill scale up/down pods Optional

based on the target

500

Default value:
nodeSelector: {}
Sample value:

nodeSelector:

{}

(1

false

70

70

Designer Deployment Guide

13

memory utilization
percentage specified. It
scales up/down pods
between the range
deployment. replicaCount
to
deployment.maxReplicas.

Enables Kubernetes
Annotations. Refer to
this document for more
information on K8s
Annotations.

. The Designer Ul requires .
annotations Session Stickiness if the Optional
replica count is more than 1.
Configure session stickiness
based on the ingress
controller type. Ingress
configuration like session
stickiness can be configured
here.

Any custom labels can

labels be configured. It is a key
and value, for example,
key:value.

Optional

4.2 DAS deployment settings

{}

tenant: shared

The following table provides information on the DAS deployment settings. These settings are

configured in the das-values.yaml file.

Parameter Description Mandatory?
; Number of services to
deployment. repllcaCountbe created. Mandatory

Maximum number of

replicas created. It is
deployment.maxReplicas recommended to Optional

configure this setting if

auto-scaling is used.

The strategy to select
which type of resources
to deploy. Valid values
are : default,
service, volume,
ingress.

deployment.strategy * ingress - for the Mandatory
blue/green upgrade,
this is to create an
ingress for the first
time and update the
ingress during
service cutover.

Default Value

2

10

service

Designer Deployment Guide

14

deployment.green

dasImage.repository

dasImage.tag

dasVolumes.wo rkapceMoun:%élgot
dasVolumes.workspaceClagi,

dasVolumes.logMountPathC

dasVolumes.logClaim

dasHealthApi.path

* service - for
upgrading the blue/
green DAS service.

e default - for
performing a rolling
upgrade.

This is to deploy/
upgrade the DAS
service in a blue-green
upgrade strategy. Valid
values are: blue,
green.

Docker repository for
the DAS image.

DAS image version.

orkspace path
the container.

Persistent volume claim
name for the workspace
(must be the same as

DeS|gner s claim name).

DAS log path inside the
ontainer.

Persistent volume claim
name for logs (must be
the same as Designer's
claim name).

DAS Health Check API
path.

dasHealthApi.containerPooritainer running port.

Health check will be

dasHealthApi.startupDelsharted after a delay as

specified in this setting.
The interval between

dasHealthApi.checkInteraadh health check

request.

Number of health check
failures to consider

dasHealthApi.failureCouvdfore marking the

dasService.type

dasService.port

container as instable or
restart.

Service port (either
ClusterIP or NodePort
or LoadBalancer).

DAS service to be
exposed in the cluster.

Optional

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

green

pureengage-docker-
staging.jfrog.io/
designer/das

9.0.111.05.5

/das/www/workspaces

designer-managed-disk

/das/log

designer-logs

/health

8081

10

ClusterlP

8081

Designer Deployment Guide

15

DAS application port
dasService.targetPort running inside the
container.

Port to be exposed in
dasService.nodePort case

service.type=NodePort.

This enables providing
environment variables

dasEnv.enabled as an input to DAS pods.

It uses ConfigMap to store the
environment variables.

Enable file logging. DAS
€ dout
dasEnv.envs.DAS FILE LOHHR g,Em%Xmﬁﬂst
always be false.

Enables log levels. Valid
\N._z-,\lues are: FATAL,
ERROR, WARN, INFO,
DEBUG, TRACE.

dasEnv.envs. DAS_STDOUTE@%@ﬁ%@Q&%{E output

To enable or disable
Designer Analytics. This

dasEnv.envs.DAS LOG LE

Mandatory

Optional

Mandatory

Mandatory

Optional

Mandatory

dasEnv.envs.DAS SERVICESHid % i€§&kRAHOENABLEDptional

DAS to initialize ES
templates.

Elasticsearch Server

dasEnv.envs. DAS_SERVIC%&%T}%@)’(%%EEW&T

http://es-service)

dasEnv.envs. DASisERVICéﬁﬂ%ﬁ?%‘igﬁfhgﬁm

Maximum amount of
CPU processing power
%hat K8s allocates for
the container.

dasresources.limits.cp

Maximum amount of
dasresources.limits.memmeymory K8s allocates
for the container.

uaranteed CPU

CEseaelges, [egleas, C%Vocation for container.

Guaranteed Memory
dasresources.requests.meimaation for the
container.

Controls which user ID
the containers are run

securityContext. runAsUseith. This can be
configured to run DAS
as a non-root user.

Optional

Optional

Mandatory

Mandatory

Mandatory

Mandatory

Optional

8081

Sample value : 30280

true

false

DEBUG

true

false

http://designer-es-client-
service

9200

600m

1Gi

400m

512Mi

500

Designer Deployment Guide

16

Currently, only a Genesys
user is supported by the DAS
base image.

500 is the ID of the Genesys
user and it cannot be
modified.

Controls which primary
group ID the containers
are run with. This can
be configured to run

securityContext. runAsGridAf as a non-root user.

nodeSelector

affinity

tolerations

hpa.enabled

hpa.targetCPUPercent

Currently, only a
Genesys user group
(GID - 500) is supported
by the DAS base image.

To allow pods to be
scheduled on the nodes-
based labels assigned to
the nodes.

The K8s standard node
affinity and anti-affinity
configurations can be
added here. Refer to
this K8s document for
sample values.

Tolerations works with
taints to ensure that
pods are not scheduled
onto inappropriate
nodes. Refer to this K8s
document for sample
values.

Enables K8s Horizontal
Pod Autoscaler (HPA). It
automatically scales the
number of pods based
on average CPU
utilization and average
memory utilization.

More information about HPA is
available here.

The K8s HPA controller
will scale up/down pods
based on the target CPU
utilization percentage
specified. It scales up/
down pods between the
range

Optional

Optional

Optional

Optional

Optional

Optional

500

Default value:
nodeSelector: {}
Sample value:

nodeSelector:

{}

(1

false

75

Designer Deployment Guide

17

deployment. replicaCount
to
deployment.maxReplicas.

The K8s HPA controller
will scale up/down pods
based on the target
memory utilization
tpercentage specified. It
scales up/down pods
between the range
deployment.replicaCount
to
deployment.maxReplicas.

hpa.targetMemoryPercen Optional 70

Enables Kubernetes
Annotations. Refer to
annotations this document for more Optional {}
information on K8s
Annotations.

Any custom labels can
be configured. It is a key
and value, for example,
key:value.

labels Optional tenant: shared

5. Post deployment Designer settings

Post deployment, Designer configuration is managed from the following 3 locations:

5.1 Flow settings

Flow Settings is used for controlling global Designer settings that are applicable to all tenants and it
contains bootstrap configuration settings such as port, GWS info, and DAS URL.

Configuration path - /workspace/designer/flowsettings. json.

This will be configured using the helm install. The Flowsettings.json update section (8.2.2 Designer
deployment process) describes the steps to update the flowsettings.json file.

5.2 Tenant settings
These are tenant specific settings if the Designer service is configured with multi-tenancy .
Configuration path - workspace//config/tenantsettings.json.

The user should logout and log back in after any changes to the tenantsettings.json file. The
Designer Ul will continue to show the older features until the user logs out and logs back in.

Tenant specific settings are configured by directly editing the file in the above path.

Designer Deployment Guide 18

5.3 DesignerEnv transaction list

The DesignerEnv transaction list is available in Configuration Server (Tenant/Transactions/
DesignerEnv). This is mostly used to control the run-time settings. Any change to the DesignherEnv
transaction list does not require the application to be published again or a new build for the
application.

The user should log out and log back in for the changes to reflect in the Designer Ul.

The DesignerEnv transaction list is configured using CME or GAX.

5.4 Configuration settings reference table

Tip
As the following table extends beyond the margin of the page, use the horizontal
scroll bar at the bottom of your browser window to view the complete table.

Category: Analytics

Setting . . . o DesignerEnv — Sample Default
Name flowsettings.j¥enantsetting®gsignerEnv Section Description Value Value
This flag
enables or
enableAnalyti disables
(optional) s Yes thel | true false
analytics
feature.
esUrl Elasticsearch http://es-
(optional) Yes Yes URL spot.uswl.genhtcc.com:80
Elasticsearch
Server
esServer HostName es-
(optional) Yes Yes (for spot.uswl.genhtcc.com
example,
es-service)
esPort Elasticsearch
(optional) Yes Yes port 80
URL of
Elasticsearch
: where e
(Roepec?gtnIgI%URL ies reporting Designe_r 252%31 genhtcc.com:80
applications ’ ’ ’ ’
will report
data.
The
esngQuerywergtlon Yes maximum 90 90
(optional) time range
(in days)

Designer Deployment Guide 19

sdrMaxObjCo
(optional) %E

SdrTraceleve
(optional) lYes

Yes

Yes

to query in
Designer
Analytics.
Each day's
data is
stored in a
separate
index in
Elasticsearch.

The
maximum
count of
nested
type
objects
that will be
captured
in SDRs.
When set
to -1,
which is
the default
value, no
objects will 20
be
trimmed.
All the
milestones
or
activities
visited in
runtime
are
expected
to be
captured
in an SDR.

It controls
the level

of SDR
detail that
is recorded
by the
blocks
array for
each
application.
Currently, 300
the valid
values are:

e 100 —
Debug
level
and

up.

300

Designer Deployment Guide

20

Currently,
there
are no
Debug

messages.

200 —
Standard
leve
and

up.
This
setting
will
show
all
blocks
that
are
entered
during
a call
in the
blocks
array.

300 —
Important
level
and
up.
This
setting
filters
out all
blocks
from
the
blocks
array,
except
those
containing
data
that
will
change
from
call to
call
(such
as the
Menu
block
and
User

Designer Deployment Guide

21

Category: Audit

Setting
Name

enabIeESAudiyéggs

(optional)

enabIeFSAudiyé%gs

(optional)

maxAppSizeC%‘gpare

(optional)

enableReadA%istLogs

(optional)

lowsettings.jstenantsetting®gsignerEnv

Yes

Yes

Yes

Yes

DesignerEnv

Input
block).

Description Value
Enable or
Disable

audit logs
captured

in
Elasticsearch.

false

Enable or
Disable
audit logs
captured
in the file
system
under the
logs
directory
orin
standard
output.

The
maximum
size of
data
object for
which a
difference
will be
captured
in the
audit logs,

true

value in 1000000

bytes.
That is,
the
difference
between
the
Designer
object's
old value
and new
value.

Control

whether

reading of
Designer false
objects is
captured

in audit

Sample

Default
Value

false

true

1000000

false

Designer Deployment Guide

22

Category: Authorization

Setting
Name

disableRBAC

(optional) = =

rbacSection

(optional) Yes Yes

disablePBAC

(optional) Yes Yes

Category: Collaboration

Setting
Name

locking

(optional) Yes

flowsettings.j4enantsetting®psignerEnv DesignerEnv

flowsettings.jdenantsetting®EsignerEnv DesignerEnv

trails. If
enabled
any
Designer
object
viewed in
the Ul will
be
recorded
in the
audit logs.

Sample

Description Value

Controls if
Designer
reads and
enforces
permissions
associated
with the
logged in
user's

roles.

false

In a Role
object, the
name of
the section

Default
Value

false

within the CfgGenesysAdifyGishregpsBdmaristrator

Annex
where the
privileges
are stored.

Controls if
Designer
allows
partitioning
of the
Designer
workspace
and false
restricts a
user's
access to
Designer
objects in
the user's
partitions.

Sample

Description Value

The type

of locking file

false

Default
Value

file

Designer Deployment Guide

23

Category: DAS

Setting
Name

applicationHogt
(mandatory) Yes

applicationPonfes

deployURL Yes

Category: Digital

Setting
Name

rootsSRL

(optional) Yes

flowsettings.jdenantsetting®EsignerEnv DesignerEny

flowsettings.j¥enantsetting®gsignerEnv DS T

used, for

an editing
session of
applications,
modules,

or data
tables.

Valid values
file,
redis, none

Sample

Description Value

The server
name
Designer
uses to
generate
the URL to
the
application.

ORS and das.uswl.genluizlitosh

MCP fetch
the
application
code and
other
resources
from this
URL.

The
corresponding
port to be 80
used with
applicationHost.
This is

normally

not

changed.

It is the /workspace
relative

path to the
workspace

on DAS.

Sample

Description Value

If

specified, A REGular
this is EXpression
used to (REGEX).
filter which

Default
Value

80

/workspace

Default
Value

Designer Deployment Guide

24

maxFIowEnter%gunt

(optional) =

Category: External APIs

Setting

e flowsettings.j¥enantsetting®pgxignerEnv
httpProxy

(optional) Yes Yes Yes
redundantHttpProxy

(optional) 955 Yes Yes

Category: Features

Setting
Name flowsettings.j$enantsetting®psignerEnv
features Yes Yes

flowsettings

DesignerEnv
Section

flowsettings

flowsettings

DesignerEnv
Section

Root
Categories
to display
when
selecting
Standard
Responses.

Specify
how many
times the
same
application
can
process a
specific
digital
interaction.

Description

Specify
the proxy
used for
external
requests
and nexus
API calls (if

20

Sample
Value

http://vpcproxy-000-int.geo.genprim.co

enable proxy

is true).

Specify
the
backup
proxy used
for
external
requests
and nexus
API calls (if

http://vpcproxy-001-int.geo.genprim.co

enable proxy

is true),
when
httpProxy
is down.

Description

This is an
object.
See the
5.5
Features
section for
a list of

Sample
Value

20

Default
Value

Default
Value

{

nexus: true,

enableBulkAudiolmport:
true

Designer Deployment Guide

25

Category: GWS

Setting . . . o DesignerEnv
Name flowsettings.jdenantsetting®psignerEnv Section
usehtcc Yes

htccServer Yes

htccport Yes

ssoLoginUrl Yes

maxConcu rre%@TCCRequest
(optional)

batchOperatiqnResultTTL
(optional) s

supported
features.

Sample Default

Description Value Value

Set to

true so
that
Designer
works with
GWS. If set
to false,
Designer
defaults to
a local
mode and
may be
used
temporarily
if GWS is
unavailable.

true false

GWS gws- gws-
Server uswl-int.genhisw.tant.genhtcc.com

GWS Port 80 80

URL of

GWS
authentication
Ul.
Designer
redirects
to this URL
for
authentication.

For batch
operations
to GWS,
the max
number of
concurrent 5 5
requests
that
Designer
will send
to GWS.

For batch

operations

to GWS,

the time,

in 100000 100000
milliseconds,

for which

duration

Designer

https://gws- https://gws-
uswl.genhtccuswit.genhtcc.com

Designer Deployment Guide

26

Category: Help

Setting
Name

docsMicroser\QgSURL
(optional)

Category: IVR

Setting
Name

recordingTypeYes Yes

(optional)

Category: Logging

Setting
Name

logging:
{

designer:
{ level:

debug },
Yes
audit: {
level:
trace},

auditdebug:
{ level:

flowsettings.jdenantsetting®psignerEnv DesignerEnv

flowsettings.jgenantsetting®psignerkEnv DERNE NN

flowsettings.jdenantsetting®psignerEnv DesignerEnv

stores the
results of a
batch
operation
on the
server,
before
deleting
them.

I Sample
Description Value
URL for
Designer

documentation.

Sample

Description Value

Specify
the
recording
type to be
used in
Record
block. Set
as GIR. If GIR
the option
is missing
or blank,
Full Call
Recording
type will
be used.

Sample

Description Value

Specify logging:
Designer {

log levels. designer:
Each field { level:

has valid debug},
¥a|ues- audit: {
ey level:
debug, trace },
info,
warn, auditdebug:
error, or { level:
fatal. debug},

Default
Value

https://docs.genesys.com
Documentation/

PSAAS/

Public/

Administrator/

Designer

Default
Value

GIR

Default
Value

logging:
{

designer:
{ level:
debug 1},

audit: {
level:
trace },

auditdebug:
{ level:
debug },

Designer Deployment Guide

27

designer -
log level of
Designer.

audit - log
debug 1}, level of audit.

cli: { auditdebug cli: { cli: {
level: -log levelof a1, level:

deb audit debug,
o this will log debug } debug }

} detailed audit
information. } }

(optional) cli - log level
for cli
commands
executed on
Designer.

Category: Nexus

Setting
Name

DesignerEnv
Section

Sample Default

flowsettings.jdenantsetting®psignerEnv Y VELLE

Description
URL of
Nexus that
typically
includes
the API

url version http://nex-

(optional) Yes nexus path. For dev.uswl.genhtcc.com
example,

https://nexus-

server/

nexus/api/

V3.

nexus x-
api-key

Yes nexus created by dc4qeirol3nsof569dfn23/
Nexus
deployment

password
(optional)

Boolean
value to
indicate if
Yes nexus httpProxy false
is used to
reach
Nexus.

enable_proxy
(optional)

Enable
Contact
Identification
via Nexus
(for
example,

to enable
Last Called
Agent
routing).

profile

(optional) Yes nexus

Designer Deployment Guide 28

Category: Process

Setting
Name flowsettings.j4enantsetting®psignerEnv
port Yes

Category: Provisioning

Setting

Name flowsettings.jdenantsetting®psignerEnv

primarySwitc@eS Yes
)

(optional

Category: Routing

Setting

Name flowsettings.j$enantsetting®psignerEnv

ewtRefreshTimeout

(optional) ves

Category: Redis

Setting

Name flowsettings.j¥enantsetting®ggignerEnv

redis: {

DesignerEnv
Section

DesignerEnv
Section

DesignerEnv
Section

flowsettings

DesignerEnv
Section

Description

Designer
process
port in the
container.
Normally,
the default
value
should be
left as is.

Description

Specify
the
primary
switch
name if
more than
one switch
is defined
for the
tenant.
Designer
fetches
and works
with route
points
from this
switch.

Description

Specify
the
interval (in
seconds)
at which to
refresh the
Estimated
Waiting
Time when
routing an
interaction.

Description

Used by
Designer
for

Sample
Value

8888

Sample
Value

Sample
Value

Sample
Value

redis: {

Default
Value

3000

Default
Value

us-west-1

Default
Value

Default
Value

redis: {

Designer Deployment Guide

29

host: "",
port: "",
tlsEnabled:
true,

lockTimeout:

120,

listTimeout:

1800
}

(optional)

resource
index
caching
and multi-
user

collaboration

locks on
Designer
resources.

Itisa
separate
object and
contains:

host - Redis
host name.

port - Redis
port.

tisEnabled -
TLS enabled
or not.

lockTimeout
- Timeout, in
seconds,
before a
resource lock
is released
for an editing
session of
applications,
modules, or
data tables.

listTimeout
- The cache
expiry
timeout (in
seconds) of
the
application
list and
shared
modules list.
By default, it
is 30
minutes. That
is, any new
application/
modules
created in
the Ul will be
seen in the
listing page
after 30
mins. It can
be reduced to
a smaller
value. This is
to improve
the page
loading
performance
of the
Applications
and Shared

host: "",
port: "",
tlsEnabled:
true,

lockTimeout:

120,

listTimeout:

1800
¥

host:
redis.server.genhtcc.cor
port:

6379,
tlsEnabled:
true,
lockTimeout:
120,
listTimeout:
1800

}

Designer Deployment Guide

30

Category: Security

Setting . . . o DesignerEnv
R flowsettings.jgenantsetting®gignerEnv e
2|pF|IeSaeLmVlnMegaByte%s

(optional)

disableCSRF

(optional) e e

dlsabIeSecuregookle
(optional)

Category: Session

Setting DesignerEnv
Name flowsettings.j¥enantsetting®pgxignerEnv Section
idleTimeout

(optional) 5 EE

Modules
page. A
better
performance
is achieved
with a higher
value.

Sample

Description Value

Defines

the

maximum
zipFile size

limit (in 50
megabytes)
during

bulk audio
import.

Disable
CSRF
attack
protection.

http://cwe.mitre.org/
data/
definitions/
352.html false
By default,

CSRF attack

protection is

enabled. It

can be

disabled by

setting this

flag to true.

Disable
the secure
cookies
header

false

Sample

Description Value

Idle
timeout, in
seconds,
before a
user
session is 840
terminated
while
editing
applications,
modules,

Default
Value

No default.

false

false

Default
Value

840

Designer Deployment Guide

31

lockTimeout

(optional) ves Yes

lockKeepalive

(optional) Yes Yes

Category: Workflow

Setting g . g - DesignerEnv
Name flowsettings.jsenantsetting®jsgignerEnv Section
maxBuilds

(optional) YeS Yes

enablePTE _
(optional) Yes flowsettings

5.5 Features

or data
tables.

Timeout,
in
seconds,
before a
resource
lock is
released,
for an
editing
session of
applications,
modules,
or data
tables.

120

Interval, in
seconds,
before the
client

sends a

ping to the
server, to
refresh the 15
lock for an
editing
session of
applications,
modules,

or data
tables.

Sample

Description Value

Specify

the
maximum
number of
builds
allowed

per
application.

20

Boolean

value to

indicate if

PTE true
objects are
enabled at
runtime.

120

15

Default
Value

20

false

The features specified here must be configured under the features object in the flowsettings.json

Designer Deployment Guide

32

file.

For example,

features: {

callbackv2: true,

These features are configured only in the flowsettings.json file and the
tenantsettings.json file, and not in DesignerEnv.

Category

Audio

Feature

Setting Mandatory

Name

enableBulkAudiOlptjpord|

grammarValidai@ptional

externalAudioOytmorat

flowsettings.jsotenantsettings.jP&scription

Yes

Yes

Yes

Yes

yes

Yes

Enable/
disable the
bulk audio
import
feature.

If this
feature is
enabled,
Designer will
validate
invalid
grammar
files during
grammar
upload and
you can
upload only
valid
grammar
files (GRXML
or Nuance
compiled
binary
grammar
files).

If this
feature is
enabled, a
new audio
type,
External

Default
Value

false

false

false

Designer Deployment Guide

33

Nexus nexus Optional Yes
Survey survey Optional Yes
Milestone enablelmplicitMOgtikeMilestone¥es

Bots enableDialogFOptiothd t Yes

Yes

Yes

Yes

Yes

Audio, is
available in
the Play
Message
block. It
accepts a
single
variable that
contains a
URL to the
audio
resource.
MCP will
fetch this
resource
directly and
play it. The
only
supported
value of
Play As is
Audio URI.
There is no
automatic
language
switching for
this audio

type.

Enable/
disable the
Nexus
feature.

Enable/
disable the
survey
feature.

Enable
reporting
each Shared
Module call
as an
internal
milestone. If
disabled,
Shared
Module calls
will not
generate a
milestone.

When
enabled,
Dialogflow
CX bot type
is added to
the bot

false

true

false

false

Designer Deployment Guide

34

registry and
available for
selection in
the Bot
provider
drop-down
when you
configure a
new bot.

6. Logging

Designer and DAS support console output (stdout) logging. Genesys recommends configuring console
output logging to minimize the host IOPs and PVCs consumption by using log volumes. Console
output logs can be extracted using log collectors like fluentbit/fluentd and Elasticsearch.

Ensure the below setttings are configured in the respective values.yaml overrides for console
logging:

1. Designer
designerEnv.envs.DES FILE LOGGING ENABLED = false

2. DAS
dasEnv.envs.DAS FILE LOGGING ENABLED = false
daskEnv.envs.DAS STDOUT LOGGING ENABLE = true

6.1 Log levels

Post deployment, Designer and DAS log levels can be modified as follows:

6.1.1 Designer
1. Configure the logging setting in the flowsettings override (flowsettings.yaml) - Refer to section 5.4
Configuration settings reference table for option descriptions.
2. Execute the steps in the Flowsettings.json update section (8.2.2 Designer deployment process) for the
changes to take effect .

6.1.2 DAS

1. Configure the dasEnv.envs.DAS LOG LEVEL setting in the Helm das-values.yaml file. Refer to section
4.2 DAS deployment settings for setting descriptions.

2. Execute the steps in the Upgrade non production color section (8.2.3 DAS deployment process). The
same DAS version running in production can be used for the upgrade,

3. Execute the steps in the Cutover section (8.2.3 DAS deployment process).

/. Platform / Configuration Server and GWS settings

Designer Deployment Guide 35

This section explains the Configuration Server objects and settings required for Designer.

7.1 Create Roles for Designer

Designer uses roles and access groups to determine permissions associated with the logged-in user.
To enable this, you must make these changes in GAX or CME.

Designer supports a number of bundled roles suitable for various levels of users.

* DesignerDeveloper - Most users fall into this category. These users can create Designer applications,
upload audio, and create business controls. They have full access to Designer Analytics.

* DesignerBusinessUser - These users cannot create objects but they can manage them (for example,
upload audio, change data tables, and view analytics).

* DesignerAnalytics - These users only have access to Designer Analytics.

* DesignerAdmin - These users can set up and manage partitions associated with users and Designer
objects.

* DesignerOperations - Users with this role have full access to all aspects of the Designer workspace.

This includes the Operations menu (normally hidden), where they can perform advanced operational
and maintenance tasks.

To create these roles, import the .conf files included in the Designer Deployment Manifest
package. They are located in the packages/roles/ folder.

In addition, ensure the following for user accounts that need access to Designer:

¢ The user must have read permissions on its own Person object.
¢ Users must be associated with one or more roles via access groups.
* The on-Premises user must have at least read access on the user, access group(s), and roles(s).

e The access groups must have read/write permissions to the CME folders - Scripts and Transactions.

7.2 Create the DesignerEnv transaction list

Designer requires a transaction list for configuration purposes as described in other sections of this
document. To set this up:

1. Create a transaction list called DesignerEnv.

2. Import the file configuration/DesignerEnv.conf, [ocated in the Designer Deployment Manifest
package.

3. Edit any values according to the descriptions provided in the Designer settings section.

4. Save the list.

5. Ensure Designer users have at least read access to the DesignerEnv transaction list.

Designer Deployment Guide 36

7.3 Platform Settings

The platform settings listed below must be configured if the Designer application is used for voice

calls.

Component

SIP Switch -> Voip
Services -> msml
service

SIP Switch -> Voip
Services -> msml
service

SIPServer --> TServer

Switch object annex -->
gts

URS

ORS --> orchestration

MCP

MCP

ucs

Config Key

userdata-map-format

userdata-map-filter

divert-on-ringing

agent-no-answer-
timeout

agent-no-answer-action

agent-no-
answeroverflow

after-routing-timeout

sip-treatments-
continuous

msml-record-support
ring-divert
'http' port, protocol =

'http’

new-session-on-reroute

[vxmli] transfer.allowed

[cpa] outbound.method

[cview] enabled

7.4 GWS Configuration

7.4.1 Create Contact Center

Value

sip-headers-encoded

false

12

notready

24

true

true

false

TRUE

NATIVE

TRUE

Description

Option needs to set to
pass JSON data as user
data in SIPS.

To allow userdata
passing to MSML service

RONA is handled by the
platform.

no value, empty.

To allow routed calls
recording via the Media
Server

Required only for Route
Agent block to work.

Required for SIPS
Default Routing (Default
Routing handling
(Voice))

Required for Transfer
block (allows VXML
Transfer in MCP)

Required for Transfer
block (allow CPA
detection for Transfer)

Enables Customer
Context Services

Create a contact center in GWS if it is not already created. Refer to the GWS documentation for more

Designer Deployment Guide

37

information on this.
7.4.2 Create GWS Client

Create new GWS client credentials if they are not already created . Refer to the GWS documentation
for more information on this.

8. Deployment

This section describes the deployment process for Designer and DAS.

8.1 Preparation

Before you deploy Designer and DAS using Helm charts, complete the following preparation steps:

Ensure the Helm client is installed.

Set up an Ingress controller, if not already done.

Setup an NFS server, if not already done.

Create Persistent Volumes - a sample YAML file is provided in the Designer manifest package.
Download the Designer and DAS docker images and push to the local docker registry.

Download the Designer manifest package and extract to the current working directory.

No v kA w N e

Configure Designer and DAS value overrides (designer-values.yaml and das-values.yaml) - please
ensure the mandatory settings are configured. If the blue-green deployment process is used, Ingress
settings are explained in the following section.

8.2 Blue-Green deployment

Blue-Green deployment is a release management technique that reduces risk and minimizes
downtime. It uses two production environments, known as Blue and Green or active and inactive, to
provide reliable testing, continuous no-outage upgrades, and instant rollbacks. When a new release
needs to be rolled out, an identical deployment of the application will be created using a Helm
package and after the testing is completed, the traffic is moved to the newly created deployment,
which becomes the ACTIVE environment, and the old environment becomes INACTIVE. This way, a
fast rollback is possible by just changing route if a new issue is found with live traffic. The old inactive
deployment can be removed once the new active deployment becomes stable.

The service cutover is done by updating the Ingress rules. The below diagram shows the high level
approach on how the traffic can be routed to Blue and Green deployments with Ingress rules.

Error creating thumbnail: Unable to save thumbnail to destination
8.2.1 Preparation for Blue-Green deployment

Before you deploy Designer and DAS using the Blue-Green deployment strategy, complete the
following preparation steps:

Designer Deployment Guide 38

1. Configure the Ingress host names for Designer. Create 3 host names as shown below.
The Blue service host name must contain the string blue, for example, designer.blue.genhtcc.com or
designer-blue.genhtcc.com. The Green service host name must contain the string green, for
example, designer.green.genhtcc.com or designer-green.genhtcc.com. The Blue/Green services
can be accessed separately with the Blue/Green host names as shown in this example:
designer.genhtcc.com (production host URL used for external access).
designer.blue.genhtcc.com (URL for Blue service testing).
designer.green.genhtcc.com (URL for Green service testing).

2. Configure the host names in the designer-values.yaml file under ingress. Annotations and paths can
be modified based on the requirement.
For example,
ingress:
enabled: true
annotations: {}
paths: [/]
hosts:

- designer.genhtcc.com
- designer.blue.genhtcc.com
- designer.green.genhtcc.com

3. Configure the Ingress host names for DAS. Create 3 host names as shown below.
The Blue service host name must contain the string blue, for example, das.blue.genhtcc.com or das-
blue.genhtcc.com. The Green service host name must contain the string green, for example,
das.green.genhtcc.comor das-green.genhtcc.com. he Blue/Green services can be accessed
separately with the Blue/Green host names as shown in this example:
das.genhtcc.com (the production host URL used for external access).
das.blue.genhtcc.com (URL for Blue service testing).
das.green.genhtcc.com (URL for Blue service testing)

4. Configure the host names in the das-values.yaml file under ingress. Annotations and paths can be
modified based on the requirement.
For example,
ingress:
enabled: true
annotations: {}
paths: [/]
hosts:

- das.genhtcc.com
- das.blue.genhtcc.com
- das.green.genhtcc.com

8.2.2 Designer deployment process

Initial deployment

The resources's ingress and persistent volume claims (PVC) must be created initially before deploying
the Designer service as these resources are shared between the Blue/Green services and must be
created at the very beginning of the deployment. They will not be needed for subsequent upgrades.

The required values are passed using the SET command as shown below or by modifying the
values.yaml file.

1. Create Persistent Volume Claims required for the Designer service (assuming the volume service name
is designer-volume):

helm upgrade --install designer-volume -f designer-values.yaml designer-9.0.xx.tgz --
set deployment.strategy=volume

Note: The overrides passed as an argument to the above helm upgrade command:

Designer Deployment Guide 39

deployment.strategy=volume - indicates that this helm install will create persistent volume claim.

2. Create ingress rules for the Designer service (assuming the ingress service name is designer-
ingress):
helm upgrade --install designer-ingress -f designer-values.yaml designer-9.0.xx.tgz --
set deployment.strategy=ingress --set-string deployment.color=green
Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=ingress - indicates that this helm install will create ingress rules for the
Designer service.
deployment.color=green - indicates that the current production instance (active) color is Green.

3. Deploy the Designer service to the color selected in step 2. In this case, Green is selected and assuming
the service name is designer-green:
helm upgrade --install designer-green -f designer-values.yaml designer-9.0.xx.tgz --
set deployment.strategy=service --set desImage.tag=9.0.1xx.xx.xx --set-string
deployment.color=green
Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=service - indicates that the Designer service will be installed.
desImage.tag=9.0.1xx.xx.xx - indicates the Designer version to be installed, for example,
9.0.116.07.10.
deployment.color=green - indicates that the Green color service will be installed.

Upgrade non-production color

1. Identify the current production color by checking the Designer ingress rules (kubectl describe
ingress designer-ingress). Green is the production color in the below example as the production
host name points to the Green service.

Error creating thumbnail: Unable to save thumbnail to destination

2. Deploy the Designer service into the non-production color. In the above example, Blue is the non-
production color (assuming the service name is designer-blue):
helm upgrade --install designer-blue -f designer-values.yaml designer-9.0.xx.tgz --set
deployment.strategy=service --set desImage.tag=9.0.1xx.xx.xx --set-string
deployment.color=blue
Note: The overrides passed as an argument in the above helm upgrade:
deployment.strategy=service - indicates that the Designer service will be installed.
desImage.tag=9.0.1xx.xx.xx - indicates the Designer version to be installed, for example,
9.0.116.08.12.
deployment.color=blue - indicates that the Blue color service will be installed.

3. The non-production color can be accessed with the non-production host name (for example -
designer.blue.genhtcc.com), any testing can be done using this URL.

Cutover

Once testing is completed on the non-production color, traffic can be moved to the new version by
updating the ingress rules.

1. Update the Designer Ingress with the new deployment color by running the below command (in this
case, Blue is the new deployment color, that is, the non-production color):
helm upgrade --install designer-ingress -f designer-values.yaml designer-9.0.xx.tgz --
set deployment.strategy=ingress --set-string deployment.color=blue
Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=ingress - indicates that this helm install will create ingress rules for the
Designer service.
deployment.color=blue - indicates that the current production (active) color is Blue.

Designer Deployment Guide 40

2. Verify the ingress rules by executing the command kubectl describe ingress designer-ingress.
The production host name should point to the new color service.

Workspace upgrade

Workspace resources must be upgraded after cutover. This will upgrade the system resources in the
Designer workspace.

1. Log in to one of the Designer pods with the command: kubectl exec -it bash.

2. Execute the migration command (this will create new directories/new files introduced in the new
version):

node ./bin/cli.js workspace-upgrade -m -t

3. Execute the workspace resource upgrade command (this will upgrade system resources, such as system
service PHP files, internal audio files, and callback resources):
node ./bin/cli.js workspace-upgrade -t
contact center id is the contact center ID created in GWS for this tenant. The workspace resources
are located within the contact center ID folder (/workspaces//workspace).

The above steps - upgrade non production color, cutover, and workspace upgrade will also be used for further
upgrades.

Flowsettings.json update

Post deployment, the flowsettings.json file can be modified via helm install using the below steps:

Download the current flowsettings.json file from the location: /designer/flowsettings.json.

Modify the necessary settings (refer to section 5.4 Configuration settings reference table).

1.
2.
3. Create a new YAML file, for example, flowsettings.yaml.
4,

Copy and paste the above modified flowsettings.json content in the new flowsettings.yaml file:
flowsettings:

For example:

flowsettings: {

port:8888,

usehtcc:true,
htccserver:gws-int-genhtcc.com,
htccport:80,

5. Run the below helm upgrade command on the non-production color service. It can be done as part of
Designer upgrade by passing the flowsettings.yaml in the extra argument - -values. In this case, the
new Designer version can be used for the upgrade. If it is only a flowsettings.json update, the same
Designer version will be used.
helm upgrade --install designer-blue -f designer-values.yaml designer-9.0.xx.tgz --set
deployment.strategy=service --set desImage.tag=9.0.1xx.xx.xx --set-string
deployment.color=blue --values flowsettings.yaml
The non-active color Designer will have updated settings after the above upgrade.

Designer Deployment Guide 41

6. Once testing is completed on the non-production service, perform the cutover steps as mentioned in the

Cutover section. Now, the production service will contain the changed settings.

Rollback

e If any blocking issues are noticed in the current production service, traffic can be rolled back to the

previous active color by updating the ingress rules:

helm upgrade --install designer-ingress -f designer-values.yaml designer-9.0.xx.tgz --
set deployment.strategy=ingress --set-string deployment.color=green

Rollback of workspace resources is generally not required as the workspace resources shipped with
Designer are backward and forward compatible. If required, the workspace can be upgrade from the old
version, but it is not necessary. Future new version upgrades must run the workspace upgrade as per
the normal process.

Rollback of applications and shared modules is also not required as these resources are also backward
and forward compatible with Designer.

8.2.3 DAS deployment process

Initial deployment

The ingress must be created initially before deploying the DAS service as it is shared between the
Blue/Green services and must be created at the very beginning of the deployment. It will not be
needed for subsequent upgrades. The required values are passed using the SET command as shown
below or by modifying the values.yaml file.

1. Create ingress rules for the Designer service (assuming the ingress service name is das-ingress):

2.

helm upgrade --install das-ingress -f das-values.yaml das-9.0.xx.tgz --set
deployment.strategy=ingress --set-string deployment.color=green

Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=ingress - indicates that this helm install will create ingress rules for the DAS
service.

deployment.color=green - indicates that the current production instance (active) color is Green.

Deploy the DAS service to the color selected in step 1. In this case, Green is selected and assuming the
service name is das-green:

helm upgrade --install das-green -f das-values.yaml das-9.0.xx.tgz --set
deployment.strategy=service --set dasImage.tag=9.0.1xx.xx.xx --set-string
deployment.color=green

Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=service - indicates that the DAS service will be installed.
dasImage.tag=9.0.1xx.xx.xx - indicates the DAS version to be installed, for example, 9.0.111.04.4.
deployment.color=green - indicates that the Green color service will be installed.

Upgrade non-production color

1.

Identify the current production color by checking the DAS ingress rules (kubectl describe ingress
das-ingress). Green is the production color in the below example as the production host name points
to the Green service.

Error creating thumbnail: Unable to save thumbnail to destination

Deploy the DAS service into the non-production color. In the above example, Blue is the non-production
color (assuming the service name is das-blue):

helm upgrade --install das-blue -f das-values.yaml das-9.0.xx.tgz --set
deployment.strategy=service --set dasImage.tag=9.0.1xx.xx.xx --set-string
deployment.color=blue

Designer Deployment Guide 42

Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=service - indicates that the DAS service will be installed.

dasImage.tag=9.0.1xx.xXx.xx - indicates the DAS version to be installed , for example, 9.0.111.05.5.

deployment.color=blue - indicates that the Blue color service will be installed.

3. The non-production color can be accessed with the non-production host name (for example -
das.blue.genhtcc.com), any testing can be done using this URL.

Cutover

Once testing is completed on the non-production color, traffic can be moved to the new version by
updating the ingress rules.

1. Update the DAS Ingress with the new deployment color by running the below command (in this case,
Blue is the new deployment color, that is, the non-production color):
helm upgrade --install das-ingress -f das-values.yaml das-9.0.xx.tgz --set
deployment.strategy=ingress --set-string deployment.color=blue
Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=ingress - indicates that this helm install will create ingress rules for the DAS

service.
deployment.color=blue - indicates that the current production (active) color is Blue.

2. Verify the ingress rules by running the command kubectl describe ingress das-ingress. The production
host name should point to the new color service.

The above steps - upgrade non production color and cutover will also be used for further upgrades.

Rollback

If any blocking issues are noticed in the current production service, traffic can be rolled back to the
previous active color by updating the ingress rules:

helm upgrade --install das-ingress -f das-values.yaml das-9.0.xx.tgz --set
deployment.strategy=ingress --set-string deployment.color=green

8.3 Rolling upgrade

A rolling upgrade is not recommended. Use the Blue/Green upgrade procedure.

8.4 Uninstall
To uninstall a service/volume/ingress rules:

helm uninstall

9. Enabling optional features

Designer Deployment Guide

43

9.1 Enable Designer Analytics and Audit Trail

Post Designer deployment, features such as Analytics and Audit Trail can be
enabled by performing the below steps.

Ensure Elasticsearch is deployed before proceeding.

9.1.1 Designer changes
1. Configure the following settings in flowsettings override (flowsettings.yaml) - Refer to section 5.4
Configuration settings reference table for option descriptions.
* enableAnalytics: true
* enableESAuditLogs: true
* esServer
* esPort

e esUrl

2. Configure the below setting in the DesignerEnv transaction list:
ReportingURL in the reporting section.

3. Perform the steps in the Flowsettings.json update section (8.2.1 Designer deployment process).
9.1.2 DAS changes

1. Configure the following settings in the helm das-values.yaml file. Refer to the 4.2 DAS deployment
settings section for setting descriptions.
dasEnv.envs.DAS SERVICES ELASTICSEARCH ENABLED = true
dasEnv.envs.DAS SERVICES ELASTICSEARCH HOST
daskEnv.envs.DAS SERVICES ELASTICSEARCH PORT

2. Perform the steps in the Upgrade non production color section (8.2.2 DAS deployment process). The
same DAS version running in production can be used for the upgrade.

3. Perform the steps in the Cutover section (8.2.2 DAS deployment process).

10. Cleanup

10.1 Elasticsearch maintenance recommendations

To help you better manage your indexes and snapshots, and to prevent too many indexes from
creating an overflow of shards, Genesys recommends that you set up a scheduled execution of
Elasticsearch Curator with the following two actions:

Designer Deployment Guide 44

e Delete indexes older than the given threshold according to the index name and mask.

e sdr-* (3 months)

e audit-* (12 months)

¢ Make a snapshot of each index:
e sdr-* (yesterday and older)
* audit-*

e kibana-int-*

11. Limitations

Designer currently supports multi-tenancy provided by the tenant Configuration Server. That is, each
tenant should have a dedicated Configuration Server, and Designer can be shared across the multiple

tenants.

Designer Deployment Guide

45

	Designer Deployment Guide

