
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Deploy Designer (versions v9010005 and above)

Designer Deployment Guide

2/18/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Contents

• 1 1. About this document
• 1.1 1.1 Intended audience
• 1.2 1.2 Before you begin

• 2 2. Product overview
• 2.1 2.1 Designer
• 2.2 2.2 Designer Application Server (DAS)
• 2.3 2.3 Deployment architecture
• 2.4 2.4 High Availability (HA) and Scalability

• 3 3. Prerequisites
• 3.1 3.1 Mandatory prerequisites
• 3.2 3.2 Optional prerequisites

• 4 4. Deployment configuration settings (Helm values)
• 4.1 4.1 Designer deployment settings
• 4.2 4.2 DAS deployment settings

• 5 5. Post deployment Designer settings
• 5.1 5.1 Flow settings
• 5.2 5.2 Tenant settings
• 5.3 5.3 DesignerEnv transaction list
• 5.4 5.4 Configuration settings reference table
• 5.5 5.5 Features

• 6 6. Logging
• 6.1 6.1 Log levels

• 7 7. Platform / Configuration Server and GWS settings
• 7.1 7.1 Create Roles for Designer
• 7.2 7.2 Create the DesignerEnv transaction list
• 7.3 7.3 Platform Settings
• 7.4 7.4 GWS Configuration

• 8 8. Deployment
• 8.1 8.1 Preparation
• 8.2 8.2 Blue-Green deployment

Designer Deployment Guide 2



• 8.3 8.3 Rolling upgrade
• 8.4 8.4 Uninstall

• 9 9. Enabling optional features
• 9.1 9.1 Enable Designer Analytics and Audit Trail

• 10 10. Cleanup
• 10.1 10.1 Elasticsearch maintenance recommendations

• 11 11. Limitations

Designer Deployment Guide 3



Learn how to deploy Designer as a service in a Kubernetes cluster (for DesDepMnfst v9010005
and above).

1. About this document

This document guides you through the process of deploying and configuring Designer and Designer
Application Server (DAS) as a service in a Kubernetes (K8s) cluster.

Information on the following topics is provided:

• Overview of Designer and DAS
• Configuration details
• Deployment process
• Enabling optional features
• Cleanup
• Known limitations

1.1 Intended audience
This document is intended for use primarily by system engineers and other members of an
implementation team who will be involved in configuring and installing Designer and DAS, and
system administrators who will maintain Designer and DAS installations.

To successfully deploy and implement applications in Designer and DAS, you must have a basic
understanding of and familiarity with:

• Network design and operation
• Network configurations in your organization
• Kubernetes
• Genesys Framework architecture and functions

1.2 Before you begin

1. A Kubernetes cluster must be deployed. Refer to the Kubernetes documentation site for installation
instructions.

2. Install Helm according to the instructions outlined in the Helm documentation site.

After you complete the above mandatory procedures, return to this document to complete an on-
premise deployment of Designer and DAS as a service in a K8s cluster.

Designer Deployment Guide 4



2. Product overview

The following sections provide a brief overview of Designer and DAS.

2.1 Designer
The Designer service provides a web UI to build and manage VXML and SCXML based self-service and
assisted service applications for a number of media types. It stores data on the local file system and
is synchronized across instances by using services like Network File System (NFS). Genesys
customers can build applications using a simple drag and drop method, and assign contact points
(Route Points and other media endpoints) to applications directly from the Designer UI. Insights into
runtime behavior of applications and troubleshooting aid is provided by Designer Analytics, which
includes a rich set of dashboards based on session detail records (SDR) from data stored in
Elasticsearch.

Designer offers the following features:

• Applications for working with phone, chat, email, SMS (text messages), Facebook, Twitter, and open
media types.

• Bots, ASR, TTS capabilities for self-service.
• Assisted service or routing.
• Callback.
• Business Controls.
• Audio, message management.
• Grammars management.
• Contact points management - route points, chat end points, email pop-client/mailboxes.
• Analytics dashboards through embedded Kibana.

Designer is an Express/Node.js application. The UI is designed using Angular powered Bootstrap.
Application data (SCXML and VXML) is stored as a file system. Designer Analytics and Audit data is
stored in Elasticsearch.

2.2 Designer Application Server (DAS)
Designer Application Server (DAS) hosts and serves the Designer generated application files (SCXML
and VXML), audio, and grammars. It also provides:

• Runtime evaluation of Business Controls (business hours, special days, emergency flags and data
tables).

• Callback interface to GES.
• Interface to External APIs.

DAS uses built-in NGINX to front requests. It consists of 3 modules: NGINX, PHP, and Node.js.

• Requests for static workspace content (SCXML, VXML, JS, audio, grammar, etc) are handled by the

Designer Deployment Guide 5



NGINX module.
• Requests for PHP content are processed by the FastCGI PHP module.
• SDR (Analytics) processing requests are handled by the DAS Node.js module.

Important
Files generated by Designer can be served only by DAS. Designer will work only with
DAS.

2.3 Deployment architecture
The below architecture diagram illustrates a sample premise deployment of Designer and DAS:

Designer Deployment Guide 6



2.4 High Availability (HA) and Scalability
Designer and DAS must be deployed as highly available in order to avoid single points of failure. A
minimum of 2 replicas of each service must be deployed to achieve HA.

The Designer and DAS service pods can be automatically scaled up or down based on metrics such as
CPU and memory utilization. The Deployment configuration settings section explains how to

Designer Deployment Guide 7

/File:Premise-Designer-DAS-architecture.png
/File:Premise-Designer-DAS-architecture.png


configure HA and auto-scaling.

Refer to the Genesys Docker Deployment Guide for more information on general HA recommendation
for Kubernetes.

3. Prerequisites

Before deploying Designer, ensure the following resources are deployed, configured, and accessible:

3.1 Mandatory prerequisites

• Kubernetes 1.12+
• Helm 3.0
• Docker Registry

• Setup a local docker registry to store Designer and DAS docker images.

• Ingress Controller
• If Designer and DAS are accessed from outside of a K8s cluster, it is recommended to deploy/

configure an ingress controller (for example, NGINX), if not already available. Also, the Blue-Green
deployment strategy works based on the ingress rules.

• The Designer UI requires Session Stickiness. Configure session stickiness in the annotations
parameter in the values.yaml file during Designer installation.

• Persistent Volumes (PVs)
• Create persistent volumes for workspace storage (5 GB minimum) and logs (5 GB minimum)
• Set the access mode for these volumes to ReadWriteMany.
• The Designer manifest package includes a sample YAML file to create Persistent Volumes required

for Designer and DAS.
• Persistent volumes must be shared across multiple K8s nodes. Genesys recommends using NFS to

create Persistent Volumes.

• Shared file System - NFS
• For production, deploy the NFS server as highly available (HA) to avoid single points of failure. It is

also recommended that the NFS storage be deployed as a Disaster Recovery (DR) topology to
achieve continuous availability if one region fails.

• By Default, Designer and DAS containers run as a Genesys user (uid:gid 500:500). For this reason,
the shared volume must have permissions that will allow write access to uid:gid 500:500. The
optimal method is to change the NFS server host path to the Genesys user: chown -R
genesys:genesys.

• The Designer manifest package includes a sample YAML file to create an NFS server. Use this only
for a demo/lab setup purpose.

• Genesys Web Services (GWS) 9.x
• Configure GWS to work with a compatible version of Configuration Server.

Designer Deployment Guide 8



• Other Genesys Components
• ORS ORS 8.1.400.x
• Nexus 9.x
• URS 8.1.400.x

3.2 Optional prerequisites

• Elasticsearch 7.8.0
• Elasticsearch is used for Designer Analytics and audit trail.

• Redis 3.2.x
• Redis is used for resource index caching and multi-user collaboration locks on Designer resources.

4. Deployment configuration settings (Helm values)

This section provides information on the various settings that have to be configured in Designer and
DAS. The configuration settings listed below will be used during the deployment of Designer and DAS.
That is, these settings will be used during initial deployment / upgrade. These settings can be
configured in the values.yaml Helm file.

4.1 Designer deployment settings
The following table provides information on the Designer deployment settings. These settings are
configured in the designer-values.yaml file.

Parameter Description Mandatory? Default Value

deployment.replicaCountNumber of services to
be created. Mandatory 2

deployment.maxReplicas

Maximum number of
replicas created. It is
recommended to
configure this setting if
auto-scaling is used.

Optional 10

deployment.strategy

The strategy to select
which type of resources
to deploy. Valid values
are: default,
service, volume,
ingress.

• volume - for blue/
green upgrade, this
is to create a
Persistent Volume
Claim (PVC) for the
first time.

Mandatory service

Designer Deployment Guide 9



• ingress - for the
blue/green upgrade,
this is to create an
ingress for the first
time and update the
ingress during
service cutover.

• service - for
upgrading the blue/
green Designer
service.

• default - for
performing a rolling
upgrade

deployment.green

This is to deploy/
upgrade the Designer
service in a blue-green
upgrade strategy. Valid
values are: blue,
green.

Optional green

desImage.repository Docker repository for
the Designer image. Mandatory

pureengage-docker-
staging.jfrog.io/
designer/designer

desImage.tag Designer image version. Mandatory 9.0.109.08.20

desImage.pullPolicy

Designer image pull
policy (imagePullPolicy).
Valid values: Always,
IfNotPresent, Never.

• Always - always pull
the image.

• IfNotPresent - pull
the image only if it
does not already
exist on the node.

• Never - never pull
the image.

Mandatory IfNotPresent

volumes.workspaceMountPath
The path where the
workspace volume is to
be mounted inside the
Designer container.

Mandatory
/designer/workspace
(Changing this value is not
recommended.)

volumes.workspaceClaim
Persistent volume claim
name for the
workspace.

Mandatory designer-managed-disk

volumes.workspaceClaimSize
Size of the persistent
volume claim for the
workspace.

Mandatory 5Gi

Designer Deployment Guide 10



The persistent volume must
be equal to or greater than
this size.

volumes.workspaceStorageClass

storageClassName
provided in the
persistent volume that
is created for the
Designer workspace
(example, nfs).

Mandatory manual

volumes.logMountPath
The path where the
Designer logs volume is
to be mounted inside
the Designer container.

Mandatory /designer/logs

volumes.logClaim Persistent volume claim
name for logs. Mandatory designer-logs

volumes.logClaimSize

Size of the persistent
volume claim for the
Designer logs.
The persistent volume must
be equal to or greater than
this size.

Mandatory 5Gi

volumes.logStorageClass

storageClassName
provided in the
persistent volume that
is created for the
Designer logs
(example, nfs).

Mandatory manual

healthApi.path Designer Health Check
API path. Mandatory

/health
(Changing this value is not
recommended.)

healthApi.containerPortContainer running port. Mandatory
8888
(Changing this value is not
recommended.)

healthApi.startupDelay
Health check will be
started after a delay as
specified in this setting.

Mandatory 20

healthApi.checkInterval
The interval between
each health check
request.

Mandatory 5

healthApi.failureCount

Number of health check
failures to be considered
before marking the
container as instable or
restart.

Mandatory 5

designerEnv.enabled
This enables providing
environment variables
as an input to Designer
pods.

Mandatory
true
(Changing this value is not
recommended.)

Designer Deployment Guide 11



It uses ConfigMap to store the
environment variables.

designerEnv.envs.DES_PORT
Designer port for
container (port in
flowsettings.json).

Mandatory 8888

designerEnv.envs.DES_APPSERVER_HOST
DAS hostname
(applicationHost in
flowsettings.json).

Mandatory das

designerEnv.envs.DES_APPSERVER_PORT
DAS port
(applicationPort in
flowsettings.json).

Mandatory 80

designerEnv.envs.DES_DEPLOY_URL

This is normally not
changed. It is the
relative path to the
workspace on DAS.
The default value
/workspaces should be
always be used (deployURL in
flowsettings.json).

Mandatory /workspaces

designerEnv.envs.DES_USE_HTCC

Set to true so Designer
works with GWS. If set
to false. Designer
defaults to a local mode
and may be used
temporarily if GWS is
unavailable (usehtcc in
flowsettings.json).

Mandatory
true
(Changing this value is not
recommended.)

designerEnv.envs.DES_HTCC_SERVER

GWS server host
(htccserver in
flowsettings.json), for
example,
gws.genhtcc.com.

Mandatory gws-
usw1-int.genhtcc.com

designerEnv.envs.DES_HTCC_PORT
GWS server port
(htccport in
flowsettings.json), for
example, 80.

Mandatory 80

designerEnv.envs.DES_ENABLE_ANALYTICS
To enable or disable
Designer Analytics
(enableAnalytics in
flowsettings.json).

Optional false

designerEnv.envs.DES_ES_URL
Elasticsearch URL (for
example, http://es-
service:9200), esUrl in
flowsettings.json.

Optional http://es-
spot.usw1.genhtcc.com

designerEnv.envs.DES_ES_SERVER
Elasticsearch Server
HostName (for example,
es-service), esServer in
flowsettings.json.

Optional es-
spot.usw1.genhtcc.com

designerEnv.envs.DES_ES_PORTElasticsearch port (for
example, 9200), esPort Optional 80

Designer Deployment Guide 12



in flowsettings.json.

designerEnv.envs.DES_FILE_LOGGING_ENABLED
Enable file logging. If
not enabled, Designer
will output only verbose
logs.

Mandatory false

designerSecrets.enabled

This enables providing
the GWS client ID /
secret as an input to
Designer pods.
It uses Kubernetes Secrets to
store the GWS client
credentials.

true

designerSecrets.GWS_Client_id

GWS Client ID, create a
new GWS client if it
doesn't exist, steps are
explained in the
platform settings
section.

Mandatory designer-secret

designerSecrets.GWS_Client_secretGWS Client secret Mandatory
ZXh0ZXJuYWxfYXBpX2NsaWVudA==
(This value is valid only for lab
deployments.)

service.type
Service type (either
ClusterIP or NodePort
or LoadBalancer).

Mandatory ClusterIP

service.port
Designer service port to
be exposed in the
cluster.

Mandatory 8888

service.targetPort
Designer application
port running inside the
container.

Mandatory 8888

service.nodePort
Port to be exposed in
case
service.type=NodePort.

Optional Sample value : 30180

ingress.enabled

Enable/Disable ingress.
Ingress should be
enabled for all cases
except a lab/demo
setup.

Mandatory true

ingress.paths Ingress path Mandatory [/]

ingress.hosts
Hostnames to be
configured in ingress for
the Designer service.

Mandatory ssdev1.genhtcc.com

ingress.tls TLS config for ingress. Optional []

resources.limits.cpu
Maximum amount of
CPU processing power
that K8s allocates for
the container.

Mandatory 600m

resources.limits.memoryMaximum amount of Mandatory 1Gi

Designer Deployment Guide 13



memory K8s allocates
for the container.

resources.requests.cpu
Guaranteed CPU
allocation for the
container.

Mandatory 500m

resources.requests.memory
Guaranteed memory
allocation for the
container.

Mandatory 512Mi

securityContext.runAsUser

Controls which user ID
the containers are run
with. This can be
configured to run
Designer as a non-root
user.
Currently, only a Genesys
user is supported by the
Designer base image.

500 is the ID of the Genesys
user and it cannot be
modified.

The file system must reside
within the Genesys user
account in order to run
Designer as a Genesys user.
Change the NFS server host
path to the Genesys user:

chown -R genesys:genesys

Optional 500

securityContext.runAsGroup

Controls which primary
group ID the containers
are run with. This can
be configured to run
Designer as a non-root
user. Currently, only a
Genesys user group
(GID - 500) is supported
by the Designer base
image.

Optional 500

nodeSelector
To allow pods to be
scheduled on the nodes
based labels assigned to
the nodes.

Optional

Default value:
nodeSelector: {}

Sample value:

nodeSelector:

:

affinity

The K8s standard node
affinity and anti-affinity
configurations can be
added here. Refer to
this K8s document for
sample values.

Optional {}

tolerations Tolerations works with
taints to ensure that Optional []

Designer Deployment Guide 14



pods are not scheduled
onto inappropriate
nodes. Refer to this K8s
document for sample
values.

hpa.enabled

Enables K8s Horizontal
Pod Autoscaler (HPA). It
automatically scales the
number of pods based
on average CPU
utilization and average
memory utilization.
More information about HPA is
available here.

Optional false

hpa.targetCPUPercent

The K8s HPA controller
will scale up/down pods
based on the target CPU
utilization percentage
specified. It scales up/
down pods between the
range
deployment.replicaCount
to
deployment.maxReplicas.

Optional 70

hpa.targetMemoryPercent

The K8s HPA controller
will scale up/down pods
based on the target
memory utilization
percentage specified. It
scales up/down pods
between the range
deployment.replicaCount
to
deployment.maxReplicas.

Optional 70

annotations

Enables Kubernetes
Annotations. Refer to
this document for more
information on K8s
Annotations.
The Designer UI requires
Session Stickiness if the
replica count is more than 1.
Configure session stickiness
based on the ingress
controller type. Ingress
configuration like session
stickiness can be configured
here.

Optional {}

labels
Any custom labels can
be configured. It is a key
and value, for example,
key:value.

Optional tenant: shared

Designer Deployment Guide 15



4.2 DAS deployment settings
The following table provides information on the DAS deployment settings. These settings are
configured in the das-values.yaml file.

Parameter Description Mandatory? Default Value

deployment.replicaCountNumber of services to
be created. Mandatory 2

deployment.maxReplicas

Maximum number of
replicas created. It is
recommended to
configure this setting if
auto-scaling is used.

Optional 10

deployment.strategy

The strategy to select
which type of resources
to deploy. Valid values
are : default,
service, volume,
ingress.

• ingress - for the
blue/green upgrade,
this is to create an
ingress for the first
time and update the
ingress during
service cutover.

• service - for
upgrading the blue/
green DAS service.

• default - for
performing a rolling
upgrade.

Mandatory service

deployment.green

This is to deploy/
upgrade the DAS
service in a blue-green
upgrade strategy. Valid
values are: blue,
green.

Optional green

dasImage.repository Docker repository for
the DAS image. Mandatory

pureengage-docker-
staging.jfrog.io/
designer/das

dasImage.tag DAS image version. Mandatory 9.0.111.05.5

dasVolumes.workapceMountPathDAS workspace path
inside the container. Mandatory /das/www/workspaces

dasVolumes.workspaceClaim
Persistent volume claim
name for the workspace
(must be the same as
Designer's claim name).

Mandatory designer-managed-disk

dasVolumes.logMountPathDAS log path inside the Mandatory /das/log

Designer Deployment Guide 16



container.

dasVolumes.logClaim
Persistent volume claim
name for logs (must be
the same as Designer's
claim name).

Mandatory designer-logs

dasHealthApi.path DAS Health Check API
path. Mandatory /health

dasHealthApi.containerPortContainer running port. Mandatory 8081

dasHealthApi.startupDelay
Health check will be
started after a delay as
specified in this setting.

Mandatory 10

dasHealthApi.checkInterval
The interval between
each health check
request.

Mandatory 5

dasHealthApi.failureCount

Number of health check
failures to consider
before marking the
container as instable or
restart.

Mandatory 5

dasService.type
Service port (either
ClusterIP or NodePort
or LoadBalancer).

Mandatory ClusterIP

dasService.port DAS service to be
exposed in the cluster. Mandatory 8081

dasService.targetPort
DAS application port
running inside the
container.

Mandatory 8081

dasService.nodePort
Port to be exposed in
case
service.type=NodePort.

Optional Sample value : 30280

dasEnv.enabled

This enables providing
environment variables
as an input to DAS pods.
It uses ConfigMap to store the
environment variables.

Mandatory true

dasEnv.envs.DAS_FILE_LOGGING_ENABLED
Enable file logging. DAS
supports only stdout
logging, this must
always be false.

Mandatory false

dasEnv.envs.DAS_LOG_LEVEL
Enables log levels. Valid
values are: FATAL,
ERROR, WARN, INFO,
DEBUG, TRACE.

Optional DEBUG

dasEnv.envs.DAS_STDOUT_LOGGING_ENABLEEnables standard output
console logging. Mandatory true

dasEnv.envs.DAS_SERVICES_ELASTICSEARCH_ENABLED
To enable or disable
Designer Analytics. This
config is required for
DAS to initialize ES

Optional false

Designer Deployment Guide 17



templates.

dasEnv.envs.DAS_SERVICES_ELASTICSEARCH_HOST
Elasticsearch Server
HostName with http://
prefix (for example,
http://es-service)

Optional http://designer-es-client-
service

dasEnv.envs.DAS_SERVICES_ELASTICSEARCH_PORTElasticsearch port (for
example, 80) Optional 9200

dasresources.limits.cpu
Maximum amount of
CPU processing power
that K8s allocates for
the container.

Mandatory 600m

dasresources.limits.memory
Maximum amount of
memory K8s allocates
for the container.

Mandatory 1Gi

dasresources.requests.cpuGuaranteed CPU
allocation for container. Mandatory 400m

dasresources.requests.memory
Guaranteed Memory
allocation for the
container.

Mandatory 512Mi

securityContext.runAsUser

Controls which user ID
the containers are run
with. This can be
configured to run DAS
as a non-root user.
Currently, only a Genesys
user is supported by the DAS
base image.

500 is the ID of the Genesys
user and it cannot be
modified.

Optional 500

securityContext.runAsGroup

Controls which primary
group ID the containers
are run with. This can
be configured to run
DAS as a non-root user.
Currently, only a
Genesys user group
(GID - 500) is supported
by the DAS base image.

Optional 500

nodeSelector
To allow pods to be
scheduled on the nodes-
based labels assigned to
the nodes.

Optional

Default value:
nodeSelector: {}

Sample value:

nodeSelector:

:

affinity
The K8s standard node
affinity and anti-affinity
configurations can be
added here. Refer to

Optional {}

Designer Deployment Guide 18



this K8s document for
sample values.

tolerations

Tolerations works with
taints to ensure that
pods are not scheduled
onto inappropriate
nodes. Refer to this K8s
document for sample
values.

Optional []

hpa.enabled

Enables K8s Horizontal
Pod Autoscaler (HPA). It
automatically scales the
number of pods based
on average CPU
utilization and average
memory utilization.
More information about HPA is
available here.

Optional false

hpa.targetCPUPercent

The K8s HPA controller
will scale up/down pods
based on the target CPU
utilization percentage
specified. It scales up/
down pods between the
range
deployment.replicaCount
to
deployment.maxReplicas.

Optional 75

hpa.targetMemoryPercent

The K8s HPA controller
will scale up/down pods
based on the target
memory utilization
percentage specified. It
scales up/down pods
between the range
deployment.replicaCount
to
deployment.maxReplicas.

Optional 70

annotations

Enables Kubernetes
Annotations. Refer to
this document for more
information on K8s
Annotations.

Optional {}

labels
Any custom labels can
be configured. It is a key
and value, for example,
key:value.

Optional tenant: shared

5. Post deployment Designer settings

Designer Deployment Guide 19



Post deployment, Designer configuration is managed from the following 3 locations:

5.1 Flow settings
Flow Settings is used for controlling global Designer settings that are applicable to all tenants and it
contains bootstrap configuration settings such as port, GWS info, and DAS URL.

Configuration path - /workspace/designer/flowsettings.json.

This will be configured using the helm install. The Flowsettings.json update section (8.2.2 Designer
deployment process) describes the steps to update the flowsettings.json file.

5.2 Tenant settings
These are tenant specific settings if the Designer service is configured with multi-tenancy .

Configuration path - workspace//config/tenantsettings.json.

The user should logout and log back in after any changes to the tenantsettings.json file. The
Designer UI will continue to show the older features until the user logs out and logs back in.

Tenant specific settings are configured by directly editing the file in the above path.

5.3 DesignerEnv transaction list
The DesignerEnv transaction list is available in Configuration Server (Tenant/Transactions/
DesignerEnv). This is mostly used to control the run-time settings. Any change to the DesignerEnv
transaction list does not require the application to be published again or a new build for the
application.

The user should log out and log back in for the changes to reflect in the Designer UI.

The DesignerEnv transaction list is configured using CME or GAX.

5.4 Configuration settings reference table

Tip
As the following table extends beyond the margin of the page, use the horizontal
scroll bar at the bottom of your browser window to view the complete table.

Category: Analytics
Setting
Name flowsettings.jsontenantsettings.jsonDesignerEnv DesignerEnv

Section Description Sample
Value

Default
Value

enableAnalytics
(optional) Yes Yes

This flag
enables or
disables

true false

Designer Deployment Guide 20



the
analytics
feature.

esUrl
(optional) Yes Yes Elasticsearch

URL
http://es-
spot.usw1.genhtcc.com:80

esServer
(optional) Yes Yes

Elasticsearch
Server
HostName
(for
example,
es-service)

es-
spot.usw1.genhtcc.com

esPort
(optional) Yes Yes Elasticsearch

port 80

ReportingURL
(optional) Yes reporting

URL of
Elasticsearch
where
Designer
applications
will report
data.

http://es-
spot.usw1.genhtcc.com:80

esMaxQueryDuration
(optional) Yes Yes

The
maximum
time range
(in days)
to query in
Designer
Analytics.
Each day's
data is
stored in a
separate
index in
Elasticsearch.

90 90

sdrMaxObjCount
(optional) Yes Yes

The
maximum
count of
nested
type
objects
that will be
captured
in SDRs.
When set
to -1,
which is
the default
value, no
objects will
be
trimmed.
All the
milestones
or
activities

20

Designer Deployment Guide 21



visited in
runtime
are
expected
to be
captured
in an SDR.

SdrTraceLevel
(optional) Yes Yes

It controls
the level
of SDR
detail that
is recorded
by the
blocks
array for
each
application.
Currently,
the valid
values are:

• 100 —
Debug
level
and
up.
Currently,
there
are no
Debug
messages.

• 200 —
Standard
level
and
up.
This
setting
will
show
all
blocks
that
are
entered
during
a call
in the
blocks
array.

• 300 —
Important
level
and
up.

300 300

Designer Deployment Guide 22



This
setting
filters
out all
blocks
from
the
blocks
array,
except
those
containing
data
that
will
change
from
call to
call
(such
as the
Menu
block
and
User
Input
block).

Category: Audit
Setting
Name lowsettings.jsontenantsettings.jsonDesignerEnv DesignerEnv

Section Description Sample
Value

Default
Value

enableESAuditLogs
(optional) Yes Yes

Enable or
Disable
audit logs
captured
in
Elasticsearch.

false false

enableFSAuditLogs
(optional) Yes Yes

Enable or
Disable
audit logs
captured
in the file
system
under the
logs
directory
or in
standard
output.

true true

maxAppSizeCompare
(optional) Yes Yes

The
maximum
size of
data
object for

1000000 1000000

Designer Deployment Guide 23



which a
difference
will be
captured
in the
audit logs,
value in
bytes.
That is,
the
difference
between
the
Designer
object's
old value
and new
value.

enableReadAuditLogs
(optional) Yes Yes

Control
whether
reading of
Designer
objects is
captured
in audit
trails. If
enabled
any
Designer
object
viewed in
the UI will
be
recorded
in the
audit logs.

false false

Category: Authorization
Setting
Name flowsettings.jsontenantsettings.jsonDesignerEnv DesignerEnv

Section Description Sample
Value

Default
Value

disableRBAC
(optional) Yes Yes

Controls if
Designer
reads and
enforces
permissions
associated
with the
logged in
user's
roles.

false false

rbacSection
(optional) Yes Yes

In a Role
object, the
name of
the section
within the
Annex

CfgGenesysAdministratorServerCfgGenesysAdministratorServer

Designer Deployment Guide 24



where the
privileges
are stored.

disablePBAC
(optional) Yes Yes

Controls if
Designer
allows
partitioning
of the
Designer
workspace
and
restricts a
user's
access to
Designer
objects in
the user's
partitions.

false false

Category: Collaboration
Setting
Name flowsettings.jsontenantsettings.jsonDesignerEnv DesignerEnv

Section Description Sample
Value

Default
Value

locking
(optional) Yes

The type
of locking
used, for
an editing
session of
applications,
modules,
or data
tables.
Valid values :
file,
redis, none

file file

Category: DAS
Setting
Name flowsettings.jsontenantsettings.jsonDesignerEnv DesignerEnv

Section Description Sample
Value

Default
Value

applicationHost
(mandatory) Yes

The server
name
Designer
uses to
generate
the URL to
the
application.
ORS and
MCP fetch
the
application
code and
other
resources
from this
URL.

das.usw1.genhtcc.comlocalhost

Designer Deployment Guide 25



applicationPortYes

The
corresponding
port to be
used with
applicationHost.

80 80

deployURL Yes

This is
normally
not
changed.
It is the
relative
path to the
workspace
on DAS.

/workspace /workspace

Category: Digital
Setting
Name flowsettings.jsontenantsettings.jsonDesignerEnv DesignerEnv

Section Description Sample
Value

Default
Value

rootsSRL
(optional) Yes Yes

If
specified,
this is
used to
filter which
Root
Categories
to display
when
selecting
Standard
Responses.

A REGular
EXpression
(REGEX).

maxFlowEntryCount
(optional) Yes Yes flowsettings

Specify
how many
times the
same
application
can
process a
specific
digital
interaction.

20 20

Category: External APIs
Setting
Name flowsettings.jsontenantsettings.jsonDesignerEnv DesignerEnv

Section Description Sample
Value

Default
Value

httpProxy
(optional) Yes Yes Yes flowsettings

Specify
the proxy
used for
external
requests
and nexus
API calls (if
enable_proxy
is true).

http://vpcproxy-000-int.geo.genprim.com:8080

redundantHttpProxy
(optional) Yes Yes Yes flowsettings Specify

the http://vpcproxy-001-int.geo.genprim.com:8080

Designer Deployment Guide 26



backup
proxy used
for
external
requests
and nexus
API calls (if
enable_proxy
is true),
when
httpProxy
is down.

Category: Features
Setting
Name flowsettings.jsontenantsettings.jsonDesignerEnv DesignerEnv

Section Description Sample
Value

Default
Value

features Yes Yes

This is an
object.
See the
5.5
Features
section for
a list of
supported
features.

{
nexus: true,

enableBulkAudioImport:
true

}

Category: GWS
Setting
Name flowsettings.jsontenantsettings.jsonDesignerEnv DesignerEnv

Section Description Sample
Value

Default
Value

usehtcc Yes

Set to
true so
that
Designer
works with
GWS. If set
to false,
Designer
defaults to
a local
mode and
may be
used
temporarily
if GWS is
unavailable.

true false

htccServer Yes GWS
Server

gws-
usw1-int.genhtcc.com

gws-
usw1-int.genhtcc.com

htccport Yes GWS Port 80 80

ssoLoginUrl Yes

URL of
GWS
authentication
UI.
Designer
redirects
to this URL

https://gws-
usw1.genhtcc.com

https://gws-
usw1.genhtcc.com

Designer Deployment Guide 27



for
authentication.

maxConcurrentHTCCRequest
(optional) Yes

For batch
operations
to GWS,
the max
number of
concurrent
requests
that
Designer
will send
to GWS.

5 5

batchOperationResultTTL
(optional) Yes

For batch
operations
to GWS,
the time,
in
milliseconds,
for which
duration
Designer
stores the
results of a
batch
operation
on the
server,
before
deleting
them.

100000 100000

Category: Help
Setting
Name flowsettings.jsontenantsettings.jsonDesignerEnv DesignerEnv

Section Description Sample
Value

Default
Value

docsMicroserviceURL
(optional) Yes

URL for
Designer
documentation.

https://docs.genesys.com/
Documentation/
PSAAS/
Public/
Administrator/
Designer

Category: IVR
Setting
Name flowsettings.jsontenantsettings.jsonDesignerEnv DesignerEnv

Section Description Sample
Value

Default
Value

recordingType
(optional) Yes Yes

Specify
the
recording
type to be
used in
Record
block. Set
as GIR. If
the option
is missing

GIR GIR

Designer Deployment Guide 28



or blank,
Full Call
Recording
type will
be used.

Category: Logging
Setting
Name flowsettings.jsontenantsettings.jsonDesignerEnv DesignerEnv

Section Description Sample
Value

Default
Value

logging:
{
designer:
{ level:

debug },

audit: {
level:
trace},

auditdebug:
{ level:
debug },

cli: {
level:
debug }

}

(optional)

Yes

Specify
Designer
log levels.
Each field
has valid
values -
trace,
debug,
info,
warn,
error, or
fatal.
designer -
log level of
Designer.

audit - log
level of audit.

auditdebug
- log level of
audit debug,
this will log
detailed audit
information.

cli - log level
for cli
commands
executed on
Designer.

logging:
{
designer:
{ level:
debug},

audit: {
level:
trace },

auditdebug:
{ level:
debug},

cli: {
level:
debug }

}

logging:
{
designer:
{ level:
debug },

audit: {
level:
trace },

auditdebug:
{ level:
debug },

cli: {
level:
debug }

}

Category: Nexus
Setting
Name flowsettings.jsontenantsettings.jsonDesignerEnv DesignerEnv

Section Description Sample
Value

Default
Value

url
(optional) Yes nexus

URL of
Nexus that
typically
includes
the API
version
path. For
example,
https://nexus-
server/
nexus/api/
v3.

http://nex-
dev.usw1.genhtcc.com

password
(optional) Yes nexus nexus x-

api-key dc4qeiro13nsof569dfn234smf

Designer Deployment Guide 29



created by
Nexus
deployment

enable_proxy
(optional) Yes nexus

Boolean
value to
indicate if
httpProxy
is used to
reach
Nexus.

false

profile
(optional) Yes nexus

Enable
Contact
Identification
via Nexus
(for
example,
to enable
Last Called
Agent
routing).

Category: Process
Setting
Name flowsettings.jsontenantsettings.jsonDesignerEnv DesignerEnv

Section Description Sample
Value

Default
Value

port Yes

Designer
process
port in the
container.
Normally,
the default
value
should be
left as is.

8888 3000

Category: Provisioning
Setting
Name flowsettings.jsontenantsettings.jsonDesignerEnv DesignerEnv

Section Description Sample
Value

Default
Value

primarySwitch
(optional) Yes Yes

Specify
the
primary
switch
name if
more than
one switch
is defined
for the
tenant.
Designer
fetches
and works
with route
points
from this
switch.

us-west-1

Category: Routing

Designer Deployment Guide 30



Setting
Name flowsettings.jsontenantsettings.jsonDesignerEnv DesignerEnv

Section Description Sample
Value

Default
Value

ewtRefreshTimeout
(optional) Yes flowsettings

Specify
the
interval (in
seconds)
at which to
refresh the
Estimated
Waiting
Time when
routing an
interaction.

5 1

Category: Redis
Setting
Name flowsettings.jsontenantsettings.jsonDesignerEnv DesignerEnv

Section Description Sample
Value

Default
Value

redis: {
host: "",
port: "",
tlsEnabled:
true,
lockTimeout:
120,
listTimeout:
1800
}

(optional)

Used by
Designer
for
resource
index
caching
and multi-
user
collaboration
locks on
Designer
resources.
It is a
separate
object and
contains:

host - Redis
host name.

port - Redis
port.

tlsEnabled -
TLS enabled
or not.

lockTimeout
- Timeout, in
seconds,
before a
resource lock
is released
for an editing
session of
applications,
modules, or
data tables.

listTimeout
- The cache
expiry
timeout (in
seconds) of
the

redis: {
host: "",
port: "",
tlsEnabled:
true,
lockTimeout:
120,
listTimeout:
1800
}

redis: {
host:
redis.server.genhtcc.com,
port:
6379,
tlsEnabled:
true,
lockTimeout:
120,
listTimeout:
1800
}

Designer Deployment Guide 31



application
list and
shared
modules list.
By default, it
is 30
minutes. That
is, any new
application/
modules
created in
the UI will be
seen in the
listing page
after 30
mins. It can
be reduced to
a smaller
value. This is
to improve
the page
loading
performance
of the
Applications
and Shared
Modules
page. A
better
performance
is achieved
with a higher
value.

Category: Security
Setting
Name flowsettings.jsontenantsettings.jsonDesignerEnv DesignerEnv

Section Description Sample
Value

Default
Value

zipFileSizeLimitInMegaBytes
(optional) Yes Yes

Defines
the
maximum
zipFile size
limit (in
megabytes)
during
bulk audio
import.

50 No default.

disableCSRF
(optional) Yes Yes

Disable
CSRF
attack
protection.
http://cwe.mitre.org/
data/
definitions/
352.html

By default,
CSRF attack
protection is
enabled. It
can be
disabled by
setting this

false false

Designer Deployment Guide 32



flag to true.

disableSecureCookie
(optional) Yes

Disable
the secure
cookies
header

false false

Category: Session
Setting
Name flowsettings.jsontenantsettings.jsonDesignerEnv DesignerEnv

Section Description Sample
Value

Default
Value

idleTimeout
(optional) Yes Yes

Idle
timeout, in
seconds,
before a
user
session is
terminated
while
editing
applications,
modules,
or data
tables.

840 840

lockTimeout
(optional) Yes Yes

Timeout,
in
seconds,
before a
resource
lock is
released,
for an
editing
session of
applications,
modules,
or data
tables.

120 120

lockKeepalive
(optional) Yes Yes

Interval, in
seconds,
before the
client
sends a
ping to the
server, to
refresh the
lock for an
editing
session of
applications,
modules,
or data
tables.

15 15

Category: Workflow
Setting flowsettings.jsontenantsettings.jsonDesignerEnv DesignerEnv Description Sample Default

Designer Deployment Guide 33



Name Section Value Value

maxBuilds
(optional) Yes Yes

Specify
the
maximum
number of
builds
allowed
per
application.

20 20

enablePTE
(optional) Yes flowsettings

Boolean
value to
indicate if
PTE
objects are
enabled at
runtime.

true false

5.5 Features
The features specified here must be configured under the features object in the flowsettings.json
file.

For example,

features: {

callbackv2: true,

..

..

}

Important
These features are configured only in the flowsettings.json file and the
tenantsettings.json file, and not in DesignerEnv.

Category
Feature
Setting
Name

Mandatory flowsettings.jsontenantsettings.jsonDescription Default
Value

Audio

enableBulkAudioImportOptional Yes Yes

Enable/
disable the
bulk audio
import
feature.

false

grammarValidationOptional Yes yes
If this
feature is
enabled,
Designer will

false

Designer Deployment Guide 34



validate
invalid
grammar
files during
grammar
upload and
you can
upload only
valid
grammar
files (GRXML
or Nuance
compiled
binary
grammar
files).

externalAudioSupportOptional Yes Yes

If this
feature is
enabled, a
new audio
type,
External
Audio, is
available in
the Play
Message
block. It
accepts a
single
variable that
contains a
URL to the
audio
resource.
MCP will
fetch this
resource
directly and
play it. The
only
supported
value of
Play As is
Audio URI.
There is no
automatic
language
switching for
this audio
type.

false

Nexus nexus Optional Yes Yes
Enable/
disable the
Nexus
feature.

false

Survey survey Optional Yes Yes Enable/
disable the true

Designer Deployment Guide 35



survey
feature.

Milestone enableImplicitModuleMilestonesOptional Yes Yes

Enable
reporting
each Shared
Module call
as an
internal
milestone. If
disabled,
Shared
Module calls
will not
generate a
milestone.

false

Bots enableDialogFlowCXBotOptional Yes Yes

When
enabled,
Dialogflow
CX bot type
is added to
the bot
registry and
available for
selection in
the Bot
provider
drop-down
when you
configure a
new bot.

false

6. Logging

Designer and DAS support console output (stdout) logging. Genesys recommends configuring console
output logging to minimize the host IOPs and PVCs consumption by using log volumes. Console
output logs can be extracted using log collectors like fluentbit/fluentd and Elasticsearch.

Ensure the below setttings are configured in the respective values.yaml overrides for console
logging:

1. Designer
designerEnv.envs.DES_FILE_LOGGING_ENABLED = false

2. DAS
dasEnv.envs.DAS_FILE_LOGGING_ENABLED = false
dasEnv.envs.DAS_STDOUT_LOGGING_ENABLE = true

6.1 Log levels
Post deployment, Designer and DAS log levels can be modified as follows:

Designer Deployment Guide 36



6.1.1 Designer

1. Configure the logging setting in the flowsettings override (flowsettings.yaml) - Refer to section 5.4
Configuration settings reference table for option descriptions.

2. Execute the steps in the Flowsettings.json update section (8.2.2 Designer deployment process) for the
changes to take effect .

6.1.2 DAS

1. Configure the dasEnv.envs.DAS_LOG_LEVEL setting in the Helm das-values.yaml file. Refer to section
4.2 DAS deployment settings for setting descriptions.

2. Execute the steps in the Upgrade non production color section (8.2.3 DAS deployment process). The
same DAS version running in production can be used for the upgrade,

3. Execute the steps in the Cutover section (8.2.3 DAS deployment process).

7. Platform / Configuration Server and GWS settings

This section explains the Configuration Server objects and settings required for Designer.

7.1 Create Roles for Designer
Designer uses roles and access groups to determine permissions associated with the logged-in user.
To enable this, you must make these changes in GAX or CME.

Designer supports a number of bundled roles suitable for various levels of users.

• DesignerDeveloper - Most users fall into this category. These users can create Designer applications,
upload audio, and create business controls. They have full access to Designer Analytics.

• DesignerBusinessUser - These users cannot create objects but they can manage them (for example,
upload audio, change data tables, and view analytics).

• DesignerAnalytics - These users only have access to Designer Analytics.

• DesignerAdmin - These users can set up and manage partitions associated with users and Designer
objects.

• DesignerOperations - Users with this role have full access to all aspects of the Designer workspace.
This includes the Operations menu (normally hidden), where they can perform advanced operational
and maintenance tasks.

To create these roles, import the .conf files included in the Designer Deployment Manifest
package. They are located in the packages/roles/ folder.

In addition, ensure the following for user accounts that need access to Designer:

• The user must have read permissions on its own Person object.

Designer Deployment Guide 37



• Users must be associated with one or more roles via access groups.
• The on-Premises user must have at least read access on the user, access group(s), and roles(s).
• The access groups must have read/write permissions to the CME folders - Scripts and Transactions.

7.2 Create the DesignerEnv transaction list
Designer requires a transaction list for configuration purposes as described in other sections of this
document. To set this up:

1. Create a transaction list called DesignerEnv.
2. Import the file configuration/DesignerEnv.conf, located in the Designer Deployment Manifest

package.
3. Edit any values according to the descriptions provided in the Designer settings section.
4. Save the list.
5. Ensure Designer users have at least read access to the DesignerEnv transaction list.

7.3 Platform Settings
The platform settings listed below must be configured if the Designer application is used for voice
calls.

Component Config Key Value Description
SIP Switch -> Voip
Services -> msml
service

userdata-map-format sip-headers-encoded
Option needs to set to
pass JSON data as user
data in SIPS.

SIP Switch -> Voip
Services -> msml
service

userdata-map-filter * To allow userdata
passing to MSML service

SIPServer --> TServer

divert-on-ringing false RONA is handled by the
platform.

agent-no-answer-
timeout 12

agent-no-answer-action notready
agent-no-
answeroverflow "" no value, empty.

after-routing-timeout 24
sip-treatments-
continuous true

msml-record-support true
To allow routed calls
recording via the Media
Server

Switch object annex -->
gts ring-divert 1

URS 'http' port, protocol =
'http'

Required only for Route
Agent block to work.

Designer Deployment Guide 38



ORS --> orchestration new-session-on-reroute false
Required for SIPS
Default Routing (Default
Routing handling
(Voice))

MCP [vxmli] transfer.allowed TRUE
Required for Transfer
block (allows VXML
Transfer in MCP)

MCP [cpa] outbound.method NATIVE
Required for Transfer
block (allow CPA
detection for Transfer )

UCS [cview] enabled TRUE Enables Customer
Context Services

7.4 GWS Configuration
7.4.1 Create Contact Center

Create a contact center in GWS if it is not already created. Refer to the GWS documentation for more
information on this.

7.4.2 Create GWS Client

Create new GWS client credentials if they are not already created . Refer to the GWS documentation
for more information on this.

8. Deployment

This section describes the deployment process for Designer and DAS.

8.1 Preparation
Before you deploy Designer and DAS using Helm charts, complete the following preparation steps:

1. Ensure the Helm client is installed.
2. Set up an Ingress controller, if not already done.
3. Setup an NFS server, if not already done.
4. Create Persistent Volumes - a sample YAML file is provided in the Designer manifest package.
5. Download the Designer and DAS docker images and push to the local docker registry.
6. Download the Designer manifest package and extract to the current working directory.
7. Configure Designer and DAS value overrides (designer-values.yaml and das-values.yaml) - please

ensure the mandatory settings are configured. If the blue-green deployment process is used, Ingress
settings are explained in the following section.

Designer Deployment Guide 39



8.2 Blue-Green deployment
Blue-Green deployment is a release management technique that reduces risk and minimizes
downtime. It uses two production environments, known as Blue and Green or active and inactive, to
provide reliable testing, continuous no-outage upgrades, and instant rollbacks. When a new release
needs to be rolled out, an identical deployment of the application will be created using a Helm
package and after the testing is completed, the traffic is moved to the newly created deployment,
which becomes the ACTIVE environment, and the old environment becomes INACTIVE. This way, a
fast rollback is possible by just changing route if a new issue is found with live traffic. The old inactive
deployment can be removed once the new active deployment becomes stable.

The service cutover is done by updating the Ingress rules. The below diagram shows the high level
approach on how the traffic can be routed to Blue and Green deployments with Ingress rules.

Designer Deployment Guide 40

/File:BlueGreenDeployment.png
/File:BlueGreenDeployment.png


8.2.1 Preparation for Blue-Green deployment

Before you deploy Designer and DAS using the Blue-Green deployment strategy, complete the
following preparation steps:

1. Configure the Ingress host names for Designer. Create 3 host names as shown below.
The Blue service host name must contain the string blue, for example, designer.blue.genhtcc.com or
designer-blue.genhtcc.com. The Green service host name must contain the string green, for
example, designer.green.genhtcc.com or designer-green.genhtcc.com. The Blue/Green services
can be accessed separately with the Blue/Green host names as shown in this example:
designer.genhtcc.com (production host URL used for external access).
designer.blue.genhtcc.com (URL for Blue service testing).
designer.green.genhtcc.com (URL for Green service testing).

2. Configure the host names in the designer-values.yaml file under ingress. Annotations and paths can
be modified based on the requirement.
For example,
ingress:
enabled: true
annotations: {}
paths: [/]
hosts:
- designer.genhtcc.com
- designer.blue.genhtcc.com
- designer.green.genhtcc.com

3. Configure the Ingress host names for DAS. Create 3 host names as shown below.
The Blue service host name must contain the string blue, for example, das.blue.genhtcc.com or das-
blue.genhtcc.com. The Green service host name must contain the string green, for example,
das.green.genhtcc.com or das-green.genhtcc.com. he Blue/Green services can be accessed
separately with the Blue/Green host names as shown in this example:
das.genhtcc.com (the production host URL used for external access).
das.blue.genhtcc.com (URL for Blue service testing).
das.green.genhtcc.com (URL for Blue service testing).

4. Configure the host names in the das-values.yaml file under ingress. Annotations and paths can be
modified based on the requirement.
For example,
ingress:
enabled: true
annotations: {}
paths: [/]
hosts:
- das.genhtcc.com
- das.blue.genhtcc.com
- das.green.genhtcc.com

8.2.2 Designer deployment process

Initial deployment

The resources's ingress and persistent volume claims (PVC) must be created initially before deploying
the Designer service as these resources are shared between the Blue/Green services and must be
created at the very beginning of the deployment. They will not be needed for subsequent upgrades.
The required values are passed using the SET command as shown below or by modifying the
values.yaml file.

Designer Deployment Guide 41



1. Create Persistent Volume Claims required for the Designer service (assuming the volume service name
is designer-volume):
helm upgrade --install designer-volume -f designer-values.yaml designer-9.0.xx.tgz --
set deployment.strategy=volume
Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=volume - indicates that this helm install will create persistent volume claim.

2. Create ingress rules for the Designer service (assuming the ingress service name is designer-
ingress):
helm upgrade --install designer-ingress -f designer-values.yaml designer-9.0.xx.tgz --
set deployment.strategy=ingress --set-string deployment.color=green
Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=ingress - indicates that this helm install will create ingress rules for the
Designer service.
deployment.color=green - indicates that the current production instance (active) color is Green.

3. Deploy the Designer service to the color selected in step 2. In this case, Green is selected and assuming
the service name is designer-green:
helm upgrade --install designer-green -f designer-values.yaml designer-9.0.xx.tgz --
set deployment.strategy=service --set desImage.tag=9.0.1xx.xx.xx --set-string
deployment.color=green
Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=service - indicates that the Designer service will be installed.
desImage.tag=9.0.1xx.xx.xx - indicates the Designer version to be installed, for example,
9.0.116.07.10.
deployment.color=green - indicates that the Green color service will be installed.

Upgrade non-production color

1. Identify the current production color by checking the Designer ingress rules (kubectl describe
ingress designer-ingress). Green is the production color in the below example as the production
host name points to the Green service.

2. Deploy the Designer service into the non-production color. In the above example, Blue is the non-
production color (assuming the service name is designer-blue):
helm upgrade --install designer-blue -f designer-values.yaml designer-9.0.xx.tgz --set
deployment.strategy=service --set desImage.tag=9.0.1xx.xx.xx --set-string
deployment.color=blue
Note: The overrides passed as an argument in the above helm upgrade:
deployment.strategy=service - indicates that the Designer service will be installed.
desImage.tag=9.0.1xx.xx.xx - indicates the Designer version to be installed, for example,
9.0.116.08.12.
deployment.color=blue - indicates that the Blue color service will be installed.

3. The non-production color can be accessed with the non-production host name (for example -
designer.blue.genhtcc.com), any testing can be done using this URL.

Designer Deployment Guide 42

/File:Upgrade_Non-Production_Color.png
/File:Upgrade_Non-Production_Color.png


Cutover

Once testing is completed on the non-production color, traffic can be moved to the new version by
updating the ingress rules.

1. Update the Designer Ingress with the new deployment color by running the below command (in this
case, Blue is the new deployment color, that is, the non-production color):
helm upgrade --install designer-ingress -f designer-values.yaml designer-9.0.xx.tgz --
set deployment.strategy=ingress --set-string deployment.color=blue
Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=ingress - indicates that this helm install will create ingress rules for the
Designer service.
deployment.color=blue - indicates that the current production (active) color is Blue.

2. Verify the ingress rules by executing the command kubectl describe ingress designer-ingress.
The production host name should point to the new color service.

Workspace upgrade

Workspace resources must be upgraded after cutover. This will upgrade the system resources in the
Designer workspace.

1. Log in to one of the Designer pods with the command: kubectl exec -it bash.
2. Execute the migration command (this will create new directories/new files introduced in the new

version):
node ./bin/cli.js workspace-upgrade -m -t

3. Execute the workspace resource upgrade command (this will upgrade system resources, such as system
service PHP files, internal audio files, and callback resources):
node ./bin/cli.js workspace-upgrade -t
contact_center_id is the contact center ID created in GWS for this tenant. The workspace resources
are located within the contact center ID folder (/workspaces//workspace).

Important
The above steps - upgrade non production color, cutover, and workspace upgrade will also be used for further
upgrades.

Flowsettings.json update

Post deployment, the flowsettings.json file can be modified via helm install using the below steps:

1. Download the current flowsettings.json file from the location: /designer/flowsettings.json.
2. Modify the necessary settings (refer to section 5.4 Configuration settings reference table).
3. Create a new YAML file, for example, flowsettings.yaml.
4. Copy and paste the above modified flowsettings.json content in the new flowsettings.yaml file:

flowsettings:
For example:
flowsettings: {
port:8888,

Designer Deployment Guide 43



usehtcc:true,
htccserver:gws-int-genhtcc.com,
htccport:80,
....
....
}

5. Run the below helm upgrade command on the non-production color service. It can be done as part of
Designer upgrade by passing the flowsettings.yaml in the extra argument --values. In this case, the
new Designer version can be used for the upgrade. If it is only a flowsettings.json update, the same
Designer version will be used.
helm upgrade --install designer-blue -f designer-values.yaml designer-9.0.xx.tgz --set
deployment.strategy=service --set desImage.tag=9.0.1xx.xx.xx --set-string
deployment.color=blue --values flowsettings.yaml
The non-active color Designer will have updated settings after the above upgrade.

6. Once testing is completed on the non-production service, perform the cutover steps as mentioned in the
Cutover section. Now, the production service will contain the changed settings.

Rollback

• If any blocking issues are noticed in the current production service, traffic can be rolled back to the
previous active color by updating the ingress rules:
helm upgrade --install designer-ingress -f designer-values.yaml designer-9.0.xx.tgz --
set deployment.strategy=ingress --set-string deployment.color=green
Rollback of workspace resources is generally not required as the workspace resources shipped with
Designer are backward and forward compatible. If required, the workspace can be upgrade from the old
version, but it is not necessary. Future new version upgrades must run the workspace upgrade as per
the normal process.
Rollback of applications and shared modules is also not required as these resources are also backward
and forward compatible with Designer.

8.2.3 DAS deployment process

Initial deployment

The ingress must be created initially before deploying the DAS service as it is shared between the
Blue/Green services and must be created at the very beginning of the deployment. It will not be
needed for subsequent upgrades. The required values are passed using the SET command as shown
below or by modifying the values.yaml file.

1. Create ingress rules for the Designer service (assuming the ingress service name is das-ingress):
helm upgrade --install das-ingress -f das-values.yaml das-9.0.xx.tgz --set
deployment.strategy=ingress --set-string deployment.color=green
Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=ingress - indicates that this helm install will create ingress rules for the DAS
service.
deployment.color=green - indicates that the current production instance (active) color is Green.

2. Deploy the DAS service to the color selected in step 1. In this case, Green is selected and assuming the
service name is das-green:
helm upgrade --install das-green -f das-values.yaml das-9.0.xx.tgz --set
deployment.strategy=service --set dasImage.tag=9.0.1xx.xx.xx --set-string
deployment.color=green
Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=service - indicates that the DAS service will be installed.

Designer Deployment Guide 44



dasImage.tag=9.0.1xx.xx.xx - indicates the DAS version to be installed, for example, 9.0.111.04.4.
deployment.color=green - indicates that the Green color service will be installed.

Upgrade non-production color

1. Identify the current production color by checking the DAS ingress rules (kubectl describe ingress
das-ingress). Green is the production color in the below example as the production host name points
to the Green service.

2. Deploy the DAS service into the non-production color. In the above example, Blue is the non-production
color (assuming the service name is das-blue):
helm upgrade --install das-blue -f das-values.yaml das-9.0.xx.tgz --set
deployment.strategy=service --set dasImage.tag=9.0.1xx.xx.xx --set-string
deployment.color=blue
Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=service - indicates that the DAS service will be installed.
dasImage.tag=9.0.1xx.xx.xx - indicates the DAS version to be installed , for example, 9.0.111.05.5.
deployment.color=blue - indicates that the Blue color service will be installed.

3. The non-production color can be accessed with the non-production host name (for example -
das.blue.genhtcc.com), any testing can be done using this URL.

Cutover

Once testing is completed on the non-production color, traffic can be moved to the new version by
updating the ingress rules.

1. Update the DAS Ingress with the new deployment color by running the below command (in this case,
Blue is the new deployment color, that is, the non-production color):
helm upgrade --install das-ingress -f das-values.yaml das-9.0.xx.tgz --set
deployment.strategy=ingress --set-string deployment.color=blue
Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=ingress - indicates that this helm install will create ingress rules for the DAS
service.
deployment.color=blue - indicates that the current production (active) color is Blue.

2. Verify the ingress rules by running the command kubectl describe ingress das-ingress. The production
host name should point to the new color service.

Important

Designer Deployment Guide 45

/File:Upgrade_non-production_color_-_DAS.png
/File:Upgrade_non-production_color_-_DAS.png


The above steps - upgrade non production color and cutover will also be used for further upgrades.

Rollback

If any blocking issues are noticed in the current production service, traffic can be rolled back to the
previous active color by updating the ingress rules:

helm upgrade --install das-ingress -f das-values.yaml das-9.0.xx.tgz --set
deployment.strategy=ingress --set-string deployment.color=green

8.3 Rolling upgrade
A rolling upgrade is not recommended. Use the Blue/Green upgrade procedure.

8.4 Uninstall
To uninstall a service/volume/ingress rules:

helm uninstall

9. Enabling optional features

9.1 Enable Designer Analytics and Audit Trail
Post Designer deployment, features such as Analytics and Audit Trail can be
enabled by performing the below steps.

Important
Ensure Elasticsearch is deployed before proceeding.

9.1.1 Designer changes

1. Configure the following settings in flowsettings override (flowsettings.yaml) - Refer to section 5.4
Configuration settings reference table for option descriptions.
• enableAnalytics: true
• enableESAuditLogs: true
• esServer
• esPort

Designer Deployment Guide 46



• esUrl

2. Configure the below setting in the DesignerEnv transaction list:
ReportingURL in the reporting section.

3. Perform the steps in the Flowsettings.json update section (8.2.1 Designer deployment process).

9.1.2 DAS changes

1. Configure the following settings in the helm das-values.yaml file. Refer to the 4.2 DAS deployment
settings section for setting descriptions.
dasEnv.envs.DAS_SERVICES_ELASTICSEARCH_ENABLED = true
dasEnv.envs.DAS_SERVICES_ELASTICSEARCH_HOST
dasEnv.envs.DAS_SERVICES_ELASTICSEARCH_PORT

2. Perform the steps in the Upgrade non production color section (8.2.2 DAS deployment process). The
same DAS version running in production can be used for the upgrade.

3. Perform the steps in the Cutover section (8.2.2 DAS deployment process).

10. Cleanup

10.1 Elasticsearch maintenance recommendations
To help you better manage your indexes and snapshots, and to prevent too many indexes from
creating an overflow of shards, Genesys recommends that you set up a scheduled execution of
Elasticsearch Curator with the following two actions:

• Delete indexes older than the given threshold according to the index name and mask.
• sdr-* (3 months)
• audit-* (12 months)

• Make a snapshot of each index:
• sdr-* (yesterday and older)
• audit-*

• kibana-int-*

11. Limitations

Designer currently supports multi-tenancy provided by the tenant Configuration Server. That is, each
tenant should have a dedicated Configuration Server, and Designer can be shared across the multiple
tenants.

Designer Deployment Guide 47


	Designer Deployment Guide

