3 GENESYS

This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Designer Deployment Guide

1/13/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents

Deployment Details
Deploy Designer (versions v9012214 and above)
Deploy Designer (versions v9010005 and above)
Deploy Designer (versions prior to v9010005)

73
119

Search the table of all articles in this guide, listed in alphabetical order, to find the article you need.

Designer Deployment Guide

Deploy Designer (versions v9012214 and above)

Deploy Designer (versions v9012214 and
above)

Contents

1 1. About this document
* 1.1 1.1 Intended audience
» 1.2 1.2 Before you begin
e 2 2. Product overview
e 2.1 2.1 Designer
* 2.2 2.2 Designer Application Server (DAS)
e 2.3 2.3 Deployment architecture
e 2.4 2.4 High Availability (HA), Disaster Recovery (DR), and Scalability
e 3 3. Prerequisites
* 3.1 3.1 Mandatory prerequisites
* 3.2 3.2 Optional prerequisites
* 4 4. Deployment configuration settings (Helm values)
e 4.1 4.1 Designer deployment settings
* 4.2 4.2 DAS deployment settings
e 55, Post deployment Designer configuration settings
* 5.1 5.1 Flow settings
e 5.2 5.2 Tenant settings
* 5.3 5.3 DesignerEnv transaction list
* 5.4 5.4 Post deployment configuration settings reference table
* 5.5 5.5 Features

5.6 5.6 Adding a Ul plugin to Designer

* 6 6. Logging
* 6.16.1Log levels

e 7 7. Platform / Configuration Server and GWS settings
* 7.1 7.1 Create Roles for Designer

e 7.2 7.2 Create the DesignerEnv transaction list

Designer Deployment Guide

Deploy Designer (versions v9012214 and above)

e 7.3 7.3 Platform settings
e 7.4 7.4 GWS configuration

¢ 8 8. Deployment

* 8.1 8.1 Preparation

* 8.2 8.2 Set up Ingress

e 8.3 8.3 Set up Application Gateway (WAF) for Designer
8.4 8.4 Storage
8.5 8.5 Set up Secrets

8.6 8.6 Deployment strategies

* 8.7 8.7 Rolling Update deployment
8.8 8.7.1 Designer

8.9 8.7.2 DAS

8.10 8.8 Blue-Green deployment
* 8.11 8.8.1 Designer

8.12 8.8.2 DAS

8.13 8.9 Canary

8.14 8.10 Validations and checks

9 9. Post deployment procedures
* 9.1 Upgrading the Designer workspace
* 9.2 Updating the flowsettings file
¢ 10 10. Enabling optional features
* 10.1 10.1 Enable Designer Analytics and Audit Trail
* 10.2 10.2 Enable Personas
* 10.3 Update application settings

11 11. Cleanup

e 11.1 11.1 Elasticsearch maintenance recommendations

12 12. Limitations

Designer Deployment Guide

Deploy Designer (versions v9012214 and above)

Learn how to deploy Designer as a service in a Kubernetes cluster (for DesDepMnfst v9012214
and above).

1. About this document

This document guides you through the process of deploying and configuring Designer and Designer
Application Server (DAS) as a service in a Kubernetes (K8s) cluster.

Information on the following topics is provided:

e Overview of Designer and DAS
e Configuration details

¢ Deployment process

e Enabling optional features

¢ Cleanup

¢ Known limitations

1.1 Intended audience

This document is intended for use primarily by system engineers and other members of an
implementation team who will be involved in configuring and installing Designer and DAS, and
system administrators who will maintain Designer and DAS installations.

To successfully deploy and implement applications in Designer and DAS, you must have a basic
understanding of and familiarity with:

¢ Network design and operation

* Network configurations in your organization

¢ Kubernetes

¢ Genesys Framework architecture and functions

1.2 Before you begin

1. Install Kubernetes. Refer to the Kubernetes documentation site for installation instructions. You can also
refer to the Genesys Docker Deployment Guide for information on Kubernetes and High Availability.

2. Install Helm according to the instructions outlined in the Helm documentation site.

After you complete the above mandatory procedures, return to this document to complete an on-
premise deployment of Designer and DAS as a service in a K8s cluster.

Designer Deployment Guide 6

Deploy Designer (versions v9012214 and above)

2. Product overview

The following sections provide a brief overview of Designer and DAS.

2.1 Designer

The Designer service provides a web Ul to build and manage VXML and SCXML based self-service and
assisted service applications for a number of media types. It stores data on the local file system and
is synchronized across instances by using services like Network File System (NFS). Genesys
customers can build applications using a simple drag and drop method, and assign contact points
(Route Points and other media endpoints) to applications directly from the Designer Ul. Insights into
runtime behavior of applications and troubleshooting aid is provided by Designer Analytics, which
includes a rich set of dashboards based on session detail records (SDR) from data stored in
Elasticsearch.

Designer offers the following features:
e Applications for working with phone, chat, email, SMS (text messages), Facebook, Twitter, and open
media types.
e Bots, ASR, TTS capabilities for self-service.
» Assisted service or routing.
e Callback.
e Business Controls.
e Audio, message management.
e Grammars management.
* Contact points management - route points, chat end points, email pop-client/mailboxes.
¢ Analytics dashboards through embedded Kibana.
Designer is an Express/Node.js application. The Ul is designed using Angular powered Bootstrap.

Application data (SCXML and VXML) is stored as a file system. Designer Analytics and Audit data is
stored in Elasticsearch.

2.2 Designer Application Server (DAS)

Designer Application Server (DAS) hosts and serves the Designer generated application files (SCXML
and VXML), audio, and grammars. It also provides:

¢ Runtime evaluation of Business Controls (business hours, special days, emergency flags and data
tables).

e Callback interface to GES.
DAS uses built-in NGINX to front requests. It consists of 3 modules: NGINX, PHP, and Node.js.

¢ Requests for static workspace content (SCXML, VXML, JS, audio, grammar, etc) are handled by the
NGINX module.

Designer Deployment Guide 7

Deploy Designer (versions v9012214 and above)

¢ Requests for PHP content are processed by the FastCGI PHP module.
¢ SDR (Analytics) processing requests are handled by the DAS Node.js module.

Files generated by Designer can be served only by DAS. Designer will work only with
DAS.

2.3 Deployment architecture

The below architecture diagram illustrates a sample premise deployment of Designer and DAS:

Designer Deployment Guide

Deploy Designer (versions v9012214 and above)

Customer's
Intranet

Elastic Search for
Designer Analytics

/ Designer
Namespace

4
1
HTTP 1 HrrP—»| GES
HTTP(S)————————» E— .
L — " ‘ 1
. Designer Designer TP
Designer Ul Ingress ClusterlP """ ® HTFP(S)—» GWS
____________ Y Designer pod
' e -
C 1g(=)
sMB SMB
1 1 HTTP(S)
1 1
1 1 > N
v v exus
------ »> ---4- i@ PVC DAS
N A ReplicaSet (Active) HTTP(S)
NFS File Persistent ! 1
system Volume SMB V\ _sMB_ ______.
Ve e e e e e e e e . DAS pod
.>
— HTTP |
ORS HTTP(S) :
1

(Voice,eSvc)

MCP

URS

Platform
Components

—

DO

DAS
DAS Clustertp "T°
Ingress

-

Designer\

ReplicaSet (Active)

Designer pod

» O
DAS pod

>

%

Kubernetes
Cluster

\ e

)

2.4 High Availability (HA), Disaster Recovery (DR), and Scalability

Designer and DAS must be deployed as highly available in order to avoid single points of failure. A
minimum of 2 replicas of each service must be deployed to achieve HA.

The Designer and DAS service pods can be automatically scaled up or down based on metrics such as

CPU and memory utilization. The Deployment configuration settings section explains how to

Designer Deployment Guide

/File:Premise-Designer-DAS-architecture.png
/File:Premise-Designer-DAS-architecture.png

Deploy Designer (versions v9012214 and above)

configure HA and auto-scaling.

Refer to the Genesys Docker Deployment Guide for more information on general HA recommendation
for Kubernetes.

3. Prerequisites

Before deploying Designer, ensure the following resources are deployed, configured, and accessible:

3.1 Mandatory prerequisites

e Kubernetes 1.12+
Helm 3.0

Docker

» To store Designer and DAS docker images to the local docker registry.

Ingress Controller

* If Designer and DAS are accessed from outside of a K8s cluster, it is recommended to deploy/
configure an ingress controller (for example, NGINX), if not already available. Also, the Blue-Green
deployment strategy works based on the ingress rules.

* The Designer Ul requires Session Stickiness. Configure session stickiness in the annotations
parameter in the values.yaml file during Designer installation.

Persistent Volumes (PVs)

* Create persistent volumes for workspace storage (5 GB minimum) and logs (5 GB minimum)

* Set the access mode for these volumes to ReadWriteMany.

e The Designer manifest package includes a sample YAML file to create Persistent Volumes required
for Designer and DAS.

* Persistent volumes must be shared across multiple K8s nodes. Genesys recommends using NFS to
create Persistent Volumes.

¢ Shared file System - NFS

* For production, deploy the NFS server as highly available (HA) to avoid single points of failure. It is
also recommended that the NFS storage be deployed as a Disaster Recovery (DR) topology to
achieve continuous availability if one region fails.

* By Default, Designer and DAS containers run as a Genesys user (uid:gid 500:500). For this reason,
the shared volume must have permissions that will allow write access to uid:gid 500:500. The
optimal method is to change the NFS server host path to the Genesys user: chown -R
genesys:genesys.

* The Designer manifest package includes a sample YAML file to create an NFS server. Use this only
for a demo/lab setup purpose.

e Azure Files Storage - If you opt for Cloud storage, then Azure Files Storage is an option to consider
and has the following requirements:

A Zone-Redundant Storage for RWX volumes replicated data in zone redundant (check this), shared

Designer Deployment Guide 10

Deploy Designer (versions v9012214 and above)

across multiple pods.
e Provisioned capacity : 1 TiB
e Baseline I0/s : 1424
e Burst10/s : 4000
e Egress Rate : 121.4 MiBytes/s
* Ingress Rate : 81.0 MiBytes/s
¢ Genesys Web Services (GWS) 9.x
* Configure GWS to work with a compatible version of Configuration Server.
e Other Genesys Components
* ORS ORS 8.1.400.x
* Nexus 9.x

* URS 8.1.400.x

3.2 Optional prerequisites

e Elasticsearch 7.8.0
» Elasticsearch is used for Designer Analytics and audit trail.

* Redis 3.2.x

* Redis is used for resource index caching and multi-user collaboration locks on Designer resources.

4. Deployment configuration settings (Helm values)

This section provides information on the various settings that have to be configured in Designer and
DAS. The configuration settings listed below will be used during the deployment of Designer and DAS.
That is, these settings will be used during initial deployment / upgrade. These settings can be
configured in the values.yaml Helm file.

4.1 Designer deployment settings

The following table provides information on the Designer deployment settings. These settings are
configured in the designer-values.yaml file.

Parameter Description Mandatory? Default Value
3 u r of service
designer.deployment. reqi%%%%g;ﬁ& be created. Mandatory 2

The maximum number

of replicas to be
designer.deployment.maxaremtédaosnt Optional 10

recommended to

configure this setting if

Designer Deployment Guide 11

Deploy Designer (versions v9012214 and above)

auto-scaling is used.

The deployment
strategy to follow. This
determines which type
of resources are
deployed. Valid values
are: rollingupdate,
blue-green, blue-
green-volume, blue-
green-ingress,
grafana.

* rollingupdate -
default Kubernetes
update strategy
where resources will
be updated using
the rolling upgrade
strategy.

¢ blue-green - for
deploying and
upgrading the
. Designer service
designer.deployment.st ratelgélmg the blue-green Mandatory

strategy.

¢ blue-green-volume
- for the blue/green
upgrade, this is to
create a Persistent
Volume Claim (PVC)
for the very first
time.

* blue-green-ingress
- for the blue/green
upgrade, this is to
create an ingress for
the first time and
update the ingress
during a service
cutover.

e grafana - for
deploying the
Grafana dashboard.

This is to deploy/
upgrade the Designer
lservice in a blue-green

designer.deployment.co l?p';grade strategy. Valid Optional
values are: blue,
green.
This is to specify the
designer.deployment. typgpe of deployment. Optional

Valid value:

rollingupdate

Deployment

Designer Deployment Guide

12

Deploy Designer (versions v9012214 and above)

Deployment.
The registry that the

designer.image.registryorganization uses for

storing images.
Docker repository that

designer.image.repositoagntains the images for

designer.image.tag

designer.image

designer.image. imagePula

designer.volumes.

designer.volumes.

designer.volumes.

designer.volumes.

designer.volumes.

designer.volumes.

Designer.
Designer image version.

Designer image pull
policy (imagePullPolicy).
Valid values: Always,
IfNotPresent, Never.

¢ Always - always pull
the image.

U IfNotPresent - pull

the image only if it
does not already
exist on the node.

¢ Never - never pull
the image.

Secret name containing
f dentjtals for

crets.
athenticating access to

the Docker repository.

If a persistent volume is
wo rkspack@\areated,tehis value
has to be true.

The path where the

waorkspace v is to
works iR Ry R R Ethe

Designer container.

Persistent volume claim
wo rk s praaeryrdbeim
workspace.

Size of the persistent
volume claim for the
workspace.

workspacePvc.claimSize
The persistent volume must

be equal to or greater than
this size.

storageClassName
provided in the
ersistent volume.that
works diTER el P HHET 1o
Designer workspace
(example, nfs).

If a PVC.volume is to be
1°gspvccr'e%E§§F§his value has

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

9.0.110.07.7

IfNotPresent

true

/designer/workspace

(Changing this value is not
recommended.)

designer-managed-
disk

true

Designer Deployment Guide

13

Deploy Designer (versions v9012214 and above)

: Desi
designer.volumes. 1ogstt%. @8%

1 Per
designer.volumes. logstnca.ri

to be true, else false.

The path where the

ner, volume is
IERREE . i
the Designer container.

{stent volume claim
ad
efor logs.

Size of the persistent
volume claim for the
Designer logs.

designer.volumes.logsPvc.claimSize

The persistent volume must
be equal to or greater than
this size.

storageClassName
provided in the

designer.volumes. 1ogst{Dgers§'1éS§f§gt(.}}’g;ﬂ%ﬁ e that

designer.podVolumes

designer.volumeMounts

designer.livenessProbe /?35

designer.livenessProbe.

C
Designer logs
(example, nfs).

Log and workspace
persistent volume claim
names and name of the
volumes attached to the
pod.

Name and mount path
of the volumes to be
attached to the
Designer pods.

%iﬁner liveness probe
I"path.

Port.running th
ccé)n % r%g .rgor%

The liveness probe will

designer.livenessProbe .lsdatdntpbedfigr a given

delay as specified here.

designer.livenessProbe . The dkiarvabatween

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

/designer/logs

designer-logs

designer:
podVolumes:
- name: designer-
pv-volume

persistentVolumeClaim:
claimName:
designer-managed-disk
- name: designer-
log-volume

persistentVolumeClaim:
claimName:
designer-logs

volumeMounts:
- name: designer-
pv-volume
mountPath:
/designer/workspace
- name: designer-
log-volume
mountPath:
/designer/logs

/health

8888

20

Designer Deployment Guide

14

Deploy Designer (versions v9012214 and above)

each liveness probe
request.

Number of liveness
probe failures after

designer.livenessProbe .\vihidh reCoark the
container as unstable or
restart.

designer.readinessProbe; rs‘si)%%;rsgg:ness

3 Port ry nning th
designer. readlnessProbecocn r?ér 9}; Ft
The readiness probe will
designer.readinessProbehes thartepDaftay a given
delay as specified here.

The interval between
designer.readinessProbecatte ckddirerssaprobe
request.

Number of readiness
probe failures after

designer.readinessProbewifiail, upe®@rkitthe
container as unstable or
restart.

This enables providing
the GWS Client ID and
Secret as an input to the

designer.designerSecretBegitgieElrguods.
Kubernetes Secrets is
used to store the GWS
client credentials.

GWS Client ID and GWS

Client Secret. Create a

new GWS Client if it
designer.designerSec ret%fg np% %(Iztn ?ﬂ!gg;g
a new GWS Client is
provided in the Platform
settings section.

Set to true if the
designer.service.enableskrvice must be
created.

Service type. Valid
values are: ClusterlIP,
NodePort,
LoadBalancer.

designer.service.type

The Designer service
designer.service.port portto be exposed in
the cluster.

The Designer
designer.service. target®opttcation port running
inside the container.

designer.service.nodePoRdrt to be exposed in

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Optional

Mandatory

Mandatory

Mandatory

Mandatory for

/health

8888

20

true

true

NodePort

8888

http

30180

Designer Deployment Guide

15

Deploy Designer (versions v9012214 and above)

case service type is
NodePort.

The period after which
designer.service.te rmin§§:1e<§rgrfﬂt§§pciet;ét%sgglgord Optional 30 seconds.

service termination.

designer.service.type=NodePort.

Set to true to enable
ingress.

designer.ingress.enabladgress should be enabled for ~ Mandatory true

all cases except for a lab/
demo setup.

Annotations added for
ingress. The Designer Ul
requires Session
Stickiness if the replica
count is more than 1.

gnﬁ ure Session

tieKiness based on the
ingress controller type.
Configuration specific to
ingress such as Session
Stickiness can be
provided here.

designer.ingress.annot Optional

designer.ingress.paths Ingress path Mandatory [/]

Hostnames to be ST E

designer.ingress.hosts configured in ingress for Mandatory - .blue.example.com
the Designer service. - .green.example.com

TLS configuration for

designer.ingress.tls .
ingress.

Optional [l
Maximum amount of

designer.resources.limi@BUdpat K8s allocates Mandatory 600m
for the container.

Maximum amount of
. . _.memary that K8s :
designer.resources. 11m1a'{; drlﬁagtny F Mandatory 1G1i

22'dr the
container.

Guaranteed CPU
designer.resources. requetdatapu for the Mandatory 500m
container.

Guaranteed memory
designer.resources. requafdctimmdoy the Mandatory 512Mi
container.

This setting controls

which user ID the

containers are run with.
designer.secu rityConte{E?'fuuﬁa/gseﬁs%cr;%?ﬁa%uged Optional

non-root user. You can

either use the Genesys

user or arbitrary UIDs.

Designer Deployment Guide 16

Deploy Designer (versions v9012214 and above)

designer.

designer.

designer.

designer.

designer.

designer.

designer.

Both are supported by
the Designer base
image. 500 is the ID of
the Genesys user.

The file system must reside
within the Genesys user
account in order to run
Designer as a Genesys user.
Change the NFS server host
path to the Genesys user:
chown -R genesys:genesys.

Controls which primary
group ID the containers
are run with. This can
be configured to run
Designer as a non-root
securityContexisauias@arupither use
the Genesys userGroup
(GID - 500) or arbitrary
GIDs. Both are
supported by the
Designer base image.

To allow pods to be
scheduled based on the
labels assigned to the
nodes.

nodeSelector

The K8s standard node
affinity and anti-affinity
configurations can be
added here. Refer to the
this topic in the
Kubernetes
documentation site for
sample values.

affinity

Tolerations work with
taints to ensure that
pods are not scheduled
on to inappropriate

tolerations nodes. Refer to the
Taints and Tolerations
topic in the Kubernetes
documentation site for
sample values.

Set to true if a pod
podDisruptionBlidgeftiendhlaglet is to
be created.
The number of pods
- - hat should alway
podDis rUptlonB;U\‘,f\a%?;tm@l&‘@Hﬁgagﬁ%
disruption.

dnsPolicy The DNS policy that

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Default value:

nodeSelector: {}
Sample value:

nodeSelector:

{}

false

Designer Deployment Guide

17

Deploy Designer (versions v9012214 and above)

designer.dnsConfig

should be applied to the
Designer pods.

The DNS configuration
that should be applied Optional
to the Designer pods.

The priority class name

designer.priorityClassNdmet the pods should Optional

designer.hpa.enabled

belong to.

Enables K8s Horizontal
Pod Autoscaler (HPA). It
automatically scales the
number of pods based
on average CPU
utilization and average Optional
memory utilization. For
more information on
HPA refer to this topic in
the Kubernetes
documentation site.

The K8s HPA controller
will scale up or scale
down pods based on the
target CPU utilization
percentage specified

designer.hpa.targetCPUPremeert scales up or Optional

scales down pods
between the range -

designer.deployment.replicaCount

and

designer.deployment.maxreplicaCount.

The K8s HPA controller
will scale up or scale
down pods based on the
target memory
utilization percentage

designer.hpa.targetMemmpdafiedriere. It scales Optional

designer.labels

up or scales down pods
between the range -

designer.deployment.replicaCount

and

designer.deployment.maxreplicaCount.

Labels that will be
added to the Designer Optional
pods.

Annotations added to

designer.annotations the Designer pods. Optional
Set to true if
designer.prometheus.enadbrbedetheus metrics Optional

must be enabled.
Label key assigned to

designer.prometheus.tagiempods/service to filter Optional

out.

false

70

70

{}

{}

false

service

Designer Deployment Guide

18

Deploy Designer (versions v9012214 and above)

Label value assigned to

designer.prometheus.tagVeelpeds/service to filter Optional designer
out.
designer.prometheus.instance Optional {{instance}}

Setto true if a
service monitor
resource is needed,

de51gner.prometheus.serto monitor the pods Optional false
through the
Kubernetes service.
: Th th i h|§1 he - .
de51gner.prometheus.serv %%gogx steF]d Optional /metrics

The scrape interval

specified for the

Prometheus server. That
designer.prometheus.serigiteMdmedntaniedatal Optional 10s

which the Prometheus

server will fetch metrics

from the service.

Labels to be specified
designer.prometheus. serfordéMosarvoce tabeiter Optional
resource.

Set to true if
designer.prometheus.alePrometheus alerts Optional false
must to be created.

Any custom alerts that

designer.prometheus.alarescasattomanest te Optional
specified here.
3 beI tﬁ specified .
designer.prometheus.al AT %li L& resource. Optional
designer.prometheus.alerts
containerRestartAlert:
interval: 3m
threshold: 5
AlertPriority:
CRITICAL
MemoryUtilization:
i . interval: 1m
Scenarios for which threshold: 70
designer.prometheus.alealests need to be Optional
created. AlertPriority:
CRITICAL
endpointAvailable:

interval: 1m

AlertPriority:
CRITICAL
CPUUtilization:
interval: 1m
threshold: 70

Designer Deployment Guide 19

Deploy Designer (versions v9012214 and above)

Set to true if the
designer.grafana.enable@rafana dashboard is to
be created.

Labels that have to be
designer.grafana. labelsadded to the Grafana
ConfigMap.

Annotations that have
designer.grafana.annotdbibesdded to the
Grafana ConfigMap.

Enables Kubernetes

B Annotations and adds it

Optional

Optional

Optional

Optional

AlertPriority:
CRITICAL

containerReadyAlert:
interval: 1m
readycount: 1

AlertPriority:
CRITICAL

WorkspaceUtilization:
interval: 3m
threshold: 80

workspaceClaim:
designer-managed-disk

AlertPriority:
CRITICAL
AbsentAlert:
interval: 1m

AlertPriority:
CRITICAL
Health:
interval: 3m

AlertPriority:
CRITICAL

WorkspaceHealth:
interval: 3m

AlertPriority:
CRITICAL
ESHealth:
interval: 3m

AlertPriority:
CRITICAL
GWSHealth:
interval: 3m

AlertPriority:
CRITICAL

true

{}

Designer Deployment Guide

20

Deploy Designer (versions v9012214 and above)

to all the resources that
have been created.

For more information, refer to
the Annotations topic in the
Kubernetes documentation
site.

Any custom labels can
be configured here. It is
a key and value pair, for

Laisle example, key:"value".
These labels are added
to all resources.

Labels that will be
podLabels added to all application Optional {}
pods.

Optional {}

Annotations that will be
podAnnotations added to all application Optional {}
pods.

4.1.1 Designer ConfigMap settings

The following table provides information on the environment variables and service-level settings
stored in the Designer ConfigMap.

Parameter Description Mandatory? Default Value

This enables providing

environment variables
designer.designerConfigaDsgféar']{éér’lgoté’;Tteuses a
ConfigMap to store the

environment variables.

Mandatory true

Designer port for

container ("port" in
designer.designerConfiglensetid§s PORT). The Mandatory "8888"

input should be a string,

within double quotes.

DAS hostname

designer.designerConfig("applicationHost"tiR HO$Mandatory das
flowsettings.json).
DAS port
("applicationPort" in
designer.designerConfiglensetidi§s ARRHERVER POMTandatory "80"

input should be a string,
within double quotes.

This is normally not
changed. It is the
relative path to the
designer.designerConfig\évegélﬁﬁ@%PﬁfeﬁEgﬁéY-_rU L Mandatory "/workspaces"
"/workspaces" should
be used always
("deployURL" in

Designer Deployment Guide

Deploy Designer (versions v9012214 and above)

designer.

designer.

designer.

designer.

designer.

designer.

designer.

designer.

flowsettings.json).

Set to "true" so
Designer works with
GWS. If set to "false",
Designer defaults to a
local mode and may be

designerConfiguesl e DO rdSHy HTGUVS
is unavailable
("usehtcc" in
flowsettings.json). Input
should be "true" or
"false".

GWS server host
("htccserver" in
flowsettings.json). For

designerConfigexamwpl®ES HTCC SERVER Mandatory

"gws.genhtcc.com". The
input should be a string,
within double quotes.

GWS server port
("htccport" in
designerConfigg%Efr\Z%@rﬁ%Z'o.. HggﬁT
input should be a string,
within double quotes.

To enable or disable
Designer Analytics
. . ("enableAnalytics",i
designerContigy sy eitigs 8- Tnpl
should be "true" or
"false".

Elasticsearch URL
("esUrl" in
flowsettings.json). For
designerConfigexammplOENER: IBd-
service:9200". The input
should be a string,
within double quotes.

Elasticsearch Server
Host Name ("esServer"
in flowsettings.json). For
designerConfigexamwpl®E"es- SERVER
service"). The input
should be a string,
within double quotes.

Elasticsearch port
("esPort" in
designerCon figﬂ%ﬁ%@%ﬁ'ﬁ%ﬁé
input should be a string,
within double quotes.

. . Enable file.lagging
designerConfig e Efg,&"’%%. LJGGING MeaABaERry

Vﬁ.
ot ena esgner

Mandatory

Mandatory

AW@LY'[Imﬁonal

Optional

Optional

Optional

"false"

"false"

"false"

Designer Deployment Guide

22

Deploy Designer (versions v9012214 and above)

will create only verbose
logs. Input should be
"true" or "false".

Set to true to include
the contents of the
: - wsettings. | file in .
de51gner.de51gnerFlowSe&%aﬁ%&a@é]’%%n igMap. Optional false
Input should be true or
false.

The flowsettings.yaml
file should contain these
keys, so that the file's
contents will be
included in the
designer.designerFlowSeGdnfigMamRefer to the Optional {}
Updating the
flowsettings file section
in the Deploy Designer
topic for more
information on this.

4.2 DAS deployment settings

The following table provides information on the DAS deployment settings. These settings are
configured in the das-values.yaml file. DAS Deployment Settings

Parameter Description Mandatory? Default Value

das.deployment. replica(.lcgldn ber of pods to be

ANt g Mandatory 2

The maximum number

of replicas to be

.created. It is .
das.deployment.maxrepllr%ac(?)o rﬂntended to Optional 10

configure this setting if

auto-scaling is used.

The deployment
strategy to follow. This
determines which type
of resources are
deployed. Valid values
are: rollingupdate,
blue-green, blue-
green-ingress, blue-

das.deployment.st rategyggﬁgp&sewice' Mandatory rollingupdate

¢ rollingupdate -
default Kubernetes
update strategy
where resources will
be updated using
the rolling update

Designer Deployment Guide 23

Deploy Designer (versions v9012214 and above)

das.deployment.color

das.deployment. type

das.image.repository

das.image.tag

das.image.pullPolicy

strategy.

¢ blue-green - for
deploying and
upgrading the DAS
service using the
blue-green strategy.

* blue-green-ingress

- for the blue-green
upgrade, this is to

create an ingress for

the first time.

* blue-green-service

- for the blue-green
upgrade, this is to
create a service for
the first time, and
update the service
during a service
cutover.

e canary - to deploy
canary pods along
with the blue-green
pods.

This is to deploy/
upgrade the DAS
service using the blue-
green upgrade strategy.
Valid values are: blue,
green.

Type of Kubernetes

controller. Valid value is:

Deployment

* Deployment - if the
Designer workspace
is stored in the local
filesystem (same
network where
Designer is running)
and mounted as
NFS.

Docker repository that
contains the images for
DAS.

DAS image version.

DAS image pull policy
(imagePullPolicy). Valid
values are: Always,
IfNotPresent, Never.

Mandatory for blue-
green and blue-green-
service strategies.

Optional

Mandatory

Mandatory

Optional

StatefulSet

IfNotPresent

Designer Deployment Guide

24

Deploy Designer (versions v9012214 and above)

das.image.imagePullSecr.

das.podVolumes

das

das

das

das

das

.volumes

.volumes

.volumes

.volumes

.volumes

.podPvc

.podPvc.

.podPvc.

.podPvc.

.podPvc.

e Always - always pull
the image.

¢ IfNotPresent - pull
the image only if it
does not already
exist on the node.

* Never - never pull
the image.

Secret name containing
the credentials for
agsﬁsnenticating access to
the Docker repository.

Provides the name of
the volume and name of
the persistent volume
claim to be attached to
the pods

This volume is usually
created to mount a local
disk to a DAS container
for syncing data in case
cloud storage is used for

.createring Designer files.
This value has to be
true or false
depending on whether
the local disk is needed
or not

The path where the
rkspace volume is to

mouﬁg?ﬁ)ﬂnted inside the

DAS container.
ClaiIr3ner5|stent volume claim
name for the volume.
Size of the persistent
volume claim for the
pod.

claimSize
The persistent volume must
be equal to or greater than
this size.

stor l[assName
storg eI ES e

Mandatory

Mandatory

Optional

Optional

Optional

Optional

Optional

das:
podVolumes:
- name: workspace

persistentVolumeClaim:
claimName: designer-
managed-disk
- name: logs

persistentVolumeClaim:
claimName: designer-
logs

false

local-workspace

Designer Deployment Guide

25

Deploy Designer (versions v9012214 and above)

persistent volume that
is created for DAS
(example, nfs).

The read/write
priveleges and mount
priveleges of the
volume claim with
respect to the nodes.
Valid types are:
ReadWriteOnce,
ReadOnlyMany,
ReadWriteMany.

¢ ReadWriteOnce -
the volume can be
mounted as read-
write by a single

das.volumes.podPvc. access%%%%’

das

das.

das.

das.

das.

das.

.volumeMounts

dasSecrets.enabled

dasSecrets.secrets

livenessProbe.path

¢ ReadOnlyMany -
the volume can be
mounted as read-
only by many nodes.

¢ ReadWriteMany -
the volume can be
mounted as read-
write by many
nodes.

For more information, refer to
the access modes topic in the
Kubernetes documentation
site.

The name of the volume
and the mount path to
be used by the pods.

Set to true if
Kubernetes secrets
must be created to store
keys/credentials/tokens.

Key and value pairs
containing the secrets,
such as a username and
password.

DAS liveness probe API
path.

Port rlycr;rn{ng the

livenessProbe.contacln r

ontainer.

livenessProbe. startlipddiVapess probe will

Optional

Mandatory

Optional

Optional

Mandatory

Mandatory

Mandatory

ReadWriteOnce

volumeMounts:

- mountPath: /das/
www/workspaces

name: workspace

- mountPath: /das/log
name: logs

false

/health

8081

10

Designer Deployment Guide

26

Deploy Designer (versions v9012214 and above)

be started after a given
delay as specified here.

The interval between
das.livenessProbe. checkdadte livahess probe Mandatory 5
request.

Number of liveness
probe failures after
das.livenessProbe. failuwh{dyrb mark the Mandatory 3
container as unstable or
restart.

DAS readiness probe API

das. readinessProbe.pathpath Mandatory /health
das. readinessProbe.contsaglﬁé?ﬁgﬂg iz Mandatory 8081

The readiness probe will
das.readinessProbe. stariegbatay after a given Mandatory 10
delay as specified here.

The interval between
das.readinessProbe. cheddatecadiness probe Mandatory 5
request.

Number of readiness
probe failures after
das.readinessProbe. failwheatguotmark the Mandatory 3
container as unstable or
restart.

Set to true if the
das.service.enabled service must be Optional true
created.

Service type. Valid
values are: ClusterlIP,

das.service.type NodePort , Mandatory NodePort
LoadBalancer.
The DAS service port to

das.service.port be exposed in the Mandatory 80
cluster.
The DAS application

das.service.targetPort port running inside the Mandatory http
container.
Port to be exposed in Mandatory if

das.service.nodePort case service type is das.service.typeis 30280
NodePort. NodePort.
The period after which

. . . Kubernetes starts to :

das. serv1ce.term1nat10ndg|% é:%héég&(?gin case Optional 30 seconds.
of deletion.
Set to true to enable
ingress.

das.ingress.enabled Optional false

Ingress should be enabled for
all cases except for a lab/

Designer Deployment Guide

Deploy Designer (versions

v9012214 and above)

demo setup.

Annotations added for

das.ing ress.annotationsthe ingress resources.

das.ingress.paths

das.ingress.hosts

das.ingress.tls

Ingress path.

Hostnames to be
configured in ingress for
the DAS service.

TLS configuration for
ingress.

Maximum amount of

das.resources.limits.cp@PU that K8s allocates

das.resources.limits. mea'ﬁ‘

das.resources.requests.

das.resources.requests.

for the container.

Maximum amount of
emory that K8s
ocates for the
container.

Guaranteed CPU
apacation for the
container.

Guaranteed memory

altoatyon for the

container.

This setting controls
which user ID the
containers are run with
and can be configured
to run DAS as a non-root
user. You can either use
the Genesys user or

das.securityContext . rur@@jg@py UIDs. Both are

das.securityContext. rundis

das.nodeSelector

supported by the DAS
base image. 500 is the
ID of the Genesys user.

For more information refer to
the Security Context topic in
the Kubernetes
documentation site.

This setting controls
which primary group ID
the containers are run
with and can be
configured to run DAS
g R n-root user. You
can eitfier use the
Genesys userGroup
(GID - 500) or arbitrary
GIDs. Both are
supported by the DAS
base image.

To allow pods to be

Optional
Optional

Mandatory if ingress is
enabled.

Optional

Mandatory

Mandatory

Mandatory

Mandatory

Optional

Optional

Optional

[/]

600m

1Gi

400m

512Mi

Default value:

Designer Deployment Guide

28

Deploy Designer (versions v9012214 and above)

das

das.

das.

das.

das

das.

das.

das

das.

.affinity

tolerations

scheduled based on the
labels assigned to the
nodes.

The K8s standard node
affinity and anti-affinity
configurations can be
added here. Refer to the
this topic in the
Kubernetes
documentation site for
sample values.

Tolerations work with
taints to ensure that
pods are not scheduled
on to inappropriate
nodes. Refer to the
Taints and Tolerations
topic in the Kubernetes
documentation site for
sample values.

Set to true if a pod

podDisruptionBudgetdisnapfied budget is to

be created.
The number of pods

. . that should alyays be
polesruptlonBudgeta\r/%LIpég\fl)%l ah

.dnsPolicy

dnsConfig

priorityClassName

.hpa.enabled

hpa.targetCPUPercen

aring a
disruption.

The DNS policy that
should be applied to the
DAS pods.

The DNS configuration
that should be applied
to the DAS pods.

The priority class name
that the pods should
belong to.

Set to true if a K8s
Horizontal Pod
Autoscaler (HPA) is to be
created.

The K8s HPA controller
will scale up/down pods
based on the target CPU
utilization percentage

ecified. It scale up/
own pods between the
range

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

deployment.replicaCount

to

deployment.maxReplicas

nodeSelector: {} Sample
value:

nodeSelector:

{}

false

false

75

Designer Deployment Guide

29

Deploy Designer (versions v9012214 and above)

das.

das.

das.

das.

das.

das.
das.

das.

das.

das.

das.

das.

das.

das.

das

The K8s HPA controller
will scale up or scale
down pods based on the
target CPU utilization
percentage specified

hpa.targetMemoryPertteret It scales up or Optiona

labels

annotations

prometheus

prometheus.

prometheus.

prometheus.

prometheus.

prometheus.

prometheus

prometheus.

prometheus.

prometheus.

prometheus.

.prometheus.

scales down pods
between the range -
deployment.replicaCount
and
deployment.maxReplicas.

Labels that will be
added to the DAS pods.

Annotations added to
the DAS pods.

Set to true if
.enabled Prometheus metrics Optional
must be enabled.

Optiona

Optional

Label key assigned to
tagName the pods/service to filter Optional
out.

Label key assigned to
tagValuethe pods/service to filter Optional
out.

pod Optiona
instance Optiona

Setto true if a
service monitor
resource is needed
to monitor the pods
through the
Kubernetes service.

servicel Optional

. serviceMTrrﬁPath |nt\ﬁh|ch the

onitor.pa Optional
metrics 4ré exposed. P

The scrape interval

specified for the

Prometheus server. That
serviceMspihe timetateaial at Optional

which the Prometheus

server will fetch metrics

from the service.

Labels to be specified
serviceMonibersdratied snonitor Optional
resource.

Setto true if
alerts.ePrometheus alerts Optional
must to be created.

Labels to be specified .
alerts. lf%a?ete}\% alerts resource. Gptendl

alerts. dusyanstemtalerts that Optional

70

{}

{}

false

service

designer

{{pod}}
{{instance}}

false

/metrics

10s

false

Designer Deployment Guide

30

Deploy Designer (versions v9012214 and above)

are created must be
specified here.

das.prometheus.alerts.

containerRestartAlert:
interval: 3m
threshold: 5

AlertPriority:
CRITICAL

MemoryUtilization:
interval: 1m
threshold: 75

AlertPriority:
CRITICAL

endpointAvailable:
interval: 1m

AlertPriority:
CRITICAL
CPUUtilization:
interval: 1m
threshold: 75

AlertPriority:
CRITICAL
Scenarios for which :
. containerReadyAlert:
das.prometheus.alerts. alerts need to be Optional interzal: 5
created. readycount: 1
AlertPriority:
CRITICAL

rsyncContainerReadyAlert:
interval: 5m
readycount: 1

AlertPriority:
CRITICAL

WorkspaceUtilization:
interval: 3m
threshold: 70

workspaceClaim:
designer-managed-disk

AlertPriority:
CRITICAL
AbsentAlert:
interval: 1m

AlertPriority:
CRITICAL

LocalWorkspaceUtilization:

Designer Deployment Guide 31

Deploy Designer (versions v9012214 and above)

das.grafana.enabled

das.grafana.labels

Set to true if the
Grafana dashboard is to
be created.

Labels that must be
added to the Grafana
ConfigMap.

Optional

Optional

interval: 3m
threshold: 70

AlertPriority:
CRITICAL
Health:
interval: 3m

AlertPriority:
CRITICAL

WorkspaceHealth:
interval: 3m

AlertPriority:
CRITICAL
PHPHealth:
interval: 3m

AlertPriority:
CRITICAL
ProxyHealth:
interval: 3m

AlertPriority:
CRITICAL
PhpLatency:
interval: 1m
threshold: 10

AlertPriority:
CRITICAL
HTTPLatency:
interval: 1m
threshold: 60

AlertPriority:
CRITICAL
HTTP4XXCount:
interval: 5m
threshold:
100

AlertPriority:
CRITICAL
HTTP5XXCount:
interval: 5m
threshold:
100

AlertPriority:
CRITICAL

true

Designer Deployment Guide

32

Deploy Designer (versions v9012214 and above)

das.grafana.annotations

annotations

labels

podLabels

podAnnotations

Annotations that must
be added to the Grafana
ConfigMap.

Enables Kubernetes
Annotations and adds it
to all the resources that
have been created.

For more information, refer to
the Annotations topic in the
Kubernetes documentation
site.

Any custom labels can
be configured here. It is
a key and value pair, for
example, key:"value".
These labels are added
to all resources.

Labels that will be
added to all application
pods.

Annotations that will be
added to all application
pods.

4.2.1 DAS ConfigMap settings

Parameter

das.dasConfig.create

Description

This setting enables

providing environment
variables as an input to
the DAS pods. It uses a
ConfigMap to store the
environment variables.

Enables file logging.
DAS supports only std

das.dasConfig.envs.DAS ﬁﬁ_'@@}_@@ggs%ﬁqi%ﬁhgu%

-always 0 false.
Input should be "true"
or "false".

Enables log levels. Valid
values are: "FATAL",

das.dasConfig.envs.DAS "ERROR", "WARN",

" | i I
das.dasConfig.envs. DASﬁ%‘?&HE@G&W&BLE

"INFO", "DEBUG",
"TRACE".

Enables standard output

"false".
To enable Designer

Optional

Optional

Optional

Optional

Optional

Mandatory?

Mandatory

Mandatory

Optional

Mandatory

das.dasConfig.envs. DAS@?&VJ@%EE%SSE&%AG\QCngmamsn

for DAS to initialize ES

{}

{}

{}

{}

Default Value

true

"false

"DEBUG"

"true"

"false"

Designer Deployment Guide

33

Deploy Designer (versions v9012214 and above)

templates. Input should
be "true" or "false".

Elasticsearch server
host name with http://

4 r i nn
das.dasConflg.envs.DASﬁ%-\:ﬁed:gem' ’SeEARCH_OtﬁlSG'naI

input should be a string,
within double quotes.

Elasticsearch port. For

. II80II .
das.dasConflg.envs.DAS_| pu¥ ¢1% 511:9 %AQBCHWREnaI

within double quotes

5. Post deployment Designer configuration settings

Post deployment, Designer configuration is managed from the following 3 locations:

5.1 Flow settings

Flow Settings is used for controlling global Designer settings that are applicable to all tenants and it
contains bootstrap configuration settings such as port, GWS info, and DAS URL.

Configuration path - /workspace/designer/flowsettings. json.

This will be configured using the helm install. Refer to the Updating the flowsettings file section under
9. Post deployment procedures for more information on updating the flowsettings.json file.

5.2 Tenant settings

These are tenant specific settings if the Designer service is configured with multi-tenancy .
Configuration path - workspace//config/tenantsettings.json.

The user should logout and log back in after any changes to the tenantsettings.json file. The
Designer Ul will continue to show the older features until the user logs out and logs back in.

Tenant specific settings are configured by directly editing the file in the above path.

5.3 DesignerEnv transaction list

The DesignerEnv transaction list is available in Configuration Server (Tenant/Transactions/
DesignerEnv). This is mostly used to control the run-time settings. Any change to the DesignerEnv
transaction list does not require the application to be published again or a new build for the
application.

The user should log out and log back in for the changes to reflect in the Designer Ul.

The DesignerEnv transaction list is configured using Agent Setup.

Designer Deployment Guide 34

Deploy Designer (versions v9012214 and above)

5.4 Post deployment configuration settings reference table

Category: Analytics
Setting Name

enableAnalytics
(optional) S
esUrl

(optional) Yes
esServer

(optional) S
esPort

(optional) Yes
ReportingURL No
(optional)
esMaxQueryDuratign
(optional) %85
sdrMax0bjCount
(optional) s

Yes

Yes

Yes

Yes

No

Yes

Yes

flowsettings.json tenantsettings.jso®esignerEnv

No

No

No

No

Yes

Section: reporting

No

No

Description

This flag
enables or
disables the
analytics
feature.

Elasticsearch
URL

Elasticsearch
server host
name (for
example, es-
service).

Elasticsearch
port.

URL of
Elasticsearch
where
Designer
applications
will report
data.

The maximum
time range (in
days) to query
in Designer
Analytics. Each
day's data is
stored in a
separate index
in
Elasticsearch.
The maximum
count of nested
type objects
that will be
captured in
SDRs. When
set to -1, which
is the default
value, no
objects will be
trimmed. All
the milestones
or activities
visited in
runtime are
expected to be

Value

Sample value:
true

Default value:
false

Sample value:
http://es-

spot.uswl.genhtcc.com:80

Sample value:
es-

spot.uswl.genhtcc.com

Sample value:
80

Sample value:
http://es-

spot.uswl.genhtcc.com:80

Sample value: 90
Default value: 90

Sample value: 20

Designer Deployment Guide

35

Deploy Designer (versions v9012214 and above)

SdrTracelLevel

(optional) Yes Yes No

Category: Audit
Setting Name flowsettings.json tenantsettings.jso®esignerEnv

enableESAuditLo%s

(optional) S e

captured in an
SDR.

Value are:

¢ 100 —
Debug level
and up.
Currently,
there are
no Debug
messages.

¢ 200 —
Standard
level and
up. This
setting will
show all
blocks that
are entered
during a
call in the
blocks
array.

¢ 300 —
Important
level and
up. This
setting
filters out
all blocks
from the
blocks
array,
except
those
containing
data that
will change
from call to
call (such
as the
Menu block
and User
Input
block).

Description

Enable or
disable audit
logs captured
in
Elasticsearch.

Sample value: 300
Default value: 300

Value

Sample value:
false
Default value:
false

Designer Deployment Guide

36

Deploy Designer (versions v9012214 and above)

enableFSAuditLo%S Yes No
(optional)

maxAppSizeCompa

(optional) 75 Yes No
enableReadAudit S

(optional) 1789 Yes No

Category: Authorization

Setting Name flowsettings.json tenantsettings.jsoesignerEnv

disableRBAC

(optional) Yes Yes No
rbacSection
(optional) Yes Yes No

Enable or
Disable audit
logs captured
in the file
system under
the logs
directory orin
standard
output.

The maximum
size of data
object for
which a
difference will
be captured in
the audit logs,
value in bytes.
That is, the
difference
between the
Designer
object's old
value and new
value.

Control
whether
reading of
Designer
objects is
captured in
audit trails. If
enabled any
Designer
object viewed
in the Ul will be
recorded in the
audit logs.

Description

Controls if
Designer reads
and enforces
permissions
associated with
the logged in
user's roles.

In a Role
object, the
name of the
section within
the Annex
where the
privileges are
stored.

Sample value:
true
Default value: true

Sample value:
1000000
Default value:
1000000

Sample value:
false
Default value:
false

Value

Sample value:
false
Default value:
false

Sample value:
CfgGenesysAdministratorServer
Default value:
CfgGenesysAdministratorServer

Designer Deployment Guide

37

Deploy Designer (versions v9012214 and above)

Controls if

Designer

allows

partitioning of
disablePBAC the kDeSigner d Sample value:

isable workspace an false

(optional) S VS N restricts a Default value:

user's access false

to Designer

objects in the

user's

partitions.

Category: Collaboration
Setting Name flowsettings.json tenantsettings.jsoesignerkEnv Description Value

The type of
locking used, in
an editing
session for
applications,
modules, or
data tables.
Valid values
are: file,
redis, none.

* none -
resources
are not
locked and
can be
edited
simultaneously
by multiple
. users which Sample value:
locklng Yes No No can result e
(optional) in one user Default value: file
overwriting
another
user's
changes.

¢ file - uses
files to
keep track
of locks and
relies on
shared
storage (for
example,
NFS) to
make lock
files
available to
each
Designer

Designer Deployment Guide 38

Deploy Designer (versions v9012214 and above)

pod. Lock
files are
stored in
the same
location as
the user's
Designer
workspace.

¢ redis - uses
Redis for
storing
resource
locks and is
recommended
for
production
environments.

Category: DAS

Setting Name flowsettings.json tenantsettings.jso®esignerEnv Description Value
The server
name Designer
uses to
generate the
. . URL.tO the Sample value:
appllcatlonHostYes No No application. das.uswl.genhtcc.com
(mandatory) ORS and MCP Default value:
fetch the localhost
application

code and other
resources from
this URL.

The
corresponding
applicationPortYes No No port to be used
with
applicationHost.
This is
normally not
changed. It is Sample value:

Sample value: 80
Default value: 80

] K
deployURL Yes No No the relative /D"g;;ulstp\?aclﬁe:
path to the /Workspace
workspace on
DAS.
Category: Digital
Setting Name flowsettings.json tenantsettings.jsoesignerEnv Description Value
If specified,

—]Ent's IS L;]S_’eg to Sample value: Any
roots er whic REGular
(optional) Yes Yes No Root EXpression

Categories to (REGEX).
display when

Designer Deployment Guide 39

Deploy Designer (versions v9012214 and above)

maxFlowEnt ryCou%S

(optional) e

Category: External APIs
Setting Name

httpProxy

(optional) Yes ves
redundantHttpProx

(optional) %g Yes

Category: Features
Setting Name

features Yes Yes

Category: GWS

Setting Name

usehtcc Yes No

Yes

Section:
flowsettings

flowsettings.json tenantsettings.jso®esignerEnv

Yes

Secion:
flowsettings

Yes

Section:
flowsettings

flowsettings.json tenantsettings.jso®esignerEnv

No

flowsettings.json tenantsettings.jso®esignerEnv

No

selecting
Standard
Responses.

Specify how
many times
the same
application can
process a
specific digital
interaction.

Description

Specify the
proxy used for
external
requests and
nexus API calls
(if

enable proxy
is true).

Specify the
backup proxy
used for
external
requests and
nexus API calls
(if

enable proxy
is true), when
httpProxy is
down.

Description

This is an
object. See the
5.5 Features
section for a
list of
supported
features.

Description

Set to true so
that Designer
works with
GWS. If set to
false,
Designer
defaults to a

Sample value: 20
Default value: 20

Value

Sample value:

[http://vpcproxy-000-int.geo.genprim.

Sample value:

[http://vpcproxy-001-int.geo.genprim.

Value

Default value:

{

nexus:
true,

enableBulkAudioImport:
true

}

Value

Sample value:
true

Default value:
false

Designer Deployment Guide

40

Deploy Designer (versions v9012214 and above)

htccServer Yes
htccport Yes
ssoLoginUrl Yes

maxConcurrentHnggequest
(optional)

batchOpe rationR%gltTTL
(optional)

Category: Help

Setting Name flowsettings.json

docsMicroservicqggL
(optional)

Category: IVR

Setting Name flowsettings.json tenantsettings.jso®esignerEnv

tenantsettings.jso®esignerEnv

local mode and
may be used
temporarily if
GWS is
unavailable.

GWS Server

GWS port.

URL of GWS
authentication
Ul. Designer
redirects to
this URL for
authentication.

For batch
operations to
GWS, the max
number of
concurrent
requests that
Designer will
send to GWS.

For batch
operations to
GWS, the time,
in milliseconds,
for which
duration

Designer stores

the results of a
batch
operation on
the server,
before deleting
them.

Description

URL for
Designer

documentation.

Description

Sample value: gws-
usw1l-int.genhtcc.com
Default value: gws-
usw1l-int.genhtcc.com

Sample value: 80
Default value: 80

Sample value:
https://gws-
uswl.genhtcc.com
Default value:
https://gws-
uswl.genhtcc.com

Sample value: 5
Default value: 5

Sample value:
100000
Default value:
100000

Value

Default value:

https://docs.genesys.com/

Documentation/
PSAAS/Public/
Administrator/
Designer

Value

Designer Deployment Guide

41

Deploy Designer (versions v9012214 and above)

recordingType
(optional)

Category: Logging

Setting Name flowsettings.json tenantsettings.jsoesignerEnv

logging: {
designer: {
level:

debug },
audit: {
level:
trace},
auditdebug:
{ level: == M
debug },
cli: {
level: debug
}

}

(optional)

Category: Nexus

Setting Name flowsettings.json tenantsettings.jso®esignerEnv

url

(optional) No No

Yes Yes

No

No

Yes

Section: nexus

Specify the
recording type
to be used in
Record block.
Set as GIR. If
the option is
missing or
blank, Full
Call
Recording
type will be
used.

Description

Specify
Designer log
levels. Each
field has valid
values: trace,
debug, info,
warn, error,
or fatal.

* designer -
log level of
Designer.

¢ audit - log
level of
audit.

* auditdebug
- log leve
of audit
debug, this
will log
detailed
audit
information.

e cli-log
level for cli
commands
executed
on
Designer.

Description

URL of Nexus
that typically
includes the
API version
path. For
example,

Sample value: GIR
Default value: GIR

Value

Sample value:

logging: {
designer: {
level:
debug},
audit: {
level: trace

}I
auditdebug:
{ level:
debug},

cli: {
level: debug
}

}

Default value:

logging: {
designer: {
level: debug
}l

audit: {
level: trace
}l
auditdebug:
{ level:
debug },
cli: {
level: debug
}

}

Value

Default value:
http://nex-
dev.uswl.genhtcc.com

Designer Deployment Guide

42

Deploy Designer (versions v9012214 and above)

https://nexus-
server/nexus/
api/v3.

Yes Thg Nexus x-
password No No api-key created Default value:
(optional) Section: nexus by Nexus dc4geirol3nsof569dfn234smf
deployment.

Boolean value
to indicate if
Yes httpProxy is
enable proxy used to reach

(optional) No No Section: nexus Nexus.

Default value:
false

Enable Contact
v Identification
. es via Nexus (for
?gg:lil()enal) No No Section: nexus example, to
‘ enable Last
Called Agent
routing).

Category: Process
Setting Name flowsettings.json tenantsettings.jso®esignerEnv Description Value

Designer

process port in

the Contail’ler. Samp|e value:
port Yes No No Normally, the 8888

default value Defualt value: 3000

should be left

as is.

Category: Provisioning
Setting Name flowsettings.json tenantsettings.jso®esignerEnv Description Value

Specify the
primary switch
name if more
than one
switch is
defined for the

Yes Yes No tenant.
Designer
fetches and
works with
route points
from this
switch.

Default value: us-
west-1

primarySwitch
(optional)

Category: Routing
Setting Name flowsettings.json tenantsettings.jso®esignerEnv Description Value

Yes Specify the

?(\;\I;tFi{grf;SSthmeORlb No Section: interval (in
’ seconds) at

Sample value: 5
Default value: 1

Designer Deployment Guide 43

Deploy Designer (versions v9012214 and above)

which to
refresh the
) Estimated
flowsettings Waiting Time
when routing
an interaction.
Category: Redis
Setting Name flowsettings.json tenantsettings.jsoesignerEnv Description Value
Used by
Designer for
resource index
caching and
multi-user
collaboration
locks on
Designer
resources.
It is a separate
object that
contains: Sample value:
¢ host - Redis redis: {
host name. host: "",
port: "",
e port - Redis tlsEnabled:
port. true,
o lockTimeout:
red1§."£ e tisEnabled 120,
Bgf_i: ! =TS listTimeout:
. ’ 1

tlsEnabled: en?bled or }800

true, not.

}gnglmeout: Yes No No * lockTimeout

listTimeout: l-Tlmeout, Default value:

1800 in seconds, .

} before a redis: {
resouree ?Zfits server.genhtcc.com
lock is 113 o SNV -com,

(optional) released for POrt: 6379,

p " tlsEnabled:
an editing G
) ¢ ue,
séssion o lockTimeout:

applications, 12,
modules, or listTimeout:
data tables. 1800

¢ JistTimeout)

- The cache
expiry
timeout (in
seconds) of
the
application
list and
shared
modules
list. By

Designer Deployment Guide 44

Deploy Designer (versions v9012214 and above)

default, it is
30 minutes.
That is, any
new
application/
modules
created in
the Ul will
be seen in
the listing
page after
30 mins. It
can be
reduced to
a smaller
value. This
is to
improve
the page
loading
performance
of the
Applications
and Shared
Modules
page. A
better
performance
is achieved
with a
higher
value.

Category: Security
Setting Name flowsettings.json tenantsettings.jso®esignerEnv Description Value

Defines the
maximum
zipFile size
Yes No limit (in Sample value: 50
megabytes)
during bulk
audio import.

Disable CSRF

attack

protection. For

more

information, Samble value
disableCSRF . _ ‘e \o refer to this false
(optional) topic in the Default value:
CWE site. false

zipFileSizeLimi%gMegaBytes
(optional)

By default, CSRF
attack protection is
enabled. It can be
disabled by setting

Designer Deployment Guide

Deploy Designer (versions v9012214 and above)

disableSecu reCoc%Iésie

(optional) No

Category: Session
Setting Name

idleTimeout

(optional) Yes Yes
lockTimeout

(optional) Yes ves
lockKeepalive

(optional) s s

Category: Workflow
Setting Name

maxBuilds
(optional) Yes ves
enablePTE
(optional) e e

No

flowsettings.json tenantsettings.jsoesignerEnv

No

No

No

flowsettings.json tenantsettings.jsoesignerkEnv

No

Yes

Section:
flowsettings

this flag to true.

Disables the
secure cookies
header.

Description

Idle timeout, in
seconds,
before a user
session is
terminated
while editing
applications,
modules, or
data tables.

Timeout, in
seconds,
before a
resource lock is
released, for
an editing
session of
applications,
modules, or
data tables.

Interval, in
seconds,
before the
client sends a
ping to the
server, to
refresh the lock
for an editing
session of
applications,
modules, or
data tables.

Description

Specify the
maximum
number of
builds allowed
per application.

Boolean value
to indicate if
PTE objects are
enabled at
runtime.

Sample value:
false
Default value:
false

Value

Sample value: 840
Default value: 840

Sample value: 120
Default value: 120

Sample value: 15
Default value: 15

Value

Sample value: 20
Default value: 20

Sample value:
true

Default value:
false

Designer Deployment Guide

46

Deploy Designer (versions v9012214 and above)

5.5 Features

The features specified in this section are configured under the features object in the
flowsettings.json file or the tenantsettings.json file.

For example,

"features": {

"nexus": true,

These features are configured only in the flowsettings.json file and the
tenantsettings.json file, and not in the DesignerEnv transaction list.

Category

Audio

Feature
Setting Mandatory flowsettings.jsobenantsettings.jPascription
Name

Default
Value

Enable/

disable the
enableBulkAudOpmpatt Yes Yes bulk audio false

import

feature.

If this
feature is
enabled,
Designer will
validate
invalid
grammar
files during
grammar
upload and
you can
upload only
valid
grammar
files (GRXML
or Nuance
compiled
binary
grammar
files).

If this

feature is

enabled, a
externalAudioOwhmovat Yes Yes new audio false

type,

External

Audio, is

grammarValida®ptional Yes yes false

Designer Deployment Guide

47

Deploy Designer (versions v9012214 and above)

Nexus nexus Optional Yes
Survey survey Optional Yes
plugins Optional Yes
Ul Plugins
plugins Optional Yes
Milestone enableImplici®pahnlaMilestéeses

Yes

Yes

Yes

Yes

Yes

available in
the Play
Message
block. It
accepts a
single
variable that
contains a
URL to the
audio
resource.
MCP will
fetch this
resource
directly and
play it. The
only
supported
value of
Play As is
Audio URI.
There is no
automatic
language
switching for
this audio
type.

Enable/
disable the
Nexus
feature.

Enable/
disable the
survey
feature.

Plugin
configuration
details.

(Steps are
given below the
table.)

Enable or
disable the
plugin
feature.

Enable
reporting
each Shared
Module call
as an
internal
milestone. If
disabled,
Shared

false

true

{}

false

false

Designer Deployment Guide

48

Deploy Designer (versions v9012214 and above)

Bots enableDialogFO@tiotBd t Yes Yes

5.6 Adding a Ul plugin to Designer

Module calls
will not
generate a
milestone.

When
enabled,
Dialogflow
CX bot type
is added to
the bot
registry and
available for
selection in
the Bot
provider
drop-down
when you
configure a
new bot.

false

1. Add the plugins array object in the flowsettings.json file (/ofs/designer/flowsettings.json).
The plugins object contains all the input properties for the plugin app. This is a required property.
Whenever there is a change in this object, refresh the browser for the changes to take effect.

Example:
"plugins": [
{
"url": "http://genesysexample.com/",
"displayName": "Nexus PII Management",
"placement": "messageCollections",
"id": "nexuspii",
"mappings": {
"prod": {
"Gl-AUS4": "https://genesysexample.com/admin/ux"
}I
"staging": {
"G1l-USW1": "http://genesysexample.com/"
}I
}
}I
{
H

2. Add the csplist array object in the flowsettings.json file (/ofs/designer/flowsettings.json).
The csplList object contains the URL forms to be allowed by Designer's security policy. This is a
required property. Whenever there is a change in this object, re-start the node container for the

changes to take effect.

Example:

If the URL is http://genesysexample.com/, the cspList would be:
"cspList": ["*.genexamplel.com:*", "* genexample2.com:*",

"*_ genexample3.com:*"]

3. Turn on the plugins and nexus feature flags in the Designer tenantSettings.json file (/ofs//config/

tenantSettings.json).

This is a required property. Whenever there is a change in this object, log out of Designer and log in

Designer Deployment Guide

49

Deploy Designer (versions v9012214 and above)

again for the changes to take effect.

If you want to enable the plugins feature for all tenants, add this feature flag in the flowsettings.json file.
The feature is enabled for all the tenants under that bucket.

Example:

{
"features": {
"plugins": true,
"nexus": true

3

4. Add the url_property under the plugins section, in Agent Setup. If there is no plugins section, create
one. This section is for the tenant URL override. If the DesignerEnv setting (Transactions/Internal/
DesignerEnv) is not provided, the plugin URL from the flowsettings.json file is considered.

This is an optional property. Whenever there is a change in this object, log out of Designer and log in
again for the changes to take effect.
Example:

{"url " : "https://plugin-genesysexample.com"}

6. Logging

Designer and DAS support console output (stdout) logging. Genesys recommends configuring console
output logging to minimize the host IOPs and PVCs consumption by using log volumes. Console
output logs can be extracted using log collectors like fluentbit/fluentd and Elasticsearch.

Ensure the below setttings are configured in the respective values.yaml overrides for console
logging:

1. Designer
designerEnv.envs.DES FILE LOGGING ENABLED = false

2. DAS

dasEnv.envs.DAS FILE LOGGING ENABLED = false
dasEnv.envs.DAS STDOUT LOGGING ENABLE = true

6.1 Log levels
Post deployment, Designer and DAS log levels can be modified as follows:

6.1.1 Designer

1. Configure the logging setting in the flowsettings override (flowsettings.yaml) - Refer to the 5.4 Post
deployment configuration settings reference table section for option descriptions.

2. Execute the steps in the Flowsettings.json update section (see Designer under 8.8 Blue-Green
deployment) for the changes to take effect .

Designer Deployment Guide 50

Deploy Designer (versions v9012214 and above)

6.1.2 DAS

1. Configure the dasEnv.envs.DAS LOG LEVEL setting in the Helm das-values.yaml file. Refer to section
4.2 DAS deployment settings for setting descriptions.

2. Execute the steps in the Upgrade non production color section (see DAS under 8.8 Blue-Green
deployment). The same DAS version running in production can be used for the upgrade,

3. Execute the steps in the Cutover section (see DAS under 8.8 Blue-Green deployment).

/. Platform / Configuration Server and GWS settings

This section explains the Configuration Server objects and settings required for Designer.

7.1 Create Roles for Designer

Designer uses roles and access groups to determine permissions associated with the logged-in user.
To enable this, you must make these changes in GAX or CME.

Designer supports a number of bundled roles suitable for various levels of users.

* Designer Developer - Most users fall into this category. These users can create Designer applications,
upload audio, and create business controls. They have full access to Designer Analytics.

* Designer Business User - These users cannot create objects but they can manage them (for example,
upload audio, change data tables, and view analytics).

* Designer Analytics - These users only have access to Designer Analytics.

* Designer Admin - These users can set up and manage partitions associated with users and Designer
objects.

* Designer Operations - Users with this role have full access to all aspects of the Designer workspace.
This includes the Operations menu (normally hidden), where they can perform advanced operational
and maintenance tasks.

To create these roles, import the .conf files included in the Designer Deployment package. They
are located in the packages/roles/ folder.

In addition, ensure the following for user accounts that need access to Designer:

¢ The user must have read permissions on its own Person object.
e Users must be associated with one or more roles via access groups.
¢ The on-Premises user must have at least read access on the user, access group(s), and roles(s).

* The access groups must have read/write permissions to the Agent Setup folders - Scripts and
Transactions.

Designer Deployment Guide 51

Deploy Designer (versions v9012214 and above)

7.2 Create the DesignerEnv transaction list

Designer requires a transaction list for configuration purposes as described in other sections of this

document. To set this up:

1. Create a transaction list called DesignerEnv.

2. Import the file configuration/DesignerEnv.conf, [ocated in the Designer Deployment Manifest

package.

3. Edit any values according to the descriptions provided in 5.4 Post deployment configuration settings

reference table.

4. Save the list.

5. Ensure Designer users have at least read access to the DesignerEnv transaction list.

7.3 Platform settings

The platform settings listed below must be configured if the Designer application is used for voice

calls.

Component

SIP Switch -> Voip
Services -> msml
service

SIP Switch -> Voip
Services -> msml
service

SIPServer --> TServer

Switch object annex -->
gts

ORS --> orchestration

MCP

Config Key

userdata-map-format

userdata-map-filter

divert-on-ringing
agent-no-answer-
timeout
agent-no-answer-action

agent-no-
answeroverflow

after-routing-timeout

sip-treatments-
continuous

msml-record-support

ring-divert

new-session-on-reroute

[vxmli] transfer.allowed

Value

sip-headers-encoded

false

12

notready

24

true

true

false

TRUE

Description

Option needs to set to
pass JSON data as user
data in SIPS.

To allow userdata
passing to MSML
service.

RONA is handled by the
platform.

No value, empty.

To allow routed calls
recording via the Media
Server.

Required for SIPS
Default Routing (Default
Routing handling
(Voice)).

Required for Transfer
block (allows VXML

Designer Deployment Guide

52

Deploy Designer (versions v9012214 and above)

Transfer in MCP).

Required for Transfer
MCP [cpa] outbound.method NATIVE block (allow CPA
detection for Transfer).

Enables Customer

UCS [cview] enabled TRUE Context Services.

7.4 GWS configuration
Ensure that the following steps are performed in GWS.
7.4.1 Create Contact Center

Create a contact center in GWS if it is not already created. Refer to the GWS documentation for more
information on this.

7.4.2 Create GWS Client

Create new GWS client credentials if they are not already created . Refer to the GWS documentation
for more information on this.

8. Deployment

This section describes the deployment process for Designer and DAS.

8.1 Preparation

Before you deploy Designer and DAS using Helm charts, complete the following preparatory steps:

Ensure the Helm client is installed.

Set up an Ingress Controller, if not already done.

Setup an NFS server, if not already done.

Create Persistent Volumes - a sample YAML file is provided in the Designer manifest package.
Download the Designer and DAS docker images and push to the local docker registry.

Download the Designer package and extract to the current working directory.

No v ks w N+

Configure Designer and DAS value overrides (designer-values.yaml and das-values.yaml); ensure
the mandatory settings are configured. If the Blue-Green deployment process is used, Ingress settings
are explained in the 8.8 Blue-Green deployment section.

8.2 Set up Ingress

Given below are the requirements to set up an Ingress for the Designer Ul:

e Cookie name - designer.session.

Designer Deployment Guide 53

Deploy Designer (versions v9012214 and above)

e Header requirements - client IP & redirect, passthrough.

¢ Session stickiness - enabled.

Allowlisting - optional.

e TLS for ingress - optional (should be able to enable or disable TLS on the connection).

8.3 Set up Application Gateway (WAF) for Designer
Designer Ingress must be exposed to the internet using Application Gateway enabled with WAF.

When WAF is enabled, consider the following exception in the WAF rules for Designer:

¢ Designer sends a JSON payload with data, for example, {profile . {} }. Sometimes, this is detected
as OSFileAccessAttempt, which is a false positive detection. Disable this rule if you encounter a
similar issue in your WAF setup.

8.4 Storage

8.4.1 Designer storage

Designer requires storage to store designer application workspaces. Designer
storage is a shared file storage that will be used by the Designer and DAS
services.

This storage is critical. Ensure you take backups and snapshots at a regular interval,
probably, each day.

A Zone-Redundant Storage system is required to replicate data from the RWX
volumes and must be shared across multiple pods:

e Capacity - 1 TiB

e Tier - Premium

e Baseline 10/s - 1424

e Burst10/s - 4000

¢ Egress Rate - 121.4 MiBytes/s

¢ Ingress Rate - 81.0 MiBytes/s

8.4.2 Permission considerations for Designer and DAS storage

NFS

For NFS RWX storages, the mount path should be owned by genesys:genesys, that is, 500:500 with

Designer Deployment Guide 54

Deploy Designer (versions v9012214 and above)

0777 permissions. It can be achieved by one of the below methods:

¢ From the NFS server, execute the chmod -R 777 and chown -R 500:500 commands to set the
required permissions.

e Create a dummy Linux based pod that mounts the NFS storage. From the pod, execute the chmod -R
777 and chown -R 500:500 commands. This sets the required permissions. However, this method
might require the Linux based pods to be run as privileged.

SMB / CIFS

For SMB / CIFS based RWX storages, for instance, Azure file share, the below mountOptions must be
used in the StorageClass or the PersistentVolume template:

mountOptions
- dir_mode=0777

- file mode=0777
- uid=500

- gid=500

- mfsymlinks

- cache=strict

8.5 Set up Secrets
Secrets are required by the Designer service to connect to GWS and Redis (if you are using them).

GWS Secrets:

¢ GWS provides a Client ID and secrets to all clients that can be connected. You can create Secrets for the
Designer client as specified in the Set up secrets for Designer section below.

Redis password:

e If Designer is connected to Redis, you must provide the Redis password to Designer to authenticate the
connection.

8.5.1 Set up Secrets for Designer

Use the designer.designerSecrets parameter in the values.yaml file and configure Secrets as
follows:

designerSecrets:
enabled: true
secrets:

DES GWS CLIENT ID: XXxX
DES _GWS CLIENT SECRET: XxXXx
DES_REDIS PASSWORD: XXXXX

8.6 Deployment strategies

Designer supports the following deployment strategies:

¢ Rolling Update (default).

Designer Deployment Guide 55

Deploy Designer (versions v9012214 and above)

¢ Blue-Green (recommended).
DAS (Designer Application Server) supports the following deployment strategies:

¢ Rolling Update (default).
¢ Blue-Green (recommended).

¢ Canary (must be used along with Blue-Green and is recommended in production).

8.7 Rolling Update deployment
The rolling update deployment is the standard default deployment to Kubernetes. It works slowly, one

by one, replacing pods of the previous version of your application with pods of the new version
without any cluster downtime. It is the default mechanism of upgrading for both Designer and DAS.

8.7.1 Designer
Initial deployment

To perform the initial deployment for a rolling upgrade in Designer, use the Helm command given
below. The values.yaml file can be created as required.

e helm upgrade --install designer -f designer-values.yaml designer-100.0.112+xxxx.tgz --
set designer.image.tag=9.0.1xx.xX.XX

The values.yaml overrides passed as an argument to the above Helm upgrade command:

designer.image.tag=9.0.1xx.xx.xx - This is the new Designer version to be installed, for example,
9.0.111.05.5.

Upgrade
To perform an upgrade, the image version has to be upgraded in the designer-values.yaml file or
can be set using the - -set flag through the command given below. Once the designer-values.yaml

file is updated, use this Helm command to perform the upgrade:

e helm upgrade --install designer -f designer-values.yaml designer-100.0.112+xxxx.tgz --
set designer.image.tag=9.0.1xx.xx.xX

The values.yaml overrides passed as an argument to the above Helm upgrade command:

designer.image.tag=9.0.1xx.xx.xx - This is the new Designer version to be installed, for example,
9.0.111.05.5.

Rollback

To perform a rollback, the image version in the designer-values.yaml file can be downgraded. Or
you can use the - -set flag through the command given below. Once the designer-values.yaml file
is updated, use this Helm command to perform the rollback:

e helm upgrade --install designer -f designer-values.yaml designer-100.0.112+xxxx.tgz --

Designer Deployment Guide 56

Deploy Designer (versions v9012214 and above)

set designer.image.tag=9.0.1xx.xx.xXx
The values.yaml overrides passed as an argument to the above Helm upgrade command:

designer.image.tag=9.0.1xx.xx.xx - This is the Designer version to be rolled back to, for example,
9.0.111.05.5.

8.7.2 DAS
Initial deployment

To perform the initial deployment for a rolling upgrade in DAS, use the Helm command given below.
The values.yaml file can be created as required.

¢ helm upgrade --install designer-das -f designer-das-values.yaml designer-
das-100.0.112+xxxx.tgz --set das.image.tag=9.0.1xx.xXx.xx

The values.yaml overrides passed as an argument to the above Helm upgrade command:

das.image.tag=9.0.1xx.xX.xx - This is the new DAS version to be installed, for example,
9.0.111.05.5.

Upgrade

To perform an upgrade, the image version has to be upgraded in the designer-das-values.yaml file
or can be set using the - -set flag through the command given below. Once the designer-das-
values.yaml file is updated, use this Helm command to perform the upgrade:

e helm upgrade --install designer-das -f designer-das-values.yaml designer-
das-100.0.112+xxxx.tgz --set das.image.tag=9.0.1xx.xX.xx

The values.yaml overrides passed as an argument to the above Helm upgrade command:

das.image.tag=9.0.1xx.xX.xx - This is the new DAS version to be installed, for example,
9.0.111.05.5.

Rollback

To perform a rollback, the image version in the designer-das-values.yaml file can be downgraded.
Or you can use the --set flag through the command given below. Once the designer-das-
values.yaml file is updated, use this Helm command to perform the rollback:

e helm upgrade --install designer-das -f designer-das-values.yaml designer-
das-100.0.112+xxxx.tgz --set das.image.tag=9.0.1xx.XX.XX

The values.yaml overrides passed as an argument to the above Helm upgrade command:

das.image.tag=9.0.1xx.xx.xx - This is the DAS version to be rolled back to, for example,
9.0.111.05.5.

Designer Deployment Guide 57

Deploy Designer (versions v9012214 and above)

8.8 Blue-Green deployment

Blue-Green deployment is a release management technique that reduces risk and minimizes
downtime. It uses two production environments, known as Blue and Green or active and inactive, to
provide reliable testing, continuous no-outage upgrades, and instant rollbacks.When a new release
needs to be rolled out, an identical deployment of the application will be created using the Helm
package and after testing is completed, the traffic is moved to the newly created deployment which
becomes the active environment, and the old environment becomes inactive. This ensures that a fast
rollback is possible by just changing route if a new issue is found with live traffic. The old inactive
deployment is removed once the new active deployment becomes stable.

8.8.1 Designer

Service cutover is done by updating the Ingress rules. The diagram below shows the high-level
approach to how traffic can be routed to Blue and Green deployments with Ingress rules.

- designer.blue.example.com = [0 P T T Deployment

Blue Pods

designer.example.com Active color

Active version

Daploymant

designer.green.example.com Service designer-green Green Pods

Preparation

Before you deploy Designer using the blue-green deployment strategy, complete the following
preparatory steps:

1. Create 3 hostnames as given below. The blue service hostname must contain the string blue. For
example, designer.blue.example.com or designer-blue.example.com. The green service hostname must
contain the string green. For example, designer.green.example.com or designer-green.example.com.
The blue/green services can be accessed separately with the blue/green hostnames:

e designer.example.com - For the production host URL, this is used for external access.
* designer.blue.example.com - For the blue service testing.

e designer.green.example.com - For the green service testing.

2. Configure the hostnames in the designer-values.yaml file under ingress. Annotations and paths can
be modified as required.

Designer Deployment Guide 58

/File:DesBlueGreenDep.png
/File:DesBlueGreenDep.png

Deploy Designer (versions v9012214 and above)

ingress:

enabled: true

annotations: {}

paths: [/]

hosts:
- designer.example.com
- designer.blue.example.com
- designer.green.example.com

Initial deployment

The resources - ingress and persistent volume claims (PVC) - must be created initially before
deploying the Designer service as these resources are shared between blue/green services and they
are required to be created at the very beginning of the deployment. These resources are not required
for subsequent upgrades. The required values are passed using the -- set flag in the following
steps. Values can also be directly changed in the values.yaml file.

1.

2.

Create Persistent Volume Claims required for the Designer service (assuming the volume service name
is designer-volume).

helm upgrade --install designer-volume -f designer-values.yaml designer-9.0.xx.tgz --
set designer.deployment.strategy=blue-green-volume

The values.yaml overrides passed as an argument to the above Helm upgrade command:
designer.deployment.strategy=blue-green-volume - This denotes that the Helm install will create a
persistent volume claim in the blue/green strategy.

Create Ingress rules for the Designer service (assuming the ingress service name will be designer-
ingress):

helm upgrade --install designer-ingress -f designer-values.yaml
designer-100.0.112+xxxx.tgz --set designer.deployment.strategy=blue-green-ingress --
set designer.deployment.color=green

The values.yaml overrides passed as an argument to the above Helm upgrade command:
designer.deployment.strategy=blue-green-ingress - This denotes that the Helm install will create
ingress rules for the Designer service.

designer.deployment.color=green - This denotes that the current production (active) color is green.

3. Deploy the Designer service color selected in step 2. In this case, green is selected and assuming the
service name is designer-green:
helm upgrade --install designer-green -f designer-values.yaml
designer-100.0.112+xxxx.tgz --set designer.deployment.strategy=blue-green --set
designer.image.tag=9.0.1xx.xx.xx --set designer.deployment.color=green
Upgrade
1. Identify the current production color by checking the Designer ingress rules (kubectl describe

ingress designer-ingress). Green is the production color in the below example as the production
host name points to the green service.

Designer Deployment Guide 59

Deploy Designer (versions v9012214 and above)

kubectl describe ingress designer-ingress

Host Path Backends

designer.example.com ! designer-green:http (10.244.0.23:8888)

designer.green.example.com /[designer-green:http (10.244.0.23:8888)
AR«

designer.blue.example.com ! designer-blue:http (10.244.0.45:8B888)

2. Deploy the Designer service on to the non-production color. In the above example, blue is the non-
production color and assuming the service name will be designer-blue:
helm upgrade --install designer-blue -f designer-values.yaml
designer-100.0.112+xxxx.tgz --set designer.deployment.strategy=blue-green --set
designer.image.tag=9.0.1xx.xx.xx --set designer.deployment.color=blue
The values.yaml overrides passed as an argument to the above Helm upgrade command:
designer.deployment.strategy=blue-green - This denotes that the Designer service is installed
using the blue-green strategy.
designer.image.tag=9.0.1xx.xx.xx - This denotes the new Designer version to be installed, for
example, 9.0.116.08.12.
designer.deployment.color=blue - This denotes that the blue color service is installed.
The non-production color can be accessed with the non-production host name (for example,
designer.blue.example.com). Testing can be done using this URL.

NodePort Service

The designer-green release creates a service called designer-green and the designer-blue
release creates a service called designer-blue. If you are using NodePort services, ensure that the
value of designer.service.nodePort is not the same for both the releases. In other words, you
should assign dedicated node ports for the releases. The default value for
designer.service.nodePort is 30180. If this was applied to designer-green, use a different value
for designer-blue, for example, 30181. Use the below helm command to achieve this:

helm upgrade --install designer-blue -f designer-values.yaml
designer-100.0.112+xxxx.tgz --set designer.deployment.strategy=blue-green --set
designer.image.tag=9.0.1xx.xx.xx --set designer.deployment.color=blue --set
designer.service.nodePort=30181

Cutover

Once testing is completed on the non-production color, traffic can be moved to the new version by
updating the Ingress rules:

1. Update the Designer Ingress with the new deployment color by running the following command (in this
case, blue is the new deployment color, that is, the non-production color):
helm upgrade --install designer-ingress -f designer-values.yaml
designer-100.0.112+xxxx.tgz --set designer.deployment.strategy=blue-green-ingress --
set designer.deployment.color=blue
The values.yaml overrides passed as an argument to the above Helm upgrade command:
designer.deployment.strategy=blue-green-ingress - This denotes that the helm install will create
ingress rules for the Designer service.
designer.deployment.color=blue - This denotes that the current production (active) color is blue.

2. Verify the ingress rules by running the following command:

Designer Deployment Guide 60

/File:DesUpgStep1.png
/File:DesUpgStep1.png

Deploy Designer (versions v9012214 and above)

kubectl describe ingress designer-ingress
The production host name must point to the new color service.

Rollback

If the upgrade must be rolled back, the ingress rules can be modified to point to the old deployment
pods (green, in this example) by performing a cutover again.

1. Perform a cutover using the following command:
helm upgrade --install designer-ingress -f designer-values.yaml
designer-100.0.112+xxxx.tgz --set designer.deployment.strategy=blue-green-ingress --
set designer.deployment.color=green
The values.yaml overrides passed as an argument to the above Helm upgrade command:
designer.deployment.strategy=blue-green-ingress - This denotes that the Helm install will create
Ingress rules for the Designer service.
designer.deployment.color=green - This denotes that the the current production (active) color is
green.

2. Verify the Ingress rules by running the following command:
kubectl describe ingress designer-ingress
The production host name must point to the green service.

8.8.2 DAS

As with Designer, the Blue-Green strategy can be adopted for DAS as well. The Blue-Green
architecture used for DAS is given below. Here, the cutover mechanism is controlled by Service, the
Kubernetes manifest responsible for exposing the pods. The Ingress, when enabled, will point to the
appropriate service based on the URL.

Designer Deployment Guide 61

Deploy Designer (versions v9012214 and above)

4 das.blue.example.com

das.example.com designer-das

senice

[
L

das.green.example.com

Ingress setup

Important

Ingress for DAS must be enabled only if DAS has to be reached from outside the
Kubernetes cluster. If you don't intend to expose DAS outside the cluster, then ingress

need not be enabled and you can skip these steps.

1. Configure Ingress Host names for DAS.
Create 3 hostnames as follows: The blue service host name must contain the string blue; for

instance, das.blue.example.com or das-blue.example.com, The green service host name must
contain the string green; for instance, das.green.example. com or das-green.example.com. The
green/blue services can be accessed separately with these blue/green hostnames.

* das.example. com - This is the production host url, and is used for external access.
* das.blue.example.com - This is for blue service testing.
* das.green.example.com - This is for green service testing.

2. Configure the hostnames in the das-values.yaml file under ingress, annotations, and paths (can be
modified based on the requirement).

Designer Deployment Guide

/File:DASBlueGreenDep.png
/File:DASBlueGreenDep.png

Deploy Designer (versions v9012214 and above)

ingress:

enabled: true

annotations: {}

paths: ["/"]

hosts:
- das.example.com
- das.blue.example.com
- das.green.example.com

Initial deployment

The Ingress must be created initially before deploying the DAS service since it is shared between
blue/green services and it is required to be created at the very beginning of the deployment. The
Ingress is not required for subsequent upgrades. The required values are passed using the -- set
flag in the following steps. Values can also be directly changed in the values.yaml file.

1.

2.

Deploy initial DAS pods and other resources by choosing an active color, in this example, green. Use the
below command to create a designer-das-green service:

helm upgrade --install designer-das-green -f designer-das-values.yaml designer-
das-100.0.106+xxxx.tgz --set das.deployment.strategy=blue-green --set das.image.tag=
9.0.1xx.xx.xx --set das.deployment.color=green

The values.yaml overrides passed as an argument to the above Helm upgrade command:
das.deployment.strategy=blue-green - This denotes that the DAS service will be installed using the
blue-green deployment strategy.

das.image.tag=9.0.1xx.xx.xx - This denotes the DAS version to be installed, for example,
9.0.111.04.4.

das.deployment.color=green - This denotes that the green color service is installed.

Once the initial deployment is done, the pods have to be exposed to the designer-das service. Execute
the following command to create the designer-das service:

helm upgrade --install designer-das designer-das-100.0.106+xxx.tgz -f designer-das-
values.yaml --set das.deployment.strategy=blue-green-service --set
das.deployment.color=green

The values.yaml overrides passed as an argument to the above helm upgrade
das.deployment.strategy=blue-green-service - This denotes that the designer-das service will be
installed and exposed to the active color pods.

das.deployment.color=green - This denotes that the designer-das service will point to green pods.

3. Create ingress rules for the DAS service (assuming the ingress service is das-ingress):

helm upgrade --install das-ingress designer-das-100.0.106+xxxx.tgz -f designer-das-
values.yaml --set das.deployment.strategy=blue-green-ingress

The values.yaml overrides passed as an argument to the above command
das.deployment.strategy=blue-green-ingress - This denotes that the helm install will create
ingress rules for the DAS service.

Step 3 is required only when ingress is to be created to expose DAS outside the
cluster.

NodePort Service

Designer Deployment Guide 63

Deploy Designer (versions v9012214 and above)

The designer-das-green release creates a service called designer-das-green and the designer-
das-blue release creates a service called designer-das-blue. If you are using NodePort services,
ensure that the value of designer.service.nodePort is not the same for both the releases. In other
words, you should assign dedicated node ports for the releases. The default value for
designer.service.nodePort is 30280. If this was applied to designer-das-green, use a different
value for designer-das-blue, for example, 30281. Use the below helm command to achieve this:
helm upgrade --install designer-das designer-das-100.0.106+xxx.tgz -f designer-das-
values.yaml --set das.deployment.strategy=blue-green-service --set
das.deployment.color=green --set das.service.nodePort=30281

8.9 Canary

Canary is optional and is only used along with Blue-Green. It is recommended in production. Canary
pods are generally used to test new versions of images with live traffic. If you are not opting for
Canary, skip the steps in this section.

Canary deployment

1. Identify the current production color by checking the designer-das service selector labels (kubectl
describe service designer-das). Green is the production color in the below example as the selector
label is color=green.

kubectl describe service designer-das

Selector: color=green

2. To deploy canary pods, the das.deployment.strategy value must be set to canary in the designer-
das-values.yaml file or using the -- set flag as shown in the command below:
helm upgrade --install designer-das-canary -f das-values.yaml designer-
das-100.0.106+xxxx.tgz --set das.deployment.strategy=canary --set das.image.tag=
9.0.1xx.xx.xx --set das.deployment.color=green
The values.yaml overrides passed as an argument to the above Helm upgrade command:
das.deployment.strategy=canary - This denotes that the Helm install will create canary pods.
das.deployment.color=green - This denotes that the current production (active) color is green.

To make sure Canary pods receive live traffic, they have to be exposed to the designer-das service by
setting das.deployment.color=, which is obtained from step 1.

3. Once canary pods are up and running, ensure that the designer-das service points to the canary pods
using the kubectl describe svc designer-das command.

Endpcints: 10.206.0.101:8081,10.206.0.162:8081,10.206.0.590:8081

The IP address present in the Endpoints must match the IP address of the canary pod. The canary pod's
IP address is obtained using the kubectl describe pod command.

Designer Deployment Guide 64

/File:CanaryInDepStep1.png
/File:CanaryInDepStep1.png
/File:CanaryEndpoints.png
/File:CanaryEndpoints.png

Deploy Designer (versions v9012214 and above)

Cleaning up
After completing canary testing, the canary pods must be cleaned up.

The das.deployment. replicaCount must be made zero and the release is upgraded. It can be
changed in the designer-das-values.yaml file or through the - -set flag as follows:

e helm upgrade --install designer-das-canary -f das-values.yaml designer-
das-100.0.106+xxxx.tgz --set das.deployment.strategy=canary --set das.image.tag=
9.0.1xx.xx.xx --set das.deployment.color=blue --set das.deployment.replicaCount=0

Upgrade

1. Identify the current production color by checking the designer-das service selector labels (kubectl

describe service designer-das). Green is the production color in the below example as the selector
label is color=green.

kubectl describe service designer-das

Selector: color=green

2. Deploy the DAS service on to the non-production color. For the above example, blue is the non-
production color and assuming the service name is designer-das-blue):
helm upgrade --install designer-das-blue -f das-values.yaml designer-
das-100.0.106+xxxx.tgz --set das.deployment.strategy=blue-green --set das.image.tag=
9.0.1xx.xx.xx --set das.deployment.color=blue
The values.yaml overrides passed as an argument to the above Helm upgrade command:
das.deployment.strategy=blue-green - This denotes that the DAS service is installed using the blue-
green strategy.
das.image.tag=9.0.1xx.xx.xx - This denotes the new DAS version to be installed, for example,
9.0.111.05.5.
das.deployment.color=blue - This denotes that the blue color service is installed.
The non-production color can be accessed with the non-production service name.

Cutover

Once testing is completed on the non-production color, traffic can be moved to the new version by
updating the designer-das service.

1. Update the designer-das service with the new deployment color by executing the below command. In
this example, blue is the new deployment color (non-production color).
helm upgrade --install designer-das-service -f designer-das-values.yaml designer-
das-100.0.106+xxxx.tgz --set das.deployment.strategy=blue-green-service --set
das.deployment.color=blue

2. Verify the service by executing the kubectl describe service designer-das command. The type

Designer Deployment Guide 65

/File:CanaryIPs.png
/File:CanaryIPs.png
/File:DasBGUpgStep1.png
/File:DasBGUpgStep1.png

Deploy Designer (versions v9012214 and above)

label must have the active color's label, that is, color=blue.
Rollback

1. If the upgrade must be rolled back, cutover has to performed again to make the service point to the old
deployment (green) again. Use the below command to perform the cutover:
helm upgrade --install designer-das-service -f designer-das-values.yaml designer-
das-100.0.106+xxxx.tgz --set das.deployment.strategy=blue-green-service --set
das.deployment.color=green
The values.yaml overrides passed as an argument to the above Helm upgrade command:
das.deployment.strategy=blue-green-service - This denotes that the Helm install will create

ingress rules for the DAS service.
das.deployment.color=green - This denotes that the current production (active) color is green.

2. Verify the service by executing the kubectl describe service designer-das the command. The type
label must have the active color's label, that is, color=green.

8.10 Validations and checks

Here are some common validations and checks that can be performed to know if the deployment was
successful.

e Check if the application pods are in running state by using the kubectl get pods command.

e Try to connect to the Designer or DAS URL as per the ingress rules from your browser. You must be able
to access the Designer and DAS webpages.

9. Post deployment procedures

Upgrading the Designer workspace

Warning

e |t is mandatory to upgrade the Designer workspace for all Contact Center IDs.

e Genesys strongly recommends that you first back up the current workspace before
performing the upgrade. This ensures that you can rollback to a previous state, if
required.

Workspace resources must be upgraded after cutover. This will upgrade the system resources in the
Designer workspace:

1. Login to one of the Designer pods using the kubectl exec -it bash command.

Designer Deployment Guide 66

Deploy Designer (versions v9012214 and above)

2. Execute the following migration command (this will create new directories/new files introduced in the
new version):

node ./bin/cli.js workspace-upgrade -m -t

3. Execute the workspace resource upgrade command (this will upgrade system resources, such as system
service PHP files, internal audio files and callback resources):

node ./bin/cli.js workspace-upgrade -t
In the above command, contact center id, is the Contact Center ID created in GWS for this tenant
(workspace resources are located under the Contact Center ID folder (/workspaces//workspace)).

The above steps will also be used for further upgrades.

Updating the flowsettings file
Post deployment, the flowsettings.json file can be modified through a Helm install as follows:

1. Extract the Designer Helm Chart and find the flowsettings.yaml file under the Designer Chart >
Config folder.

. Modify the necessary settings (refer to the Post deployment configuration settings reference table for
the different settings and their allowed values).

. Execute the below Helm upgrade command on the non-production color service. It can be done as part
of the Designer upgrade by passing the flowsettings.yaml file using the - -values flag. In this case, a
new Designer version can be used for the upgrade. If it is only a flowsettings.json update, the same
Designer version is used.
helm upgrade --install designer-blue -f designer-values.yaml -f flowsettings.yaml
designer-9.0.xx.tgz --set designer.deployment.strategy=blue-green --set
designer.image.tag=9.0.1xx.xx.xx --set designer.deployment.color=blue

4. Once testing is completed on the non-production service, perform the cutover step as mentioned in the

Cutover section (Designer Blue-Green deployment). After cutover, the production service will contain

the updated settings. The non-active color Designer must also be updated with the updated settings
after the cutover.

10. Enabling optional features

10.1 Enable Designer Analytics and Audit Trail

Post Designer deployment, features such as Analytics and Audit Trail can be enabled by performing
the below steps.

Designer Deployment Guide 67

Deploy Designer (versions v9012214 and above)

Ensure Elasticsearch is deployed before proceeding.

10.1.1 Designer changes

1. Configure the following settings in flowsettings override (flowsettings.yaml) - Refer to the 5.4 Post
deployment configuration settings reference table section for option descriptions.

* enableAnalytics: true

* enableESAuditLogs: true
* esServer

* esPort

e esUrl

2. Configure the below setting in the DesignerEnv transaction list:
ReportingURL in the reporting section.

3. Perform the steps in the Updating the flowsettings file section under 9. Post deployment procedures.

10.1.2 DAS changes

1. Configure the following settings in the helm das-values.yaml file. Refer to the 4.2 DAS deployment
settings section for setting descriptions.
dasEnv.envs.DAS SERVICES ELASTICSEARCH ENABLED = true
dasEnv.envs.DAS SERVICES ELASTICSEARCH HOST
dasEnv.envs.DAS SERVICES ELASTICSEARCH PORT

2. Perform the steps in the Upgrade non production color section (see DAS under 8.8 Blue-Green
deployment). The same DAS version running in production can be used for the upgrade.

3. Perform the steps in the Cutover section (see DAS under 8.8 Blue-Green deployment).
10.2 Enable Personas

You can enable the Personas feature in Designer by following the below steps.

10.2.1 Deploy personas.json

¢ Deploy the personas.json file in the workspace location, /workspace/{tenantID}/workspace/
personas/personas.json.

* Create the personas directory if it does not exist.

Given below is a sample personas.json file:
[

{
"id": "1,
"name": "Samantha",
"gender": "female",
"tags": ["female", "middle-age", "default"],

Designer Deployment Guide 68

Deploy Designer (versions v9012214 and above)

"displayPersona": "female, 30-40s, professional, calm",
"voice": [{
"name": "samantha",
"language": "en-US",
"ttsname": "Samantha",
"ttsengine": "NuanceTTS",
"displayName": "Samantha"
oA
"name": "karen",
"language": "en-AU",
"ttsname": "Karen",
"ttsengine": "NuanceTTS",
"displayName": "Karen"
oA
"name": "amelie",
"language": "fr-CA",
"ttsname": "Amelie",
"ttsengine": "NuanceTTS",
"displayName": "Amelie"
oA
"name": "paulina",
"language": "es-MX",
"ttsname": "Paulina",
"ttsengine": "NuanceTTS",
"displayName": "Paulina"
}

]I
"digital": {3},
"email": {},

"chat": {},
"web": {}
}I
{
id": "2,
"name": "Tom",
"gender": "male",
"tags": ["male", "middle-age"],
"displayPersona": "male, 30-40s, polite, professional",
"voice": [{
"name": "tom",
"language": "en-US",
"ttsname": "Tom",
"ttsengine": "NuanceTTS",
"displayName": "Tom"
oA
"name": "lee",
"language": "en-AU",
"ttsname": "Lee",
"ttsengine": "NuanceTTS",
"displayName": "Lee"
oA
"name": "felix",
"language": "fr-CA",
"ttsname": "Felix",
"ttsengine": "NuanceTTS",
"displayName": "Felix"
oA
"name": "javier",
"language": "es-MX",
"ttsname": "Javier",
"ttsengine": "NuanceTTS",
"displayName": "Javier"
}

Designer Deployment Guide

Deploy Designer (versions v9012214 and above)

]I

"digital": {},
"email": {},
"chat": {},
"web": {}
}I
{
"id": "3",
"name": "Gabriela",
"gender": "female",
"tags": ["female", "young", "engaging"],
"displayPersona": "female, 20-30s, engaging",
"voice": [{
"name": "gabriela",
"language": "en-US",
"ttsname": "en-US-Standard-E",
"ttsengine": "GTTS",
"displayName": "Gabriela"
oA
"name": "sheila",
"language": "en-AU",
"ttsname": "en-AU-Standard-A",
"ttsengine": "GTTS",
"displayName": "Sheila"
oA
"name": "1ili",
"language": "fr-CA",
"ttsname": "fr-CA-Standard-A",
"ttsengine": "GTTS",
"displayName": "Lili"
}
]I
"digital": {3},
"email": {},
"chat": {},
Ilwebll: {}
}I
{
Ilidll: II4II'
"name": "Michael",
"gender": "male",
Iltagsll: [llmalelll Ilyoungll]'
"displayPersona": "male, 20-30s, curious, geeky",
"voice": [{
"name": "michael",
"language": "en-US",

"ttsname": "en-US-Standard-B",
"ttsengine": "GTTS",
"displayName": "Michael"

"name": "royce",

"language": "en-AU",
"ttsname": "en-AU-Standard-B",
"ttsengine": "GTTS",
"displayName": "Royce"

"name": "alexandre",
"language": "fr-CA",
"ttsname": "fr-CA-Standard-B",
"ttsengine": "GTTS",
"displayName": "Alexandre"

Designer Deployment Guide

Deploy Designer (versions v9012214 and above)

"digital": {},
"email": {},
"chat": {},
"web": {}
}I
{
"id": "5",
"name": "Diane",
"gender": "female",
"tags": ["female", "mature"],
"displayPersona": "female, 40-50s, soothing, silky",
"voice": [{
"name": "diane",
"language": "en-US",
"ttsname": "en-US-Standard-C",
"ttsengine": "GTTS",
"displayName": "Diane"
oA
"name": "muriel",
"language": "en-AU",
"ttsname": "en-AU-Standard-C",
"ttsengine": "GTTS",
"displayName": "Muriel"
oA
"name": "chloe",
"language": "fr-CA",
"ttsname": "fr-CA-Standard-C",
"ttsengine": "GTTS",
"displayName": "Chloe"
b
]I
"digital": {3},
"email": {},
"chat": {},
"web": {}
}I
{
"id": "e",
"name": "David",
"gender": "male",
"tags": ["male", "mature"],
"displayPersona": "male, 40-50s, professional, confident",
"voice": [{
"name": "david",
"language": "en-US",

"ttsname": "en-US-Standard-D",
"ttsengine": "GTTS",
"displayName": "David"

"name": "austin",

"language": "en-AU",
"ttsname": "en-AU-Standard-D",
"ttsengine": "GTTS",
"displayName": "Austin"

"name": "pierre",
"language": "fr-CA",
"ttsname": "fr-CA-Standard-D",
"ttsengine": "GTTS",
"displayName": "Pierre"
}
]I
"digital": {},

Designer Deployment Guide

71

Deploy Designer (versions v9012214 and above)

"email": {},
"chat": {},
"web": {}

]

10.2.2 Update Designer flowsettings.json

e Enable the persona feature flag in the flowsettings.json override file.

"features": {
"persona": true

Update application settings

Perform the following steps to enable the persona in the required Designer application:

1. Open the required Designer application and navigate to the Settings tab.
2. In Application Settings, select the Enable Persona checkbox in the Persona tab.

3. Re-publish the application and create a new build.

11. Cleanup

11.1 Elasticsearch maintenance recommendations

To help you better manage your indexes and snapshots, and to prevent too many indexes from
creating an overflow of shards, Genesys recommends that you set up a scheduled execution of
Elasticsearch Curator with the following two actions:
* Delete indexes older than the given threshold according to the index name and mask.
e sdr-* (3 months)

e audit-* (12 months)

¢ Make a snapshot of each index:
e sdr-* (yesterday and older)
e audit-*

e kibana-int-*

12. Limitations

Designer currently supports multi-tenancy provided by the tenant Configuration Server. That is, each
tenant should have a dedicated Configuration Server, and Designer can be shared across the multiple
tenants.

Designer Deployment Guide 72

Deploy Designer (versions v9010005 and above)

Deploy Designer (versions v9010005 and
above)

Contents

1 1. About this document
* 1.1 1.1 Intended audience
» 1.2 1.2 Before you begin
e 2 2. Product overview
e 2.1 2.1 Designer
* 2.2 2.2 Designer Application Server (DAS)
e 2.3 2.3 Deployment architecture
* 2.4 2.4 High Availability (HA) and Scalability
e 3 3. Prerequisites
* 3.1 3.1 Mandatory prerequisites
* 3.2 3.2 Optional prerequisites
* 4 4. Deployment configuration settings (Helm values)
e 4.1 4.1 Designer deployment settings
* 4.2 4.2 DAS deployment settings
e 55, Post deployment Designer settings
* 5.1 5.1 Flow settings
e 5.2 5.2 Tenant settings
* 5.3 5.3 DesignerEnv transaction list
* 5.4 5.4 Configuration settings reference table
* 5.5 5.5 Features
* 6 6. Logging
* 6.16.1 Log levels
e 7 7. Platform / Configuration Server and GWS settings
e 7.1 7.1 Create Roles for Designer
» 7.2 7.2 Create the DesignerEnv transaction list

e 7.3 7.3 Platform Settings

Designer Deployment Guide

73

Deploy Designer (versions v9010005 and above)

* 7.4 7.4 GWS Configuration
* 8 8. Deployment
e 8.1 8.1 Preparation
* 8.2 8.2 Blue-Green deployment
* 8.3 8.3 Rolling upgrade
* 8.4 8.4 Uninstall

9 9. Enabling optional features

* 9.1 9.1 Enable Designer Analytics and Audit Trail

10 10. Cleanup

e 10.1 10.1 Elasticsearch maintenance recommendations

e 11 11. Limitations

Designer Deployment Guide

74

Deploy Designer (versions v9010005 and above)

Learn how to deploy Designer as a service in a Kubernetes cluster (for DesDepMnfst v9010005
and above).

1. About this document

This document guides you through the process of deploying and configuring Designer and Designer
Application Server (DAS) as a service in a Kubernetes (K8s) cluster.

Information on the following topics is provided:

e Overview of Designer and DAS
e Configuration details

¢ Deployment process

e Enabling optional features

¢ Cleanup

¢ Known limitations

1.1 Intended audience

This document is intended for use primarily by system engineers and other members of an
implementation team who will be involved in configuring and installing Designer and DAS, and
system administrators who will maintain Designer and DAS installations.

To successfully deploy and implement applications in Designer and DAS, you must have a basic
understanding of and familiarity with:

¢ Network design and operation

* Network configurations in your organization

¢ Kubernetes

¢ Genesys Framework architecture and functions

1.2 Before you begin

1. A Kubernetes cluster must be deployed. Refer to the Kubernetes documentation site for installation
instructions.

2. Install Helm according to the instructions outlined in the Helm documentation site.

After you complete the above mandatory procedures, return to this document to complete an on-
premise deployment of Designer and DAS as a service in a K8s cluster.

Designer Deployment Guide

Deploy Designer (versions v9010005 and above)

2. Product overview

The following sections provide a brief overview of Designer and DAS.

2.1 Designer

The Designer service provides a web Ul to build and manage VXML and SCXML based self-service and
assisted service applications for a number of media types. It stores data on the local file system and
is synchronized across instances by using services like Network File System (NFS). Genesys
customers can build applications using a simple drag and drop method, and assign contact points
(Route Points and other media endpoints) to applications directly from the Designer Ul. Insights into
runtime behavior of applications and troubleshooting aid is provided by Designer Analytics, which
includes a rich set of dashboards based on session detail records (SDR) from data stored in
Elasticsearch.

Designer offers the following features:
e Applications for working with phone, chat, email, SMS (text messages), Facebook, Twitter, and open
media types.
e Bots, ASR, TTS capabilities for self-service.
» Assisted service or routing.
e Callback.
e Business Controls.
e Audio, message management.
e Grammars management.
* Contact points management - route points, chat end points, email pop-client/mailboxes.
¢ Analytics dashboards through embedded Kibana.
Designer is an Express/Node.js application. The Ul is designed using Angular powered Bootstrap.

Application data (SCXML and VXML) is stored as a file system. Designer Analytics and Audit data is
stored in Elasticsearch.

2.2 Designer Application Server (DAS)

Designer Application Server (DAS) hosts and serves the Designer generated application files (SCXML
and VXML), audio, and grammars. It also provides:

¢ Runtime evaluation of Business Controls (business hours, special days, emergency flags and data
tables).

¢ Callback interface to GES.

* Interface to External APIs.
DAS uses built-in NGINX to front requests. It consists of 3 modules: NGINX, PHP, and Node.js.

¢ Requests for static workspace content (SCXML, VXML, JS, audio, grammar, etc) are handled by the

Designer Deployment Guide 76

Deploy Designer (versions v9010005 and above)

NGINX module.
¢ Requests for PHP content are processed by the FastCGl PHP module.

* SDR (Analytics) processing requests are handled by the DAS Node.js module.

Files generated by Designer can be served only by DAS. Designer will work only with
DAS.

2.3 Deployment architecture

The below architecture diagram illustrates a sample premise deployment of Designher and DAS:

Designer Deployment Guide

77

Deploy Designer (versions v9010005 and above)

Customer's
Intranet

L)

[—]
Designer Ul

Elastic Search for
Designer Analytics

NFS File Persistent
system Volume
G
ORS HTTP(S)

Designer

@ Namespace

(Voice,eSvc)

MCP

URS

Platform

Components
—

\ e

Designer\

ReplicaSet (Active)

Designer pod

4
1
HTTP 1 HTTP— GES
> 1
Designer Designer HWF:
Ingress ClusterIP """y ® HTFP(S)—> GWS
= — - Y Designer pod
1 e -
C =
S|\I/|B SI:/IB
1 HTTP(S)
1
! > Nexus
DAS

ReplicaSet (Active) HTTP(S)

DAS pod

» O
DAS pod

%

DAS
DAS Clustertp TP
Ingress >
Kubernetes
Cluster

)

2.4 High Availability (HA) and Scalability

Designer and DAS must be deployed as highly available in order to avoid single points of failure. A
minimum of 2 replicas of each service must be deployed to achieve HA.

The Designer and DAS service pods can be automatically scaled up or down based on metrics such as
CPU and memory utilization. The Deployment configuration settings section explains how to

Designer Deployment Guide 78

/File:Premise-Designer-DAS-architecture.png
/File:Premise-Designer-DAS-architecture.png

Deploy Designer (versions v9010005 and above)

configure HA and auto-scaling.

Refer to the Genesys Docker Deployment Guide for more information on general HA recommendation
for Kubernetes.

3. Prerequisites

Before deploying Designer, ensure the following resources are deployed, configured, and accessible:

3.1 Mandatory prerequisites

e Kubernetes 1.12+
Helm 3.0

Docker Registry

* Setup a local docker registry to store Designer and DAS docker images.

Ingress Controller

* If Designer and DAS are accessed from outside of a K8s cluster, it is recommended to deploy/
configure an ingress controller (for example, NGINX), if not already available. Also, the Blue-Green
deployment strategy works based on the ingress rules.

* The Designer Ul requires Session Stickiness. Configure session stickiness in the annotations
parameter in the values.yaml file during Designer installation.

Persistent Volumes (PVs)
* Create persistent volumes for workspace storage (5 GB minimum) and logs (5 GB minimum)
* Set the access mode for these volumes to ReadWriteMany.

e The Designer manifest package includes a sample YAML file to create Persistent Volumes required
for Designer and DAS.

* Persistent volumes must be shared across multiple K8s nodes. Genesys recommends using NFS to
create Persistent Volumes.

¢ Shared file System - NFS
* For production, deploy the NFS server as highly available (HA) to avoid single points of failure. It is
also recommended that the NFS storage be deployed as a Disaster Recovery (DR) topology to
achieve continuous availability if one region fails.

* By Default, Designer and DAS containers run as a Genesys user (uid:gid 500:500). For this reason,
the shared volume must have permissions that will allow write access to uid:gid 500:500. The

optimal method is to change the NFS server host path to the Genesys user: chown -R
genesys:genesys.

* The Designer manifest package includes a sample YAML file to create an NFS server. Use this only
for a demo/lab setup purpose.

¢ Genesys Web Services (GWS) 9.x

* Configure GWS to work with a compatible version of Configuration Server.

Designer Deployment Guide 79

Deploy Designer (versions v9010005 and above)

¢ Other Genesys Components
* ORS ORS 8.1.400.x
* Nexus 9.x

* URS 8.1.400.x

3.2 Optional prerequisites

e Elasticsearch 7.8.0

» Elasticsearch is used for Designer Analytics and audit trail.

¢ Redis 3.2.x

e Redis is used for resource index caching and multi-user collaboration locks on Designer resources.

4. Deployment configuration settings (Helm values)

This section provides information on the various settings that have to be configured in Designer and
DAS. The configuration settings listed below will be used during the deployment of Designer and DAS.
That is, these settings will be used during initial deployment / upgrade. These settings can be

configured in the values.yaml Helm file.

4.1 Designer deployment settings

The following table provides information on the Designer deployment settings. These settings are

configured in the designer-values.yaml file.

Parameter Description

deployment. replicaCounts:?rzz';eO; services to

Maximum number of
replicas created. It is
deployment.maxReplicas recommended to
configure this setting if
auto-scaling is used.

The strategy to select

which type of resources

to deploy. Valid values

are: default,

service, volume,

ingress.

deployment.strategy « volume - for blue/

green upgrade, this
is to create a
Persistent Volume
Claim (PVC) for the
first time.

Mandatory?

Mandatory

Optional

Mandatory

Default Value

2

10

service

Designer Deployment Guide

80

Deploy Designer (versions v9010005 and above)

deployment.green

desImage.repository

desImage.tag

desImage.pullPolicy

volumes.wo rkspaceMountP\é\yéE -

* ingress - for the
blue/green upgrade,
this is to create an
ingress for the first

time and update the

ingress during
service cutover.

¢ service - for
upgrading the blue/
green Designer
service.

e default - for
performing a rolling
upgrade

This is to deploy/
upgrade the Designer
service in a blue-green
upgrade strategy. Valid
values are: blue,
green.

Docker repository for
the Designer image.

Designer image version.

Designer image pull
policy (imagePullPolicy).
Valid values: Always,
IfNotPresent, Never.

¢ Always - always pull
the image.

¢ IfNotPresent - pull
the image only if it
does not already
exist on the node.

¢ Never - never pull
the image.

The path where the
space volume is to
ounted inside the
Designer container.

Persistent volume claim

volumes.workspaceClaim name for the

workspace.

Size of the persistent

volumes.workspaceClaimSialeme claim for the

workspace.

Optional

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

green

pureengage-docker-
staging.jfrog.io/
designer/designer

9.0.109.08.20

IfNotPresent

/designer/workspace

(Changing this value is not
recommended.)

designer-managed-disk

5Gi

Designer Deployment Guide

81

Deploy Designer (versions v9010005 and above)

volumes.workspaceSto raq%%él?

volumes.logMountPath

volumes.logClaim

volumes.logClaimSize

volumes.logStorageClas

healthApi.path

The persistent volume must
be equal to or greater than
this size.

storageClassName
provided in the

istent volume that
3ted for the
Designer workspace
(example, nfs).

The path where the
Designer logs volume is
to be mounted inside
the Designer container.

Persistent volume claim
name for logs.

Size of the persistent
volume claim for the
Designer logs.

The persistent volume must
be equal to or greater than
this size.

storageClassName
provided in the
gDersistent volume that
is created for the
Designer logs
(example, nfs).

Designer Health Check
API path.

healthApi.containerPortContainer running port.

Health check will be

healthApi.startupDelay started after a delay as

specified in this setting.
The interval between

healthApi.checkIntervaleach health check

healthApi.failureCount

designerEnv.enabled

request.

Number of health check
failures to be considered
before marking the
container as instable or
restart.

This enables providing
environment variables
as an input to Designer
pods.

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

manual

/designer/logs

designer-logs

5Gi

manual

/health

(Changing this value is not
recommended.)

8888

(Changing this value is not
recommended.)

20

true

(Changing this value is not
recommended.)

Designer Deployment Guide

82

Deploy Designer (versions v9010005 and above)

designerEnv.

designerEnv.

designerEnv.

designerEnv.

designerEnv.

designerEnv.

designerEnv.

designerEnv.

designerEnv.

designerEnv.

designerEnv.

envs.

envs.

envs.

envs.

envs.

envs

envs.

envs.

envs.

envs

envs.

It uses ConfigMap to store the
environment variables.

Designer port for
DES_PO®dntainer (port in
flowsettings.json).

DAS hostname
DES ARlapplicationHost in
flowsettings.json).

DAS port
DES APlapplicationPort in
flowsettings.json).

This is normally not
changed. It is the
relative path to the
workspace on DAS.
DES DEPLOY URL

" The default value
/workspaces should be
always be used (deployURL in
flowsettings.json).

Set to true so Designer

works with GWS. If set

to false. Designer

f to a local mode

DES—Usgéeﬁd %‘sy be used
temporarily if GWS is
unavailable (usehtcc in
flowsettings.json).

GWS server host
(htccserver in

.DES HTl@wSEeRViEks.json), for

example,
gws.genhtcc.com.

GWS server port
htccport in
PIES & owsettings.json), for

example, 80.

To enable or disable

DES E gsignarMRalytics
— (enableAnalytics in
flowsettings.json).

Elasticsearch URL (for

)E@{‘nple, http://es-
DES—ES:ervll“ce:9200), esUrl in

flowsettings.json.
Elasticsearch Server

DES Eggsggwe (for example,

-service), esServer in
flowsettings.json.

lasticsearch port (for
DES—Eixaaar%‘EIe, 9200), esPort

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Optional

Optional

Optional

Optional

8888

das

80

/workspaces

true

(Changing this value is not
recommended.)

gws-
uswl-int.genhtcc.com

80

false

http://es-
spot.uswl.genhtcc.com

es-
spot.uswl.genhtcc.com

80

Designer Deployment Guide

83

Deploy Designer (versions v9010005 and above)

in flowsettings.json.
Enable file logging. If

designerEnv.envs. DESfFf%%thgﬁgtﬁ%ﬁ?yﬁélgI@se Mandatory false
logs.

This enables providing
the GWS client ID /
secret as an input to

designerSec rets.enableaDeSIgner pods. true

It uses Kubernetes Secrets to
store the GWS client
credentials.

GWS Client ID, create a
new GWS client if it
designerSecrets.GWS Cligr?te?& texist, steps are
— - explained in the
platform settings
section.

Mandatory designer-secret

ZXh0ZXJuYWxfYXBpX2NsaWVudA==
designerSecrets.GWS_CliGWSé&dient secret Mandatory (This value is valid only for lab
deployments.)

Service type (either
service.type ClusterIP or NodePort Mandatory ClusterlP
or LoadBalancer).

Designer service port to

service.port be exposed in the Mandatory 8888
cluster.
Designer application

service.targetPort port running inside the Mandatory 8888
container.

Port to be exposed in
service.nodePort case Optional Sample value : 30180
service.type=NodePort.

Enable/Disable ingress.
Ingress should be

ingress.enabled enabled for all cases Mandatory true
except a lab/demo
setup.

ingress.paths Ingress path Mandatory [/

Hostnames to be
ingress.hosts configured in ingress for Mandatory ssdevl.genhtcc.com
the Designer service.

ingress.tls TLS config for ingress. Optional [1

Maximum amount of
CPU processing power

resources.limits.cpu that K8s allocates for Mandatory 600m
the container.
resources.limits.memoryMaximum amount of Mandatory 1Gi

Designer Deployment Guide 84

Deploy Designer (versions v9010005 and above)

memory K8s allocates
for the container.

Guaranteed CPU

resources.requests.cpu allocation for the Mandatory 500m
container.
Guaranteed memory

resources.requests.memaaljocation for the Mandatory 512Mi
container.

Controls which user ID
the containers are run
with. This can be
configured to run
Designer as a non-root
user.

Currently, only a Genesys
user is supported by the
Designer base image.

secu rltycontext . rUnASU% is the ID of the Genesys Opt|0na| 500
user and it cannot be
modified.

The file system must reside
within the Genesys user
account in order to run
Designer as a Genesys user.
Change the NFS server host
path to the Genesys user:

chown -R genesys:genesys

Controls which primary
group ID the containers
are run with. This can
be configured to run
- Designer as a non-root
securityContext. runAsGr%Je?)rl Currently, only a
Genesys user group
(GID - 500) is supported
by the Designer base
image.

Optional 500

Default value:
To allow pods to be nodeSelector: {}
scheduled on the nodes . Sample value:
based labels assigned to Optional
the nodes. nodeSelector:

nodeSelector

The K8s standard node
affinity and anti-affinity
configurations can be
added here. Refer to
this K8s document for
sample values.

affinity Optional {}

Tolerations works with

tolerations taints to ensure that

Optional []

Designer Deployment Guide

Deploy Designer (versions v9010005 and above)

hpa.enabled

hpa.targetCPUPercent

hpa.targetMemoryPercen

annotations

labels

pods are not scheduled
onto inappropriate
nodes. Refer to this K8s
document for sample
values.

Enables K8s Horizontal
Pod Autoscaler (HPA). It
automatically scales the
number of pods based
on average CPU
utilization and average
memory utilization.

More information about HPA is
available here.

The K8s HPA controller
will scale up/down pods
based on the target CPU
utilization percentage
specified. It scales up/
down pods between the
range

Optional

Optional

deployment.replicaCount

to

deployment.maxReplicas.

The K8s HPA controller
will scale up/down pods
based on the target
memory utilization
tpercentage specified. It
scales up/down pods
between the range

Optional

deployment.replicaCount

to

deployment.maxReplicas.

Enables Kubernetes
Annotations. Refer to
this document for more
information on K8s
Annotations.

The Designer Ul requires
Session Stickiness if the
replica count is more than 1.
Configure session stickiness
based on the ingress
controller type. Ingress
configuration like session
stickiness can be configured
here.

Any custom labels can
be configured. It is a key
and value, for example,
key:value.

Optional

Optional

false

70

70

{}

tenant: shared

Designer Deployment Guide

86

Deploy Designer (versions v9010005 and above)

4.2 DAS deployment settings

The following table provides information on the DAS deployment settings. These settings are

configured in the das-values.yaml file.

Parameter Description

deployment. replicaCounts:rprtéi';eO; services to

Maximum number of
replicas created. It is
deployment.maxReplicas recommended to
configure this setting if
auto-scaling is used.

The strategy to select
which type of resources
to deploy. Valid values
are : default,
service, volume,
ingress.

* ingress - for the
blue/green upgrade,
this is to create an
ingress for the first
time and update the
ingress during
service cutover.

deployment.strategy

e service - for
upgrading the blue/
green DAS service.

¢ default - for
performing a rolling
upgrade.

This is to deploy/
upgrade the DAS
service in a blue-green
upgrade strategy. Valid
values are: blue,
green.

deployment.green

dasImage.repository &%Cléit'sr?r%%zzory for

dasImage.tag DAS image version.

orkspace path
dasVolumes.wo rkapceMounl%elote\ﬁthe container.
Persistent volume claim
name for the workspace
dasVolumes .workspaceCla(lnrqnust be the same as

Designer's claim name).
dasVolumes. logMountPathDAS log path inside the

Mandatory?

Mandatory

Optional

Mandatory

Optional

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Default Value

2

10

service

green

pureengage-docker-
staging.jfrog.io/
designer/das

9.0.111.05.5

/das/www/workspaces

designer-managed-disk

/das/log

Designer Deployment Guide

87

Deploy Designer (versions v9010005 and above)

dasVolumes.logClaim

dasHealthApi.path

container.

Persistent volume claim
name for logs (must be
the same as Designer's
claim name).

DAS Health Check API
path.

dasHealthApi.containerPo@aritainer running port.

Health check will be

dasHealthApi.startupDelsharted after a delay as

specified in this setting.
The interval between

dasHealthApi.checkInteraadh health check

request.

Number of health check
failures to consider

dasHealthApi. failureCouvdfore marking the

dasService. type

dasService.port

dasService.targetPort

dasService.nodePort

dasEnv.enabled

container as instable or
restart.

Service port (either
ClusterIP or NodePort
or LoadBalancer).

DAS service to be
exposed in the cluster.

DAS application port
running inside the
container.

Port to be exposed in
case

service.type=NodePort.

This enables providing
environment variables
as an input to DAS pods.

It uses ConfigMap to store the
environment variables.

Enable file logging. DAS

IS must

dasEnv.envs. DAS_FILE_Lq%gigﬁ%@rtE{ﬁAHKECﬁdOUt

dasEnv.envs.DAS LOG LE

always be false.

Enables log levels. Valid
\N._alues are: FATAL,
ERROR, WARN, INFO,
DEBUG, TRACE.

rd output
dasEnv.envs. DAS_STDOUTE@@?@%@Q&%E

To enable or disable

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Optional

Mandatory

Mandatory

Optional

Mandatory

dasEnv.envs. DAS_SERVIC%&%@@%@Wﬁﬁégﬂ%wmptionaI

uire
DAS to initialize ES

designer-logs

/health

8081

10

ClusterlP

8081

8081

Sample value : 30280

true

false

DEBUG

true

false

Designer Deployment Guide

88

Deploy Designer (versions v9010005 and above)

templates.
Elasticsearch Server

or exam

dasEnv.envs. DASisERVIC%FC;%_'}\ g’l’itKREfEﬁ-I/dST Optional

http://es-service)

dasEnv.envs. DAS_SERVICEEL%EE%?S?%}RIQ&-IYP(‘)’RT Optional

dasresources

dasresources

dasresources

dasresources

.limits.cp

.limits.memmeynory K8s allocates

.requests.c . .
q gﬁjocatlon for container.

.requests . maiwmaation for the

Maximum amount of
CPU processing power
"*:hat K8s allocates for
the container.

Maximum amount of

for the container.
Guaranteed CPU

Guaranteed Memory

container.

Controls which user ID
the containers are run
with. This can be
configured to run DAS
as a non-root user.

securityContext. runAsUs@&irently, only a Genesys Optional

user is supported by the DAS
base image

500 is the ID of the Genesys
user and it cannot be
modified.

Controls which primary
group ID the containers
are run with. This can
be configured to run

securityContext.runAsGroAp as a non-root user. Optional

nodeSelector

affinity

Currently, only a
Genesys user group
(GID - 500) is supported
by the DAS base image.

To allow pods to be
scheduled on the nodes-

based labels assigned to Optional
the nodes.

The K8s standard node

affinity and anti-affinity Optional

configurations can be
added here. Refer to

Mandatory

Mandatory

Mandatory

Mandatory

http://designer-es-client-
service

9200

600m

1Gi

400m

512Mi

500

500

Default value:
nodeSelector: {}
Sample value:

nodeSelector:

{}

Designer Deployment Guide

89

Deploy Designer (versions v9010005 and above)

tolerations

hpa.enabled

hpa.targetCPUPercent

hpa.targetMemoryPercen

annotations

labels

this K8s document for
sample values.

Tolerations works with

taints to ensure that

pods are not scheduled

onto inappropriate Optional
nodes. Refer to this K8s

document for sample

values.

Enables K8s Horizontal
Pod Autoscaler (HPA). It
automatically scales the
number of pods based
on average CPU
utilization and average
memory utilization.

Optional

More information about HPA is
available here.

The K8s HPA controller
will scale up/down pods
based on the target CPU
utilization percentage
specified. It scales up/
down pods between the
range
deployment.replicaCount
to
deployment.maxReplicas.

The K8s HPA controller
will scale up/down pods
based on the target
memory utilization
tpercentage specified. It
scales up/down pods
between the range
deployment.replicaCount
to
deployment.maxReplicas.

Optional

Optional

Enables Kubernetes

Annotations. Refer to

this document for more Optional
information on K8s

Annotations.

Any custom labels can
be configured. It is a key
and value, for example,
key:value.

Optional

5. Post deployment Designer settings

(1

false

75

70

{}

tenant: shared

Designer Deployment Guide

90

Deploy Designer (versions v9010005 and above)

Post deployment, Designer configuration is managed from the following 3 locations:

5.1 Flow settings

Flow Settings is used for controlling global Designer settings that are applicable to all tenants and it
contains bootstrap configuration settings such as port, GWS info, and DAS URL.

Configuration path - /workspace/designer/flowsettings.json.

This will be configured using the helm install. The Flowsettings.json update section (8.2.2 Designer
deployment process) describes the steps to update the flowsettings.json file.

5.2 Tenant settings

These are tenant specific settings if the Designer service is configured with multi-tenancy .
Configuration path - workspace//config/tenantsettings.json.

The user should logout and log back in after any changes to the tenantsettings.json file. The
Designer Ul will continue to show the older features until the user logs out and logs back in.

Tenant specific settings are configured by directly editing the file in the above path.

5.3 DesignerEnv transaction list

The DesignerEnv transaction list is available in Configuration Server (Tenant/Transactions/
DesignerEnv). This is mostly used to control the run-time settings. Any change to the DesignerEnv
transaction list does not require the application to be published again or a new build for the
application.

The user should log out and log back in for the changes to reflect in the Designer Ul.

The DesignerEnv transaction list is configured using CME or GAX.

5.4 Configuration settings reference table

Tip
As the following table extends beyond the margin of the page, use the horizontal
scroll bar at the bottom of your browser window to view the complete table.

Category: Analytics

Setting DesignerEnv - Sample Default
Name flowsettings.jdenantsetting®psignerEnv Section Description Value Value

. This flag
enapIeAnaIytlgés Yes enables or true false
(optional) disables

Designer Deployment Guide 91

Deploy Designer (versions v9010005 and above)

the
analytics
feature.

esUrl Elasticsearch http://es-
(optional) Yes Yes URL spot.uswl.genhtcc.com:80

Elasticsearch
Server
esServer HostName es-
(optional) = = (for spot.uswl.genhtcc.com
example,
es-service)
esPort Elasticsearch
(optional) Yes Yes port 80
URL of
Elasticsearch
where
Yes reporting Designer
applications
will report
data.

The
maximum
time range
(in days)
to query in
Designer

Yes Analytics. 90 90
Each day's
data is
stored in a
separate
index in
Elasticsearch.

The
maximum
count of
nested
type
objects
that will be
captured
in SDRs.
When set
Yes to -1, 20
which is
the default
value, no
objects will
be
trimmed.
All the
milestones
or
activities

ReportingURL
(optional)

http://es-
spot.uswl.genhtcc.com:80

esMaxQueryDyration
(optional) W'es

sdrMaxObjCoynt
(optional) Yés

Designer Deployment Guide 92

Deploy Designer (versions v9010005 and above)

SdrTracelLeve
(optional) lYes

Yes

visited in

runtime

are
expected
to be
captured

in an SDR.

It controls

the level

of SDR

detail that

is recorded
by the
blocks
array for
each
application.

Currently,

the valid

values are:

e 100 —
Debug
level
and
up.
Currently,
there
are no
Debug
messages.

e 200 — 300
Standard
level
and
up.
This
setting
will
show
all
blocks
that
are
entered
during
a call
in the
blocks
array.

e 300 —
Important
level
and
up.

300

Designer Deployment Guide

93

Deploy Designer (versions v9010005 and above)

Category: Audit

Setting .] . L

Name lowsettings.jstenantsetting®gsignerEnv
enableESAuditLogs

(optional) ng EE

enaMeFSAud@L%gs Yes

(optional)

rnaxAppSmeC@Enpare Yes

(optional)

DesignerEnv

This
setting
filters
out all
blocks
from
the
blocks
array,
except
those

containing

data
that
will
change
from
call to
call
(such
as the
Menu
block
and
User
Input
block).

Description

Enable or
Disable
audit logs
captured
in

Elasticsearch.

Enable or
Disable
audit logs
captured
in the file
system
under the
logs
directory
orin
standard
output.

The
maximum
size of
data
object for

Sample
Value

false

true

1000000

Default
Value

false

true

1000000

Designer Deployment Guide

94

Deploy Designer (versions v9010005 and above)

which a
difference
will be
captured
in the
audit logs,
value in
bytes.
That is,
the
difference
between
the
Designer
object's
old value
and new
value.

Control
whether
reading of
Designer
objects is
captured
in audit
trails. If
enableReadAuyditLogs enabled
(optional) %S Yes any
Designer
object
viewed in
the Ul will
be
recorded
in the
audit logs.

false false

Category: Authorization

Setting
Name

DesignerEnv
Section

Sample Default

flowsettings.jsenantsetting®pgignerenv Value Value

Description
Controls if
Designer
reads and
enforces
disableRBAC Yes Yes permissions
(optional) associated
with the
logged in
user's
roles.

false false

In a Role
object, the
rbacSection name of
(optional) Yes Yes the section
within the
Annex

CfgGenesysAdifygGishedpsBdraaristrator:

Designer Deployment Guide 95

Deploy Designer (versions v9010005 and above)

disablePBAC

(optional) e

Category: Collaboration

Setting
Name

locking

(optional) Yes

Category: DAS

Setting
Name

applicationHost
(mandatory) Yes

Yes

flowsettings.jdenantsetting®psignerEnv

flowsettings.j¥enantsetting®gsignerEnv

DesignerEnv
Section

DesignerEnv
Section

where the
privileges
are stored.

Controls if
Designer
allows
partitioning
of the
Designer
workspace
and
restricts a
user's
access to
Designer
objects in
the user's
partitions.

Description

The type

of locking
used, for

an editing
session of
applications,
modules,

or data
tables.

Valid values :
file,
redis, none

Description

The server
name
Designer
uses to
generate
the URL to
the
application.
ORS and
MCP fetch
the
application
code and
other
resources
from this
URL.

false false
Sample Default
Value Value
file file
Sample Default
Value Value

das.uswl.genkuzlftosh

Designer Deployment Guide

96

Deploy Designer (versions v9010005 and above)

The

corresponding
applicationPoies port to be 80 80

used with

applicationHost.

This is

normally

not

changed.
deployURL Yes It is the /workspace /workspace

relative

path to the

workspace

on DAS.

Category: Digital

Setting
Name

DesignerEnv
Section

Sample Default

flowsettings.j¥enantsetting®gsignerEnv Value Vellur

Description
If
specified,
this is
used to
filter which
rootsSRL Root
(optional) Yes Yes Categories
to display
when
selecting
Standard
Responses.

A REGular
EXpression
(REGEX).

Specify

how many

times the

same

application

can 20 20
process a

specific

digital

interaction.

maxFIowEnterCégunt

(optional) Yes flowsettings

Category: External APIs

Setting
Name

DesignerEnv
Section

Sample Default

flowsettings.jdenantsetting®psignerEnv VElUE VELLE

Description
Specify
the proxy
used for
external
Yes Yes Yes flowsettings requests http://vpcproxy-000-int.geo.genprim.co
and nexus

API calls (if

enable proxy

is true).

httpProxy
(optional)

redundantHttpProxy
(optional) 955

Specify

Yes Yes flowsettings e

http://vpcproxy-001-int.geo.genprim.co

Designer Deployment Guide 97

Deploy Designer (versions v9010005 and above)

backup
proxy used
for
external
requests
and nexus
API calls (if
enable proxy
is true),
when
httpProxy
is down.

Category: Features

Sample Default
Value Value

DesignerEnv
Section

Setting

NEE flowsettings.jdenantsetting®psignerEnv

Description

This is an {

object.

See the nexus: true,

5.5

features Yes Yes Features enableBulkAudiolmport:
section for true

a list of

supported }

features.

Category: GWS

Setting
Name

Sample Default
Value Value

DesignerEnv

flowsettings.j4enantsetting®psignerEnv Section

Description
Set to

true so
that
Designer
works with
GWS. If set
to false,
Designer
defaults to
a local
mode and
may be
used
temporarily
if GWS is
unavailable.

usehtcc Yes true false

GWS gws- gws-
Server uswl-int.genhisw.tdnt.genhtcc.com

htccport Yes GWS Port 80 80

URL of

GWS

authenticatio
ssoLoginUrl Yes ul.

Designer

redirects

to this URL

htccServer Yes

IP}ttps://gws- https://gws-
uswl.genhtccusovi.genhtcc.com

Designer Deployment Guide 98

Deploy Designer (versions v9010005 and above)

maxConcu rre%léiTCCRequest

(optional)

batchOperati%FS(esult'l'l'L
(optional)

Category: Help

Setting
Name

docsMicroseryjceURL
(optional) \%S

Category: IVR

Setting
Name

recordingTypeYes
(optional)

flowsettings.j¥enantsetting®pgsignerEnv DesignerEny

flowsettings.jdenantsetting®gsignerEnv DesignerEny

for
authentication.

For batch
operations
to GWS,
the max
number of
concurrent 5
requests
that
Designer
will send
to GWS.

For batch
operations
to GWS,
the time,
in
milliseconds,
for which
duration
Designer
stores the
results of a
batch
operation
on the
server,
before
deleting
them.

100000

Sample

Description Value

URL for
Designer
documentation.

Sample

Description Value

Specify
the
recording
type to be
used in
Record
block. Set
as GIR. If
the option
is missing

GIR

100000

Default
Value

https://docs.genesys.com
Documentation/

PSAAS/

Public/

Administrator/

Designer

Default
Value

GIR

Designer Deployment Guide

99

Deploy Designer (versions v9010005 and above)

Category: Logging

Setting
Name

logging:
{

designer:
{ level:

debug },

audit: {
level:
trace},

auditdebug: ves

{ level:
debug 1},

cli: {

level:
debug }

}

(optional)

Category: Nexus

Setting
Name

ur
(optional)

password
(optional)

flowsettings.j$enantsetting®psignerEnv

flowsettings.jgenantsetting®psignerEnv

Yes

Yes

DesignerEnv
Section

DesignerEnv

Section

nexus

nexus

or blank,
Full Call
Recording
type will
be used.

— Sample
Description Value
Specify
Designer
log levels.

Each field

has valid

values - Loaqing:

trace, 0991ng:

QEbUQ' designer:

info, { level:

warn, debug},

error, or

fatal. audit: {
level:

designer - trace },

log level of

Designer. auditdebug:

audit - log { level:

level of audit. debug},

auditdebug cli: {
- log level of level:
audit debug, debu '}
this will log g
detailed audit
information.

cli - log level
for cli
commands
executed on
Designer.

Sample

Description Value

URL of
Nexus that
typically
includes
the API
version
path. For
example,
https://nexus-
server/
nexus/api/
V3.

nexus x-
api-key

Default
Value

logging:
{

designer:
{ level:
debug 1},

audit: {
level:
trace },

auditdebug:
{ level:
debug },
clis 4
level:
debug }

}

Default
Value

http://nex-
dev.uswl.genhtcc.com

dc4qeirol3nsof569dfn23/

Designer Deployment Guide

100

Deploy Designer (versions v9010005 and above)

enable_proxy
(optional)

profile
(optional)

Category: Process

Setting
Name

port Yes

Category: Provisioning

Setting
Name

primarySwitc
(optional) I%s

Category: Routing

Yes

Yes

Yes

flowsettings.jdenantsetting®psignerEnv

flowsettings.j$enantsetting®psignerEnv

nexus

nexus

DesignerEnv
Section

DesignerEnv
Section

created by
Nexus
deployment

Boolean
value to
indicate if
httpProxy
is used to
reach
Nexus.

Enable
Contact
Identification
via Nexus
(for
example,

to enable
Last Called
Agent
routing).

Sample

Description Value

Designer

process

port in the
container.
Normally, 8888
the default

value

should be

left as is.

Sample

Description Value

Specify
the
primary
switch
name if
more than
one switch
is defined
for the
tenant.
Designer
fetches
and works
with route
points
from this
switch.

false

Default
Value

3000

Default
Value

us-west-1

Designer Deployment Guide

101

Deploy Designer (versions v9010005 and above)

Sample Default
Value Value

Setting
Name

DesignerEnv

flowsettings.jdenantsetting®psignerEnv i

Description
Specify
the
interval (in
seconds)
at which to
Yes flowsettings refresh the 5 1
Estimated

Waiting

Time when

routing an

interaction.

ewtRefreshTimeout
(optional)

Category: Redis

Sample Default
Value Value

Setting
Name

DesignerEnv

flowsettings.jgenantsetting®psignerkEnv Section

Description

Used by
Designer
for
resource
index
caching
and multi-
user
collaboration
locks on
Designer
resources.

Itisa
separate
redis: { object and redis: {
host: "", contains: redis: { host:
port: "",) host: "", redis.server.genhtcc.cor
host - Redis
tlsEnabled: [y port: "", port:
true, tlsEnabled: 6379,
lockTimeout: port - Redis true, tlsEnabled:
120, port. lockTimeout: true,
listTimeout: 120, lockTimeout:
1800 tisEnabled - 1 tTipeout: 120,
} TLS enabled 1800 L . i
—— istTimeout:
} 1800
lockTimeout }
(optional) - Timeout, in
seconds,
before a
resource lock
is released
for an editing
session of
applications,
modules, or
data tables.

listTimeout
- The cache
expiry
timeout (in
seconds) of
the

Designer Deployment Guide 102

Deploy Designer (versions v9010005 and above)

Category: Security

Setting
Name

flowsettings.jdenantsetting®psignerEnv

2|pF|IeS|z;aL|n\4;eIQMegaByte§es

(optional

disableCSRF

(optional) =

Yes

DesignerEnv
Section

application
list and
shared
modules list.
By default, it
is 30
minutes. That
is, any new
application/
modules
created in
the Ul will be
seen in the
listing page
after 30
mins. It can
be reduced to
a smaller
value. This is
to improve
the page
loading
performance
of the
Applications
and Shared
Modules
page. A
better
performance
is achieved
with a higher
value.

Sample

Description Value

Defines

the

maximum
zipFile size

limit (in 50
megabytes)
during

bulk audio
import.

Disable
CSRF
attack
protection.

http://cwe.mitre.org/
data/

definitions/

352.html false

By default,
CSRF attack
protection is
enabled. It
can be
disabled by
setting this

Default
Value

No default.

false

Designer Deployment Guide

103

Deploy Designer (versions v9010005 and above)

flag to true.

Disable
disabIeSecureYCe%okie the secure
(optional) cookies

header

false false

Category: Session

Setting
Name

DesignerEnv
Section

Sample Default

flowsettings.jdenantsetting®psignerEnv Value Value

Description
Idle
timeout, in
seconds,
before a
user
session is
Yes Yes terminated 840 840
while

editing

applications,

modules,

or data

tables.

idleTimeout
(optional)

Timeout,
in
seconds,
before a
resource
lock is
lockTimeout Yes Yes released,
(optional) for an
editing
session of
applications,
modules,
or data
tables.

120 120

Interval, in
seconds,
before the
client
sends a
ping to the
server, to
Yes Yes refresh the 15 15
lock for an
editing
session of
applications,
modules,
or data
tables.

lockKeepalive
(optional)

Category: Workflow
Setting flowsettings.jgenantsetting®psignerEnv DesignerEnv Description Sample Default

Designer Deployment Guide 104

Deploy Designer (versions v9010005 and above)

Name

maxBuilds

(optional) Yes Yes

enablePTE

(optional) Yes

5.5 Features

Section

flowsettings

Specify
the
maximum
number of
builds
allowed
per

application.

Boolean
value to
indicate if
PTE
objects are
enabled at
runtime.

Value

20

true

Value

20

false

The features specified here must be configured under the features object in the flowsettings.json

file.
For example,

features: {

callbackv2: true,

}
These features are configured only in the flowsettings.json file and the
tenantsettings.json file, and not in DesignerEnv.
Feature
Category Setting Mandatory flowsettings.jsobenantsettings.jP@scription
Name
Enable/
disable the
enableBulkAudiOlptjpord| Yes Yes bulk audio
import
Audio feature.
If this
. . feature is
grammarValidai@ptional Yes yes -
Designer will

Default
Value

false

false

Designer Deployment Guide

105

Deploy Designer (versions v9010005 and above)

externalAudioOytmorat
Nexus nexus Optional
Survey survey Optional

Yes

Yes

Yes

Yes

Yes

Yes

validate
invalid
grammar
files during
grammar
upload and
you can
upload only
valid
grammar
files (GRXML
or Nuance
compiled
binary
grammar
files).

If this
feature is
enabled, a
new audio
type,
External
Audio, is
available in
the Play
Message
block. It
accepts a
single
variable that
contains a
URL to the
audio
resource.
MCP will
fetch this
resource
directly and
play it. The
only
supported
value of
Play As is
Audio URI.
There is no
automatic
language
switching for
this audio
type.
Enable/
disable the

Nexus
feature.

Enable/
disable the

false

false

true

Designer Deployment Guide

106

Deploy Designer (versions v9010005 and above)

Milestone enablelmplicitMOgtilmMilestone¥es Yes
Bots enableDialogFOptiofBdt Yes Yes
6. Logging

survey
feature.

Enable
reporting
each Shared
Module call
as an
internal
milestone. If
disabled,
Shared
Module calls
will not
generate a
milestone.

When
enabled,
Dialogflow
CX bot type
is added to
the bot
registry and
available for
selection in
the Bot
provider
drop-down
when you
configure a
new bot.

false

false

Designer and DAS support console output (stdout) logging. Genesys recommends configuring console

output logging to minimize the host IOPs and PVCs consumption by using log volumes. Console
output logs can be extracted using log collectors like fluentbit/fluentd and Elasticsearch.

Ensure the below setttings are configured in the respective values.yaml overrides for console

logging:

1. Designer
designerEnv.envs.DES FILE LOGGING ENABLED = false

2. DAS
dasEnv.envs.DAS FILE LOGGING ENABLED = false
dasEnv.envs.DAS STDOUT LOGGING ENABLE = true

6.1 Log levels

Post deployment, Designer and DAS log levels can be modified as follows:

Designer Deployment Guide

107

Deploy Designer (versions v9010005 and above)

6.1.1 Designer

1. Configure the logging setting in the flowsettings override (flowsettings.yaml) - Refer to section 5.4

Configuration settings reference table for option descriptions.

2. Execute the steps in the Flowsettings.json update section (8.2.2 Designer deployment process) for the

changes to take effect .

6.1.2 DAS

7

. Configure the dasEnv.envs.DAS LOG LEVEL setting in the Helm das-values.yaml file. Refer to section

4.2 DAS deployment settings for setting descriptions.

. Execute the steps in the Upgrade non production color section (8.2.3 DAS deployment process). The

same DAS version running in production can be used for the upgrade,

. Execute the steps in the Cutover section (8.2.3 DAS deployment process).

Platform / Configuration Server and GWS settings

This section explains the Configuration Server objects and settings required for Designer.

7.1 Create Roles for Designer

Designer uses roles and access groups to determine permissions associated with the logged-in user.
To enable this, you must make these changes in GAX or CME.

Designer supports a number of bundled roles suitable for various levels of users.

DesignerDeveloper - Most users fall into this category. These users can create Designer applications,
upload audio, and create business controls. They have full access to Designer Analytics.

DesignerBusinessUser - These users cannot create objects but they can manage them (for example,
upload audio, change data tables, and view analytics).

DesignerAnalytics - These users only have access to Designer Analytics.

DesignerAdmin - These users can set up and manage partitions associated with users and Designer
objects.

DesignerOperations - Users with this role have full access to all aspects of the Designer workspace.
This includes the Operations menu (normally hidden), where they can perform advanced operational
and maintenance tasks.

To create these roles, import the .conf files included in the Designer Deployment Manifest
package. They are located in the packages/roles/ folder.

In addition, ensure the following for user accounts that need access to Designer:

¢ The user must have read permissions on its own Person object.

Designer Deployment Guide 108

Deploy Designer (versions v9010005 and above)

e Users must be associated with one or more roles via access groups.

¢ The on-Premises user must have at least read access on the user, access group(s), and roles(s).

* The access groups must have read/write permissions to the CME folders - Scripts and Transactions.

7.2 Create the DesignerEnv transaction list

Designer requires a transaction list for configuration purposes as described in other sections of this

document. To set this up:

1. Create a transaction list called DesignerEnv.

2. Import the file configuration/DesignerEnv.conf, located in the Designer Deployment Manifest

package.

3. Edit any values according to the descriptions provided in the Designer settings section.

4. Save the list.

5. Ensure Designer users have at least read access to the DesignerEnv transaction list.

7.3 Platform Settings

The platform settings listed below must be configured if the Designer application is used for voice

calls.

Component

SIP Switch -> Voip
Services -> msml
service

SIP Switch -> Voip
Services -> msml
service

SIPServer --> TServer

Switch object annex -->
gts

URS

Config Key

userdata-map-format

userdata-map-filter

divert-on-ringing
agent-no-answer-
timeout
agent-no-answer-action

agent-no-
answeroverflow

after-routing-timeout

sip-treatments-
continuous

msml-record-support

ring-divert

'http' port, protocol =
'http'

Value

sip-headers-encoded

false

12

notready

24

true

true

Description

Option needs to set to
pass JSON data as user
data in SIPS.

To allow userdata
passing to MSML service

RONA is handled by the
platform.

no value, empty.

To allow routed calls
recording via the Media
Server

Required only for Route
Agent block to work.

Designer Deployment Guide

109

Deploy Designer (versions v9010005 and above)

ORS --> orchestration

MCP

MCP

UcCs

new-session-on-reroute

[vxmli] transfer.allowed

[cpa] outbound.method

[cview] enabled

7.4 GWS Configuration

7.4.1 Create Contact Center

false

TRUE

NATIVE

TRUE

Required for SIPS
Default Routing (Default
Routing handling
(Voice))

Required for Transfer
block (allows VXML
Transfer in MCP)

Required for Transfer
block (allow CPA
detection for Transfer)

Enables Customer
Context Services

Create a contact center in GWS if it is not already created. Refer to the GWS documentation for more

information on this.

7.4.2 Create GWS Client

Create new GWS client credentials if they are not already created . Refer to the GWS documentation
for more information on this.

8. Deployment

This section describes the deployment process for Designer and DAS.

8.1 Preparation

Before you deploy Designer and DAS using Helm charts, complete the following preparation steps:

N o v A w N

Ensure the Helm client is installed.
Set up an Ingress controller, if not already done.

Setup an NFS server, if not already done.

Create Persistent Volumes - a sample YAML file is provided in the Designer manifest package.
Download the Designer and DAS docker images and push to the local docker registry.
Download the Designer manifest package and extract to the current working directory.

Configure Designer and DAS value overrides (designer-values.yaml and das-values.yaml) - please

ensure the mandatory settings are configured. If the blue-green deployment process is used, Ingress
settings are explained in the following section.

Designer Deployment Guide

110

Deploy Designer (versions v9010005 and above)

8.2 Blue-Green deployment

Blue-Green deployment is a release management technique that reduces risk and minimizes
downtime. It uses two production environments, known as Blue and Green or active and inactive, to
provide reliable testing, continuous no-outage upgrades, and instant rollbacks. When a new release
needs to be rolled out, an identical deployment of the application will be created using a Helm
package and after the testing is completed, the traffic is moved to the newly created deployment,
which becomes the ACTIVE environment, and the old environment becomes INACTIVE. This way, a
fast rollback is possible by just changing route if a new issue is found with live traffic. The old inactive
deployment can be removed once the new active deployment becomes stable.

The service cutover is done by updating the Ingress rules. The below diagram shows the high level
approach on how the traffic can be routed to Blue and Green deployments with Ingress rules.

Designer

designer.blue.genhtce.com —— LR R T D Da‘mﬂ;::l
v
i
4
&
New version
s,
~——— designer.genhtcc.com —
Active VT
i : . Y N service desi Deployment
designer.green.genhtcc.com ice designer-green 4’»
DAS
] .) i Deployment
das.blue.genhtcc.com [+ DU R [T Blue Pods
E
i
4
New version
s
_—p das.genhtcc.com ——— -
Active version

das.green.genhtec.com — U T EE T 4"

Designer Deployment Guide 111

/File:BlueGreenDeployment.png
/File:BlueGreenDeployment.png

Deploy Designer (versions v9010005 and above)

8.2.1 Preparation for Blue-Green deployment

Before you deploy Designer and DAS using the Blue-Green deployment strategy, complete the
following preparation steps:

1. Configure the Ingress host names for Designer. Create 3 host names as shown below.
The Blue service host name must contain the string blue, for example, designer.blue.genhtcc.com or
designer-blue.genhtcc.com. The Green service host name must contain the string green, for
example, designer.green.genhtcc.com or designer-green.genhtcc.com. The Blue/Green services
can be accessed separately with the Blue/Green host names as shown in this example:
designer.genhtcc.com (production host URL used for external access).
designer.blue.genhtcc.com (URL for Blue service testing).
designer.green.genhtcc.com (URL for Green service testing).

2. Configure the host names in the designer-values.yaml file under ingress. Annotations and paths can
be modified based on the requirement.
For example,
ingress:
enabled: true
annotations: {}
paths: [/]
hosts:

- designer.genhtcc.com
- designer.blue.genhtcc.com
- designer.green.genhtcc.com

3. Configure the Ingress host names for DAS. Create 3 host names as shown below.
The Blue service host name must contain the string blue, for example, das.blue.genhtcc.com or das-
blue.genhtcc.com. The Green service host name must contain the string green, for example,
das.green.genhtcc.comor das-green.genhtcc.com. he Blue/Green services can be accessed
separately with the Blue/Green host names as shown in this example:
das.genhtcc.com (the production host URL used for external access).
das.blue.genhtcc.com (URL for Blue service testing).
das.green.genhtcc.com (URL for Blue service testing).

4. Configure the host names in the das-values.yaml file under ingress. Annotations and paths can be
modified based on the requirement.
For example,
ingress:
enabled: true
annotations: {}
paths: [/]
hosts:

- das.genhtcc.com
- das.blue.genhtcc.com
- das.green.genhtcc.com

8.2.2 Designer deployment process

Initial deployment

The resources's ingress and persistent volume claims (PVC) must be created initially before deploying
the Designer service as these resources are shared between the Blue/Green services and must be
created at the very beginning of the deployment. They will not be needed for subsequent upgrades.

The required values are passed using the SET command as shown below or by modifying the
values.yaml file.

Designer Deployment Guide 112

Deploy Designer (versions v9010005 and above)

1. Create Persistent Volume Claims required for the Designer service (assuming the volume service name

is designer-volume):

helm upgrade --install designer-volume -f designer-values.yaml designer-9.0.xx.tgz --
set deployment.strategy=volume

Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=volume - indicates that this helm install will create persistent volume claim.

2. Create ingress rules for the Designer service (assuming the ingress service name is designer-

3.

ingress):

helm upgrade --install designer-ingress -f designer-values.yaml designer-9.0.xx.tgz --
set deployment.strategy=ingress --set-string deployment.color=green

Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=ingress - indicates that this helm install will create ingress rules for the
Designer service.

deployment.color=green - indicates that the current production instance (active) color is Green.

Deploy the Designer service to the color selected in step 2. In this case, Green is selected and assuming
the service name is designer-green:

helm upgrade --install designer-green -f designer-values.yaml designer-9.0.xx.tgz --
set deployment.strategy=service --set desImage.tag=9.0.1xx.xx.xx --set-string
deployment.color=green

Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=service - indicates that the Designer service will be installed.
desImage.tag=9.0.1xx.xx.xx - indicates the Designer version to be installed, for example,
9.0.116.07.10.

deployment.color=green - indicates that the Green color service will be installed.

Upgrade non-production color

1.

2.

Identify the current production color by checking the Designer ingress rules (kubectl describe
ingress designer-ingress). Green is the production color in the below example as the production
host name points to the Green service.

kubectl describe ingress designer-ingress

Host Path Backends

designer.genhtecec.com ! designer-green:thttp (10.244.0.23:8888)
designer.green.genhtcc.com / designer-green:http (10.244.0.23:8888)
designer.blue.genhtcc.com ! designer-blue:http (10.244.0.45:8888)

Deploy the Designer service into the non-production color. In the above example, Blue is the non-
production color (assuming the service name is designer-blue):

helm upgrade --install designer-blue -f designer-values.yaml designer-9.0.xx.tgz --set
deployment.strategy=service --set desImage.tag=9.0.1xx.xx.xx --set-string
deployment.color=blue

Note: The overrides passed as an argument in the above helm upgrade:
deployment.strategy=service - indicates that the Designer service will be installed.
desImage.tag=9.0.1xx.xx.xx - indicates the Designer version to be installed, for example,
9.0.116.08.12.

deployment.color=blue - indicates that the Blue color service will be installed.

3. The non-production color can be accessed with the non-production host name (for example -

designer.blue.genhtcc.com), any testing can be done using this URL.

Designer Deployment Guide 113

/File:Upgrade_Non-Production_Color.png
/File:Upgrade_Non-Production_Color.png

Deploy Designer (versions v9010005 and above)

Cutover

Once testing is completed on the non-production color, traffic can be moved to the new version by
updating the ingress rules.

1. Update the Designer Ingress with the new deployment color by running the below command (in this
case, Blue is the new deployment color, that is, the non-production color):
helm upgrade --install designer-ingress -f designer-values.yaml designer-9.0.xx.tgz --
set deployment.strategy=ingress --set-string deployment.color=blue
Note: The overrides passed as an argument to the above helm upgrade command:

deployment.strategy=ingress - indicates that this helm install will create ingress rules for the
Designer service.

deployment.color=blue - indicates that the current production (active) color is Blue.
2. Verify the ingress rules by executing the command kubectl describe ingress designer-ingress.
The production host name should point to the new color service.

Workspace upgrade

Workspace resources must be upgraded after cutover. This will upgrade the system resources in the
Designer workspace.

1. Log in to one of the Designer pods with the command: kubectl exec -it bash.

2. Execute the migration command (this will create new directories/new files introduced in the new
version):

node ./bin/cli.js workspace-upgrade -m -t

3. Execute the workspace resource upgrade command (this will upgrade system resources, such as system
service PHP files, internal audio files, and callback resources):
node ./bin/cli.js workspace-upgrade -t

contact center id is the contact center ID created in GWS for this tenant. The workspace resources
are located within the contact center ID folder (/workspaces//workspace).

The above steps - upgrade non production color, cutover, and workspace upgrade will also be used for further
upgrades.

Flowsettings.json update

Post deployment, the flowsettings.json file can be modified via helm install using the below steps:

Download the current flowsettings.json file from the location: /designer/flowsettings.json.
Modify the necessary settings (refer to section 5.4 Configuration settings reference table).

1.
2.
3. Create a new YAML file, for example, flowsettings.yaml.
4.

Copy and paste the above modified flowsettings.json content in the new flowsettings.yaml file:
flowsettings:

For example:
flowsettings: {
port:8888,

Designer Deployment Guide 114

Deploy Designer (versions v9010005 and above)

usehtcc:true,
htccserver:gws-int-genhtcc.com,
htccport:80,

5. Run the below helm upgrade command on the non-production color service. It can be done as part of
Designer upgrade by passing the flowsettings.yaml in the extra argument - -values. In this case, the
new Designer version can be used for the upgrade. If it is only a flowsettings.json update, the same
Designer version will be used.
helm upgrade --install designer-blue -f designer-values.yaml designer-9.0.xx.tgz --set
deployment.strategy=service --set desImage.tag=9.0.1xx.xx.xx --set-string
deployment.color=blue --values flowsettings.yaml
The non-active color Designer will have updated settings after the above upgrade.

6. Once testing is completed on the non-production service, perform the cutover steps as mentioned in the
Cutover section. Now, the production service will contain the changed settings.

Rollback

* If any blocking issues are noticed in the current production service, traffic can be rolled back to the
previous active color by updating the ingress rules:
helm upgrade --install designer-ingress -f designer-values.yaml designer-9.0.xx.tgz --
set deployment.strategy=ingress --set-string deployment.color=green
Rollback of workspace resources is generally not required as the workspace resources shipped with
Designer are backward and forward compatible. If required, the workspace can be upgrade from the old
version, but it is not necessary. Future new version upgrades must run the workspace upgrade as per
the normal process.
Rollback of applications and shared modules is also not required as these resources are also backward
and forward compatible with Designer.

8.2.3 DAS deployment process
Initial deployment

The ingress must be created initially before deploying the DAS service as it is shared between the
Blue/Green services and must be created at the very beginning of the deployment. It will not be
needed for subsequent upgrades. The required values are passed using the SET command as shown
below or by modifying the values.yaml file.

1. Create ingress rules for the Designer service (assuming the ingress service name is das-ingress):
helm upgrade --install das-ingress -f das-values.yaml das-9.0.xx.tgz --set
deployment.strategy=ingress --set-string deployment.color=green
Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=ingress - indicates that this helm install will create ingress rules for the DAS
service.
deployment.color=green - indicates that the current production instance (active) color is Green.

2. Deploy the DAS service to the color selected in step 1. In this case, Green is selected and assuming the
service name is das-green:
helm upgrade --install das-green -f das-values.yaml das-9.0.xx.tgz --set
deployment.strategy=service --set dasImage.tag=9.0.1xx.xx.xx --set-string
deployment.color=green
Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=service - indicates that the DAS service will be installed.

Designer Deployment Guide 115

Deploy Designer (versions v9010005 and above)

dasImage.tag=9.0.1xx.xx.xx - indicates the DAS version to be installed, for example, 9.0.111.04.4.
deployment.color=green - indicates that the Green color service will be installed.

Upgrade non-production color

1. Identify the current production color by checking the DAS ingress rules (kubectl describe ingress
das-ingress). Green is the production color in the below example as the production host name points
to the Green service.

kubectl describe ingress das-ingress

Host Path Backends
das.genhtcc.com ! das-green:http (10.244.0.5:8081)
das.green.genhtcc.com / das-green:http (10.244.0.5:8081)

das.blue.genhtcc.com ! das-blue:http (10.244.0.37:8081)

2. Deploy the DAS service into the non-production color. In the above example, Blue is the non-production
color (assuming the service name is das-blue):
helm upgrade --install das-blue -f das-values.yaml das-9.0.xx.tgz --set
deployment.strategy=service --set dasImage.tag=9.0.1xx.xx.xx --set-string
deployment.color=blue
Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=service - indicates that the DAS service will be installed.
dasImage.tag=9.0.1xx.xx.xx - indicates the DAS version to be installed , for example, 9.0.111.05.5.
deployment.color=blue - indicates that the Blue color service will be installed.

3. The non-production color can be accessed with the non-production host name (for example -
das.blue.genhtcc.com), any testing can be done using this URL.

Cutover

Once testing is completed on the non-production color, traffic can be moved to the new version by
updating the ingress rules.

1. Update the DAS Ingress with the new deployment color by running the below command (in this case,
Blue is the new deployment color, that is, the non-production color):
helm upgrade --install das-ingress -f das-values.yaml das-9.0.xx.tgz --set
deployment.strategy=ingress --set-string deployment.color=blue
Note: The overrides passed as an argument to the above helm upgrade command:
deployment.strategy=ingress - indicates that this helm install will create ingress rules for the DAS
service.
deployment.color=blue - indicates that the current production (active) color is Blue.

2. Verify the ingress rules by running the command kubectl describe ingress das-ingress. The production
host name should point to the new color service.

Designer Deployment Guide 116

/File:Upgrade_non-production_color_-_DAS.png
/File:Upgrade_non-production_color_-_DAS.png

Deploy Designer (versions v9010005 and above)

The above steps - upgrade non production color and cutover will also be used for further upgrades.

Rollback

If any blocking issues are noticed in the current production service, traffic can be rolled back to the

previous active color by updating the ingress rules:

helm upgrade --install das-ingress -f das-values.yaml das-9.0.xx.tgz --set
deployment.strategy=ingress --set-string deployment.color=green

8.3 Rolling upgrade

A rolling upgrade is not recommended. Use the Blue/Green upgrade procedure.

8.4 Uninstall
To uninstall a service/volume/ingress rules:

helm uninstall

9. Enabling optional features

9.1 Enable Designer Analytics and Audit Trail

Post Designer deployment, features such as Analytics and Audit Trail can be
enabled by performing the below steps.

Ensure Elasticsearch is deployed before proceeding.

9.1.1 Designer changes
1. Configure the following settings in flowsettings override (flowsettings.yaml) - Refer to section 5.4
Configuration settings reference table for option descriptions.
* enableAnalytics: true
* enableESAuditLogs: true
* esServer

e esPort

Designer Deployment Guide

117

Deploy Designer (versions v9010005 and above)

e esUrl

2. Configure the below setting in the DesignerEnv transaction list:
ReportingURL in the reporting section.

3. Perform the steps in the Flowsettings.json update section (8.2.1 Designer deployment process).

9.1.2 DAS changes

1. Configure the following settings in the helm das-values.yaml file. Refer to the 4.2 DAS deployment

settings section for setting descriptions.
dasEnv.envs.DAS SERVICES ELASTICSEARCH ENABLED = true
dasEnv.envs.DAS SERVICES ELASTICSEARCH HOST
dasEnv.envs.DAS SERVICES ELASTICSEARCH PORT

2. Perform the steps in the Upgrade non production color section (8.2.2 DAS deployment process). The
same DAS version running in production can be used for the upgrade.

3. Perform the steps in the Cutover section (8.2.2 DAS deployment process).

10. Cleanup

10.1 Elasticsearch maintenance recommendations

To help you better manage your indexes and snapshots, and to prevent too many indexes from
creating an overflow of shards, Genesys recommends that you set up a scheduled execution of
Elasticsearch Curator with the following two actions:

¢ Delete indexes older than the given threshold according to the index name and mask.

e sdr-* (3 months)

e audit-* (12 months)

¢ Make a snapshot of each index:
* sdr-* (yesterday and older)
e audit-*

e kibana-int-*

11. Limitations

Designer currently supports multi-tenancy provided by the tenant Configuration Server. That is, each
tenant should have a dedicated Configuration Server, and Designer can be shared across the multiple

tenants.

Designer Deployment Guide 118

Deploy Designer (versions prior to v9010005)

Deploy Designer (versions prior to
v9010005)

Contents

e 1 1. Prerequisites
* 1.1 1.1 Kubernetes cluster prerequisites
¢ 1.2 1.2 Genesys components dependencies

e 1.3 1.3 External prerequisites

e 2 2. Deployment Process Overview

3 3. Configuration Server objects
e 3.1 3.1 Create roles for Designer
e 3.2 3.2 Set up a transaction list
e 4 4. Deploying Designer
* 4.1 4.1 Install Designer and DAS
* 4.2 4.1 Running Designer as a Non-Root User

* 4.3 4.2 Running DAS as a Non-Root User

¢ 55, Parameters

6 6. Additional configuration settings

7 7. Features

¢ 8 8. Upgrades

* 8.1 Option 1- Using the default settings (recommended)
e 8.2 Option 2 - Using the SET command for Helm

¢ 99, Uninstall

Designer Deployment Guide 119

Deploy Designer (versions prior to v9010005)

Learn how to deploy Designer as a service in a Kubernetes cluster (for DesDepMnfst versions prior
to v9010005).

For deployment instructions for DesDepMnfst v9010005 and above, click here.

1. Prerequisites

Before deploying Designer, make sure the following resources are deployed, configured, and
accessible:

1.1 Kubernetes cluster prerequisites

¢ Kubernetes 1.12+

¢ Helm 3.0

e Persistent volumes for workspace storage (minimum 2GB) and logs (minimum 5GB) configured in the
cluster.

e Each Designer and DAS pod will make persistent volume claims for storage and logs.

* The volumes must be on shared storage (such as NFS) to enable changes made on one pod to
become available on all other pods.

* If a NFS server is used for shared storage, it should be deployed as highly available (HA) in order to
avoid single points of failure.

Genesys recommends using the ObjectiveFS (OFS) file system or any variant of the
Network File System (NFS).

The Designer manifest package includes sample YAML files to create an NFS server
and persistent volumes.

Designer Deployment Guide 120

Deploy Designer (versions prior to v9010005)

1.2 Genesys components dependencies

¢ GWS 9.x
» Configured to work with a compatible version of Configuration Server.

* Contact Center provisioned in GWS (contact center ID available from GWS).

ORS 8.1.400.x
¢ Nexus 9.x

URS 8.1.400.x

e StatServer 8.5.11x.yz

1.3 External prerequisites

ElasticSearch 7.4.2 and 6.2.x for Designer Analytics and audit trails (optional and can be enabled
later).

2. Deployment Process Overview

The Designer deployment process consists of the following steps:

1. Create roles for Designer.

2. Set up a transaction list.

3. Install Designer.

4. Install DAS.

5. Change the default values of the configurable parameters for Designer and DAS, if required.
6. Change the default values of additional configuration settings, if required.

7

. Enable additional features.

Each of the above steps is explained in detail in the following sections.

3. Configuration Server objects

Designer uses roles and access groups to determine permissions associated with the logged-in user.
To enable this, you must make these changes in GAX or CME.

Designer Deployment Guide 121

Deploy Designer (versions prior to v9010005)

3.1 Create roles for Designer

Designer support a number of bundled roles suitable for various levels of users.

* DesignerDeveloperMost users fall into this category. These users can create Designer applications,
upload audio, and create business controls. They have full access to Designer Analytics.

* DesignerBusinessUserThese users cannot create objects but they can manage them (for example,
upload audio, change data tables, and view analytics).

* DesignerAnalyticsThese users only have access to Designer Analytics.

* DesignerAdminThese users can set up and manage partitions associated with users and Designer
objects.

* DesignerOperationsUsers with this role have full access to all aspects of the Designer workspace.

This includes the Operations menu (normally hidden), where they can perform advanced operational
and maintenance tasks.

To create these roles, import the .conf files included in the Designer Deployment Manifest
package. They are located in the packages/roles/ folder.

In addition, ensure the following for user accounts that need access to Designer:
¢ The user must have read permissions on its own Person object.
e Users must be associated with one or more roles via access groups.

* The on-Premises user must have at least read access on the user, access group(s), and roles(s).

3.2 Set up a transaction list

Designer requires a transaction list for configuration purposes as described in other sections of this
document. To set this up:

1. Create a transaction list called DesignerEnv.

2. Import the file configuration/DesignerEnv.conf, located in the Designer Deployment Manifest
package.

3. Edit any values according to the descriptions provided in the Additional configuration settings
section.

4. Save the list.

5. Ensure Designer users have at least read access to the DesignerEnv transaction list.

The DesignerEnv transaction list is created under the Transaction root folder if the
Internal folder does not exist.

Designer Deployment Guide 122

Deploy Designer (versions prior to v9010005)

4 Deploying Designer

This section describes how to deploy Designer on your Kubernetes cluster.

Ensure the following:

¢ Designer helm package is downloaded.

e Designer and DAS images are accessible from the cluster.

4.1 Install Designer and DAS

Install Designer using the following command (replace designer-service if you are using a different
name for your Designer service):

helm install designer-service designer-9.0.11.xx.xx.tgz
Or
helm install designer-service -f designer-values.yaml designer-9.0.11.xx.xx.tgz.tgz

Next, install DAS using the following command (replace das-service if you are using a different
name for your DAS service):

helm install das-service das-9.0.11.xx.xx.tgz

Or

helm install das-service -f das-values.yaml das-9.0.11.xx.xx.tgz

These commands deploy Designer on the Kubernetes cluster using the default configuration.

The Parameters section lists the parameters for both Designer and Designer Application Server (DAS)
that can be configured during installation. It is recommended to add changed settings into a separate
file (for example, designer-values.yaml) and specify that file while installing the chart.

4.1 Running Designer as a Non-Root User

You can run Desinger as a non-root user. Currently, only a Genesys user is supported by the
Designer base image.

e By default Designer is run as a root user. To run it as a Genesys user, you must add the security
context in the helm chart and configure the following in the values.yaml file:

runAsUser: 500
runAsGroup: 500

500 is the ID of the Genesys user and cannot be modified.

Designer Deployment Guide 123

Deploy Designer (versions prior to v9010005)

¢ The file system must reside within the Genesys user in order to run Designer as a Genesys user. Change
the NFS server host path to the Genesys user:

chown -R genesys:genesys

e After installation, log in to the container and run ps -ef to verify if all processes are running as a

Genesys user.

4.2 Running DAS as a Non-Root User

You can run DAS as a non-root user. Currently, only a Genesys user is supported by the Designer

base image.

e To run DAS as a Genesys user, you must add the security context in the helm chart and configure the
following in the values.yaml file:

runAsUser: 500
runAsGroup: 500

500 is the ID of the Genesys user and cannot be modified.

e After installation, log in to the container and run ps -ef to verify if all processes are running as a

Genesys user.

5. Parameters

This section lists the configurable parameters of the Designer and Designer Application Server (DAS)

chart and their default values.

Parameter
deployment.replicaCount
deployment.strategy

desImage.repository
desImage.tag

volumes.workapceMountPath
volumes.workspaceClaim
volumes . logMountPath

volumes.logClaim

healthApi.path
healthApi.containerPort

Designer
Description
No. of services to be created
Rolling update / re-create

Docker repository for Designer

Designer Image version

Designer workspace path inside
the container

Persistent volume claim name for
the workspace

Designer log path inside the
container

Persistent volume claim name for
logs

Health check request to be sent

Container running port

Default
2
RollingUpdate

pureengage-docker-
staging.jfrog.io/designer/designer

9.0.109.08.20

/designer/workspace
designer-managed-disk
/designer/logs

designer-logs

/health
8888

Designer Deployment Guide

124

Deploy Designer (versions prior to v9010005)

healthApi.startupDelay

healthApi.checkInterval

healthApi.failureCount

designerEnv.enabled

designerEnv.configName
designerEnv.envs.DES PORT

Health will be started after a
given delay

The interval between each health
check requests

No of health check failure to
mark the container as instable or
restart

Enables the ConfigMap based
env input

Name of the ConfigMap
Designer port for container

designerEnv.envs.DES APPSERVERDHOSThostname
designerEnv.envs.DES APPSERVERCXRPport

designerEnv.envs.DES USE HTCC

To enable GWS based auth

designerEnv.envs.DES HTCC SERVERNS server URL
designerEnv.envs.DES HTCC PORTGWS server port

designerEnv.DES GWS CLIENT ID

GWS Client ID

Create a new client ID if the default does
not work. Follow the steps in the link
below, to create new GWS client
credentials: Creating Client for
Provisioning Service

designerEnv.DES GWS CLIENT SECREWS Client secret

service.type
service.port

service.targetPort

service.nodePort

ingress.enabled
ingress.paths
ingress.hosts

ingress.tls

resources.limits.cpu
resources.limits.memory
resources.requests.cpu
resources.requests.memory

nodeSelector

Service port either CluserlP/
NodePort/LoadBalancer

Designer service to be exposed

Designer application port running
inside the container

Port to be exposed in case
service.type=NodePort

Enable/Disable ingress
Ingress path

Hostname

TLS based security enabling

Maximum amount of CPU K8s
allocates for container

Maximum amount of Memory K8s
allocates for container

Guaranteed CPU allocation for
container

Guaranteed Memory allocation
for container

To allow Pods to be scheduled on
the nodes based labels assigned

20

true

designer-config
8888

das

80

true
gws-service-proxy
80

external_api_client

kokkk

NodePort
8888

http

30180

true
/

ssdevl.genhtcc.com

nil

600m

1Gi

400m

512Mi

Default value:

Designer Deployment Guide

125

Deploy Designer (versions prior to v9010005)

to nodes.

nodeSelector: {}
Sample value:
nodeSelector:

Designer Application Server (DAS)

Parameter Description

. No of service to be
deployment. repllcaCountcreated

dasImage.repository Bzgker repository for

dasImage.tag DAS Image version

orkspace path
dasVolumes.wo rkapceMouq%é%e‘ﬁthe container

Persistent volume claim
dasVolumes.wo rkspaceCla&i{me for the workspace

DAS log path inside the
dasVolumes. 1.ogMountPa‘chContainer
Persistent volume claim

dasVolumes.logClaim name for logs

Health check request to

dasHealthApi.path be sent

dasHealthApi.containerPGotitainer running port

dasHealthApi.sta rtupDelaiéif)?:lrtg gye%edflzr;ed

The interval between
dasHealthApi.checkIntermadh health check
requests

No of health check
. . failure to mark the
dasHealthApi.failu recoucr%ntainer as instable or

restart

Service port either
CluserlP/NodePort/
LoadBalancer

dasService.type

DAS service to be

dasService.port
exposed

Maximum amount of
dasresources.limits.cpuCPU K8s allocates for
container

Maximum amount of
dasresources.limits.memdemory K8s allocates
for container

Guaranteed CPU
dasresources.requests. Bl cation for container

dasresources. requests.mémargnteed Memory

Default
2

pureengage-docker-
staging.jfrog.io/
designer/das

9.0.106.03.7

/das/www/workspaces
designer-managed-disk
/das/log

designer-logs

/health
80

20

NodePort

80

600m

1Gi

400m

512Mi

Designer Deployment Guide

126

Deploy Designer (versions prior to v9010005)

nodeSelector

allocation for container

To allow Pods to be
scheduled on the nodes
based labels assigned to

nodes.

Default value:

nodeSelector: {}
Sample value:
nodeSelector:

6. Additional configuration settings

Post deployment, Designer configuration is managed in two locations:

» /designer/flowsettings.json

* Configuration Server in the Tenant/Transactions/Internal/DesignerEnv transaction list

Category

Analytics

Analytics

Analytics

Analytics

Analytics

Analytics

Setting Name

enableAnalytics

esUrl

esServer

esPort

ReportingURL

flowsettings.jsonDesignerEnv

Yes

Yes

Yes

Yes

esMaxQueryDuration

Yes

DesignerEnv
Section

reporting

Description

Flag to enable
analytics.

Elasticsearch
URL (for
example,
http://es-
service:9200).

Elasticsearch
Server
HostName (for
example, es-
service).

Elasticsearch
port (for
example,
9200).

URL of
Elasticsearch
where
Designer
applications
will report data
(for example,
http://es-
service:9200).

The maximum
time range (in
days) to query
in Designer

Analytics. Data
for each day is
stored in a

Designer Deployment Guide

127

Deploy Designer (versions prior to v9010005)

Category

Analytics

Analytics

Audio

Audit

Audit

Audit

Audit

Authorization

Authorization

DesignerEnv

Setting Name flowsettings.jsonDesignerEnv Section

sdrMaxObjCount

SdrTracelevel

useUserRecordedSystemAudio

enableESAuditLog¥es

enableFSAuditLog¥es

maxAppSizeCompare

enableReadAuditL¥egs

disableRBAC Yes

disablePBAC Yes

Description

separate index
in
Elasticsearch.
The maximum
count of nested
type objects to
be captured in
SDRs.

This caps the
level of detail
captured in
analytics.

Enable or
Disable Audit
logs captured
in
Elasticsearch.
Enable or
Disable Audit
logs captured
in the file
system.

The maximum
size of a data
object for
which a
differential will
be captured in
audit logs.

Control
whether
reading of
objects is
captured in
audit trails.

Controls if
Designer reads
and enforces
permissions
associated with
the logged in
user's roles.

Controls if
Designer
allows
partitioning of
Designer
workspace and
restricts a

Designer Deployment Guide

128

Deploy Designer (versions prior to v9010005)

DesignerEnv

Category Setting Name flowsettings.jsonDesignerEnv Section

Description
user's access
to Designer
objects to the
user's
partitions.

The type of
locking used,
for an editing
Collboration locking Yes session of
applications,
modules, or
data tables.

The server
name Designer
uses to
generate the
URL to the
application.
ORS and MCP
fetch
application
code and other
resources from
this URL.

The
corresponding

DAS applicationPort Yes port to be used
with
applicationHost.
This is
normally not
changed. It is

DAS deployURL Yes the relative
path to the
workspace on
DAS.

URL of GWS
authentication
Ul. Designer
redirects to
this URL for
authentication.

DAS applicationHost Yes

Deployment ssoLoginUrl Yes

If specified,
this is used to
filter which
Root

Digital rootsSRL Yes Categories to
display when
selecting
Standard
Responses.

Designer Deployment Guide 129

Deploy Designer (versions prior to v9010005)

Category

Digital

External APIs

External APIs

Features

GWS

GWS
GWS

GWS

Setting Name flowsettings.jsonDesignerEnv

maxFlowEntryCount Yes
httpProxy Yes Yes
redundantHttpProxXes Yes
features

usehtcc Yes

htccServer Yes

htccport Yes

maxConcurrentHTZ&Request

DesignerEnv
Section

flowsettings

flowsettings

flowsettings

Description

Specifies how
many times
the same
application can
process a
specific digital
interaction.

Specifies the
proxy used for
external
request and
nexus API calls
(if
enable_proxy is
true).

Specifies the
backup proxy
used for
external
request and
Nexus API calls
(if
enable_proxy is
true), when
httpProxy is
down.

This is an
object. See the
Features
section for a
list of
supported
features.

Set to true so
Designer works
with GWS. If
set to false,
Designer
defaults to a
local mode and
may be used
temporarily if
GWS is
unavailable.

GWS Server
GWS Port

For batch
operations to
GWS, the
maximum
number of

Designer Deployment Guide

130

Deploy Designer (versions prior to v9010005)

Category

GWS

Help

IVR

Nexus

Nexus

Nexus

Nexus

Setting Name flowsettings.jsonDesignerEnv

batchOperationRe¥afTTL

docsMicroserviceURds

recordingType

url

password

enable_proxy

profile

Yes

Yes

Yes

Yes

DesignerEnv
Section

nexus

nexus

nexus

nexus

Description

concurrent

requests that
Designer will
send to GWS.

For batch
operations to
GWS, the time
(in
milliseconds)
that Designer
stores results
of a batch
operation on
the server,
before deleting
it.

URL for
Designer
Documentation

Specifies the
recording type
to be used in
the Record
block. Set as
GIR. If the
option is
missing or
blank, Full Call
Recording type
is used.

URL of Nexus
that typically
includes the
API version
path (e.g.
https://nexus-
server/nexus/
api/v3).

Nexus x-api-
key created by
Nexus
deployment.

Boolean value
on whether
httpProxy is
used to reach
Nexus.

Enable Contact
Identification
via Nexus (e.g.
to enable Last

Designer Deployment Guide

131

Deploy Designer (versions prior to v9010005)

Category

Process

Provisioning

Routing

Security

Security

Security

Security

Session

Setting Name flowsettings.jsonDesignerEnv

port Yes

primarySwitch

ewtRefreshTimeout Yes

zipFileSizeLimitinMegaBytes

tempUploadDir

disableCSRF Yes

disableSecureCooRies

idleTimeout Yes

DesignerEnv
Section

flowsettings

Description

Called Agent
routing).

Designer
process port in
the container.
Typically, you
should keep
the default
value.

Specify the
primary switch
name if more
than one
switch is
defined for the
tenant.
Designer
fetches and
works with
route points
from this
switch.

Specifies the
interval (in
seconds) to
refresh the
Estimated
Waiting Time
when routing
an interaction.

Defines the
maximum
zipFile size
limit (in
megabytes)
during bulk
audio import.

The path where
the zipFile is
stored during
bulk audio
import process.

Disable the
secure cookies
header.

Idle timeout (in
seconds)
before a user
session is
terminated

Designer Deployment Guide

132

Deploy Designer (versions prior to v9010005)

Category

Session

Session

Tenancy

Tenancy

Workflow

Workflow

/. Features

Setting Name flowsettings.jsonDesignerEnv

lockTimeout

lockKeepalive

multitenancy

localmode

maxBuilds

enablePTE

Yes

Yes

Yes

Yes

Yes

Yes

DesignerEnv
Section

flowsettings

Description

while editing
applications,
modules, or
data tables.

Timeout (in
seconds)
before a
resource lock is
released, for
an editing
session of
applications,
modules, or
data tables.

Interval (in
seconds)
before the
client sends a
ping to the
server, to
refresh the lock
for an editing
session of
applications,
modules, or
data tables.

Should be set
to true.

Should be set
to false.

Specifies the
maximum
number of
builds
permitted per
application.

Boolean value
on whether PTE
objects are
enabled at
runtime.

The features specified here must be configured under the features object in the flowsettings.json

file.

For example,

Designer Deployment Guide

133

Deploy Designer (versions prior to v9010005)

"features": {

"callbackv2": true,

These features are configured only in the flowsettings.json file and not in DesignerEnv.

Feature Setting

Category Name Description Default Value
Enable or disable the
Audio enableBulkAudiolmport bulk audio import false

feature.

If enabled, Designer will
validate invalid
grammar files during
grammar upload. If it is

Audio grammarValidation enabled, only valid false
grammar files (.grxml or
Nuance compiled binary
grammar) can be
uploaded.

Nexus nexus Enable or disable Nexus. false
The Personas feature is enabled during a new tenant creation in Azure. The following are performed
during workspace initialization:

e The Personas feature flag is enabled in tenantsettings. json.

e The GTTS only personas.json file is copied to workspace/tenant ccid/workspace/personas/
personas.json.

e The defaultPersona setting is configured in the DesignerEnv transaction list (flowsettings-
>defaultPersona = Gabriela).

8. Upgrades

To upgrade the service when a new Designer/DAS Helm chart is released:

Designer Deployment Guide 134

Deploy Designer (versions prior to v9010005)

helm upgrade

To upgrade when a new Designer/DAS image version is released:
Option 1- Using the default settings (recommended)

1. Modify the image tag parameter in the designer-values.yaml file.
For example, if you are upgrading the Designer version, modify tag under the desImage section. For
upgrading DAS, modify the tag under dasImage section.

2. helm upgrade -f designer-values.yaml

Option 2 - Using the SET command for Helm

For Designer,
helm upgrade designer-service designer-9.0.11.xx.xx.tgz --set desImage.tag=
For DAS,

helm upgrade das-service das-9.0.11.xx.xx.tgz --set dasImage.tag=

9. Uninstall

To uninstall a service:

helm uninstall

Designer Deployment Guide 135

	Designer Deployment Guide
	Table of Contents
	Deploy Designer (versions v9012214 and above)
	Deploy Designer (versions v9010005 and above)
	Deploy Designer (versions prior to v9010005)

