3 GENESYS

This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Designer Private Edition Guide

Deploy Designer

2/8/2026



www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.


Contents

¢ 1 Assumptions
e 2 Preparation
e 2.1 Set up Ingress
» 2.2 Set up Application Gateway (WAF) for Designer
» 2.3 Storage
* 2.4 Set up Secrets

* 3 Deployment strategies

4 Rolling Update deployment
e 4.1 Designer
* 4.2 DAS
¢ 5 Blue-Green deployment
* 5.1 Designer
* 5.2 DAS
* 6 Canary
* 6.1 Deployment
* 6.2 Cleaning up
» 7 Validations and checks
¢ 8 Post deployment procedures

¢ 8.1 Updating the flowsettings file

Designer Private Edition Guide



Learn how to deploy Designer into a private edition environment.

Related documentation:

* For private edition

Assumptions

¢ The instructions on this page assume you are deploying the service in a service-specific namespace,
named in accordance with the requirements on Creating namespaces. If you are using a single
namespace for all private edition services, replace the namespace element in the commands on this
page with the name of your single namespace or project.

¢ Similarly, the configuration and environment setup instructions assume you need to create namespace-
specific (in other words, service-specific) secrets. If you are using a single namespace for all private
edition services, you might not need to create separate secrets for each service, depending on your
credentials management requirements. However, if you do create service-specific secrets in a single
namespace, be sure to avoid naming conflicts.

Preparation

Review the Before you begin topic for the full list of prerequisites required to deploy
Designer.

Before you deploy Designer and DAS using Helm charts, complete the following preparatory steps:

Ensure the Helm client is installed.
Set up an Ingress Controller, if not already done.
Setup an NFS server, if not already done.

Create Persistent Volumes - a sample YAML file is provided in the Designer manifest package.

A

Download the Designer and DAS docker images and push to the local docker registry.

Designer Private Edition Guide


https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

6. Download the Designer package and extract to the current working directory.

7. Configure Designer and DAS value overrides (designer-values.yaml and das-values.yaml); ensure
the mandatory settings are configured. If the Blue-Green deployment process is used, Ingress settings
are explained in the Blue-Green deployment section.

Depending on the Kubernetes platform or the container orchestration platform that
you are deploying Designer on, you might have to carry out some additional steps
specific to that platform. For more information, navigate to the required topic in the
Kubernetes platform specific information section on the About page.

Set up Ingress
Given below are the requirements to set up an Ingress for the Designer Ul:
* Cookie name - designer.session.

e Header requirements - client IP & redirect, passthrough.

¢ Session stickiness - enabled.

Allowlisting - optional.

e TLS for ingress - optional (should be able to enable or disable TLS on the connection).

Set up Application Gateway (WAF) for Designer
Designer Ingress must be exposed to the internet using Application Gateway enabled with WAF.

When WAF is enabled, consider the following exception in the WAF rules for Designer:

¢ Designer sends a JSON payload with data, for example, {profile . {} }. Sometimes, this is detected
as OSFileAccessAttempt, which is a false positive detection. Disable this rule if you encounter a
similar issue in your WAF setup.

Storage

Designer storage

Designer requires storage to store designer application workspaces. Designer
storage is a shared file storage that will be used by the Designer and DAS
services.

This storage is critical. Ensure you take backups and snapshots at a regular interval,

Designer Private Edition Guide



probably, each day.

A Zone-Redundant Storage system is required to replicate data from the RWX
volumes and must be shared across multiple pods:

e Capacity - 1 TiB

e Tier - Premium

* Baseline |0/s - 1424

e Burst 10/s - 4000

e Egress Rate - 121.4 MiBytes/s
¢ Ingress Rate - 81.0 MiBytes/s

DAS storage

If the Designer workspace is stored in a cloud storage system such as Azure Files, then the data must
be synced to the DAS pods using the Designer-Sync service. In this case, DAS must use the
StatefulSet deployment type. In the DAS StatefulSet pods, each pod must be attached to a
premium SSD disk to store the workspace.

» Size - > 500GiB

¢ Max IOPS (Max IOPS w/ bursting) - 2,300 (3,500)

e Max throughput (Max throughput w/ bursting) - 150 MB/second (170 MB/second)

Permission considerations for Designer and DAS storage

NFS

For NFS RWX storages, the mount path should be owned by genesys:genesys, that is, 500:500 with
0777 permissions. It can be achieved by one of the below methods:

¢ From the NFS server, execute the chmod -R 777 and chown -R 500:500 commands to set the
required permissions.

e Create a dummy Linux based pod that mounts the NFS storage. From the pod, execute the chmod -R
777 and chown -R 500:500 commands. This sets the required permissions. However, this method
might require the Linux based pods to be run as privileged.

SMB / CIFS

For SMB / CIFS based RWX storages, for instance, Azure file share, the below mountOptions must be
used in the StorageClass or the PersistentVolume template:

mountOptions

- dir _mode=0777
- file mode=0777

Designer Private Edition Guide 5



- uid=500

- gid=500

- mfsymlinks

- cache=strict

Set up Secrets
Secrets are required by the Designer service to connect to GWS and Redis (if you are using them).

GWS Secrets:

¢ GWS provides a Client ID and secrets to all clients that can be connected. You can create Secrets for the
Designer client as specified in the Set up secrets for Designer section below.

Redis password:

e |If Designer is connected to Redis, you must provide the Redis password to Designer to authenticate the
connection.

Set up Secrets for Designer

Use the designer.designerSecrets parameter in the values.yaml file and configure Secrets as
follows:

designerSecrets:
enabled: true
secrets:

DES GWS CLIENT ID: xxxx

DES GWS_CLIENT SECRET: XxxxX
DES REDIS PASSWORD: XXXxXX
DES ELASTIC USERNAME: "xxxx"
DES ELASTIC PASSWORD: '"xxxxx"

Set up Secrets for DAS

Use the das.dasSecrets parameter in the values.yaml file and configure
Secrets as follows:

dasSecrets:

enabled: true

secrets:
DAS ELASTIC USERNAME : "xxxxx"
DAS ELASTIC PASSWORD : "xxxxx"
DAS ELASTIC USERNAME 1 : "xxxxx"
DAS ELASTIC PASSWORD 1 : "xxxxx"
DAS ELASTIC USERNAME 2 : "xxxxx"
DAS ELASTIC PASSWORD 2 : "xxxxx"

Deployment strategies

Designer supports the following deployment and upgrade strategies:

Designer Private Edition Guide 6



¢ Rolling Update (default).

¢ Blue-Green (recommended).
DAS (Designer Application Server) supports the following deployment and upgrade strategies:

¢ Rolling Update (default).
¢ Blue-Green (recommended).

e Canary (must be used along with Blue-Green and is recommended in production).

For full descriptions of the deployment and upgrade strategies, see Upgrade strategies in the Setting
up Genesys Multicloud CX Private Edition guide.

Rolling Update deployment

The rolling deployment is the standard default deployment to Kubernetes. It works slowly, one by
one, replacing pods of the previous version of your application with pods of the new version without
any cluster downtime. It is the default mechanism of upgrading for both Desigher and DAS.

Designer

To perform the initial deployment for a rolling upgrade in Designer, use the Helm command given
below. The values.yaml file can be created as required.

e helm upgrade --install --namespace designer designer -f designer-values.yaml
designer-100.0.112+xxxx.tgz --set designer.image.tag=9.0.1xx.XX.XX

The values.yaml overrides passed as an argument to the above Helm upgrade command:

designer.image.tag=9.0.1xx.xx.xx - This is the new Designer version to be installed, for example,
9.0.111.05.5.

If you are using the - -set flag in the helm install to populate the designer.designerConfig.envs
values, use --set-string, for example:

--set-string designer.designerConfig.envs.DES ES PORT="8080".

DAS

To perform the initial deployment for a rolling upgrade in DAS, use the Helm command given below.
The values.yaml file can be created as required.

¢ helm upgrade --install --namespace designer designer-das -f designer-das-values.yaml
designer-das-100.0.112+xxxx.tgz --set das.image.tag=9.0.1xx.XX.XX

The values.yaml overrides passed as an argument to the above Helm upgrade command:

das.image.tag=9.0.1xx.xX.xx - This is the new DAS version to be installed, for example,
9.0.111.05.5.

Designer Private Edition Guide 7



If you are using the --set flag in the helm install to populate the das.dasConfig.envs values,
values, use --set-string, for example:

--set-string das.dasConfig.envs.DAS SERVICES ELASTICSEARCH PORT="9200".

Blue-Green deployment

Blue-Green deployment is a release management technique that reduces risk and minimizes
downtime. It uses two production environments, known as Blue and Green or active and inactive, to
provide reliable testing, continuous no-outage upgrades, and instant rollbacks. When a new release
needs to be rolled out, an identical deployment of the application will be created using the Helm
package and after testing is completed, the traffic is moved to the newly created deployment which
becomes the active environment, and the old environment becomes inactive. This ensures that a fast
rollback is possible by just changing route if a new issue is found with live traffic. The old inactive
deployment is removed once the new active deployment becomes stable.

Service cutover is done by updating the Ingress rules. The diagram below shows the high-level
approach to how traffic can be routed to Blue and Green deployments with Ingress rules.

Deployment

- designer.blue.example.com ——————— DL LR LH T2 T

Blue Pods

—P designer.example.com Active color

Active version

Deployment

- i —P
designer.green.example.com Service designer-green Green Pods

Designer

Before you deploy Designer using the blue-green deployment strategy, complete the following
preparatory steps:

1. Create 3 hostnames as given below. The blue service hostname must contain the string blue. For
example, designer.blue.example.com or designer-blue.example.com. The green service hostname must
contain the string green. For example, designer.green.example.com or designer-green.example.com.
The blue/green services can be accessed separately with the blue/green hostnames:

e designer.example.com - For the production host URL, this is used for external access.

e designer.blue.example.com - For the blue service testing.

Designer Private Edition Guide 8


/File:DesBlueGreenDep.png
/File:DesBlueGreenDep.png

e designer.green.example.com - For the green service testing.

2. Configure the hostnames in the designer-values.yaml file under ingress. Annotations and paths can

be modified as required.

ingress:

enabled: true

annotations: {}

paths: [/]

hosts:
- designer.example.com
- designer.blue.example.com
- designer.green.example.com

Deployment

The resources - ingress and persistent volume claims (PVC) - must be created initially before
deploying the Designer service as these resources are shared between blue/green services and they
are required to be created at the very beginning of the deployment. These resources are not required
for subsequent upgrades. The required values are passed using the -- set flag in the following
steps. Values can also be directly changed in the values.yaml file.

1.

2.

3.

Create Persistent Volume Claims required for the Designer service (assuming the volume service name
is designer-volume).

helm upgrade --install --namespace designer designer-volume -f designer-values.yaml
designer-9.0.xx.tgz --set designer.deployment.strategy=blue-green-volume

The values.yaml overrides passed as an argument to the above Helm upgrade command:
designer.deployment.strategy=blue-green-volume - This denotes that the Helm install will create a
persistent volume claim in the blue/green strategy.

Create Ingress rules for the Designer service (assuming the ingress service name will be designer-
ingress):

helm upgrade --install --namespace designer designer-ingress -f designer-values.yaml
designer-100.0.112+xxxx.tgz --set designer.deployment.strategy=blue-green-ingress --
set designer.deployment.color=green

The values.yaml overrides passed as an argument to the above Helm upgrade command:
designer.deployment.strategy=blue-green-ingress - This denotes that the Helm install will create
ingress rules for the Designer service.

designer.deployment.color=green - This denotes that the current production (active) color is green.

Deploy the Designer service color selected in step 2. In this case, green is selected and assuming the
service name is designer-green:

helm upgrade --install --namespace designer designer-green -f designer-values.yaml
designer-100.0.112+xxxx.tgz --set designer.deployment.strategy=blue-green --set
designer.image.tag=9.0.1xx.xx.xx --set designer.deployment.color=green

DAS

As with Designer, the Blue-Green strategy can be adopted for DAS as well. The Blue-Green
architecture used for DAS is given below. Here, the cutover mechanism is controlled by Service, the
Kubernetes manifest responsible for exposing the pods. The Ingress, when enabled, will point to the
appropriate service based on the URL.

Designer Private Edition Guide



das.blue.example.com

das.example.com

o designer-das
o service

das.green.example.com

Deployment

The Ingress must be created initially before deploying the DAS service since it is shared between
blue/green services and it is required to be created at the very beginning of the deployment. The
Ingress is not required for subsequent upgrades. The required values are passed using the -- set
flag in the following steps. Values can also be directly changed in the values.yaml file.

1.

2.

Deploy initial DAS pods and other resources by choosing an active color, in this example, green. Use the
below command to create a designer-das-green service:

helm upgrade --install --namespace designer designer-das-green -f designer-das-
values.yaml designer-das-100.0.106+xxxx.tgz --set das.deployment.strategy=blue-green
--set das.image.tag=9.0.1xx.xx.xx --set das.deployment.color=green

The values.yaml overrides passed as an argument to the above Helm upgrade command:
das.deployment.strategy=blue-green - This denotes that the DAS service will be installed using the
blue-green deployment strategy.

das.image.tag=9.0.1xx.xx.xx - This denotes the DAS version to be installed, for example,
9.0.111.04.4.

das.deployment.color=green - This denotes that the green color service is installed.

Once the initial deployment is done, the pods have to be exposed to the designer-das service. Execute
the following command to create the designer-das service:

helm upgrade --install --namespace designer designer-das designer-
das-100.0.106+xxx.tgz -f designer-das-values.yaml --set das.deployment.strategy=blue-
green-service --set das.deployment.color=green

The values.yaml overrides passed as an argument to the above helm upgrade
das.deployment.strategy=blue-green-service - This denotes that the designer-das service will be

Designer Private Edition Guide 10


/File:DASBlueGreenDep.png
/File:DASBlueGreenDep.png

installed and exposed to the active color pods.
das.deployment.color=green - This denotes that the designer-das service will point to green pods.

NodePort Service

The designer-das-green release creates a service called designer-das-green and the designer-
das-blue release creates a service called designer-das-blue. If you are using NodePort services,
ensure that the value of designer.service.nodePort is not the same for both the releases. In other
words, you should assign dedicated node ports for the releases. The default value for
designer.service.nodePort is 30280. If this was applied to designer-das-green, use a different
value for designer-das-blue, for example, 30281. Use the below helm command to achieve this:
helm upgrade --install --namespace designer designer-das designer-
das-100.0.106+xxx.tgz -f designer-das-values.yaml --set das.deployment.strategy=blue-
green-service --set das.deployment.color=green --set das.service.nodePort=30281

Canary

Canary is optional and is only used along with Blue-Green. It is recommended in production. Canary
pods are generally used to test new versions of images with live traffic. When you are installing the

Designer and DAS services for the first time, you will not use Canary pods. Only when upgrading the
services after initial deployment, you will use Canary pods for testing the new versions.

Deployment

1. Identify the current production color by checking the designer-das service selector labels (kubectl
describe service designer-das). Green is the production color in the below example as the selector
label is color=green.

kubectl describe service designer-das

Selector: color=green

2. To deploy canary pods, the das.deployment.strategy value must be set to canary in the designer-
das-values.yaml file or using the -- set flag as shown in the command below:
helm upgrade --install --namespace designer designer-das-canary -f das-values.yaml
designer-das-100.0.106+xxxx.tgz --set das.deployment.strategy=canary --set
das.image.tag=9.0.1xx.xx.xx --set das.deployment.color=green
The values.yaml overrides passed as an argument to the above Helm upgrade command:
das.deployment.strategy=canary - This denotes that the Helm install will create canary pods.
das.deployment.color=green - This denotes that the current production (active) color is green.

To make sure Canary pods receive live traffic, they have to be exposed to the designer-das service by
setting das.deployment.color=, which is obtained from step 1.

3. Once canary pods are up and running, ensure that the designer-das service points to the canary pods

Designer Private Edition Guide 11


/File:CanaryInDepStep1.png
/File:CanaryInDepStep1.png

using the kubectl describe svc designer-das command.

Endpcints: 10.206.0.101:8081,10.206.0.162:8081,10.206.0.90:8081

The IP address present in the Endpoints must match the IP address of the canary pod. The canary pod's
IP address is obtained using the kubectl describe pod command.

IP: 10.20
IPs:
IP: 10.20&6.0.90

=
w
o

oy

Cleaning up
After completing canary testing, the canary pods must be cleaned up.

The das.deployment. replicaCount must be made zero and the release is upgraded. It can be
changed in the designer-das-values.yaml file or through the - -set flag as follows:

¢ helm upgrade --install --namespace designer designer-das-canary -f das-values.yaml
designer-das-100.0.106+xxxx.tgz --set das.deployment.strategy=canary --set
das.image.tag=9.0.1xx.xx.xx --set das.deployment.color=blue --set
das.deployment.replicaCount=0

Validations and checks

Here are some common validations and checks that can be performed to know if the deployment was
successful.

e Check if the application pods are in running state by using the kubectl get pods command.

e Try to connect to the Designer or DAS URL as per the ingress rules from your browser. You must be able
to access the Designer and DAS webpages.

Post deployment procedures

Updating the flowsettings file

Post deployment, the flowsettings.json file can be modified through a Helm install as follows:

1. Extract the Designer Helm Chart and find the flowsettings.yaml file under the Designer Chart >
Config folder.

2. Modify the necessary settings (refer to the Post deployment configuration settings reference table for

Designer Private Edition Guide 12


/File:CanaryEndpoints.png
/File:CanaryEndpoints.png
/File:CanaryIPs.png
/File:CanaryIPs.png

the different settings and their allowed values).

3. Execute the below Helm upgrade command on the non-production color service. It can be done as part
of the Designer upgrade by passing the flowsettings.yaml file using the --values flag. In this case, a
new Designer version can be used for the upgrade. If it is only a flowsettings.json update, the same
Designer version is used.
helm upgrade --install --namespace designer designer-blue -f designer-values.yaml -f
flowsettings.yaml designer-9.0.xx.tgz --set designer.deployment.strategy=blue-green --
set designer.image.tag=9.0.1xx.xx.xx --set designer.deployment.color=blue

4. Once testing is completed on the non-production service, perform the cutover step as mentioned in the
Cutover section (Designer Blue-Green deployment). After cutover, the production service will contain
the updated settings. The non-active color Designer must also be updated with the updated settings
after the cutover.

Designer Private Edition Guide 13



	Designer Private Edition Guide

