
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Designer Private Edition Guide

2/3/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
Overview

About Designer 6
Architecture 9
High availability and disaster recovery 14

Configure and deploy
Before you begin 16
Configure Designer 23
Platform / Configuration Server and GWS settings for Designer 68
Deploy Designer 72
Enable optional features 84

Upgrade, roll back, or uninstall
Upgrade, roll back, or uninstall Designer 92

Observability
Observability in Designer 102

DES metrics and alerts 108
DAS metrics and alerts 112

Logging 117
Kubernetes platform specific information

Designer on GKE 119
Designer on AKS 122

Contents

• 1 Overview
• 2 Configure and deploy
• 3 Upgrade, roll back, or uninstall
• 4 Operations
• 5 Kubernetes platform specific information

Designer Private Edition Guide 3

This document guides you through the process of deploying and configuring Designer and Designer
Application Server (DAS) as a service in a Kubernetes (K8s) cluster.

Related documentation:
•
•

RSS:

• For private edition

Designer is a service available with the Genesys Multicloud CX private edition offering.

This document is intended for use primarily by system engineers and other members of an
implementation team who will be involved in configuring and installing Designer and DAS, and
system administrators who will maintain Designer and DAS installations.

To successfully deploy and implement applications in Designer and DAS, you must have a basic
understanding of and familiarity with:

• Network design and operation

• Network configurations in your organization

• Kubernetes

• Genesys Framework architecture and functions

Overview
Learn more about Designer, its architecture, and how to support high availability and disaster
recovery.

• About Designer
• Architecture
• High availability and disaster recovery

Designer Private Edition Guide 4

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Configure and deploy
Find out how to configure and deploy Designer.

• Before you begin
• Configure Designer
• Platform / Configuration Server and GWS settings for Designer
• Deploy Designer
• Enable optional features

Upgrade, roll back, or uninstall
Find out how to upgrade, roll back, or uninstall Designer.

• Upgrade, roll back, or uninstall Designer

Operations
Learn how to monitor Designer with metrics and logging.

• Observability in Designer
• Designer metrics and alerts
• DAS metrics and alerts
• Logging

Kubernetes platform specific information
Learn more about settings specific to the Kubernetes platform or the container orchestration
platform you are deploying Designer on.

• Designer on GKE
• Designer on AKS

Designer Private Edition Guide 5

About Designer

Contents

• 1 Designer
• 2 Designer Application Server (DAS)
• 3 Supported Kubernetes platforms

About Designer

Designer Private Edition Guide 6

Learn about Designer and how it works in Genesys Multicloud CX private edition.

Related documentation:
•
•
•

RSS:

• For private edition

Designer

The Designer service provides a web UI to build and manage VXML and SCXML based self-service and
assisted service applications for a number of media types. It stores data on the local file system and
is synchronized across instances by using services like Network File System (NFS). Genesys
customers can build applications using a simple drag and drop method, and assign contact points
(Route Points and other media endpoints) to applications directly from the Designer UI. Insights into
runtime behavior of applications and troubleshooting aid is provided by Designer Analytics, which
includes a rich set of dashboards based on session detail records (SDR) from data stored in
Elasticsearch.

Designer offers the following features:

• Applications for working with phone, chat, email, SMS (text messages), Facebook, Twitter, and open
media types.

• Bots, ASR, TTS capabilities for self-service.

• Assisted service or routing.

• Callback.

• Business Controls.

• Audio, message management.

• Grammars management.

• Contact points management - route points, chat end points, email pop-client/mailboxes.

• Analytics dashboards through embedded Kibana.

Designer is an Express/Node.js application. The UI is designed using Angular powered Bootstrap.

About Designer

Designer Private Edition Guide 7

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Application data (SCXML and VXML) is stored as a file system. Designer Analytics and Audit data is
stored in Elasticsearch.

Designer Application Server (DAS)

Designer Application Server (DAS) hosts and serves the Designer generated application files (SCXML
and VXML), audio, and grammars. It also provides:

• Runtime evaluation of Business Controls (business hours, special days, emergency flags and data
tables).

• Callback interface to GES.

DAS uses built-in NGINX to front requests. It consists of 3 modules: NGINX, PHP, and Node.js.

• Requests for static workspace content (SCXML, VXML, JS, audio, grammar, etc) are handled by the
NGINX module.

• Requests for PHP content are processed by the FastCGI PHP module.
• SDR (Analytics) processing requests are handled by the DAS Node.js module.

Important
Files generated by Designer can be served only by DAS. Designer will work only with
DAS.

Supported Kubernetes platforms

The Designer and DAS services are supported on the following Kubernetes platforms:

• Azure Kubernetes Service (AKS)
• Google Kubernetes Engine (GKE)

See the Designer Release Notes for information about when support was introduced.

About Designer

Designer Private Edition Guide 8

Architecture

Contents

• 1 Introduction
• 2 Architecture diagram — Connections
• 3 Connections table

Architecture

Designer Private Edition Guide 9

Learn about Designer architecture

Related documentation:
•
•
•

RSS:

• For private edition

Introduction

The architecture diagram in this topic illustrates a sample deployment of Designer and DAS.

For more information on the Genesys Multicloud CX private edition architecture, refer to the
Architecture topic in the Setting up Genesys Multicloud CX private edition document.

For information about the overall architecture of Genesys Multicloud CX private edition, see the high-
level Architecture page.

See also High availability and disaster recovery for information about high availability/disaster
recovery architecture.

Architecture diagram — Connections

The numbers on the connection lines refer to the connection numbers in the table that follows the
diagram. The direction of the arrows indicates where the connection is initiated (the source) and
where an initiated connection connects to (the destination), from the point of view of Designer as a
service in the network.

Architecture

Designer Private Edition Guide 10

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Connections table

The connection numbers refer to the numbers on the connection lines in the diagram. The Source,
Destination, and Connection Classification columns in the table relate to the direction of the
arrows in the Connections diagram above: The source is where the connection is initiated, and the
destination is where an initiated connection connects to, from the point of view of Designer as a
service in the network. Egress means the Designer service is the source, and Ingress means the
Designer service is the destination. Intra-cluster means the connection is between services in the
cluster.

Architecture

Designer Private Edition Guide 11

/File:Pe_designer_architecture.png
/File:Pe_designer_architecture.png

Connection Source Destination Protocol Port Classification
Data that
travels on

this
connection

1 Customer
browser

Genesys
Authentication HTTPS 8095 Intra-cluster

Designer
queries the
Genesys
Authentication
Service to
validate the
user’s
identity.

2 Designer
ingress HTTP 443 Ingress

Web browser
used to
access the
Designer UI.

3 Designer
ingress Designer HTTP 8888 Egress

Incoming
web traffic
from the UI.

4 Designer Logging HTTP Egress Centralized
logging.

5 Designer Redis HTTP 6380 Egress

Resource
index
caching and
multi-user
collaboration
locks on
Designer
resources.

6 Prometheus Designer HTTP 8888 Ingress

Metrics for
monitoring
and alerting
with
Prometheus.

7 Designer
Genesys
Engagement
Service

HTTP 80
Publish
callback
services.

8 Designer
Genesys
Web
Services and
Applications

HTTP 80

Authentication
of Designer
and
configuration
data access.

9 Designer
replica set Nexus HTTP/HTTPS 80 Ingress

Fetch
Designer Bot
registry
information.

10
Shared file
system
(NFS)

Persistent
volume

NFS for
workspace
storage.

11 Persistent
volume

Designer
Persistent
Volume

Data for
workspace
storage.

Architecture

Designer Private Edition Guide 12

Connection Source Destination Protocol Port Classification
Data that
travels on

this
connection

Claim (PVC)

12
Designer
Persistent
Volume
Claim (PVC)

Designer
replica set
persistent
volume

Data for
workspace
storage.

13
Designer
Persistent
Volume
Claim (PVC)

DAS replica
set
persistent
volume

Data for
workspace
storage.

14 Designer Elasticsearch HTTP 9205 Egress

Query
Designer
Analytics
data
(Session
Detail
Records).

15
Designer
Application
Server

Elasticsearch HTTP 9205 Egress

Store
Designer
Analytics
data
(Session
Detail
Records).

16 Voice
Microservices DAS ingress HTTP 80 Ingress

Fetch
Designer
application
pages
(VXML,
SCXML),
JSON files,
and so on.

17 DAS ingress
Designer
Application
Server

HTTP 8080 Ingress
HTTP traffic
from DAS
ingress.

18 External/
Customer

Designer
Application
Server

HTTPS 443 Egress
External
customer
API requests.

19
Genesys
Voice
Platform

DAS ingress HTTP 80 Ingress
Fetch
Designer
audio
resources.

20
Designer
Application
Server

Nexus HTTP/HTTPS 80 Ingress
Fetch GES
APIs for
callback
processing.

Architecture

Designer Private Edition Guide 13

High availability and disaster recovery

Find out how this service provides disaster recovery in the event the service goes down.

Related documentation:
•
•
•

RSS:

• For private edition

Name High Availability Disaster Recovery Where can you host
this service?

Designer
N = N (N+1)
Or
N = 2 (active-active)

Pilot light Primary unit only

Designer Application
Server

N = N (N+1)
Or
N = 2 (active-active)

Active-spare Primary or secondary unit

See High Availability information for all services: High availability and disaster recovery

Designer and DAS must be deployed as highly available in order to avoid single points of failure. A
minimum of 2 replicas of each service must be deployed to achieve HA.

The Designer and DAS service pods can be automatically scaled up or down
based on metrics such as CPU and memory utilization. The Deployment
configuration settings section provides more information on configuring HA and
auto-scaling.

Important
The pilot-light DR or multi-region pattern for the Designer service is supported only for

High availability and disaster recovery

Designer Private Edition Guide 14

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

the primary region.

Refer to the Genesys Docker Deployment Guide for more information on general
HA recommendation for Kubernetes.

High availability and disaster recovery

Designer Private Edition Guide 15

Before you begin

Contents

• 1 Limitations and assumptions
• 2 Download the Helm charts
• 3 Third-party prerequisites
• 4 Storage requirements
• 5 Network requirements
• 6 Browser requirements

• 6.1 Minimum display resolution
• 6.2 Third-party cookies

• 7 Genesys dependencies
• 8 GDPR support

Before you begin

Designer Private Edition Guide 16

Find out what to do before deploying Designer.

Related documentation:
•
•
•

RSS:

• For private edition

Limitations and assumptions

Designer currently supports multi-tenancy provided by the tenant Configuration Server. That is, each
tenant should have a dedicated Configuration Server, and Designer can be shared across the multiple
tenants.

Before you begin:

1. Install Kubernetes. Refer to the Kubernetes documentation site for installation instructions. You can also
refer to the Genesys Docker Deployment Guide for information on Kubernetes and High Availability.

2. Install Helm according to the instructions outlined in the Helm documentation site.

After you complete the above mandatory procedures, return to this document to complete
deployment of Designer and DAS as a service in a K8s cluster.

Important
Designer applications cannot be used to handle default routed calls or voice
interactions. IRD applications should be used for such scenarios until Designer adds
support for handling default routed calls or voice interactions.

Download the Helm charts

Download the Designer related Docker containers and Helm charts from the JFrog repository.

See Helm charts and containers for Designer for the Helm chart and container versions you must
download for your release.

Before you begin

Designer Private Edition Guide 17

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

For more information on JFrog, refer to the Downloading your Genesys Multicloud CX containers topic
in the Setting up Genesys Multicloud CX private edition document.

Third-party prerequisites

The following section lists the third-party prerequisites for Designer.

• Kubernetes 1.19.x - 1.21.x
• Helm 3.0
• Docker

• To store Designer and DAS docker images to the local docker registry.

• Ingress Controller
• If Designer and DAS are accessed from outside of a K8s cluster, it is recommended to deploy/

configure an ingress controller (for example, NGINX), if not already available. Also, the Blue-Green
deployment strategy works based on the ingress rules.

• The Designer UI requires Session Stickiness. Configure session stickiness in the annotations
parameter in the values.yaml file during Designer installation.

For information about setting up your Genesys Multicloud CX private edition platform, including
Kubernetes, Helm, and other prerequisites, see Software requirements.

Third-party services
Name Version Purpose Notes

A container image
registry and Helm chart
repository

Used for downloading
Genesys containers and
Helm charts into the
customer's repository to
support a CI/CD
pipeline. You can use
any Docker OCI
compliant registry.

Load balancer

VPC ingress. For NGINX
Ingress Controller, a
single regional Google
external network LB
with a static IP and
wildcard DNS entry will
pass HTTPS traffic to
NGINX Ingress
Controller which will
terminate SSL traffic
and will be setup as part
of the platform setup.

Elasticsearch 7.x
Used for text searching
and indexing. Deployed
per service that needs
Elasticsearch during

Elasticsearch 7.8.0 is
used for Designer
Analytics and audit trail.

Before you begin

Designer Private Edition Guide 18

https://www.elastic.co/

Name Version Purpose Notes
runtime.

Redis 6.x

Used for caching. Only
distributions of Redis
that support Redis
cluster mode are
supported, however,
some services may not
support cluster mode.

Redis is used for
resource index caching
and multi-user
collaboration locks on
Designer resources.

Storage requirements

The following storage requirements are mandatory prerequisites:

• Persistent Volumes (PVs)
• Create persistent volumes for workspace storage (5 GB minimum) and logs (5 GB minimum)
• Set the access mode for these volumes to ReadWriteMany.
• The Designer manifest package includes a sample YAML file to create Persistent Volumes required

for Designer and DAS.
• Persistent volumes must be shared across multiple K8s nodes. Genesys recommends using NFS to

create Persistent Volumes.

• Shared file System - NFS
• For production, deploy the NFS server as highly available (HA) to avoid single points of failure. It is

also recommended that the NFS storage be deployed as a Disaster Recovery (DR) topology to
achieve continuous availability if one region fails.

• By Default, Designer and DAS containers run as a Genesys user (uid:gid 500:500). For this reason,
the shared volume must have permissions that will allow write access to uid:gid 500:500. The
optimal method is to change the NFS server host path to the Genesys user: chown -R
genesys:genesys.

• The Designer package includes a sample YAML file to create an NFS server. Use this only for a demo/
lab setup purpose.

• Azure Files Storage - If you opt for Cloud storage, then Azure Files Storage is an option to consider
and has the following requirements:
A Zone-Redundant Storage for RWX volumes replicated data in zone redundant (check this), shared
across multiple pods.
• Provisioned capacity : 1 TiB
• Baseline IO/s : 1424
• Burst IO/s : 4000
• Egress Rate : 121.4 MiBytes/s
• Ingress Rate : 81.0 MiBytes/s

Before you begin

Designer Private Edition Guide 19

https://redis.io/

Network requirements

• If Designer and DAS are accessed from outside of a K8s cluster, it is recommended to deploy/configure
an ingress controller (for example, NGINX), if not already available. Also, the Blue-Green deployment
strategy works based on the ingress rules.

• The Designer UI requires Session Stickiness. Configure session stickiness in the annotations parameter
in the values.yaml file during Designer installation.

Browser requirements

Unless otherwise noted, Designer supports the latest versions of the following browsers:

• Mozilla Firefox
• Google Chrome (see Important, below)
• Microsoft Edge
• Apple Safari

Internet Explorer (all versions) is not supported.

Important
For Google Chrome, Designer supports the n-1 version of the browser, i.e. the version
prior to the latest release.

Minimum display resolution
The minimum display resolution supported by Designer is 1920 x 1080.

Third-party cookies
Some features in Designer require the use of third-party cookies. Browsers must allow third-party
cookies to be stored for Designer to work properly.

Genesys dependencies

The following Genesys dependencies are mandatory prerequisites:

• Genesys Web Services (GWS) 9.x
• Configure GWS to work with a compatible version of Configuration Server.

Before you begin

Designer Private Edition Guide 20

• Other Genesys Components
• Authentication Service
• Voice Microservices

For the order in which the Genesys services must be deployed, refer to the Order of services
deployment topic in the Setting up Genesys Multicloud CX private edition document.

GDPR support

Designer supports the European Union's General Data Protection Regulation (GDPR) requirements
and provides customers the ability to export or delete sensitive data using ElasticSearch APIs and
other third-party tools.

For the purposes of GDPR compliance, Genesys is a data processor on behalf of customers who use
Designer. Customers are the data controllers of the personal data that they collect from their end
customers, that is, the data subjects. Designer Analytics can potentially store data collected from end
users in ElasticSearch. This data can be queried by certain fields that are relevant to GDPR. Once
identified, the data can be exported or deleted using ElasticSearch APIs and other third-party tools
that customers find suitable for their needs.

In particular, the following SDR fields may contain PII or sensitive data that customers can choose to
delete or export as required:

• ANI - This SDR field contains the customer's phone number used to make voice calls handled by
Designer applications.

• variables.Contact - This SDR field is an object and can have multiple properties, such as, name, email
address, and other contact details. For example,

{
"ContactId":"AAABBA1000000I9y",
"EmailAddress":"john.doe@home.com",
"FromPersonal":"John Doe ",
"FromAddress":"john.doe@home.com",
"FirstName":"John",
"LastName":"Doe"

}

• Application variables defined in the main application flow are also stored in the SDR under the
variables object. These variables depend on application logic and may capture sensitive information
intentionally or unintentionally. It is recommended to mark such variables secure (see Securing
Variables in Designer Help for more details). But if they are captured in analytics, they can also be used
to identify candidate SDRs for deletion or retrieval. The same applies to userdata key value pairs
attached to interaction data which is captured in the calldata object in the SDR.

Important
It is the customer's responsibility to remove any PII or sensitive data within 21 days or
less, if required by General Data Protection Regulation (GDPR) standards.

Before you begin

Designer Private Edition Guide 21

For general information about Genesys support for GDPR compliance, see
General Data Protection Regulation.

Before you begin

Designer Private Edition Guide 22

Configure Designer

Contents

• 1 Deployment configuration settings (Helm values)
• 2 Designer deployment settings

• 2.1 Designer ConfigMap settings

• 3 DAS deployment settings
• 3.1 DAS ConfigMap settings

• 4 Post deployment Designer configuration settings
• 4.1 Flow settings
• 4.2 Tenant settings
• 4.3 DesignerEnv transaction list
• 4.4 Post deployment configuration settings reference table
• 4.5 Features

• 5 Adding a UI plugin to Designer

Configure Designer

Designer Private Edition Guide 23

Learn how to configure Designer.

Related documentation:
•
•
•

RSS:

• For private edition

Deployment configuration settings (Helm values)

The following sections provide information on the various settings that have to be configured in
Designer and DAS. The configuration settings listed below will be used during the deployment of
Designer and DAS. That is, these settings will be used during initial deployment/upgrade. These
settings can be configured in the values.yaml Helm file.

For more information about how to override Helm chart values, see Overriding
Helm chart values in the Setting up Genesys Multicloud CX Private Edition guide.

Important
Depending on the Kubernetes platform or the container orchestration platform that
you are deploying Designer on, you might have to carry out some additional steps
specific to that platform. For more information, navigate to the required topic in the
Kubernetes platform specific information section on the About page.

Designer deployment settings

The following table provides information on the Designer deployment settings. These settings are
configured in the designer-values.yaml file.

Parameter Description Mandatory? Default Value

designer.deployment.replicaCountNumber of service
instances to be created. Mandatory 2

designer.deployment.maxreplicaCount
The maximum number
of replicas to be
created. It is

Optional 10

Configure Designer

Designer Private Edition Guide 24

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

recommended to
configure this setting if
auto-scaling is used.

designer.deployment.strategy

The deployment
strategy to follow. This
determines which type
of resources are
deployed. Valid values
are: rollingupdate,
blue-green, blue-
green-volume, blue-
green-ingress,
grafana.

• rollingupdate -
default Kubernetes
update strategy
where resources will
be updated using
the rolling upgrade
strategy.

• blue-green - for
deploying and
upgrading the
Designer service
using the blue-green
strategy.

• blue-green-volume
- for the blue/green
upgrade, this is to
create a Persistent
Volume Claim (PVC)
for the very first
time.

• blue-green-ingress
- for the blue/green
upgrade, this is to
create an ingress for
the first time and
update the ingress
during a service
cutover.

• grafana - for
deploying the
Grafana dashboard.

Mandatory rollingupdate

designer.deployment.color

This is to deploy/
upgrade the Designer
service in a blue-green
upgrade strategy. Valid
values are: blue,
green.

Optional

designer.deployment.typeThis is to specify the Optional Deployment

Configure Designer

Designer Private Edition Guide 25

type of deployment.
Valid value:
Deployment.

designer.image.registry
The registry that the
organization uses for
storing images.

Mandatory

designer.image.repository
Docker repository that
contains the images for
Designer.

Mandatory

designer.image.tag Designer image version. Mandatory 9.0.110.07.7

designer.image.PullPolicy

Designer image pull
policy (imagePullPolicy).
Valid values: Always,
IfNotPresent, Never.

• Always - always pull
the image.

• IfNotPresent - pull
the image only if it
does not already
exist on the node.

• Never - never pull
the image.

Mandatory IfNotPresent

designer.image.imagePullSecrets
Secret name containing
credentials for
authenticating access to
the Docker repository.

Mandatory

designer.volumes.workspacePv.create

true if a persistent
volume for the Designer
workspace must be
created. This is used in
case of static volume
provisioning, where, the
PV is created and then
the PVC is bound to the
specified PV. Currently,
support to create PV
only for Azure files
(SMB) and NFS is
present in the helm
chart.

false

designer.volumes.workspacePv.type

Supports two types:
nfs - Creates an NFS PV
provided you have an NFS
server/file share set up
already.
azurefiles-smb - Creates a
PV for pre-existing SMB type
Azure fileshares.

designer.volumes.workspacePv.nameName of the PV to be
created. For example,

Configure Designer

Designer Private Edition Guide 26

designer-workspace-
pv.

designer.volumes.workspacePv.storage
Size of the PV to be
created. For example,
5Gi.

designer.volumes.workspacePv.storageClass

The storage class
associated with the PV.
For static volume
provisioning to occur as
expected, it is highly
recommended to
provide "" (intentional
empty double quotes) or
any distinct storage
class name that does
not exist already.

designer.volumes.workspacePv.mountOptions

Mount options to be
given to the PV.
Note: Mount options differ
according to the underlying
storage type used, that is, NFS
or SMB. Using the same set of
mountOptions with different
storage types leads to volume
mount errors.

designer.volumes.workspacePv.server

The IP address or FQDN
of the NFS server.
Note: This field is only
applicable for nfs type PVs.

designer.volumes.workspacePv.path

The exported path from
the NFS server.
Note: This field is only
applicable for nfs type PVs.

designer.volumes.workspacePv.shareName

The azure fileshare
name for which the PV
must be created.
Note: This field is only
applicable for azurefiles-
smb type PVs.

designer.volumes.workspacePv.createSecret

true if secret with data
to authenticate the
Azure storage account
must be created. Can be
false if the secret is
manually created.
Note: This field is only
applicable for azurefiles-
smb type PVs.

designer.volumes.workspacePv.secretNameThe name to be given to

Configure Designer

Designer Private Edition Guide 27

the secret created with
the
designer.volumes.workspacePv.createSecret
field. For example,
designer-storage-
secret).
Note: This field is only
applicable for azurefiles-
smb type PVs.

designer.volumes.workspacePv.saName

Base64 encoded name
of the storage account.
This goes in the secret
created with
designer.volumes.workspacePv.createSecret.
Note: This field is only
applicable for azurefiles-
smb type PVs.

designer.volumes.workspacePv.saName

Base64 encoded access
key of the storage
account. This goes in
the secret created with
designer.volumes.workspacePv.createSecret

Note: This field is only
applicable for azurefiles-
smb type PVs.

designer.volumes.workspacePvc.create
If a persistent volume is
to be created, this value
has to be true.

Mandatory true

designer.volumes.workspacePvc.type

The type of the volume
provisioning to use:
static - This type is used
when a PV has been created
either by using the helm
values in
designer.volumes.workspacePv
or bmanually and the
workspace PVC must be
bound to it.
dynamic - This type is used
when a configured storage
class will dynamically allocate
a PV to the workspace PVC.

Mandatory dynamic

designer.volumes.workspacePvc.mountPath
The path where the
workspace volume is to
be mounted inside the
Designer container.

Mandatory

/designer/workspace

Note: This is not a
customizable value. The value
MUST be /designer/
workspace for the proper
functioning of Designer.

designer.volumes.workspacePvc.claim
Persistent volume claim
name for the
workspace.

Mandatory designer-managed-
disk

Configure Designer

Designer Private Edition Guide 28

designer.volumes.workspacePvc.claimSize

Size of the persistent
volume claim for the
workspace.
The persistent volume must
be equal to or greater than
this size.

Mandatory

designer.volumes.workspacePvc.storageClass

storageClassName
provided in the
persistent volume that
is created for the
Designer workspace
(example, nfs).

Mandatory

designer.volumes.workspacePvc.pvName

The PV's name to which
the PVC must be bound
(applicable only when
designer.volumes.workspacePvc.type
is static).

designer.volumes.logsPvc.create
If a PVC volume is to be
created, this value has
to be true, else false.

Mandatory true

designer.volumes.logsPvc.type

The type of volume
provisioning to use:
static - This type is used
when a PV has been created
and PVC logs must be bound
to it.
dynamic - This type is used
when a configured storage
class will dynamically allocate
a PV to the PVC logs.
Note: The helm charts only
have support for creating
static PVs for the PVC
workspace. For PVC logs, it is
recommended to make use of
dynamic provisioning and let
the storage class do the PV
allocation.

designer.volumes.logsPvc.mountPath
The path where the
Designer logs volume is
to be mounted inside
the Designer container.

Mandatory

/designer/logs

Note: This is not a
customizable value. The value
MUST be /designer/logs for
the proper functioning of
Designer.

designer.volumes.logsPvc.claimPersistent volume claim
name for logs. Mandatory designer-logs

designer.volumes.logsPvc.claimSize

Size of the persistent
volume claim for the
Designer logs.
The persistent volume must
be equal to or greater than
this size.

Mandatory

designer.volumes.logsPvc.storageClassstorageClassName Mandatory

Configure Designer

Designer Private Edition Guide 29

provided in the
persistent volume that
is created for the
Designer logs
(example, nfs).
Note: In case of static volume
provisioning, this field must
match with the storage class
of the PV. If the PV does not
have a storage class, then it is
mandatory to provide "" for
this field in the helm values.
Otherwise, static volume
provisioning will not occur as
expected.

designer.volumes.logsPvc.pvName

The PV's name to which
the PVC must be bound
(applicable only when
designer.volumes.logsPvc.type
is static).

designer.podVolumes

Log and workspace
persistent volume claim
names and name of the
volumes attached to the
pod.

Mandatory

designer:
podVolumes:

- name: designer-
pv-volume

persistentVolumeClaim:
claimName:

designer-managed-disk
- name: designer-

log-volume

persistentVolumeClaim:
claimName:

designer-logs

designer.volumeMounts
Name and mount path
of the volumes to be
attached to the
Designer pods.

Mandatory

volumeMounts:
- name: designer-

pv-volume
mountPath:

/designer/workspace
- name: designer-

log-volume
mountPath:

/designer/logs

designer.livenessProbe.pathDesigner liveness probe
API path. Mandatory /health

designer.livenessProbe.containerPortPort running the
container. Mandatory 8888

designer.livenessProbe.startupDelay
The liveness probe will
be started after a given
delay as specified here.

Mandatory 20

designer.livenessProbe.checkInterval
The interval between
each liveness probe
request.

Mandatory 5

Configure Designer

Designer Private Edition Guide 30

designer.livenessProbe.failureCount

Number of liveness
probe failures after
which, to mark the
container as unstable or
restart.

Mandatory 5

designer.readinessProbe.pathDesigner readiness
probe API path. Mandatory /health

designer.readinessProbe.containerPortPort running the
container. Mandatory 8888

designer.readinessProbe.startupDelay
The readiness probe will
be started after a given
delay as specified here.

Mandatory 20

designer.readinessProbe.checkInterval
The interval between
each readiness probe
request.

Mandatory 5

designer.readinessProbe.failureCount

Number of readiness
probe failures after
which, to mark the
container as unstable or
restart.

Mandatory 5

designer.designerSecrets.enabled

This enables providing
the GWS Client ID and
Secret as an input to the
Designer pods.
Kubernetes Secrets is
used to store the GWS
client credentials.

Mandatory true

designer.designerSecrets.secrets

GWS Client ID and GWS
Client Secret. Create a
new GWS Client if it
does not exist. A link to
information on creating
a new GWS Client is
provided in the Platform
settings section.

Mandatory

designer.service.enabled
Set to true if the
service must be
created.

Optional true

designer.service.type
Service type. Valid
values are: ClusterIP,
NodePort,
LoadBalancer.

Mandatory NodePort

designer.service.port
The Designer service
port to be exposed in
the cluster.

Mandatory 8888

designer.service.targetPort
The Designer
application port running
inside the container.

Mandatory http

designer.service.nodePort
Port to be exposed in
case service type is
NodePort.

Mandatory for
designer.service.type=NodePort.30180

Configure Designer

Designer Private Edition Guide 31

designer.service.termination_grace_period
The period after which
Kubernetes starts to
delete the pods after
service termination.

Optional 30 seconds.

designer.ingress.enabled

Set to true to enable
ingress.
Ingress should be enabled for
all cases except for a lab/
demo setup.

Mandatory true

designer.ingress.apiVersion

The apiVersion of the
ingress manifest to be
deployed. Currently,
networking.k8s.io/
v1beta1 and
networking.k8s.io/v1
are supported.

Optional networking.k8s.io/v1

designer.ingress.ingressClassName

The ingress class name
for the ingress
deployed. Applicable
only when
designer.ingress.apiVersion
is networking.k8s.io/
v1.

Optional

designer.ingress.annotations

Annotations added for
ingress. The Designer UI
requires Session
Stickiness if the replica
count is more than 1.
Configure Session
Stickiness based on the
ingress controller type.
Configuration specific to
ingress such as Session
Stickiness can be
provided here.

Optional

designer.ingress.paths Ingress path Mandatory [/]

designer.ingress.hosts
Hostnames to be
configured in ingress for
the Designer service.

Mandatory
- .example.com
- .blue.example.com
- .green.example.com

designer.ingress.tls TLS configuration for
ingress. Optional []

designer.resources.limits.cpu
Maximum amount of
CPU that K8s allocates
for the container.

Mandatory 600m

designer.resources.limits.memory
Maximum amount of
memory that K8s
allocates for the
container.

Mandatory 1Gi

designer.resources.requests.cpuGuaranteed CPU
allocation for the Mandatory 500m

Configure Designer

Designer Private Edition Guide 32

container.

designer.resources.requests.memory
Guaranteed memory
allocation for the
container.

Mandatory 512Mi

designer.securityContext.runAsUser

This setting controls
which user ID the
containers are run with.
This can be configured
to run Designer as a
non-root user. You can
either use the Genesys
user or arbitrary UIDs.
Both are supported by
the Designer base
image. 500 is the ID of
the Genesys user.
The file system must reside
within the Genesys user
account in order to run
Designer as a Genesys user.
Change the NFS server host
path to the Genesys user:
chown -R genesys:genesys.

Optional

designer.securityContext.runAsGroup

Controls which primary
group ID the containers
are run with. This can
be configured to run
Designer as a non-root
user. You can either use
the Genesys userGroup
(GID - 500) or arbitrary
GIDs. Both are
supported by the
Designer base image.

Optional

designer.nodeSelector
To allow pods to be
scheduled based on the
labels assigned to the
nodes.

Optional

Default value:
nodeSelector: {}
Sample value:

nodeSelector:
:

designer.affinity

The K8s standard node
affinity and anti-affinity
configurations can be
added here. Refer to the
this topic in the
Kubernetes
documentation site for
sample values.

Optional {}

designer.tolerations

Tolerations work with
taints to ensure that
pods are not scheduled
on to inappropriate
nodes. Refer to the

Optional []

Configure Designer

Designer Private Edition Guide 33

Taints and Tolerations
topic in the Kubernetes
documentation site for
sample values.

designer.podDisruptionBudget.enabled
Set to true if a pod
disruption budget is to
be created.

Optional false

designer.podDisruptionBudget.minAvailable
The number of pods
that should always be
available during a
disruption.

Optional 1

designer.dnsPolicy
The DNS policy that
should be applied to the
Designer pods.

Optional

designer.dnsConfig
The DNS configuration
that should be applied
to the Designer pods.

Optional

designer.priorityClassName
The priority class name
that the pods should
belong to.

Optional

designer.hpa.enabled

Enables K8s Horizontal
Pod Autoscaler (HPA). It
automatically scales the
number of pods based
on average CPU
utilization and average
memory utilization. For
more information on
HPA refer to this topic in
the Kubernetes
documentation site.

Optional false

designer.hpa.targetCPUPercent

The K8s HPA controller
will scale up or scale
down pods based on the
target CPU utilization
percentage specified
here. It scales up or
scales down pods
between the range -
designer.deployment.replicaCount
and
designer.deployment.maxreplicaCount.

Optional 70

designer.hpa.targetMemoryPercent

The K8s HPA controller
will scale up or scale
down pods based on the
target memory
utilization percentage
specified here. It scales
up or scales down pods
between the range -
designer.deployment.replicaCount
and
designer.deployment.maxreplicaCount.

Optional 70

Configure Designer

Designer Private Edition Guide 34

designer.labels
Labels that will be
added to the Designer
pods.

Optional {}

designer.annotations Annotations added to
the Designer pods. Optional {}

designer.prometheus.enabled
Set to true if
Prometheus metrics
must be enabled.

Optional false

designer.prometheus.tagName
Label key assigned to
the pods/service to filter
out.

Optional service

designer.prometheus.tagValue
Label value assigned to
the pods/service to filter
out.

Optional designer

designer.prometheus.instance Optional ❴❴instance❵❵

designer.prometheus.serviceMonitor.enabled

Set to true if a
service monitor
resource is needed
to monitor the pods
through the
Kubernetes service.

Optional false

designer.prometheus.serviceMonitor.pathThe path in which the
metrics are exposed. Optional /metrics

designer.prometheus.serviceMonitor.interval

The scrape interval
specified for the
Prometheus server. That
is, the time interval at
which the Prometheus
server will fetch metrics
from the service.

Optional 10s

designer.prometheus.serviceMonitor.labels
Labels to be specified
for the service monitor
resource.

Optional

designer.prometheus.alerts.enabled
Set to true if
Prometheus alerts
must to be created.

Optional false

designer.prometheus.alerts.customalerts
Any custom alerts that
are created must be
specified here.

Optional

designer.prometheus.alerts.labelsLabels to be specified
for the alerts resource. Optional

designer.prometheus.alerts.
Scenarios for which
alerts need to be
created.

Optional

designer.prometheus.alerts

containerRestartAlert:
interval: 3m
threshold: 5

AlertPriority:
CRITICAL

MemoryUtilization:

Configure Designer

Designer Private Edition Guide 35

interval: 1m
threshold: 70

AlertPriority:
CRITICAL

endpointAvailable:
interval: 1m

AlertPriority:
CRITICAL

CPUUtilization:
interval: 1m
threshold: 70

AlertPriority:
CRITICAL

containerReadyAlert:
interval: 1m
readycount: 1

AlertPriority:
CRITICAL

WorkspaceUtilization:
interval: 3m
threshold: 80

workspaceClaim:
designer-managed-disk

AlertPriority:
CRITICAL

AbsentAlert:
interval: 1m

AlertPriority:
CRITICAL

Health:
interval: 3m

AlertPriority:
CRITICAL

WorkspaceHealth:
interval: 3m

AlertPriority:
CRITICAL

ESHealth:
interval: 3m

AlertPriority:
CRITICAL

GWSHealth:
interval: 3m

AlertPriority:
CRITICAL

Configure Designer

Designer Private Edition Guide 36

designer.grafana.enabled
Set to true if the
Grafana dashboard is to
be created.

Optional true

designer.grafana.labels
Labels that have to be
added to the Grafana
ConfigMap.

Optional

designer.grafana.annotations
Annotations that have
to be added to the
Grafana ConfigMap.

Optional

annotations

Enables Kubernetes
Annotations and adds it
to all the resources that
have been created.
For more information, refer to
the Annotations topic in the
Kubernetes documentation
site.

Optional {}

labels

Any custom labels can
be configured here. It is
a key and value pair, for
example, key:"value".
These labels are added
to all resources.

Optional {}

podLabels
Labels that will be
added to all application
pods.

Optional {}

podAnnotations
Annotations that will be
added to all application
pods.

Optional {}

Designer ConfigMap settings
The following table provides information on the environment variables and service-level settings
stored in the Designer ConfigMap.

Parameter Description Mandatory? Default Value

designer.designerConfig.create

This enables providing
environment variables
as an input to the
Designer pods. It uses a
ConfigMap to store the
environment variables.

Mandatory true

designer.designerConfig.envs.DES_PORT

Designer port for
container ("port" in
flowsettings.json). The
input should be a string,
within double quotes.

Mandatory "8888"

designer.designerConfig.envs.DES_APPSERVER_HOST
DAS hostname
("applicationHost" in
flowsettings.json).

Mandatory das

Configure Designer

Designer Private Edition Guide 37

designer.designerConfig.envs.DES_APPSERVER_PORT

DAS port
("applicationPort" in
flowsettings.json). The
input should be a string,
within double quotes.

Mandatory "80"

designer.designerConfig.envs.DES_DEPLOY_URL

This is normally not
changed. It is the
relative path to the
workspace on DAS. The
default value
"/workspaces" should
be used always
("deployURL" in
flowsettings.json).

Mandatory "/workspaces"

designer.designerConfig.envs.DES_USE_HTCC

Set to "true" so
Designer works with
GWS. If set to "false",
Designer defaults to a
local mode and may be
used temporarily if GWS
is unavailable
("usehtcc" in
flowsettings.json). Input
should be "true" or
"false".

Mandatory "false"

designer.designerConfig.envs.DES_HTCC_SERVER

GWS server host
("htccserver" in
flowsettings.json). For
example,
"gws.genhtcc.com". The
input should be a string,
within double quotes.

Mandatory " "

designer.designerConfig.envs.DES_HTCC_PORT

GWS server port
("htccport" in
flowsettings.json). For
example, "80". The
input should be a string,
within double quotes.

Mandatory " "

designer.designerConfig.envs.DES_ENABLE_ANALYTICS

To enable or disable
Designer Analytics
("enableAnalytics" in
flowsettings.json). Input
should be "true" or
"false".

Optional "false"

designer.designerConfig.envs.DES_ES_URL

Elasticsearch URL
("esUrl" in
flowsettings.json). For
example, "http://es-
service:9200". The input
should be a string,
within double quotes.

Optional " "

designer.designerConfig.envs.DES_ES_SERVER
Elasticsearch Server
Host Name ("esServer"
in flowsettings.json). For

Optional " "

Configure Designer

Designer Private Edition Guide 38

example, "es-
service"). The input
should be a string,
within double quotes.

designer.designerConfig.envs.DES_ES_PORT

Elasticsearch port
("esPort" in
flowsettings.json). For
example, "9200". The
input should be a string,
within double quotes.

Optional " "

designer.designerConfig.envs.DES_FILE_LOGGING_ENABLED

Enable file logging. If
not enabled, Designer
will create only verbose
logs. Input should be
"true" or "false".

Mandatory "false"

designer.designerFlowSettings.create

Set to true to include
the contents of the
flowsettings.yaml file in
a separate ConfigMap.
Input should be true or
false.

Optional false

designer.designerFlowSettings.envs

The flowsettings.yaml
file should contain these
keys, so that the file's
contents will be
included in the
ConfigMap. Refer to the
Updating the
flowsettings file section
in the Deploy Designer
topic for more
information on this.

Optional {}

DAS deployment settings

The following table provides information on the DAS deployment settings. These settings are
configured in the das-values.yaml file. DAS Deployment Settings

Parameter Description Mandatory? Default Value

das.deployment.replicaCountNumber of pods to be
created. Mandatory 2

das.deployment.maxreplicaCount

The maximum number
of replicas to be
created. It is
recommended to
configure this setting if
auto-scaling is used.

Optional 10

das.deployment.strategy
The deployment
strategy to follow. This
determines which type

Mandatory rollingupdate

Configure Designer

Designer Private Edition Guide 39

of resources are
deployed. Valid values
are: rollingupdate,
blue-green, blue-
green-ingress, blue-
green-service,
canary.

• rollingupdate -
default Kubernetes
update strategy
where resources will
be updated using
the rolling upgrade
strategy.

• blue-green - for
deploying and
upgrading the DAS
service using the
blue-green strategy.

• blue-green-ingress
- for the blue-green
upgrade, this is to
create an ingress for
the first time.

• blue-green-service
- for the blue-green
upgrade, this is to
create a service for
the first time, and
update the service
during a service
cutover.

• canary - to deploy
canary pods along
with the blue-green
pods.

das.deployment.color

This is to deploy/
upgrade the DAS
service using the blue-
green upgrade strategy.
Valid values are: blue,
green.

Mandatory for blue-
green and blue-green-
service strategies.

das.deployment.type

Type of Kubernetes
controller. Valid values
is: StatefulSet

• StatefulSet - if the
Designer workspace
is stored in a remote
cloud storage
system, such as

Optional StatefulSet

Configure Designer

Designer Private Edition Guide 40

Azure Files.

das.image.repository
Docker repository that
contains the images for
DAS.

Mandatory

das.image.tag DAS image version. Mandatory

das.image.pullPolicy

DAS image pull policy
(imagePullPolicy). Valid
values are: Always,
IfNotPresent, Never.

• Always - always pull
the image.

• IfNotPresent - pull
the image only if it
does not already
exist on the node.

• Never - never pull
the image.

Optional IfNotPresent

das.image.imagePullSecrets
Secret name containing
the credentials for
authenticating access to
the Docker repository.

Mandatory

das.podVolumes

Provides the name of
the volume and name of
the persistent volume
claim to be attached to
the pods

Mandatory

das:
podVolumes:
- name: workspace

persistentVolumeClaim:
claimName: designer-

managed-disk
- name: logs

persistentVolumeClaim:
claimName: designer-

logs

das.volumes.podPvc.create

This volume is usually
created to mount a local
disk to a DAS container
for syncing data in case
cloud storage is used for
storing Designer files.
This value has to be
true or false
depending on whether
the local disk is needed
or not

Optional false

das.volumes.podPvc.mountPath
The path where the
workspace volume is to
be mounted inside the
DAS container.

Optional

Configure Designer

Designer Private Edition Guide 41

das.volumes.podPvc.claimPersistent volume claim
name for the volume. Optional local-workspace

das.volumes.podPvc.claimSize

Size of the persistent
volume claim for the
pod.
The persistent volume must
be equal to or greater than
this size.

Optional

das.volumes.podPvc.storageClass

storageClassName
provided in the
persistent volume that
is created for DAS
(example, nfs).

Optional

das.volumes.podPvc.accessModes

The read/write
priveleges and mount
priveleges of the
volume claim with
respect to the nodes.
Valid types are:
ReadWriteOnce,
ReadOnlyMany,
ReadWriteMany.

• ReadWriteOnce -
the volume can be
mounted as read-
write by a single
node.

• ReadOnlyMany -
the volume can be
mounted as read-
only by many nodes.

• ReadWriteMany -
the volume can be
mounted as read-
write by many
nodes.

For more information, refer to
the access modes topic in the
Kubernetes documentation
site.

Optional ReadWriteOnce

das.volumeMounts
The name of the volume
and the mount path to
be used by the pods.

Mandatory

volumeMounts:
- mountPath: /das/
www/workspaces
name: workspace
- mountPath: /das/log
name: logs

das.dasSecrets.enabled
Set to true if
Kubernetes secrets
must be created to store

Optional false

Configure Designer

Designer Private Edition Guide 42

keys/credentials/tokens.

das.dasSecrets.secrets
Key value pairs
containing the secret,
such as, username and
password.

Optional

das.livenessProbe.path DAS liveness probe API
path. Mandatory /health

das.livenessProbe.containerPortPort running the
container. Mandatory 8081

das.livenessProbe.startupDelay
The liveness probe will
be started after a given
delay as specified here.

Mandatory 10

das.livenessProbe.checkInterval
The interval between
each liveness probe
request.

Mandatory 5

das.livenessProbe.failureCount

Number of liveness
probe failures after
which, to mark the
container as unstable or
restart.

Mandatory 3

das.readinessProbe.pathDAS readiness probe API
path. Mandatory /health

das.readinessProbe.containerPortPort running the
container. Mandatory 8081

das.readinessProbe.startupDelay
The readiness probe will
be started after a given
delay as specified here.

Mandatory 10

das.readinessProbe.checkInterval
The interval between
each readiness probe
request.

Mandatory 5

das.readinessProbe.failureCount

Number of readiness
probe failures after
which, to mark the
container as unstable or
restart.

Mandatory 3

das.service.enabled
Set to true if the
service must be
created.

Optional true

das.service.type
Service type. Valid
values are: ClusterIP,
NodePort,
LoadBalancer.

Mandatory NodePort

das.service.port
The DAS service port to
be exposed in the
cluster.

Mandatory 80

das.service.targetPort
The DAS application
port running inside the
container.

Mandatory http

das.service.nodePort Port to be exposed in Mandatory if 30280

Configure Designer

Designer Private Edition Guide 43

case service type is
NodePort.

das.service.type is
NodePort.

das.service.termination_grace_period
The period after which
Kubernetes starts to
delete the pods in case
of deletion.

Optional 30 seconds.

das.ingress.enabled

Set to true to enable
ingress.
Ingress should be enabled for
all cases except for a lab/
demo setup.

Optional false

das.ingress.apiVersion

The apiVersion of the
ingress manifest
deployed. Supported
versions are,
networking.k8s.io/
v1beta1 and
networking.k8s.io/v1.

Optional networking.k8s.io/v1

das.ingress.ingressClassName

The ingress class name
for the ingress
deployed. Applicable
only when
das.ingress.apiVersion
is networking.k8s.io/
v1.

Optional

das.ingress.annotationsAnnotations added for
the ingress resources. Optional

das.ingress.paths Ingress path. Optional [/]

das.ingress.hosts
Hostnames to be
configured in ingress for
the DAS service.

Mandatory if ingress is
enabled.

das.ingress.tls TLS configuration for
ingress. Optional []

das.resources.limits.cpu
Maximum amount of
CPU that K8s allocates
for the container.

Mandatory 600m

das.resources.limits.memory
Maximum amount of
memory that K8s
allocates for the
container.

Mandatory 1Gi

das.resources.requests.cpu
Guaranteed CPU
allocation for the
container.

Mandatory 400m

das.resources.requests.memory
Guaranteed memory
allocation for the
container.

Mandatory 512Mi

das.securityContext.runAsUser
This setting controls
which user ID the
containers are run with
and can be configured

Optional

Configure Designer

Designer Private Edition Guide 44

to run DAS as a non-root
user. You can either use
the Genesys user or
arbitrary UIDs. Both are
supported by the DAS
base image. 500 is the
ID of the Genesys user.
For more information refer to
the Security Context topic in
the Kubernetes
documentation site.

das.securityContext.runAsGroup

This setting controls
which primary group ID
the containers are run
with and can be
configured to run DAS
as a non-root user. You
can either use the
Genesys userGroup
(GID - 500) or arbitrary
GIDs. Both are
supported by the DAS
base image.

Optional

das.nodeSelector
To allow pods to be
scheduled based on the
labels assigned to the
nodes.

Optional

Default value:
nodeSelector: {} Sample
value:

nodeSelector:
:

das.affinity

The K8s standard node
affinity and anti-affinity
configurations can be
added here. Refer to the
this topic in the
Kubernetes
documentation site for
sample values.

Optional {}

das.tolerations

Tolerations work with
taints to ensure that
pods are not scheduled
on to inappropriate
nodes. Refer to the
Taints and Tolerations
topic in the Kubernetes
documentation site for
sample values.

Optional []

das.podDisruptionBudget.enabled
Set to true if a pod
disruption budget is to
be created.

Optional false

das.podDisruptionBudget.minAvailable
The number of pods
that should always be
available during a
disruption.

Optional 1

Configure Designer

Designer Private Edition Guide 45

das.dnsPolicy
The DNS policy that
should be applied to the
DAS pods.

Optional

das.dnsConfig
The DNS configuration
that should be applied
to the DAS pods.

Optional

das.priorityClassName
The priority class name
that the pods should
belong to.

Optional

das.hpa.enabled
Set to true if a K8s
Horizontal Pod
Autoscaler (HPA) is to be
created.

Optional false

das.hpa.targetCPUPercent

The K8s HPA controller
will scale up/down pods
based on the target CPU
utilization percentage
specified. It scale up/
down pods between the
range
deployment.replicaCount
to
deployment.maxReplicas

Optional 75

das.hpa.targetMemoryPercent

The K8s HPA controller
will scale up or scale
down pods based on the
target CPU utilization
percentage specified
here. It scales up or
scales down pods
between the range -
deployment.replicaCount
and
deployment.maxReplicas.

Optional 70

das.labels Labels that will be
added to the DAS pods. Optional {}

das.annotations Annotations added to
the DAS pods. Optional {}

das.prometheus.enabled
Set to true if
Prometheus metrics
must be enabled.

Optional false

das.prometheus.tagName
Label key assigned to
the pods/service to filter
out.

Optional service

das.prometheus.tagValue
Label key assigned to
the pods/service to filter
out.

Optional designer

das.prometheus.pod Optional ❴❴pod❵❵
das.prometheus.instance Optional ❴❴instance❵❵

das.prometheus.serviceMonitor.enabledSet to true if a
service monitor Optional false

Configure Designer

Designer Private Edition Guide 46

resource is needed
to monitor the pods
through the
Kubernetes service.

das.prometheus.serviceMonitor.pathThe path in which the
metrics are exposed. Optional /metrics

das.prometheus.serviceMonitor.interval

The scrape interval
specified for the
Prometheus server. That
is, the time interval at
which the Prometheus
server will fetch metrics
from the service.

Optional 10s

das.prometheus.serviceMonitor.labels
Labels to be specified
for the service monitor
resource.

Optional

das.prometheus.alerts.enabled
Set to true if
Prometheus alerts
must to be created.

Optional false

das.prometheus.alerts.labelsLabels to be specified
for the alerts resource. Optional

das.prometheus.alerts.customalerts
Any custom alerts that
are created must be
specified here.

Optional

das.prometheus.alerts.
Scenarios for which
alerts need to be
created.

Optional

das.prometheus.alerts.

containerRestartAlert:
interval: 3m
threshold: 5

AlertPriority:
CRITICAL

MemoryUtilization:
interval: 1m
threshold: 75

AlertPriority:
CRITICAL

endpointAvailable:
interval: 1m

AlertPriority:
CRITICAL

CPUUtilization:
interval: 1m
threshold: 75

AlertPriority:
CRITICAL

containerReadyAlert:
interval: 5m
readycount: 1

Configure Designer

Designer Private Edition Guide 47

AlertPriority:
CRITICAL

rsyncContainerReadyAlert:
interval: 5m
readycount: 1

AlertPriority:
CRITICAL

WorkspaceUtilization:
interval: 3m
threshold: 70

workspaceClaim:
designer-managed-disk

AlertPriority:
CRITICAL

AbsentAlert:
interval: 1m

AlertPriority:
CRITICAL

LocalWorkspaceUtilization:
interval: 3m
threshold: 70

AlertPriority:
CRITICAL

Health:
interval: 3m

AlertPriority:
CRITICAL

WorkspaceHealth:
interval: 3m

AlertPriority:
CRITICAL

PHPHealth:
interval: 3m

AlertPriority:
CRITICAL

ProxyHealth:
interval: 3m

AlertPriority:
CRITICAL

PhpLatency:
interval: 1m
threshold: 10

AlertPriority:
CRITICAL

HTTPLatency:
interval: 1m

Configure Designer

Designer Private Edition Guide 48

threshold: 60

AlertPriority:
CRITICAL

HTTP4XXCount:
interval: 5m
threshold:

100

AlertPriority:
CRITICAL

HTTP5XXCount:
interval: 5m
threshold:

100

AlertPriority:
CRITICAL

das.grafana.enabled
Set to true if the
Grafana dashboard is to
be created.

Optional true

das.grafana.labels
Labels that must be
added to the Grafana
ConfigMap.

Optional

das.grafana.annotations
Annotations that must
be added to the Grafana
ConfigMap.

Optional

annotations

Enables Kubernetes
Annotations and adds it
to all the resources that
have been created.
For more information, refer to
the Annotations topic in the
Kubernetes documentation
site.

Optional {}

labels

Any custom labels can
be configured here. It is
a key and value pair, for
example, key:"value".
These labels are added
to all resources.

Optional {}

podLabels
Labels that will be
added to all application
pods.

Optional {}

podAnnotations
Annotations that will be
added to all application
pods.

Optional {}

DAS ConfigMap settings
Parameter Description Mandatory? Default Value

Configure Designer

Designer Private Edition Guide 49

das.dasConfig.create

This setting enables
providing environment
variables as an input to
the DAS pods. It uses a
ConfigMap to store the
environment variables.

Mandatory true

das.dasConfig.envs.DAS_FILE_LOGGING_ENABLED

Enables file logging.
DAS supports only std
out logging. This should
always be set to false.
Input should be "true"
or "false".

Mandatory "false

das.dasConfig.envs.DAS_LOG_LEVEL

Enables log levels. Valid
values are: "FATAL",
"ERROR", "WARN",
"INFO", "DEBUG",
"TRACE".

Optional "DEBUG"

das.dasConfig.envs.DAS_STDOUT_LOGGING_ENABLE
Enables standard output
console logging. Input
should be "true" or
"false".

Mandatory "true"

das.dasConfig.envs.DAS_SERVICES_ELASTICSEARCH_ENABLED

To enable Designer
Analytics. This
configuration is required
for DAS to initialize ES
templates. Input should
be "true" or "false".

Optional "false"

das.dasConfig.envs.DAS_SERVICES_ELASTICSEARCH_HOST

Elasticsearch server
host name with an
http:// prefix. For
example, http://es-
service. The input
should be a string within
double quotes.

Optional " "

das.dasConfig.envs.DAS_SERVICES_ELASTICSEARCH_PORT
Elasticsearch port. For
example, "80". The
input should be a string,
within double quotes.

Optional " "

das.dasConfig.envs.DAS_ELASTIC_URL

Elasticsearch URL for
basic authentication. It
should contain the URL
with an http or https
prefix accompanied with
the port number (for
example, http://es-
service:80). The input
should be a string within
double quotes. This
setting is mandatory
when
DAS_SERVICES_ELASTICSEARCH_ENABLED
is set to true.

Optional " "

das.dasConfig.envs.DAS_ELASTIC_URL_Elasticsearch secondary Optional " "

Configure Designer

Designer Private Edition Guide 50

region URL for basic
authentication. It should
contain the URL with an
http or https prefix
accompanied with the
port number (for
example, http://es-
service:80). The input
should be a string within
double quotes. is an
integer starting from 1.
This setting is
mandatory when
secondary regions are
configured. For
example,
das.dasConfig.envs.DAS_ELASTIC_URL_1.

Post deployment Designer configuration settings

Post deployment, Designer configuration is managed from the following 3 locations:

Flow settings
Flow Settings is used for controlling global Designer settings that are applicable to all tenants and it
contains bootstrap configuration settings such as port, GWS info, and DAS URL.

Configuration path - /workspace/designer/flowsettings.json.

This will be configured using the helm install. Refer to the Update the flowsettings.json file section for
information on updating the flowsettings.json file.

Tenant settings
These are tenant specific settings if the Designer service is configured with multi-tenancy .

Configuration path - workspace//config/tenantsettings.json.

The user should logout and log back in after any changes to the tenantsettings.json file. The
Designer UI will continue to show the older features until the user logs out and logs back in.

Tenant specific settings are configured by directly editing the file in the above path.

DesignerEnv transaction list
The DesignerEnv transaction list is available in Configuration Server (Tenant/Transactions/
DesignerEnv). This is mostly used to control the run-time settings. Any change to the DesignerEnv
transaction list does not require the application to be published again or a new build for the
application.

Configure Designer

Designer Private Edition Guide 51

The user should log out and log back in for the changes to reflect in the Designer UI.

The DesignerEnv transaction list is configured using Agent Setup.

Post deployment configuration settings reference table
Category: Analytics
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

enableAnalytics
(optional) Yes Yes No

This flag
enables or
disables the
analytics
feature.

Sample value:
true
Default value:
false

esUrl
(optional) Yes Yes No Elasticsearch

URL
Sample value:
http://es-
spot.usw1.genhtcc.com:80

esServer
(optional) Yes Yes No

Elasticsearch
server host
name (for
example, es-
service).

Sample value:
es-
spot.usw1.genhtcc.com

esPort
(optional) Yes Yes No Elasticsearch

port.
Sample value:
80

ReportingURL
(optional) No No

Yes
Section: reporting

URL of
Elasticsearch
where
Designer
applications
will report
data.

Sample value:
http://es-
spot.usw1.genhtcc.com:80

esMaxQueryDuration
(optional) Yes Yes No

The maximum
time range (in
days) to query
in Designer
Analytics. Each
day's data is
stored in a
separate index
in
Elasticsearch.

Sample value: 90
Default value: 90

sdrMaxObjCount
(optional) Yes Yes No

The maximum
count of nested
type objects
that will be
captured in
SDRs. When
set to -1, which
is the default
value, no
objects will be
trimmed. All

Sample value: 20

Configure Designer

Designer Private Edition Guide 52

the milestones
or activities
visited in
runtime are
expected to be
captured in an
SDR.

SdrTraceLevel
(optional) Yes Yes No

Value are:

• 100 —
Debug level
and up.
Currently,
there are
no Debug
messages.

• 200 —
Standard
level and
up. This
setting will
show all
blocks that
are entered
during a
call in the
blocks
array.

• 300 —
Important
level and
up. This
setting
filters out
all blocks
from the
blocks
array,
except
those
containing
data that
will change
from call to
call (such
as the
Menu block
and User
Input
block).

Sample value: 300
Default value: 300

Category: Audit
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

Configure Designer

Designer Private Edition Guide 53

enableESAuditLogs
(optional) Yes Yes No

Enable or
disable audit
logs captured
in
Elasticsearch.

Sample value:
false
Default value:
false

enableFSAuditLogs
(optional) Yes Yes No

Enable or
Disable audit
logs captured
in the file
system under
the logs
directory or in
standard
output.

Sample value:
true
Default value: true

maxAppSizeCompare
(optional) Yes Yes No

The maximum
size of data
object for
which a
difference will
be captured in
the audit logs,
value in bytes.
That is, the
difference
between the
Designer
object's old
value and new
value.

Sample value:
1000000
Default value:
1000000

enableReadAuditLogs
(optional) Yes Yes No

Control
whether
reading of
Designer
objects is
captured in
audit trails. If
enabled any
Designer
object viewed
in the UI will be
recorded in the
audit logs.

Sample value:
false
Default value:
false

Category: Authorization
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

disableRBAC
(optional) Yes Yes No

Controls if
Designer reads
and enforces
permissions
associated with
the logged in
user's roles.

Sample value:
false
Default value:
false

rbacSection
(optional) Yes Yes No

In a Role
object, the
name of the

Sample value:
CfgGenesysAdministratorServer

Configure Designer

Designer Private Edition Guide 54

section within
the Annex
where the
privileges are
stored.

Default value:
CfgGenesysAdministratorServer

disablePBAC
(optional) Yes Yes No

Controls if
Designer
allows
partitioning of
the Designer
workspace and
restricts a
user's access
to Designer
objects in the
user's
partitions.

Sample value:
false
Default value:
false

Category: Collaboration
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

locking
(optional) Yes No No

The type of
locking used, in
an editing
session for
applications,
modules, or
data tables.
Valid values
are: file,
redis, none.

• none -
resources
are not
locked and
can be
edited
simultaneously
by multiple
users which
can result
in one user
overwriting
another
user's
changes.

• file - uses
files to
keep track
of locks and
relies on
shared
storage (for
example,
NFS) to

Sample value:
file
Default value: file

Configure Designer

Designer Private Edition Guide 55

make lock
files
available to
each
Designer
pod. Lock
files are
stored in
the same
location as
the user's
Designer
workspace.

• redis - uses
Redis for
storing
resource
locks and is
recommended
for
production
environments.

Category: DAS
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

applicationHost
(mandatory) Yes No No

The server
name Designer
uses to
generate the
URL to the
application.
ORS and MCP
fetch the
application
code and other
resources from
this URL.

Sample value:
das.usw1.genhtcc.com
Default value:
localhost

applicationPortYes No No

The
corresponding
port to be used
with
applicationHost.

Sample value: 80
Default value: 80

deployURL Yes No No

This is
normally not
changed. It is
the relative
path to the
workspace on
DAS.

Sample value:
/workspace
Default value:
/workspace

Category: Digital
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

Configure Designer

Designer Private Edition Guide 56

rootsSRL
(optional) Yes Yes No

If specified,
this is used to
filter which
Root
Categories to
display when
selecting
Standard
Responses.

Sample value: Any
REGular
EXpression
(REGEX).

maxFlowEntryCount
(optional) Yes No

Yes
Section:
flowsettings

Specify how
many times
the same
application can
process a
specific digital
interaction.

Sample value: 20
Default value: 20

Category: External APIs
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

httpProxy
(optional) Yes Yes

Yes
Secion:
flowsettings

Specify the
proxy used for
external
requests and
nexus API calls
(if
enable_proxy
is true).

Sample value:
[http://vpcproxy-000-int.geo.genprim.com:8080

redundantHttpProxy
(optional) Yes Yes

Yes
Section:
flowsettings

Specify the
backup proxy
used for
external
requests and
nexus API calls
(if
enable_proxy
is true), when
httpProxy is
down.

Sample value:
[http://vpcproxy-001-int.geo.genprim.com:8080

Category: Features
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

features Yes Yes No

This is an
object. See the
5.5 Features
section for a
list of
supported
features.

Default value:

{
nexus:

true,

enableBulkAudioImport:
true
}

Category: GWS
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

Configure Designer

Designer Private Edition Guide 57

usehtcc Yes No No

Set to true so
that Designer
works with
GWS. If set to
false,
Designer
defaults to a
local mode and
may be used
temporarily if
GWS is
unavailable.

Sample value:
true
Default value:
false

htccServer Yes No No GWS Server
Sample value: gws-
usw1-int.genhtcc.com
Default value: gws-
usw1-int.genhtcc.com

htccport Yes No No GWS port. Sample value: 80
Default value: 80

ssoLoginUrl Yes No No

URL of GWS
authentication
UI. Designer
redirects to
this URL for
authentication.

Sample value:
https://gws-
usw1.genhtcc.com
Default value:
https://gws-
usw1.genhtcc.com

maxConcurrentHTCCRequest
(optional) Yes No No

For batch
operations to
GWS, the max
number of
concurrent
requests that
Designer will
send to GWS.

Sample value: 5
Default value: 5

batchOperationResultTTL
(optional) Yes No No

For batch
operations to
GWS, the time,
in milliseconds,
for which
duration
Designer stores
the results of a
batch
operation on
the server,
before deleting
them.

Sample value:
100000
Default value:
100000

Category: Help
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

docsMicroserviceURL
(optional) Yes No No

URL for
Designer
documentation.

Default value:
https://docs.genesys.com/
Documentation/

Configure Designer

Designer Private Edition Guide 58

PSAAS/Public/
Administrator/
Designer

Category: IVR
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

recordingType
(optional) Yes Yes No

Specify the
recording type
to be used in
Record block.
Set as GIR. If
the option is
missing or
blank, Full
Call
Recording
type will be
used.

Sample value: GIR
Default value: GIR

Category: Logging
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

logging: {
designer: {
level:
debug },
audit: {
level:
trace},
auditdebug:
{ level:
debug },
cli: {
level: debug
}
}

(optional)

Yes No No

Specify
Designer log
levels. Each
field has valid
values: trace,
debug, info,
warn, error,
or fatal.

• designer -
log level of
Designer.

• audit - log
level of
audit.

• auditdebug
- log level
of audit
debug, this
will log
detailed
audit
information.

• cli - log
level for cli
commands
executed
on
Designer.

Sample value:

logging: {
designer: {
level:
debug},
audit: {
level: trace
},
auditdebug:
{ level:
debug},
cli: {
level: debug
}
}

Default value:
logging: {
designer: {
level: debug
},
audit: {
level: trace
},
auditdebug:
{ level:
debug },
cli: {
level: debug
}
}

Category: Nexus

Configure Designer

Designer Private Edition Guide 59

Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

url
(optional) No No

Yes
Section: nexus

URL of Nexus
that typically
includes the
API version
path. For
example,
https://nexus-
server/nexus/
api/v3.

Default value:
http://nex-
dev.usw1.genhtcc.com

password
(optional) No No

Yes
Section: nexus

The Nexus x-
api-key created
by Nexus
deployment.

Default value:
dc4qeiro13nsof569dfn234smf

enable_proxy
(optional) No No

Yes
Section: nexus

Boolean value
to indicate if
httpProxy is
used to reach
Nexus.
Default value:
false

profile
(optional) No No

Yes
Section: nexus

Enable Contact
Identification
via Nexus (for
example, to
enable Last
Called Agent
routing).

Category: Process
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

port Yes No No

Designer
process port in
the container.
Normally, the
default value
should be left
as is.

Sample value:
8888
Defualt value: 3000

Category: Provisioning
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

primarySwitch
(optional) Yes Yes No

Specify the
primary switch
name if more
than one
switch is
defined for the
tenant.
Designer
fetches and
works with
route points
from this

Default value: us-
west-1

Configure Designer

Designer Private Edition Guide 60

switch.
Category: Routing
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

ewtRefreshTimeout
(optional) NO No

Yes
Section:
flowsettings

Specify the
interval (in
seconds) at
which to
refresh the
Estimated
Waiting Time
when routing
an interaction.

Sample value: 5
Default value: 1

Category: Redis
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

redis: {
host: "",
port: "",
tlsEnabled:
true,
lockTimeout:
120,
listTimeout:
1800
}

(optional)

Yes No No

Used by
Designer for
resource index
caching and
multi-user
collaboration
locks on
Designer
resources.
It is a separate
object that
contains:

• host - Redis
host name.

• port - Redis
port.

• tlsEnabled
- TLS
enabled or
not.

• lockTimeout
- Timeout,
in seconds,
before a
resource
lock is
released for
an editing
session of
applications,
modules, or
data tables.

• listTimeout
- The cache
expiry
timeout (in

Sample value:

redis: {
host: "",
port: "",
tlsEnabled:
true,
lockTimeout:
120,
listTimeout:
1800
}

Default value:
redis: {
host:
redis.server.genhtcc.com,
port: 6379,
tlsEnabled:
true,
lockTimeout:
120,
listTimeout:
1800
}

Configure Designer

Designer Private Edition Guide 61

seconds) of
the
application
list and
shared
modules
list. By
default, it is
30 minutes.
That is, any
new
application/
modules
created in
the UI will
be seen in
the listing
page after
30 mins. It
can be
reduced to
a smaller
value. This
is to
improve
the page
loading
performance
of the
Applications
and Shared
Modules
page. A
better
performance
is achieved
with a
higher
value.

Category: Security
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

zipFileSizeLimitInMegaBytes
(optional) Yes Yes No

Defines the
maximum
zipFile size
limit (in
megabytes)
during bulk
audio import.

Sample value: 50

disableCSRF
(optional) Yes Yes No

Disable CSRF
attack
protection. For
more
information,
refer to this

Sample value:
false
Default value:
false

Configure Designer

Designer Private Edition Guide 62

topic in the
CWE site.
By default, CSRF
attack protection is
enabled. It can be
disabled by setting
this flag to true.

disableSecureCookie
(optional) Yes No No

Disables the
secure cookies
header.

Sample value:
false
Default value:
false

Category: Session
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

idleTimeout
(optional) Yes Yes No

Idle timeout, in
seconds,
before a user
session is
terminated
while editing
applications,
modules, or
data tables.

Sample value: 840
Default value: 840

lockTimeout
(optional) Yes Yes No

Timeout, in
seconds,
before a
resource lock is
released, for
an editing
session of
applications,
modules, or
data tables.

Sample value: 120
Default value: 120

lockKeepalive
(optional) Yes Yes No

Interval, in
seconds,
before the
client sends a
ping to the
server, to
refresh the lock
for an editing
session of
applications,
modules, or
data tables.

Sample value: 15
Default value: 15

Category: Workflow
Setting Name flowsettings.json tenantsettings.jsonDesignerEnv Description Value

maxBuilds
(optional) Yes Yes No

Specify the
maximum
number of
builds allowed
per application.

Sample value: 20
Default value: 20

Configure Designer

Designer Private Edition Guide 63

enablePTE
(optional) No No

Yes
Section:
flowsettings

Boolean value
to indicate if
PTE objects are
enabled at
runtime.

Sample value:
true
Default value:
false

Features
The features specified in this section are configured under the features object in the
flowsettings.json file or the tenantsettings.json file.

For example,

"features": {
"nexus": true,

..
}

Important
These features are configured only in the flowsettings.json file and the
tenantsettings.json file, and not in the DesignerEnv transaction list.

Category
Feature
Setting
Name

Mandatory flowsettings.jsontenantsettings.jsonDescription Default
Value

Audio

enableBulkAudioImportOptional Yes Yes

Enable/
disable the
bulk audio
import
feature.

false

grammarValidationOptional Yes yes

If this
feature is
enabled,
Designer will
validate
invalid
grammar
files during
grammar
upload and
you can
upload only
valid
grammar
files (GRXML
or Nuance
compiled
binary
grammar
files).

false

Configure Designer

Designer Private Edition Guide 64

externalAudioSupportOptional Yes Yes

If this
feature is
enabled, a
new audio
type,
External
Audio, is
available in
the Play
Message
block. It
accepts a
single
variable that
contains a
URL to the
audio
resource.
MCP will
fetch this
resource
directly and
play it. The
only
supported
value of
Play As is
Audio URI.
There is no
automatic
language
switching for
this audio
type.

false

Nexus nexus Optional Yes Yes
Enable/
disable the
Nexus
feature.

false

Survey survey Optional Yes Yes
Enable/
disable the
survey
feature.

true

UI Plugins

plugins Optional Yes Yes

Plugin
configuration
details.
(Steps are
given below the
table.)

{}

plugins Optional Yes Yes
Enable or
disable the
plugin
feature.

false

Milestone enableImplicitModuleMilestonesOptional Yes Yes Enable
reporting false

Configure Designer

Designer Private Edition Guide 65

each Shared
Module call
as an
internal
milestone. If
disabled,
Shared
Module calls
will not
generate a
milestone.

Bots enableDialogFlowCXBotOptional Yes Yes

When
enabled,
Dialogflow
CX bot type
is added to
the bot
registry and
available for
selection in
the Bot
provider
drop-down
when you
configure a
new bot.

false

Multisite
Routing multisiteRoutingOptional Yes Yes

Enables the
Override
DN option in
the
Advanced
> Targeting
section of
the Route
Call block to
Force Route
the
interaction
to a
specified
DN.

false

Adding a UI plugin to Designer

1. Add the plugins array object in the flowsettings.json file (/ofs/designer/flowsettings.json).
The plugins object contains all the input properties for the plugin app. This is a required property.
Whenever there is a change in this object, refresh the browser for the changes to take effect.
Example:
"plugins": [

{
"url": "http://genesysexample.com/",
"displayName": "Nexus PII Management",

Configure Designer

Designer Private Edition Guide 66

"placement": "messageCollections",
"id": "nexuspii",
"mappings": {

"prod": {
"G1-AUS4": "https://genesysexample.com/admin/ux"

},
"staging": {

"G1-USW1": "http://genesysexample.com/"
},

}
},
{

...
}]

2. Add the csplist array object in the flowsettings.json file (/ofs/designer/flowsettings.json).
The cspList object contains the URL forms to be allowed by Designer's security policy. This is a
required property. Whenever there is a change in this object, re-start the node container for the
changes to take effect.
Example:
If the URL is http://genesysexample.com/, the cspList would be:
"cspList": ["*.genexample1.com:*", "*.genexample2.com:*", "*.genexample3.com:*"]

3. Turn on the plugins and nexus feature flags in the Designer tenantSettings.json file (/ofs//config/
tenantSettings.json).
This is a required property. Whenever there is a change in this object, log out of Designer and log in
again for the changes to take effect.

Important
If you want to enable the plugins feature for all tenants, add this feature flag in the flowsettings.json file.
The feature is enabled for all the tenants under that bucket.

Example:
{

"features": {
"plugins": true,
"nexus": true

}}

4. Add the url_ property under the plugins section, in Agent Setup. If there is no plugins section, create
one. This section is for the tenant URL override. If the DesignerEnv setting (Transactions/Internal/
DesignerEnv) is not provided, the plugin URL from the flowsettings.json file is considered.
This is an optional property. Whenever there is a change in this object, log out of Designer and log in
again for the changes to take effect.
Example:
{"url_" : "https://plugin-genesysexample.com"}

Configure Designer

Designer Private Edition Guide 67

Platform / Configuration Server and GWS
settings for Designer

Contents

• 1 Create roles for Designer
• 2 Update the DesignerEnv transaction list
• 3 Platform settings
• 4 GWS configuration

Platform / Configuration Server and GWS settings for Designer

Designer Private Edition Guide 68

• Administrator

Learn about the Configuration Server objects and settings required for Designer.

Related documentation:
•
•
•

RSS:

• For private edition

Create roles for Designer

Designer uses roles and access groups to determine permissions associated with the logged-in user.
To enable this, you must make these changes in GAX or CME.

Designer supports a number of bundled roles suitable for various levels of users.

• Designer Developer - Most users fall into this category. These users can create Designer applications,
upload audio, and create business controls. They have full access to Designer Analytics.

• Designer Business User - These users cannot create objects but they can manage them (for example,
upload audio, change data tables, and view analytics).

• Designer Analytics - These users only have access to Designer Analytics.

• Designer Admin - These users can set up and manage partitions associated with users and Designer
objects.

• Designer Operations - Users with this role have full access to all aspects of the Designer workspace.
This includes the Operations menu (normally hidden), where they can perform advanced operational
and maintenance tasks.

To create these roles, import the .conf files included in the Designer Deployment package. They
are located in the packages/roles/ folder.

In addition, ensure the following for user accounts that need access to Designer:

• The user must have read permissions on its own Person object.
• Users must be associated with one or more roles via access groups.
• The on-Premises user must have at least read access on the user, access group(s), and roles(s).
• The access groups must have read/write permissions to the Agent Setup folders - Scripts and

Transactions.

Platform / Configuration Server and GWS settings for Designer

Designer Private Edition Guide 69

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Update the DesignerEnv transaction list

Designer requires a transaction list for configuration purposes as described in other sections of this
document. The DesignerEnv transaction list is automatically created in on logging onto Designer.

1. Edit any values according to the descriptions provided in the Post deployment configuration settings
reference table.

2. Save the list.
3. Ensure Designer users have at least read access to the DesignerEnv transaction list.

Platform settings

The platform settings listed below must be configured if the Designer application is used for voice
calls.

Component Config Key Value Description
SIP Switch -> Voip
Services -> msml
service

userdata-map-format sip-headers-encoded
Option needs to set to
pass JSON data as user
data in SIPS.

SIP Switch -> Voip
Services -> msml
service

userdata-map-filter *
To allow userdata
passing to MSML
service.

SIPServer --> TServer

divert-on-ringing false RONA is handled by the
platform.

agent-no-answer-
timeout 12

agent-no-answer-action notready
agent-no-
answeroverflow "" No value, empty.

after-routing-timeout 24
sip-treatments-
continuous true

msml-record-support true
To allow routed calls
recording via the Media
Server.

Switch object annex -->
gts ring-divert 1

ORS --> orchestration new-session-on-reroute false
Required for SIPS
Default Routing (Default
Routing handling
(Voice)).

MCP [vxmli] transfer.allowed TRUE
Required for Transfer
block (allows VXML
Transfer in MCP).

Platform / Configuration Server and GWS settings for Designer

Designer Private Edition Guide 70

MCP [cpa] outbound.method NATIVE
Required for Transfer
block (allow CPA
detection for Transfer).

UCS [cview] enabled TRUE Enables Customer
Context Services.

GWS configuration

Ensure that the following steps are performed in GWS:

• Add Contact Center—Create a contact center in GWS, if it is not already created.
• Create API Client—Create new GWS client credentials, if they are not already created.

For more information, see Provision Genesys Web Services and Applications in the GWS
documentation.

Platform / Configuration Server and GWS settings for Designer

Designer Private Edition Guide 71

Deploy Designer

Contents

• 1 Assumptions
• 2 Preparation

• 2.1 Set up Ingress
• 2.2 Set up Application Gateway (WAF) for Designer
• 2.3 Storage
• 2.4 Set up Secrets

• 3 Deployment strategies
• 4 Rolling Update deployment

• 4.1 Designer
• 4.2 DAS

• 5 Blue-Green deployment
• 5.1 Designer
• 5.2 DAS

• 6 Canary
• 6.1 Deployment
• 6.2 Cleaning up

• 7 Validations and checks
• 8 Post deployment procedures

• 8.1 Updating the flowsettings file

Deploy Designer

Designer Private Edition Guide 72

Learn how to deploy Designer into a private edition environment.

Related documentation:
•
•
•

RSS:

• For private edition

Assumptions

• The instructions on this page assume you are deploying the service in a service-specific namespace,
named in accordance with the requirements on Creating namespaces. If you are using a single
namespace for all private edition services, replace the namespace element in the commands on this
page with the name of your single namespace or project.

• Similarly, the configuration and environment setup instructions assume you need to create namespace-
specific (in other words, service-specific) secrets. If you are using a single namespace for all private
edition services, you might not need to create separate secrets for each service, depending on your
credentials management requirements. However, if you do create service-specific secrets in a single
namespace, be sure to avoid naming conflicts.

Preparation

Important
Review the Before you begin topic for the full list of prerequisites required to deploy
Designer.

Before you deploy Designer and DAS using Helm charts, complete the following preparatory steps:

1. Ensure the Helm client is installed.
2. Set up an Ingress Controller, if not already done.
3. Setup an NFS server, if not already done.
4. Create Persistent Volumes - a sample YAML file is provided in the Designer manifest package.
5. Download the Designer and DAS docker images and push to the local docker registry.

Deploy Designer

Designer Private Edition Guide 73

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

6. Download the Designer package and extract to the current working directory.
7. Configure Designer and DAS value overrides (designer-values.yaml and das-values.yaml); ensure

the mandatory settings are configured. If the Blue-Green deployment process is used, Ingress settings
are explained in the Blue-Green deployment section.

Important
Depending on the Kubernetes platform or the container orchestration platform that
you are deploying Designer on, you might have to carry out some additional steps
specific to that platform. For more information, navigate to the required topic in the
Kubernetes platform specific information section on the About page.

Set up Ingress
Given below are the requirements to set up an Ingress for the Designer UI:

• Cookie name - designer.session.
• Header requirements - client IP & redirect, passthrough.
• Session stickiness - enabled.
• Allowlisting - optional.
• TLS for ingress - optional (should be able to enable or disable TLS on the connection).

Set up Application Gateway (WAF) for Designer
Designer Ingress must be exposed to the internet using Application Gateway enabled with WAF.

When WAF is enabled, consider the following exception in the WAF rules for Designer:

• Designer sends a JSON payload with data, for example, {profile . {} }. Sometimes, this is detected
as OSFileAccessAttempt, which is a false positive detection. Disable this rule if you encounter a
similar issue in your WAF setup.

Storage
Designer storage

Designer requires storage to store designer application workspaces. Designer
storage is a shared file storage that will be used by the Designer and DAS
services.

Important
This storage is critical. Ensure you take backups and snapshots at a regular interval,

Deploy Designer

Designer Private Edition Guide 74

probably, each day.

A Zone-Redundant Storage system is required to replicate data from the RWX
volumes and must be shared across multiple pods:

• Capacity - 1 TiB
• Tier - Premium
• Baseline IO/s - 1424
• Burst IO/s - 4000
• Egress Rate - 121.4 MiBytes/s
• Ingress Rate - 81.0 MiBytes/s

DAS storage

If the Designer workspace is stored in a cloud storage system such as Azure Files, then the data must
be synced to the DAS pods using the Designer-Sync service. In this case, DAS must use the
StatefulSet deployment type. In the DAS StatefulSet pods, each pod must be attached to a
premium SSD disk to store the workspace.

• Size - > 500GiB
• Max IOPS (Max IOPS w/ bursting) - 2,300 (3,500)
• Max throughput (Max throughput w/ bursting) - 150 MB/second (170 MB/second)

Permission considerations for Designer and DAS storage

NFS

For NFS RWX storages, the mount path should be owned by genesys:genesys, that is, 500:500 with
0777 permissions. It can be achieved by one of the below methods:

• From the NFS server, execute the chmod -R 777 and chown -R 500:500 commands to set the
required permissions.

• Create a dummy Linux based pod that mounts the NFS storage. From the pod, execute the chmod -R
777 and chown -R 500:500 commands. This sets the required permissions. However, this method
might require the Linux based pods to be run as privileged.

SMB / CIFS

For SMB / CIFS based RWX storages, for instance, Azure file share, the below mountOptions must be
used in the StorageClass or the PersistentVolume template:

mountOptions
- dir_mode=0777
- file_mode=0777

Deploy Designer

Designer Private Edition Guide 75

- uid=500
- gid=500
- mfsymlinks
- cache=strict

Set up Secrets
Secrets are required by the Designer service to connect to GWS and Redis (if you are using them).

GWS Secrets:

• GWS provides a Client ID and secrets to all clients that can be connected. You can create Secrets for the
Designer client as specified in the Set up secrets for Designer section below.

Redis password:

• If Designer is connected to Redis, you must provide the Redis password to Designer to authenticate the
connection.

Set up Secrets for Designer

Use the designer.designerSecrets parameter in the values.yaml file and configure Secrets as
follows:

designerSecrets:
enabled: true
secrets:

DES_GWS_CLIENT_ID: xxxx
DES_GWS_CLIENT_SECRET: xxxx
DES_REDIS_PASSWORD: xxxxx
DES_ELASTIC_USERNAME: "xxxx"
DES_ELASTIC_PASSWORD: "xxxxx"

Set up Secrets for DAS

Use the das.dasSecrets parameter in the values.yaml file and configure
Secrets as follows:
dasSecrets:

enabled: true
secrets:

DAS_ELASTIC_USERNAME : "xxxxx"
DAS_ELASTIC_PASSWORD : "xxxxx"
DAS_ELASTIC_USERNAME_1 : "xxxxx"
DAS_ELASTIC_PASSWORD_1 : "xxxxx"
DAS_ELASTIC_USERNAME_2 : "xxxxx"
DAS_ELASTIC_PASSWORD_2 : "xxxxx"

Deployment strategies

Designer supports the following deployment and upgrade strategies:

Deploy Designer

Designer Private Edition Guide 76

• Rolling Update (default).
• Blue-Green (recommended).

DAS (Designer Application Server) supports the following deployment and upgrade strategies:

• Rolling Update (default).
• Blue-Green (recommended).
• Canary (must be used along with Blue-Green and is recommended in production).

For full descriptions of the deployment and upgrade strategies, see Upgrade strategies in the Setting
up Genesys Multicloud CX Private Edition guide.

Rolling Update deployment

The rolling deployment is the standard default deployment to Kubernetes. It works slowly, one by
one, replacing pods of the previous version of your application with pods of the new version without
any cluster downtime. It is the default mechanism of upgrading for both Designer and DAS.

Designer
To perform the initial deployment for a rolling upgrade in Designer, use the Helm command given
below. The values.yaml file can be created as required.

• helm upgrade --install --namespace designer designer -f designer-values.yaml
designer-100.0.112+xxxx.tgz --set designer.image.tag=9.0.1xx.xx.xx

The values.yaml overrides passed as an argument to the above Helm upgrade command:

designer.image.tag=9.0.1xx.xx.xx - This is the new Designer version to be installed, for example,
9.0.111.05.5.

If you are using the --set flag in the helm install to populate the designer.designerConfig.envs
values, use --set-string, for example:

--set-string designer.designerConfig.envs.DES_ES_PORT="8080".

DAS
To perform the initial deployment for a rolling upgrade in DAS, use the Helm command given below.
The values.yaml file can be created as required.

• helm upgrade --install --namespace designer designer-das -f designer-das-values.yaml
designer-das-100.0.112+xxxx.tgz --set das.image.tag=9.0.1xx.xx.xx

The values.yaml overrides passed as an argument to the above Helm upgrade command:

das.image.tag=9.0.1xx.xx.xx - This is the new DAS version to be installed, for example,
9.0.111.05.5.

Deploy Designer

Designer Private Edition Guide 77

If you are using the --set flag in the helm install to populate the das.dasConfig.envs values,
values, use --set-string, for example:

--set-string das.dasConfig.envs.DAS_SERVICES_ELASTICSEARCH_PORT="9200".

Blue-Green deployment

Blue-Green deployment is a release management technique that reduces risk and minimizes
downtime. It uses two production environments, known as Blue and Green or active and inactive, to
provide reliable testing, continuous no-outage upgrades, and instant rollbacks. When a new release
needs to be rolled out, an identical deployment of the application will be created using the Helm
package and after testing is completed, the traffic is moved to the newly created deployment which
becomes the active environment, and the old environment becomes inactive. This ensures that a fast
rollback is possible by just changing route if a new issue is found with live traffic. The old inactive
deployment is removed once the new active deployment becomes stable.

Service cutover is done by updating the Ingress rules. The diagram below shows the high-level
approach to how traffic can be routed to Blue and Green deployments with Ingress rules.

Designer
Before you deploy Designer using the blue-green deployment strategy, complete the following
preparatory steps:

1. Create 3 hostnames as given below. The blue service hostname must contain the string blue. For
example, designer.blue.example.com or designer-blue.example.com. The green service hostname must
contain the string green. For example, designer.green.example.com or designer-green.example.com.
The blue/green services can be accessed separately with the blue/green hostnames:
• designer.example.com - For the production host URL, this is used for external access.
• designer.blue.example.com - For the blue service testing.

Deploy Designer

Designer Private Edition Guide 78

/File:DesBlueGreenDep.png
/File:DesBlueGreenDep.png

• designer.green.example.com - For the green service testing.

2. Configure the hostnames in the designer-values.yaml file under ingress. Annotations and paths can
be modified as required.
ingress:

enabled: true
annotations: {}
paths: [/]
hosts:

- designer.example.com
- designer.blue.example.com
- designer.green.example.com

Deployment

The resources - ingress and persistent volume claims (PVC) - must be created initially before
deploying the Designer service as these resources are shared between blue/green services and they
are required to be created at the very beginning of the deployment. These resources are not required
for subsequent upgrades. The required values are passed using the -- set flag in the following
steps. Values can also be directly changed in the values.yaml file.

1. Create Persistent Volume Claims required for the Designer service (assuming the volume service name
is designer-volume).
helm upgrade --install --namespace designer designer-volume -f designer-values.yaml
designer-9.0.xx.tgz --set designer.deployment.strategy=blue-green-volume
The values.yaml overrides passed as an argument to the above Helm upgrade command:
designer.deployment.strategy=blue-green-volume - This denotes that the Helm install will create a
persistent volume claim in the blue/green strategy.

2. Create Ingress rules for the Designer service (assuming the ingress service name will be designer-
ingress):
helm upgrade --install --namespace designer designer-ingress -f designer-values.yaml
designer-100.0.112+xxxx.tgz --set designer.deployment.strategy=blue-green-ingress --
set designer.deployment.color=green
The values.yaml overrides passed as an argument to the above Helm upgrade command:
designer.deployment.strategy=blue-green-ingress - This denotes that the Helm install will create
ingress rules for the Designer service.
designer.deployment.color=green - This denotes that the current production (active) color is green.

3. Deploy the Designer service color selected in step 2. In this case, green is selected and assuming the
service name is designer-green:
helm upgrade --install --namespace designer designer-green -f designer-values.yaml
designer-100.0.112+xxxx.tgz --set designer.deployment.strategy=blue-green --set
designer.image.tag=9.0.1xx.xx.xx --set designer.deployment.color=green

DAS
As with Designer, the Blue-Green strategy can be adopted for DAS as well. The Blue-Green
architecture used for DAS is given below. Here, the cutover mechanism is controlled by Service, the
Kubernetes manifest responsible for exposing the pods. The Ingress, when enabled, will point to the
appropriate service based on the URL.

Deploy Designer

Designer Private Edition Guide 79

Deployment

The Ingress must be created initially before deploying the DAS service since it is shared between
blue/green services and it is required to be created at the very beginning of the deployment. The
Ingress is not required for subsequent upgrades. The required values are passed using the -- set
flag in the following steps. Values can also be directly changed in the values.yaml file.

1. Deploy initial DAS pods and other resources by choosing an active color, in this example, green. Use the
below command to create a designer-das-green service:
helm upgrade --install --namespace designer designer-das-green -f designer-das-
values.yaml designer-das-100.0.106+xxxx.tgz --set das.deployment.strategy=blue-green
--set das.image.tag=9.0.1xx.xx.xx --set das.deployment.color=green
The values.yaml overrides passed as an argument to the above Helm upgrade command:
das.deployment.strategy=blue-green - This denotes that the DAS service will be installed using the
blue-green deployment strategy.
das.image.tag=9.0.1xx.xx.xx - This denotes the DAS version to be installed, for example,
9.0.111.04.4.
das.deployment.color=green - This denotes that the green color service is installed.

2. Once the initial deployment is done, the pods have to be exposed to the designer-das service. Execute
the following command to create the designer-das service:
helm upgrade --install --namespace designer designer-das designer-
das-100.0.106+xxx.tgz -f designer-das-values.yaml --set das.deployment.strategy=blue-
green-service --set das.deployment.color=green
The values.yaml overrides passed as an argument to the above helm upgrade
das.deployment.strategy=blue-green-service - This denotes that the designer-das service will be

Deploy Designer

Designer Private Edition Guide 80

/File:DASBlueGreenDep.png
/File:DASBlueGreenDep.png

installed and exposed to the active color pods.
das.deployment.color=green - This denotes that the designer-das service will point to green pods.

NodePort Service

The designer-das-green release creates a service called designer-das-green and the designer-
das-blue release creates a service called designer-das-blue. If you are using NodePort services,
ensure that the value of designer.service.nodePort is not the same for both the releases. In other
words, you should assign dedicated node ports for the releases. The default value for
designer.service.nodePort is 30280. If this was applied to designer-das-green, use a different
value for designer-das-blue, for example, 30281. Use the below helm command to achieve this:
helm upgrade --install --namespace designer designer-das designer-
das-100.0.106+xxx.tgz -f designer-das-values.yaml --set das.deployment.strategy=blue-
green-service --set das.deployment.color=green --set das.service.nodePort=30281

Canary

Canary is optional and is only used along with Blue-Green. It is recommended in production. Canary
pods are generally used to test new versions of images with live traffic. When you are installing the
Designer and DAS services for the first time, you will not use Canary pods. Only when upgrading the
services after initial deployment, you will use Canary pods for testing the new versions.

Deployment

1. Identify the current production color by checking the designer-das service selector labels (kubectl
describe service designer-das). Green is the production color in the below example as the selector
label is color=green.

2. To deploy canary pods, the das.deployment.strategy value must be set to canary in the designer-
das-values.yaml file or using the -- set flag as shown in the command below:
helm upgrade --install --namespace designer designer-das-canary -f das-values.yaml
designer-das-100.0.106+xxxx.tgz --set das.deployment.strategy=canary --set
das.image.tag=9.0.1xx.xx.xx --set das.deployment.color=green
The values.yaml overrides passed as an argument to the above Helm upgrade command:
das.deployment.strategy=canary - This denotes that the Helm install will create canary pods.
das.deployment.color=green - This denotes that the current production (active) color is green.

Important
To make sure Canary pods receive live traffic, they have to be exposed to the designer-das service by
setting das.deployment.color=, which is obtained from step 1.

3. Once canary pods are up and running, ensure that the designer-das service points to the canary pods

Deploy Designer

Designer Private Edition Guide 81

/File:CanaryInDepStep1.png
/File:CanaryInDepStep1.png

using the kubectl describe svc designer-das command.

The IP address present in the Endpoints must match the IP address of the canary pod. The canary pod's
IP address is obtained using the kubectl describe pod command.

Cleaning up
After completing canary testing, the canary pods must be cleaned up.

The das.deployment.replicaCount must be made zero and the release is upgraded. It can be
changed in the designer-das-values.yaml file or through the --set flag as follows:

• helm upgrade --install --namespace designer designer-das-canary -f das-values.yaml
designer-das-100.0.106+xxxx.tgz --set das.deployment.strategy=canary --set
das.image.tag=9.0.1xx.xx.xx --set das.deployment.color=blue --set
das.deployment.replicaCount=0

Validations and checks

Here are some common validations and checks that can be performed to know if the deployment was
successful.

• Check if the application pods are in running state by using the kubectl get pods command.

• Try to connect to the Designer or DAS URL as per the ingress rules from your browser. You must be able
to access the Designer and DAS webpages.

Post deployment procedures

Updating the flowsettings file
Post deployment, the flowsettings.json file can be modified through a Helm install as follows:

1. Extract the Designer Helm Chart and find the flowsettings.yaml file under the Designer Chart >
Config folder.

2. Modify the necessary settings (refer to the Post deployment configuration settings reference table for

Deploy Designer

Designer Private Edition Guide 82

/File:CanaryEndpoints.png
/File:CanaryEndpoints.png
/File:CanaryIPs.png
/File:CanaryIPs.png

the different settings and their allowed values).
3. Execute the below Helm upgrade command on the non-production color service. It can be done as part

of the Designer upgrade by passing the flowsettings.yaml file using the --values flag. In this case, a
new Designer version can be used for the upgrade. If it is only a flowsettings.json update, the same
Designer version is used.
helm upgrade --install --namespace designer designer-blue -f designer-values.yaml -f
flowsettings.yaml designer-9.0.xx.tgz --set designer.deployment.strategy=blue-green --
set designer.image.tag=9.0.1xx.xx.xx --set designer.deployment.color=blue

4. Once testing is completed on the non-production service, perform the cutover step as mentioned in the
Cutover section (Designer Blue-Green deployment). After cutover, the production service will contain
the updated settings. The non-active color Designer must also be updated with the updated settings
after the cutover.

Deploy Designer

Designer Private Edition Guide 83

Enable optional features

Contents

• 1 Enable Designer Analytics and Audit Trail
• 1.1 Designer
• 1.2 DAS

• 2 Enable Personas
• 2.1 Deploy personas.json
• 2.2 Update Designer flowsettings.json
• 2.3 Update application settings
• 2.4 Adding voice definitions

Enable optional features

Designer Private Edition Guide 84

Learn how to enable optional features in Designer post deployment.

Related documentation:
•
•
•

RSS:

• For private edition

Enable Designer Analytics and Audit Trail
Post Designer deployment, features such as Analytics and Audit Trail can be
enabled by performing the below steps.

Important
Ensure Elasticsearch is deployed before proceeding.

Designer

1. Configure the following settings in flowsettings override (flowsettings.yaml) - Refer to the table in the
Post deployment Designer configuration settings section for option descriptions.
• enableAnalytics: true
• enableESAuditLogs: true
• esServer
• esPort
• esUrl

2. Configure the below setting in the DesignerEnv transaction list:
ReportingURL in the reporting section.

3. Perform the steps in the Updating the flowsettings file section in Post deployment procedures.

DAS

1. Configure the following settings in the helm das-values.yaml file. For setting descriptions, refer to the

Enable optional features

Designer Private Edition Guide 85

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

DAS deployment settings section in Deployment configuration settings.
dasEnv.envs.DAS_SERVICES_ELASTICSEARCH_ENABLED = true
dasEnv.envs.DAS_SERVICES_ELASTICSEARCH_HOST
dasEnv.envs.DAS_SERVICES_ELASTICSEARCH_PORT

2. Execute the steps in the Upgrade section in the DAS deployment process for the Blue-Green strategy.
The same DAS version running in production can be used for the upgrade.

3. Execute the steps in the Cutover section in the DAS deployment process for the Blue-Green strategy.

Enable Personas

You can enable the Personas feature in Designer by following the below steps.

Deploy personas.json

• Deploy the personas.json file in the workspace location, /workspace/{tenantID}/workspace/
personas/personas.json.

• Create the personas directory if it does not exist.

Given below is a sample personas.json file:
[

{
"id": "1",
"name": "Samantha",
"gender": "female",
"tags": ["female", "middle-age", "default"],
"displayPersona": "female, 30-40s",
"voice": [{

"name": "samantha",
"language": "en-US",
"ttsname": "Samantha",
"ttsengine": "NuanceTTS",
"displayName": "Samantha"

}, {
"name": "karen",
"language": "en-AU",
"ttsname": "Karen",
"ttsengine": "NuanceTTS",
"displayName": "Karen"

}, {
"name": "amelie",
"language": "fr-CA",
"ttsname": "Amelie",
"ttsengine": "NuanceTTS",
"displayName": "Amelie"

}, {
"name": "paulina",
"language": "es-MX",
"ttsname": "Paulina",
"ttsengine": "NuanceTTS",
"displayName": "Paulina"

}
],
"digital": {},

Enable optional features

Designer Private Edition Guide 86

"email": {},
"chat": {},
"web": {}

},
{

"id": "2",
"name": "Tom",
"gender": "male",
"tags": ["male", "middle-age"],
"displayPersona": "male, 30-40s",
"voice": [{

"name": "tom",
"language": "en-US",
"ttsname": "Tom",
"ttsengine": "NuanceTTS",
"displayName": "Tom"

}, {
"name": "lee",
"language": "en-AU",
"ttsname": "Lee",
"ttsengine": "NuanceTTS",
"displayName": "Lee"

}, {
"name": "felix",
"language": "fr-CA",
"ttsname": "Felix",
"ttsengine": "NuanceTTS",
"displayName": "Felix"

}, {
"name": "javier",
"language": "es-MX",
"ttsname": "Javier",
"ttsengine": "NuanceTTS",
"displayName": "Javier"

}
],
"digital": {},
"email": {},
"chat": {},
"web": {}

},
{

"id": "3",
"name": "Gabriela",
"gender": "female",
"tags": ["female", "young"],
"displayPersona": "female, 20-30s",
"voice": [{

"name": "gabriela",
"language": "en-US",
"ttsname": "en-US-Standard-E",
"ttsengine": "GTTS",
"displayName": "Gabriela"

}, {
"name": "sheila",
"language": "en-AU",
"ttsname": "en-AU-Standard-A",
"ttsengine": "GTTS",
"displayName": "Sheila"

}, {
"name": "lili",
"language": "fr-CA",
"ttsname": "fr-CA-Standard-A",

Enable optional features

Designer Private Edition Guide 87

"ttsengine": "GTTS",
"displayName": "Lili"

}
],
"digital": {},
"email": {},
"chat": {},
"web": {}

},
{

"id": "4",
"name": "Michael",
"gender": "male",
"tags": ["male", "young"],
"displayPersona": "male, 20-30s",
"voice": [{

"name": "michael",
"language": "en-US",
"ttsname": "en-US-Standard-B",
"ttsengine": "GTTS",
"displayName": "Michael"

}, {
"name": "royce",
"language": "en-AU",
"ttsname": "en-AU-Standard-B",
"ttsengine": "GTTS",
"displayName": "Royce"

}, {
"name": "alexandre",
"language": "fr-CA",
"ttsname": "fr-CA-Standard-B",
"ttsengine": "GTTS",
"displayName": "Alexandre"

}
],
"digital": {},
"email": {},
"chat": {},
"web": {}

},
{

"id": "5",
"name": "Diane",
"gender": "female",
"tags": ["female", "mature"],
"displayPersona": "female, 40-50s",
"voice": [{

"name": "diane",
"language": "en-US",
"ttsname": "en-US-Standard-C",
"ttsengine": "GTTS",
"displayName": "Diane"

}, {
"name": "muriel",
"language": "en-AU",
"ttsname": "en-AU-Standard-C",
"ttsengine": "GTTS",
"displayName": "Muriel"

}, {
"name": "chloe",
"language": "fr-CA",
"ttsname": "fr-CA-Standard-C",
"ttsengine": "GTTS",

Enable optional features

Designer Private Edition Guide 88

"displayName": "Chloe"
}

],
"digital": {},
"email": {},
"chat": {},
"web": {}

},
{

"id": "6",
"name": "David",
"gender": "male",
"tags": ["male", "mature"],
"displayPersona": "male, 40-50s",
"voice": [{

"name": "david",
"language": "en-US",
"ttsname": "en-US-Standard-D",
"ttsengine": "GTTS",
"displayName": "David"

}, {
"name": "austin",
"language": "en-AU",
"ttsname": "en-AU-Standard-D",
"ttsengine": "GTTS",
"displayName": "Austin"

}, {
"name": "pierre",
"language": "fr-CA",
"ttsname": "fr-CA-Standard-D",
"ttsengine": "GTTS",
"displayName": "Pierre"

}
],
"digital": {},
"email": {},
"chat": {},
"web": {}

}
]

Update Designer flowsettings.json

1. Enable the persona feature flag in the flowsettings.json override file.
"features": {

"persona": true

2. Perform the steps in the Updating the flowsettings file section for the changes to take effect.

Update application settings
Perform the following steps to enable the persona in the required Designer application:

1. Open the required Designer application and navigate to the Settings tab.
2. In the Application Settings, select the Enable Persona checkbox in the Persona tab.
3. If you are using a Google TTS custom voice, select Enable Custom Voices.

Enable optional features

Designer Private Edition Guide 89

4. Re-publish the application and create a new build.

Adding voice definitions

Important
Additional voice definitions can be added by Genesys. Contact your Genesys
representative for more information.

Designer supports Nuance and Google (standard and custom) TTS voice definitions. This example of a
voice definition contains both a standard and custom Google TTS voice:

"voice": [
{ // Example of a standard Google TTS

voice definition.
"name": "fatima",
"language": "ar-SA",
"ttsname": "ar-XA-Wavenet-A",
"ttsengine": "GTTS",
"displayName": "Fatima"

},
{ // Example of a Custom Google TTS voice

definition.
"name": "ursula",
"language": "de-DE",
"ttsname": "de-DE-Wavenet-A",
"ttsengine": "GTTS",
"displayName": "Ursula",
"ttsCustomVoice" : true,
"ttsCustomVoiceURI: : ""

}
]

Voice definitions must include the following details:

Name Value description
name Name of this voice.

language Language that matches the Language system
variable.

ttsname Voice name used for this Language.

ttsengine

Specifies the TTS service provider for this voice.
Designer supports the following TTS engines:

• Enter NuanceTTS for Nuance voices.
• Enter GTTS for Google voices.

displayName Name of this voice as displayed in the Designer UI.
Note: The following values are required only if you are defining a custom Google TTS voice. Otherwise,
they do not need to be included in the voice definition.

Enable optional features

Designer Private Edition Guide 90

Name Value description

ttsCustomVoice
Enter true for this setting. This tells Designer that
the voice is custom (that is, unique to your
environment) and to ignore the ttsname value.

ttsCustomVoiceURI Specifies the location of the custom voice.

Important
To use custom Google TTS voices in an application, Enable Custom Voices must be
selected on the Persona tab in the application settings.

Enable optional features

Designer Private Edition Guide 91

Upgrade, roll back, or uninstall Designer

Contents

• 1 Supported upgrade strategies
• 2 Timing

• 2.1 Scheduling considerations

• 3 Monitoring
• 4 Preparatory steps
• 5 Rolling Update

• 5.1 Rolling Update: Upgrade
• 5.2 Rolling Update: Verify the upgrade
• 5.3 Rolling Update: Rollback
• 5.4 Rolling Update: Verify the rollback

• 6 Blue/Green
• 6.1 Blue/Green: Upgrade Designer
• 6.2 Blue/Green: Rollback Designer
• 6.3 Blue/Green: Upgrade DAS
• 6.4 Blue/Green: Rollback DAS

• 7 Canary
• 7.1 Cleaning up

• 8 Post-upgrade procedures
• 8.1 Upgrading the Designer workspace
• 8.2 Elasticsearch maintenance recommendations

• 9 Uninstall

Upgrade, roll back, or uninstall Designer

Designer Private Edition Guide 92

Learn how to upgrade, roll back, or uninstall Designer.

Related documentation:
•
•
•

RSS:

• For private edition

Important
The instructions on this page assume you have deployed the services in service-
specific namespaces. If you are using a single namespace for all private edition
services, replace the namespace element in the commands on this page with the
name of your single namespace or project.

Supported upgrade strategies

Designer supports the following upgrade strategies:

Service Upgrade Strategy Notes

Designer
• Rolling Update
• Blue/Green
• Canary

Canary is used in combination
with Blue/Green.

Designer Application Server
• Rolling Update
• Blue/Green
• Canary

Canary is used in combination
with Blue/Green.

The upgrade or rollback process to follow depends on how you deployed the service initially. Based
on the deployment strategy adopted during initial deployment, refer to the corresponding upgrade or
rollback section on this page for related instructions.

For a conceptual overview of the upgrade strategies, refer to Upgrade strategies in the Setting up
Genesys Multicloud CX Private Edition guide.

Upgrade, roll back, or uninstall Designer

Designer Private Edition Guide 93

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Timing

A regular upgrade schedule is necessary to fit within the Genesys policy of supporting N-2 releases,
but a particular release might warrant an earlier upgrade (for example, because of a critical security
fix).

If the service you are upgrading requires a later version of any third-party services, upgrade the third-
party service(s) before you upgrade the private edition service. For the latest supported versions of
third-party services, see the Software requirements page in the suite-level guide.

Scheduling considerations
Genesys recommends that you upgrade the services methodically and sequentially: Complete the
upgrade for one service and verify that it upgraded successfully before proceeding to upgrade the
next service. If necessary, roll back the upgrade and verify successful rollback.

Monitoring

Monitor the upgrade process using standard Kubernetes and Helm metrics, as well as service-specific
metrics that can identify failure or successful completion of the upgrade (see Observability in
Designer).

Genesys recommends that you create custom alerts for key indicators of failure — for example, an
alert that a pod is in pending state for longer than a timeout suitable for your environment. Consider
including an alert for the absence of metrics, which is a situation that can occur if the Docker image
is not available. Note that Genesys does not provide support for custom alerts that you create in your
environment.

Preparatory steps

Ensure that your processes have been set up to enable easy rollback in case an upgrade leads to
compatibility or other issues.

Each time you upgrade a service:

1. Review the release note to identify changes.
2. Ensure that the new package is available for you to deploy in your environment.
3. Ensure that your existing -values.yaml file is available and update it if required to implement changes.

Upgrade, roll back, or uninstall Designer

Designer Private Edition Guide 94

Rolling Update

Rolling Update: Upgrade
Execute the following command to upgrade :

helm upgrade --install -f -values.yaml -n

Tip: If your review of Helm chart changes (see Preparatory Step 3) identifies that the only update you
need to make to your existing -values.yaml file is to update the image version, you can pass the
image tag as an argument by using the --set flag in the command:

helm upgrade --install -f -values.yaml --set .image.tag=

Follow the same instructions to upgrade Designer and DAS. For example, the respective commands
are:

• Designer:
helm upgrade --install --namespace designer designer -f designer-values.yaml
designer-100.0.112+1401.tgz --set designer.image.tag=100.0.112.11

• DAS:
helm upgrade --install --namespace designer designer-das -f designer-das-values.yaml
designer-das-100.0.112+1401.tgz --set das.image.tag=9.0.111.05.5

If you are using the --set flag in the helm upgrade command to populate the
designer.designerConfig.envs or das.dasConfig.envs values, use --set-string, for example:

• Designer: --set-string designer.designerConfig.envs.DES_ES_PORT="8080"
• DAS: --set-string das.dasConfig.envs.DAS_SERVICES_ELASTICSEARCH_PORT="9200"

Rolling Update: Verify the upgrade
Follow usual Kubernetes best practices to verify that the new service version is deployed. See the
information about initial deployment for additional functional validation that the service has
upgraded successfully.

Rolling Update: Rollback
Execute the following command to roll back the upgrade to the previous version:

helm rollback

or, to roll back to an even earlier version:

helm rollback

Alternatively, you can re-install the previous package:

1. Revert the image version in the .image.tag parameter in the -values.yaml file. If applicable, also

Upgrade, roll back, or uninstall Designer

Designer Private Edition Guide 95

revert any configuration changes you implemented for the new release.
2. Execute the following command to roll back the upgrade:

helm upgrade --install -f -values.yaml

Tip: You can also directly pass the image tag as an argument by using the --set flag in the
command:
helm upgrade --install -f -values.yaml --set .image.tag=

Follow the same instructions to roll back Designer and DAS. For example, the respective commands
are:

• Designer:
helm upgrade --install --namespace designer designer -f designer-values.yaml
designer-100.0.112+1401.tgz --set designer.image.tag=100.0.112.11

• DAS:
helm upgrade --install --namespace designer designer-das -f designer-das-values.yaml
designer-das-100.0.112+1401.tgz --set das.image.tag=9.0.111.05.5

Rolling Update: Verify the rollback
Verify the rollback in the same way that you verified the upgrade (see Rolling Update: Verify the
upgrade).

• Ensure that the image version in the -values.yaml file reflects the version that you rolled back to.

Blue/Green

Blue/Green: Upgrade Designer

1. Identify the current production color by checking the Designer ingress rules:
kubectl describe ingress designer-ingress

Green is the production color in the below example as the production host name points to the
green service.

Upgrade, roll back, or uninstall Designer

Designer Private Edition Guide 96

/File:DesUpgStep1.png
/File:DesUpgStep1.png

2. Deploy the Designer service on to the non-production color (in this example, blue is the non-production
color and assuming the service name is designer-blue):

helm upgrade --install --namespace designer designer-blue -f designer-values.yaml
designer-100.0.112+1401.tgz --set designer.deployment.strategy=blue-green --set
designer.image.tag=100.0.111.05.5 --set designer.deployment.color=blue

Use the non-production host name to access the non-production color. For example,
designer.blue.example.com). You can use this URL for testing.

NodePort Service

The designer-green release creates a service called designer-green and the designer-blue
release creates a service called designer-blue. If you are using NodePort services, ensure that the
value of designer.service.nodePort is not the same for both the releases. In other words, you
should assign dedicated node ports for the releases. The default value for
designer.service.nodePort is 30180. If this was applied to designer-green, use a different value
for designer-blue, for example, 30181. Use the below helm command to achieve this:

helm upgrade --install --namespace designer designer-blue -f designer-values.yaml
designer-100.0.112+1401.tgz --set designer.deployment.strategy=blue-green --set
designer.image.tag=100.0.111.05.5 --set designer.deployment.color=blue --set
designer.service.nodePort=30181

Cutover

Once testing is completed on the non-production color, move traffic to the new version by updating
the Ingress rules:

• Update the Designer Ingress with the new deployment color by running the following command (in this
case, blue is the new deployment color, that is, the non-production color):

helm upgrade --install --namespace designer designer-ingress -f designer-values.yaml
designer-100.0.112+1401.tgz --set designer.deployment.strategy=blue-green-ingress --
set designer.deployment.color=blue

Verify the upgrade

• Verify the ingress rules by running the following command:
kubectl describe ingress designer-ingress

The production host name must point to the new color service, that is, blue.

Blue/Green: Rollback Designer
To roll back the upgrade, modify the ingress rules to point back to the old deployment pods (green, in
this example) by performing a cutover again.

• Perform a cutover using the following command:
helm upgrade --install --namespace designer designer-ingress -f designer-values.yaml
designer-100.0.112+1401.tgz --set designer.deployment.strategy=blue-green-ingress --
set designer.deployment.color=green

Upgrade, roll back, or uninstall Designer

Designer Private Edition Guide 97

Verify the rollback

• Verify the rollback in the same way that you verified the upgrade (see Blue-Green: Verify the upgrade).
The type label must have the active color's label, that is, color=green.

Blue/Green: Upgrade DAS

1. Identify the current production color by checking the designer-das service selector labels:
kubectl describe service designer-das

Green is the production color in the below example as the selector label is color=green.

2. Deploy the DAS service on to the non-production color (in this example, blue is the non-production color
and assuming the service name is designer-das-blue):

helm upgrade --install --namespace designer designer-das-blue -f das-values.yaml
designer-das-100.0.106+1401.tgz --set das.deployment.strategy=blue-green --set
das.image.tag=9.0.111.05.5 --set das.deployment.color=blue

Use the non-production service name to access the non-production color.

NodePort Service

The designer-das-green release creates a service called designer-das-green and the designer-
das-blue release creates a service called designer-das-blue. If you are using NodePort services,
ensure that the value of designer.service.nodePort is not the same for both the releases. In other
words, you should assign dedicated node ports for the releases. The default value for
designer.service.nodePort is 30280. If this was applied to designer-das-green, use a different
value for designer-das-blue, for example, 30281. Use the below helm command to achieve this:

helm upgrade --install --namespace designer designer-das designer-das-100.0.106+xxx.tgz -f
designer-das-values.yaml --set das.deployment.strategy=blue-green-service --set
das.deployment.color=green --set das.service.nodePort=30281

Cutover

Once testing is completed on the non-production color, move traffic to the new version by updating
the designer-das service.

• Update the designer-das service with the new deployment color (in this example, blue is the new
deployment color, that is, non-production color)

helm upgrade --install --namespace designer designer-das-service -f designer-das-
values.yaml designer-das-100.0.106+1401.tgz --set das.deployment.strategy=blue-green-
service --set das.deployment.color=blue

Upgrade, roll back, or uninstall Designer

Designer Private Edition Guide 98

/File:DasBGUpgStep1.png
/File:DasBGUpgStep1.png

Verify the upgrade

• Verify the service by executing the kubectl describe service designer-das command.
The type label must have the active color's label, that is, color=blue.

Blue/Green: Rollback DAS
To roll back the upgrade, perform a cutover again to point the service back to the old deployment
(green).

• Perform a cutover using the following command:
helm upgrade --install --namespace designer designer-das-service -f designer-das-
values.yaml designer-das-100.0.106+1401.tgz --set das.deployment.strategy=blue-green-
service --set das.deployment.color=green

Verify the rollback

• Verify the rollback in the same way that you verified the upgrade (see Blue-Green: Verify the upgrade).
The type label must have the active color's label, color=green.

Canary

Canary is optional and is only used along with Blue-Green. It is recommended in production. Canary
pods are generally used to test new versions of images with live traffic. You will not use Canary pods
when you are installing the Designer and DAS services for the first time. You will only use Canary
pods for testing the new versions when upgrading the services after initial deployment.

1. Identify the current production color by checking the designer-das service selector labels (kubectl
describe service designer-das). Green is the production color in the below example as the selector
label is color=green.

2. To deploy canary pods, the das.deployment.strategy value must be set to canary in the designer-
das-values.yaml file or using the -- set flag as shown in the command below:
helm upgrade --install --namespace designer designer-das-canary -f das-values.yaml
designer-das-100.0.106+xxxx.tgz --set das.deployment.strategy=canary --set
das.image.tag=9.0.1xx.xx.xx --set das.deployment.color=green
The values.yaml overrides passed as an argument to the above Helm upgrade command:
das.deployment.strategy=canary - This denotes that the Helm install will create canary pods.
das.deployment.color=green - This denotes that the current production (active) color is green.

Upgrade, roll back, or uninstall Designer

Designer Private Edition Guide 99

/File:CanaryInDepStep1.png
/File:CanaryInDepStep1.png

Important
To make sure Canary pods receive live traffic, they have to be exposed to the designer-das service by
setting das.deployment.color=, which is obtained from step 1.

3. Once canary pods are up and running, ensure that the designer-das service points to the canary pods
using the kubectl describe svc designer-das command.

The IP address present in the Endpoints must match the IP address of the canary pod. The canary pod's
IP address is obtained using the kubectl describe pod command.

Cleaning up
After completing canary testing, the canary pods must be cleaned up. The
das.deployment.replicaCount must be made zero and the release is upgraded. It can be changed
in the designer-das-values.yaml file or through the --set flag as follows:

• helm upgrade --install --namespace designer designer-das-canary -f das-values.yaml
designer-das-100.0.106+xxxx.tgz --set das.deployment.strategy=canary --set
das.image.tag=9.0.1xx.xx.xx --set das.deployment.color=blue --set
das.deployment.replicaCount=0

Post-upgrade procedures

Upgrading the Designer workspace
Workspace resources must be upgraded after cutover. Perform the following steps to upgrade the
system resources in the Designer workspace:

1. Log in to one of the Designer pods using the kubectl exec -it bash command.
2. Execute the following migration command (this creates new directories/new files introduced in the new

version):
node ./bin/cli.js workspace-upgrade -m -t

3. Execute the workspace resource upgrade command (this upgrades system resources, such as system
service PHP files, internal audio files and callback resources):
node ./bin/cli.js workspace-upgrade -t
In the above command, contact_center_id , is the Contact Center ID created in GWS for this tenant
(workspace resources are located under the Contact Center ID folder (/workspaces//workspace)).

Upgrade, roll back, or uninstall Designer

Designer Private Edition Guide 100

/File:CanaryEndpoints.png
/File:CanaryEndpoints.png
/File:CanaryIPs.png
/File:CanaryIPs.png

Elasticsearch maintenance recommendations
To help you better manage your indexes and snapshots, and to prevent too many indexes from
creating an overflow of shards, Genesys recommends that you set up a scheduled execution of
Elasticsearch Curator with the following two actions:

• Delete indexes older than the given threshold according to the index name and mask.
• sdr-* (3 months)
• audit-* (12 months)

• Make a snapshot of each index:
• sdr-* (yesterday and older)
• audit-*

• kibana-int-*

Uninstall

Warning
Uninstalling a service removes all Kubernetes resources associated with that service.
Genesys recommends that you contact Genesys Customer Care before uninstalling
any private edition services, particularly in a production environment, to ensure that
you understand the implications and to prevent unintended consequences arising
from, say, unrecognized dependencies or purged data.

Execute the following command to uninstall :

helm uninstall -n

Upgrade, roll back, or uninstall Designer

Designer Private Edition Guide 101

Observability in Designer

Contents

• 1 Monitoring
• 1.1 Enable monitoring
• 1.2 Configure metrics
• 1.3 What do Designer metrics monitor?

• 2 Alerting
• 2.1 Configure alerts

• 3 Logging

Observability in Designer

Designer Private Edition Guide 102

Learn about the logs, metrics, and alerts you should monitor for Designer.

Related documentation:
•
•
•

RSS:

• For private edition

Monitoring

Private edition services expose metrics that can be scraped by Prometheus, to support monitoring
operations and alerting.

• As described on Monitoring overview and approach, you can use a tool like Grafana to create
dashboards that query the Prometheus metrics to visualize operational status.

• As described on Customizing Alertmanager configuration, you can configure Alertmanager to send
notifications to notification providers such as PagerDuty, to notify you when an alert is triggered
because a metric has exceeded a defined threshold.

The services expose a number of Genesys-defined and third-party metrics. The metrics that are
defined in third-party software used by private edition services are available for you to use as long as
the third-party provider still supports them. For descriptions of available Designer metrics, see:

• Designer Application Server metrics
• Designer metrics

See also System metrics.

Desginer and DAS generate application related metrics at the /metric API in the standard
Prometheus client format.

Important
In addition to the metrics listed in the DES and DAS metrics topics, you can also
obtain infrastructure related metrics by installing standard Prometheus clients in the
Kubernetes cluster.

Observability in Designer

Designer Private Edition Guide 103

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Enable monitoring
To enable monitoring you must configure the various Prometheus related options. For more details on
these various options, refer to the Designer deployment settings and DAS deployment settings
sections in the Configure Designer topic.

Service CRD or
annotations? Port Endpoint/

Selector
Metrics update

interval

Designer
Application Server ServiceMonitor 8081

See selector
details on the
Designer
Application Server
metrics and alerts
page

10 seconds

Designer ServiceMonitor 8888
See selector
details on the
Designer metrics
and alerts page

10 seconds

Configure metrics
The metrics that are exposed by the DES and DAS services are available by default. No further
configuration is required in order to define or expose these metrics. You cannot define your own
custom metrics.

The Metrics pages linked to above show some of the metrics the DES and DAS services expose. You
can also query Prometheus directly or via a dashboard to see all the metrics available from the DES
and DAS services.

What do Designer metrics monitor?
The exposed DES and DAS metrics help you monitor a number of data points that are important in a
production environment. For more details on the individual metrics, refer to the Metrics pages.

Alerting

Private edition services define a number of alerts based on Prometheus metrics thresholds.

Important
You can use general third-party functionality to create rules to trigger alerts based on
metrics values you specify. Genesys does not provide support for custom alerts that
you create in your environment.

For descriptions of available Designer alerts, see:

Observability in Designer

Designer Private Edition Guide 104

• Designer Application Server alerts
• Designer alerts

Configure alerts
Private edition services define a number of alerts by default (for Designer, see the pages linked to
above). No further configuration is required.

Enable alerts in Designer

To enable alerts in Designer, use either of the following methods:

Method 1: Enable Prometheus alerts in the values.yaml file.
designer:

prometheus:
alerts:

enabled: true # this will be false by default.

Method 2: Find out the active deployment color and execute the below
command in the corresponding deployment:
helm upgrade --install designer-blue -f designer-values.yaml designer-9.0.xx.tgz --
set designer.deployment.strategy=blue-green --set
designer.prometheus.alerts.enabled=true

Disable alerts in Designer

To disable or delete alerts, use either of the following methods:

Method 1: Disable Prometheus alerts in the values.yaml file.
designer:

prometheus:
alerts:

enabled: false # this will be false default.

Method 2: Pass the below parameter along with the Helm upgrade command.
helm upgrade --install designer-blue -f designer-values.yaml designer-9.0.xx.tgz --
set designer.deployment.strategy=blue-green --set
designer.prometheus.alerts.enabled=false

Enable alerts in DAS

To enable alerts, use either of the following methods:

Method 1: Enable Prometheus alerts in the values.yaml file.
das:

prometheus:

Observability in Designer

Designer Private Edition Guide 105

alerts:
enabled: true # this will be false default.

Method 2: Pass the below parameter along with the Helm upgrade command.
helm upgrade --install designer-das-blue -f designer-values.yaml designer-
das-9.0.xx.tgz --set das.deployment.strategy=blue-green --set
das.prometheus.alerts.enabled=true

Disable alerts in DAS

To disable or delete alerts, use either of the following methods:

Method 1: Disable Prometheus alerts in the values.yaml file.
das:

prometheus:
alerts:

enabled: false # this will be false default.

Method 2: Pass the below parameter along with the Helm upgrade command.
helm upgrade --install designer-das-blue -f designer-values.yaml designer-
das-9.0.xx.tgz --set das.deployment.strategy=blue-green --set
das.prometheus.alerts.enabled=false

Update alert parameters

The following alert parameters can be updated:

• Alert Threshold (ALERT_PARAMETER_NAME: threshold)
• Alert Interval (ALERT_PARAMETER_NAME: interval)
• Alert Severity (ALERT_PARAMETER_NAME: AlertPriority)

Perform the following steps to update the above alerts:

1. Refer to the list of alerts and identify the name of the alert you want to update or modify.
2. Update the alert by adding a parameter in the below format in the values.yaml file:

designer:
prometheus:

alerts:
:

:
:

For example, consider the CPU utilization alert. The alert name is CPUUtilization
with a default threshold of 75, severity set to CRITICAL and interval set to 180s.
To modify its threshold to 80, severity to HIGH, and interval to 120 seconds, you
will have to make the following changes in the values.yaml file:
designer:

Observability in Designer

Designer Private Edition Guide 106

prometheus:
alerts:

CPUUtilization:
threshold: 80
interval: 120
AlertPriority: HIGH

Important
Though the ability to create custom alerts and some dashboards are packaged with
the Designer Helm charts, these are not documented and are not supported as of
now.

Logging

Refer to the Logging topic for information on configuring logging for the DES and DAS services.

Observability in Designer

Designer Private Edition Guide 107

DES metrics and alerts

Contents

• 1 Metrics
• 2 Alerts

DES metrics and alerts

Designer Private Edition Guide 108

Find the metrics DES exposes and the alerts defined for DES.

Service CRD or
annotations? Port Endpoint/Selector

Metrics
update
interval

DES ServiceMonitor 8888

selector:
matchLabels:

{{- include
"designer.labels" . |
nindent 6 }}

Labels to identify which service to
communicate with depend on the
release name.

Path: /metrics

10 seconds

See details about:

• DES metrics
• DES alerts

Metrics
Given below are some of the metrics exposed by the DES service:

Important
Designer exposes many Genesys-defined as well as system metrics. You can query
Prometheus directly to see all the available metrics. The metrics documented on this
page are likely to be particularly useful. Genesys does not commit to maintain other
currently available Designer metrics not documented on this page.

Metric and description Metric details Indicator of

des_csp_violations_total
Number of CSP violations.

Unit:
Type: Counter
Label:
Sample value: 0

DES metrics and alerts

Designer Private Edition Guide 109

Alerts

The following alerts are defined for DES.

Alert Severity Description Based on Threshold

CPUUtilization
(Alarm: Pod CPU
Usage)

CRITICAL

Triggered when a
pod's CPU
utilization is
beyond the
threshold.

75%
Default interval:
180s

MemoryUtilization
(Alarm: Pod
Memory Usage)

CRITICAL

Triggered when a
pod's memory
utilization is
beyond the
threshold.

75%
Default interval:
180s

containerRestartAlert
(Alarm: Pod
Restarts Count)

CRITICAL
Triggered when a
pod's restart count
is beyond the
threshold.

5
Default interval:
180s

containerReadyAlert
(Alarm: Pod Ready
Count)

CRITICAL
Triggered when a
pod's ready count
is less than the
threshold (1).

1
Default interval:
60s

AbsentAlert
(Alarm:
Deployment
availability)

CRITICAL
Triggered when
Designer pod
metrics are
unavailable.

1
Default interval:
60s

WorkspaceUtilization
(Alarm: Azure
Fileshare PVC
Usage)

HIGH
Triggered when file
share usage is
greater than the
threshold.

80%
Default interval:
180s

Health
(Alarm: Health
Status)

CRITICAL
Triggered when
Designer health
status is 0.

0
Default interval:
60s

WorkspaceHealth
(Alarm: Workspace
Health Status)

CRITICAL

Triggered when
Designer is not
able to
communicate with
the workspace.

0
Default interval:
60s

ESHealth
(Alarm:
Elasticsearch
Health Status)

CRITICAL
Triggered when
Designer/DAS is
not able to reach
the Elasticsearch

0
Default interval:
60s

DES metrics and alerts

Designer Private Edition Guide 110

Alert Severity Description Based on Threshold

server.

GWSHealth
(Alarm: GWS
Health Status)

CRITICAL
Triggered when
Designer/DAS is
not able to reach
the GWS server.

0
Default interval:
60s

DES metrics and alerts

Designer Private Edition Guide 111

DAS metrics and alerts

Contents

• 1 Metrics
• 2 Alerts

DAS metrics and alerts

Designer Private Edition Guide 112

Find the metrics DAS exposes and the alerts defined for DAS.

Service CRD or
annotations? Port Endpoint/Selector

Metrics
update
interval

DAS ServiceMonitor 8081

selector:
matchLabels:

{{- include
"das.serviceSelectorLabels"
. | nindent 6 }}

Labels to identify which
service to communicate with
depend on an unique label
applicable to DAS.
Path: /metrics

10 seconds

See details about:

• DAS metrics
• DAS alerts

Metrics
Given below are some of the metrics exposed by the DAS service:

Important
DAS exposes many Genesys-defined as well as system metrics. You can query
Prometheus directly to see all the available metrics. The metrics documented on this
page are likely to be particularly useful. Genesys does not commit to maintain other
currently available DAS metrics not documented on this page.

Metric and description Metric details Indicator of

sdr_requests_received
Number of requests received since DAS is
running (provided for each CCID).

Unit:
Type: Counter
Label:
Sample value: 1998352

sdr_requests_rejected Unit:

DAS metrics and alerts

Designer Private Edition Guide 113

Metric and description Metric details Indicator of

Number requests rejected since DAS is
running (provided for each CCID).

Type: Counter
Label:
Sample value:

data_tables_requests_failures
Number of failed data table requests
since DAS is running (provided for each
CCID).

Unit:
Type: Counter
Label:
Sample value: 80

data_tables_request_duration
Data table requests latency in seconds,
since DAS is running (provided for each
CCID).

Unit: seconds
Type: Histogram
Label:
Sample value: 189

business_hours_requests_failures
Number of failed business hours requests
since DAS is running.

Unit:
Type: Counter
Label:
Sample value:

business_hours_request_duration
Business hours requests latency in
seconds, since DAS is running (provided
for each CCID).

Unit: seconds
Type: Histogram
Label:
Sample value: 26

special_days_requests_failures
Number of failed special days requests
since DAS is running.

Unit:
Type: Counter
Label:
Sample value:

special_days_request_duration
Special days requests latency in seconds,
since DAS is running (provided for each
CCID).

Unit: seconds
Type: Histogram
Label:
Sample value: 34

external_requests_failures
Number of failed external requests since
DAS is running.

Unit:
Type: Counter
Label:
Sample value:

external_requests_timedout
Number of timed out external requests
since DAS is running.

Unit:
Type: Counter
Label:
Sample value:

external_requests_duration
External requests latency in seconds,
since DAS is running.

Unit: seconds
Type: Histogram
Label:
Sample value:

das_http_request_duration_secondsUnit: seconds

DAS metrics and alerts

Designer Private Edition Guide 114

Metric and description Metric details Indicator of

HTTP request latency in seconds
(provided for each request type and
CCID).

Type: Histogram
Label:
Sample value: 40

das_http_requests_total
Number of HTTP requests (provided for
each request type and CCID).

Unit:
Type: Counter
Label:
Sample value: 40

nginx_metric_errors_total
Number of nginx-lua-prometheus errors.

Unit:
Type: Counter
Label:
Sample value: 2

Alerts

The following alerts are defined for DAS.

Alert Severity Description Based on Threshold

CPUUtilization
(Alarm: Pod CPU
Usage)

CRITICAL

Triggered when a
pod's CPU
utilization is
beyond the
threshold.

75%
Default interval:
180s

MemoryUtilization
(Alarm: Pod
Memory Usage)

CRITICAL

Triggered when a
pod's memory
utilization is
beyond the
threshold.

75%
Default interval:
180s

containerRestartAlert
(Alarm: Pod
Restarts Count)

CRITICAL
Triggered when a
pod's restart count
is beyond the
threshold.

5
Default interval:
180s

containerReadyAlert
(Alarm: Pod Ready
Count)

CRITICAL
Triggered when a
pod's ready count
is less than the
threshold (1).

1
Default interval:
60s

AbsentAlert
(Alarm:
Deployment
availability)

CRITICAL
Triggered when
DAS pod metrics
are unavailable.

1
Default interval:
60s

WorkspaceUtilization HIGH Triggered when file 80%

DAS metrics and alerts

Designer Private Edition Guide 115

Alert Severity Description Based on Threshold

(Alarm: Azure
Fileshare PVC
Usage)

share usage is
greater than the
threshold.

Default interval:
180s

Health
(Alarm: Health
Status)

CRITICAL
Triggered when
DAS health status
is 0.

0
Default interval:
60s

WorkspaceHealth
(Alarm: Workspace
Health Status)

CRITICAL
Triggered when
DAS is not able to
communicate with
the workspace.

0
Default interval:
60s

PHPHealth
(Alarm: PHP Health
Status)

CRITICAL

Triggered when
Designer/DAS
experiences a PHP
Health check
failure.

0
Default interval:
60s

ProxyHealth
(Alarm: Proxy
Health Status)

CRITICAL

Triggered when
Designer/DAS
experiences a
Proxy Health check
failure.

0
Default interval:
60s

HTTP5XXCount
(Alarm: Application
5XX Error)

HIGH

Triggered when
DAS exceeds the
allowed 5xx error
count threshold
specified here.

10
Default interval:
180s

HTTP4XXCount
(Alarm: Application
4XX Error)

HIGH

Triggered when
DAS exceeds the
4xx error count
threshold specified
here.

100
Default interval:
180s

PhpLatency
(Alarm: DAS PHP
Latency Alert)

HIGH

Triggered when the
average time
taken by a PHP
request is greater
than the threshold
(in seconds)
specified here.

10s
Default interval:
180s

HTTPLatency
(Alarm: DAS HTTP
Latency Alert)

HIGH

Triggered when the
average time
taken by a HTTP
request is greater
than the threshold
(in seconds)
specified here.

10s
Default interval:
180s

DAS metrics and alerts

Designer Private Edition Guide 116

Logging

Contents

• 1 Log levels
• 1.1 Designer
• 1.2 DAS

Logging

Designer Private Edition Guide 117

Learn how to configure log levels for Designer and DAS.

Related documentation:
•
•
•

RSS:

• For private edition

Designer and DAS support console output (stdout) logging. Genesys recommends configuring console
output logging to minimize the host IOPs and PVCs consumption by using log volumes. Console
output logs can be extracted using log collectors like fluentbit/fluentd and Elasticsearch.

Ensure the below setttings are configured in the respective values.yaml overrides for console
logging:

1. Designer
designerEnv.envs.DES_FILE_LOGGING_ENABLED = false

2. DAS
dasEnv.envs.DAS_FILE_LOGGING_ENABLED = falsedasEnv.envs.DAS_STDOUT_LOGGING_ENABLE =
true

Log levels
Post deployment, Designer and DAS log levels can be modified as follows:

Designer

1. Configure the logging setting in the flowsettings override (flowsettings.yaml) - Refer to the table in
the Post deployment Designer configuration settings section for option descriptions.

2. Execute the steps in the Updating the flowsettings file section in Post deployment procedures for the
changes to take effect .

DAS

1. Configure the dasEnv.envs.DAS_LOG_LEVEL setting in the Helm das-values.yaml file. For setting
descriptions, refer to the DAS deployment settings section in Deployment configuration settings.

2. Execute the steps in the Upgrade section in the DAS deployment process for the Blue-Green strategy.
The same DAS version running in production can be used for the upgrade,

3. Execute the steps in the Cutover section in the DAS deployment process for the Blue-Green strategy.

Logging

Designer Private Edition Guide 118

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Designer on GKE

Contents

• 1 Configure a secret to access JFrog
• 2 Create a Designer secret with GWS

• 2.1 GWS settings for auth

• 3 Checking logs

Designer on GKE

Designer Private Edition Guide 119

Learn more about specific settings that you have to configure when deploying Designer on Google
Kubernetes Engine (GKE).

Related documentation:
•
•
•

RSS:

• For private edition

Important
Configure and deploy Designer as described in the topics under the Configure and
deploy section. Only additional information that is specific to deploying Designer on
GKE is provided here.

Configure a secret to access JFrog

If you haven't done so already, create a secret for accessing the JFrog registry (for example, jfrog-
stage-credentials):

kubectl create secret docker-registry jfrog-stage-credentials \
--docker-server=pureengage-docker-staging.jfrog.io \
--docker-username= \
--docker-password= \
--docker-email=

Now map the secret to the default service account:

kubectl secrets link default jfrog-stage-credentials --for=pull

Create a Designer secret with GWS

To create a Designer secret with GWS, update the following values to your Environment in the GWS
service:

• : Set to the internal API of GWS
• contactCenterIds: Set to your tenant ID

Designer on GKE

Designer Private Edition Guide 120

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

• redirectURIs: Set to the URL(s) to be used for Designer
• : Set to the domain address for the environment

And, optionally, update the following:

• -u opsAdmin: opsPass (this is the default delivered for tenants)
• client_secret: Set to any value (used in secret)
• name: Set to anything
• client_id: Set to your client ID (used in secret)

GWS settings for auth
In the Designer flowsettings override file, update the following options with these values:

• htccserver: gws-service-proxy.gws.svc.cluster.local
• gwsenvurl: http://gauth-environment.gauth.svc.cluster.local:80
• gwsauthurl: http://gauth-auth.gauth.svc.cluster.local:8
• ssoLoginUrl: https://gauth.apps.

Checking logs

After deploying Designer, you check the logs using the following commands:

Designer

kubectl get pods

kubectl logs

DAS

kubectl get pods

kubectl logs

Designer on GKE

Designer Private Edition Guide 121

Designer on AKS

Contents

• 1 Configure a secret to access JFrog
• 2 Create a Designer secret with GWS

• 2.1 GWS settings for auth

• 3 Checking logs

Designer on AKS

Designer Private Edition Guide 122

Learn more about specific settings that you have to configure when deploying Designer on Azure
Kubernetes Service (AKS).

Related documentation:
•
•
•

RSS:

• For private edition

Important
Configure and deploy Designer as described in the topics under the Configure and
deploy section. Only additional information that is specific to deploying Designer on
AKS is provided here.

Configure a secret to access JFrog

If you haven't done so already, create a secret for accessing the JFrog registry (for example, jfrog-
stage-credentials):

kubectl create secret docker-registry jfrog-stage-credentials \
--docker-server=pureengage-docker-staging.jfrog.io \
--docker-username= \
--docker-password= \
--docker-email=

Now map the secret to the default service account:

kubectl secrets link default jfrog-stage-credentials --for=pull

Create a Designer secret with GWS

To create a Designer secret with GWS, update the following values to your Environment in the GWS
service:

• : Set to the internal API of GWS
• contactCenterIds: Set to your tenant ID

Designer on AKS

Designer Private Edition Guide 123

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

• redirectURIs: Set to the URL(s) to be used for Designer
• : Set to the domain address for the environment

And, optionally, update the following:

• -u opsAdmin: opsPass (this is the default delivered for tenants)
• client_secret: Set to any value (used in secret)
• name: Set to anything
• client_id: Set to your client ID (used in secret)

GWS settings for auth
In the Designer flowsettings override file, update the following options with these values:

• htccserver: gws-service-proxy.gws.svc.cluster.local
• gwsenvurl: http://gauth-environment.gauth.svc.cluster.local:80
• gwsauthurl: http://gauth-auth.gauth.svc.cluster.local:8
• ssoLoginUrl: https://gauth.apps.

Checking logs

After deploying Designer, you check the logs using the following commands:

Designer

kubectl get pods

kubectl logs

DAS

kubectl get pods

kubectl logs

Designer on AKS

Designer Private Edition Guide 124

	Designer Private Edition Guide
	Table of Contents
	About Designer
	Architecture
	High availability and disaster recovery
	Before you begin
	Configure Designer
	Platform / Configuration Server and GWS settings for Designer
	Deploy Designer
	Enable optional features
	Upgrade, roll back, or uninstall Designer
	Observability in Designer
	DES metrics and alerts
	DAS metrics and alerts
	Logging
	Designer on GKE
	Designer on AKS

