3 GENESYS

This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Designer Private Edition Guide

2/3/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents

Overview

About Designer

Architecture

High availability and disaster recovery
Configure and deploy

Before you begin

Configure Designer

Platform / Configuration Server and GWS settings for Designer

Deploy Designer

Enable optional features
Upgrade, roll back, or uninstall

Upgrade, roll back, or uninstall Designer
Observability

Observability in Designer

DES metrics and alerts
DAS metrics and alerts

Logging
Kubernetes platform specific information

Designer on GKE

Designer on AKS

14

16
23
68
72
84

92

102
108
112
117

119
122

Contents

e 1 Overview

e 2 Configure and deploy

* 3 Upgrade, roll back, or uninstall
¢ 4 Operations

¢ 5 Kubernetes platform specific information

Designer Private Edition Guide

This document guides you through the process of deploying and configuring Designer and Designer
Application Server (DAS) as a service in a Kubernetes (K8s) cluster.

Related documentation:

* For private edition

Designer is a service available with the Genesys Multicloud CX private edition offering.

This document is intended for use primarily by system engineers and other members of an
implementation team who will be involved in configuring and installing Designer and DAS, and
system administrators who will maintain Designer and DAS installations.

To successfully deploy and implement applications in Designer and DAS, you must have a basic
understanding of and familiarity with:

* Network design and operation
* Network configurations in your organization
* Kubernetes

¢ Genesys Framework architecture and functions

Overview

Learn more about Designer, its architecture, and how to support high availability and disaster
recovery.

¢ About Designer

e Architecture

e High availability and disaster recovery

Designer Private Edition Guide

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Configure and deploy

Find out how to configure and deploy Designer.

e Before you begin

e Configure Designer

» Platform / Configuration Server and GWS settings for Designer
¢ Deploy Designer

* Enable optional features

Upgrade, roll back, or uninstall
Find out how to upgrade, roll back, or uninstall Designer.

e Upgrade, roll back, or uninstall Designer

Operations
Learn how to monitor Designer with metrics and logging.

¢ Observability in Designer
¢ Designer metrics and alerts

¢ DAS metrics and alerts

¢ Logging

Kubernetes platform specific information

Learn more about settings specific to the Kubernetes platform or the container orchestration
platform you are deploying Designer on.

¢ Designer on GKE
e Designer on AKS

Designer Private Edition Guide

About Designer

About Designer

Contents

e 1 Designer
» 2 Designer Application Server (DAS)

¢ 3 Supported Kubernetes platforms

Designer Private Edition Guide

About Designer

Learn about Designer and how it works in Genesys Multicloud CX private edition.

Related documentation:

* For private edition

Designer

The Designer service provides a web Ul to build and manage VXML and SCXML based self-service and
assisted service applications for a number of media types. It stores data on the local file system and
is synchronized across instances by using services like Network File System (NFS). Genesys
customers can build applications using a simple drag and drop method, and assign contact points
(Route Points and other media endpoints) to applications directly from the Designer Ul. Insights into
runtime behavior of applications and troubleshooting aid is provided by Designer Analytics, which
includes a rich set of dashboards based on session detail records (SDR) from data stored in
Elasticsearch.

Designer offers the following features:

e Applications for working with phone, chat, email, SMS (text messages), Facebook, Twitter, and open
media types.

e Bots, ASR, TTS capabilities for self-service.
¢ Assisted service or routing.

e Callback.

e Business Controls.

¢ Audio, message management.

e Grammars management.

¢ Contact points management - route points, chat end points, email pop-client/mailboxes.

Analytics dashboards through embedded Kibana.

Designer is an Express/Node.js application. The Ul is designed using Angular powered Bootstrap.

Designer Private Edition Guide 7

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

About Designer

Application data (SCXML and VXML) is stored as a file system. Designer Analytics and Audit data is
stored in Elasticsearch.

Designer Application Server (DAS)

Designer Application Server (DAS) hosts and serves the Designer generated application files (SCXML
and VXML), audio, and grammars. It also provides:

¢ Runtime evaluation of Business Controls (business hours, special days, emergency flags and data
tables).

» Callback interface to GES.
DAS uses built-in NGINX to front requests. It consists of 3 modules: NGINX, PHP, and Node.js.

¢ Requests for static workspace content (SCXML, VXML, JS, audio, grammar, etc) are handled by the
NGINX module.

e Requests for PHP content are processed by the FastCGI PHP module.
* SDR (Analytics) processing requests are handled by the DAS Node.js module.

Files generated by Designer can be served only by DAS. Designer will work only with
DAS.

Supported Kubernetes platforms

The Designer and DAS services are supported on the following Kubernetes platforms:

¢ Azure Kubernetes Service (AKS)

e Google Kubernetes Engine (GKE)

See the Designer Release Notes for information about when support was introduced.

Designer Private Edition Guide

Architecture

Architecture

Contents

e 1 Introduction
* 2 Architecture diagram — Connections

¢ 3 Connections table

Designer Private Edition Guide

Architecture

Learn about Designer architecture

Related documentation:

* For private edition

Introduction

The architecture diagram in this topic illustrates a sample deployment of Designer and DAS.

For more information on the Genesys Multicloud CX private edition architecture, refer to the
Architecture topic in the Setting up Genesys Multicloud CX private edition document.

For information about the overall architecture of Genesys Multicloud CX private edition, see the high-
level Architecture page.

See also High availability and disaster recovery for information about high availability/disaster
recovery architecture.

Architecture diagram — Connections

The numbers on the connection lines refer to the connection numbers in the table that follows the
diagram. The direction of the arrows indicates where the connection is initiated (the source) and
where an initiated connection connects to (the destination), from the point of view of Designer as a
service in the network.

Designer Private Edition Guide 10

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Architecture

Kubernetes g é 9
4
I
|
¢
|

Authentication

0

0

Designer Ul Designer

ingress
gws-platform-configuration

loe-@®--lo-@ o 1o 103
=i @ r N L

|

NFS file system Persistent DAS | External/Customer
@ |
|

volume API

o o

Tenant pod MCP
(URS)

Connections table

The connection numbers refer to the numbers on the connection lines in the diagram. The Source,
Destination, and Connection Classification columns in the table relate to the direction of the
arrows in the Connections diagram above: The source is where the connection is initiated, and the
destination is where an initiated connection connects to, from the point of view of Designer as a
service in the network. Egress means the Designer service is the source, and Ingress means the
Designer service is the destination. Intra-cluster means the connection is between services in the
cluster.

Designer Private Edition Guide

/File:Pe_designer_architecture.png
/File:Pe_designer_architecture.png

Architecture

Connection Source

1 Customer
browser

2

3 Designer
ingress

4 Designer

5 Designer

6 Prometheus

7 Designer

8 Designer

9 Designer
replica set
Shared file

10 system
(NFS)
Persistent

= volume

Destination

Genesys
Authentication

Designer
ingress

Designer

Logging

Redis

Designer

Genesys
Engagement
Service

Genesys
Web
Services and
Applications

Nexus

Persistent
volume

Designer
Persistent
Volume

Protocol

HTTPS

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP/HTTPS

Port

8095

443

8888

6380

8888

80

80

80

Classification

Intra-cluster

Ingress

Egress

Egress

Egress

Ingress

Ingress

Data that
travels on
this
connection

Designer
queries the
Genesys
Authentication
Service to
validate the
user’s
identity.

Web browser
used to
access the
Designer Ul.

Incoming
web traffic
from the UI.

Centralized
logging.
Resource
index
caching and
multi-user
collaboration
locks on
Designer
resources.

Metrics for
monitoring
and alerting
with
Prometheus.

Publish
callback
services.

Authentication
of Designer
and
configuration
data access.

Fetch
Designer Bot
registry
information.

NFS for
workspace
storage.

Data for
workspace
storage.

Designer Private Edition Guide

12

Architecture

Connection

12

13

14

15

16

17

18

19

20

Source

Designer
Persistent
Volume
Claim (PVC)

Designer
Persistent
Volume
Claim (PVC)

Designer

Designer
Application
Server

Voice
Microservices

DAS ingress

External/
Customer

Genesys
Voice
Platform

Designer
Application
Server

Destination

Claim (PVC)

Designer
replica set
persistent
volume

DAS replica
set
persistent
volume

Elasticsearch

Elasticsearch

DAS ingress

Designer
Application
Server

Designer
Application
Server

DAS ingress

Nexus

Protocol

HTTP

HTTP

HTTP

HTTP

HTTPS

HTTP

HTTP/HTTPS

Port

9205

9205

80

8080

443

80

80

Classification

Egress

Egress

Ingress

Ingress

Egress

Ingress

Ingress

Data that
travels on
this
connection

Data for
workspace
storage.

Data for
workspace
storage.

Query
Designer
Analytics
data
(Session
Detail
Records).

Store
Designer
Analytics
data
(Session
Detail
Records).

Fetch
Designer
application
pages
(VXML,
SCXML),
JSON files,
and so on.

HTTP traffic
from DAS
ingress.

External
customer
API requests.

Fetch
Designer
audio
resources.

Fetch GES
APIs for
callback
processing.

Designer Private Edition Guide

13

High availability and disaster recovery

High availability and disaster recovery

Find out how this service provides disaster recovery in the event the service goes down.

Related documentation:

RSS:

* For private edition

Name High Availability Disaster Recovery this service?

N =N (N+1)
Designer or Pilot light Primary unit only
N = 2 (active-active)

. : . N =N (N+1)
Designer Application or Active-spare Primary or secondary unit
Server N = 2 (active-active)

See High Availability information for all services: High availability and disaster recovery

Designer and DAS must be deployed as highly available in order to avoid single points of failure. A
minimum of 2 replicas of each service must be deployed to achieve HA.

The Designer and DAS service pods can be automatically scaled up or down
based on metrics such as CPU and memory utilization. The Deployment
configuration settings section provides more information on configuring HA and
auto-scaling.

The pilot-light DR or multi-region pattern for the Designer service is supported only for

Where can you host

Designer Private Edition Guide

14

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

High availability and disaster recovery

the primary region.

Refer to the Genesys Docker Deployment Guide for more information on general
HA recommendation for Kubernetes.

Designer Private Edition Guide 15

Before you begin

Before you begin

Contents

e 1 Limitations and assumptions
e 2 Download the Helm charts
e 3 Third-party prerequisites
e 4 Storage requirements
¢ 5 Network requirements
¢ 6 Browser requirements
* 6.1 Minimum display resolution

* 6.2 Third-party cookies

* 7 Genesys dependencies

* 8 GDPR support

Designer Private Edition Guide

16

Before you begin

Find out what to do before deploying Designer.

Related documentation:

* For private edition

Limitations and assumptions

Designer currently supports multi-tenancy provided by the tenant Configuration Server. That is, each
tenant should have a dedicated Configuration Server, and Designer can be shared across the multiple

tenants.
Before you begin:

1. Install Kubernetes. Refer to the Kubernetes documentation site for installation instructions. You can also
refer to the Genesys Docker Deployment Guide for information on Kubernetes and High Availability.

2. Install Helm according to the instructions outlined in the Helm documentation site.

After you complete the above mandatory procedures, return to this document to complete
deployment of Designer and DAS as a service in a K8s cluster.

Designer applications cannot be used to handle default routed calls or voice
interactions. IRD applications should be used for such scenarios until Designer adds
support for handling default routed calls or voice interactions.

Download the Helm charts

Download the Designer related Docker containers and Helm charts from the JFrog repository.

See Helm charts and containers for Designer for the Helm chart and container versions you must
download for your release.

Designer Private Edition Guide 17

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Before you begin

For more information on JFrog, refer to the Downloading your Genesys Multicloud CX containers topic
in the Setting up Genesys Multicloud CX private edition document.

Third-party prerequisites

The following section lists the third-party prerequisites for Designer.

e Kubernetes 1.19.x - 1.21.x
¢ Helm 3.0

¢ Docker

* To store Designer and DAS docker images to the local docker registry.

e Ingress Controller

* If Designer and DAS are accessed from outside of a K8s cluster, it is recommended to deploy/
configure an ingress controller (for example, NGINX), if not already available. Also, the Blue-Green
deployment strategy works based on the ingress rules.

* The Designer Ul requires Session Stickiness. Configure session stickiness in the annotations
parameter in the values.yaml file during Designer installation.

For information about setting up your Genesys Multicloud CX private edition platform, including
Kubernetes, Helm, and other prerequisites, see Software requirements.

Name

A container image
registry and Helm chart
repository

Load balancer

Elasticsearch 7.x

Third-party services

Version

Purpose Notes

Used for downloading
Genesys containers and
Helm charts into the
customer's repository to
support a CI/CD
pipeline. You can use
any Docker OCI
compliant registry.

VPC ingress. For NGINX
Ingress Controller, a
single regional Google
external network LB
with a static IP and
wildcard DNS entry will
pass HTTPS traffic to
NGINX Ingress
Controller which will
terminate SSL traffic
and will be setup as part
of the platform setup.

Used for text searching
and indexing. Deployed
per service that needs
Elasticsearch during

Elasticsearch 7.8.0 is
used for Designer
Analytics and audit trail.

Designer Private Edition Guide

18

https://www.elastic.co/

Before you begin

Name Version

Redis 6.X

Storage requirements

Purpose
runtime.

Used for caching. Only
distributions of Redis
that support Redis
cluster mode are
supported, however,
some services may not
support cluster mode.

The following storage requirements are mandatory prerequisites:

¢ Persistent Volumes (PVs)

Notes

Redis is used for
resource index caching
and multi-user
collaboration locks on
Designer resources.

* Create persistent volumes for workspace storage (5 GB minimum) and logs (5 GB minimum)

* Set the access mode for these volumes to ReadWriteMany.

e The Designer manifest package includes a sample YAML file to create Persistent Volumes required

for Designer and DAS.

* Persistent volumes must be shared across multiple K8s nodes. Genesys recommends using NFS to

create Persistent Volumes.

¢ Shared file System - NFS

* For production, deploy the NFS server as highly available (HA) to avoid single points of failure. It is
also recommended that the NFS storage be deployed as a Disaster Recovery (DR) topology to
achieve continuous availability if one region fails.

* By Default, Designer and DAS containers run as a Genesys user (uid:gid 500:500). For this reason,
the shared volume must have permissions that will allow write access to uid:gid 500:500. The
optimal method is to change the NFS server host path to the Genesys user: chown -R

genesys:genesys.

* The Designer package includes a sample YAML file to create an NFS server. Use this only for a demo/

lab setup purpose.

* Azure Files Storage - If you opt for Cloud storage, then Azure Files Storage is an option to consider

and has the following requirements:

A Zone-Redundant Storage for RWX volumes replicated data in zone redundant (check this), shared

across multiple pods.

* Provisioned capacity : 1 TiB

* Baseline 10/s : 1424

e Burst 10/s : 4000

e Egress Rate : 121.4 MiBytes/s
¢ |Ingress Rate : 81.0 MiBytes/s

Designer Private Edition Guide

19

https://redis.io/

Before you begin

Network requirements

e |If Designer and DAS are accessed from outside of a K8s cluster, it is recommended to deploy/configure
an ingress controller (for example, NGINX), if not already available. Also, the Blue-Green deployment
strategy works based on the ingress rules.

e The Designer Ul requires Session Stickiness. Configure session stickiness in the annotations parameter
in the values.yaml file during Designer installation.

Browser requirements

Unless otherwise noted, Designer supports the latest versions of the following browsers:

e Mozilla Firefox

* Google Chrome (see Important, below)
¢ Microsoft Edge

e Apple Safari

Internet Explorer (all versions) is not supported.

For Google Chrome, Designer supports the n-1 version of the browser, i.e. the version
prior to the latest release.

Minimum display resolution

The minimum display resolution supported by Designer is 1920 x 1080.

Third-party cookies

Some features in Designer require the use of third-party cookies. Browsers must allow third-party
cookies to be stored for Designer to work properly.

Genesys dependencies

The following Genesys dependencies are mandatory prerequisites:

¢ Genesys Web Services (GWS) 9.x

* Configure GWS to work with a compatible version of Configuration Server.

Designer Private Edition Guide 20

Before you begin

¢ Other Genesys Components
* Authentication Service

e \oice Microservices

For the order in which the Genesys services must be deployed, refer to the Order of services
deployment topic in the Setting up Genesys Multicloud CX private edition document.

GDPR support

Designer supports the European Union's General Data Protection Regulation (GDPR) requirements
and provides customers the ability to export or delete sensitive data using ElasticSearch APIs and
other third-party tools.

For the purposes of GDPR compliance, Genesys is a data processor on behalf of customers who use
Designer. Customers are the data controllers of the personal data that they collect from their end
customers, that is, the data subjects. Designer Analytics can potentially store data collected from end
users in ElasticSearch. This data can be queried by certain fields that are relevant to GDPR. Once
identified, the data can be exported or deleted using ElasticSearch APIs and other third-party tools
that customers find suitable for their needs.

In particular, the following SDR fields may contain PIl or sensitive data that customers can choose to
delete or export as required:

¢ ANI - This SDR field contains the customer's phone number used to make voice calls handled by
Designer applications.

¢ variables.Contact - This SDR field is an object and can have multiple properties, such as, name, email
address, and other contact details. For example,

"ContactId":"AAABBA10OOOOOI9yY",
"EmailAddress":"john.doe@home.com",
"FromPersonal":"John Doe ",
"FromAddress":"john.doe@home.com",
"FirstName":"John",
"LastName":"Doe"

e Application variables defined in the main application flow are also stored in the SDR under the
variables object. These variables depend on application logic and may capture sensitive information
intentionally or unintentionally. It is recommended to mark such variables secure (see Securing
Variables in Designer Help for more details). But if they are captured in analytics, they can also be used
to identify candidate SDRs for deletion or retrieval. The same applies to userdata key value pairs
attached to interaction data which is captured in the calldata object in the SDR.

It is the customer's responsibility to remove any PIl or sensitive data within 21 days or
less, if required by General Data Protection Regulation (GDPR) standards.

Designer Private Edition Guide 21

Before you begin

For general information about Genesys support for GDPR compliance, see
General Data Protection Regulation.

Designer Private Edition Guide

22

Configure Designer

Configure Designer

Contents

e 1 Deployment configuration settings (Helm values)
* 2 Designer deployment settings

e 2.1 Designer ConfigMap settings

3 DAS deployment settings
» 3.1 DAS ConfigMap settings
¢ 4 Post deployment Designer configuration settings
* 4.1 Flow settings
* 4.2 Tenant settings
* 4.3 DesignerEnv transaction list
* 4.4 Post deployment configuration settings reference table
* 4.5 Features

* 5 Adding a Ul plugin to Designer

Designer Private Edition Guide

23

Configure Designer

Learn how to configure Designer.

Related documentation:

* For private edition

Deployment configuration settings (Helm values)

The following sections provide information on the various settings that have to be configured in

Designer and DAS. The configuration settings listed below will be used during the deployment of
Designer and DAS. That is, these settings will be used during initial deployment/upgrade. These

settings can be configured in the values.yaml Helm file.

For more information about how to override Helm chart values, see Overriding

Helm chart values in the Setting up Genesys Multicloud CX Private Edition guide.

Depending on the Kubernetes platform or the container orchestration platform that
you are deploying Designer on, you might have to carry out some additional steps
specific to that platform. For more information, navigate to the required topic in the
Kubernetes platform specific information section on the About page.

Designer deployment settings

The following table provides information on the Designer deployment settings. These settings are
configured in the designer-values.yaml file.

Parameter Description Mandatory? Default Value

. mber of service
de51gner.deployment.rep:\rﬂ]% g&%élﬂ Mandatory 2

S Fo be created.

The maximum number
designer.deployment . maxoferEnl c@Gotmibe Optional 10
created. It is

Designer Private Edition Guide

24

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Configure Designer

recommended to
configure this setting if
auto-scaling is used.

The deployment
strategy to follow. This
determines which type
of resources are
deployed. Valid values
are: rollingupdate,
blue-green, blue-
green-volume, blue-
green-ingress,
grafana.

¢ rollingupdate -
default Kubernetes
update strategy
where resources will
be updated using
the rolling upgrade
strategy.

* blue-green - for
deploying and
upgrading the
Designer service

designer.deployment.st ratelgsymg the blue-green

designer.deployment.co

strategy.

* blue-green-volume
- for the blue/green
upgrade, this is to
create a Persistent
Volume Claim (PVC)
for the very first
time.

¢ blue-green-ingress
- for the blue/green
upgrade, this is to
create an ingress for
the first time and
update the ingress
during a service
cutover.

e grafana - for
deploying the
Grafana dashboard.

This is to deploy/
upgrade the Designer
1soerrvice in a blue-green
upgrade strategy. Valid
values are: blue,

green.

designer.deployment. typEhis is to specify the

Mandatory

Optional

Optional

rollingupdate

Deployment

Designer Private Edition Guide

25

Configure Designer

type of deployment.
Valid value:
Deployment.

The registry that the
designer.image.registryorganization uses for
storing images.

Docker repository that
designer.image.repositoagntains the images for
Designer.

designer.image.tag Designer image version.

Designer image pull
policy (imagePullPolicy).
Valid values: Always,
IfNotPresent, Never.

¢ Always - always pull
the image.

designer.image.PullPolicy IfNotPresent - pull

the image only if it
does not already
exist on the node.

¢ Never - never pull
the image.

Secret name containing

: . . 7 ntials for

de51gner.1mage.1magePu1;1ust(%ceernet!lta

the Docker repository.
true if a persistent

volume for the Designer

workspace must be
created. This is used in
case of static volume
provisioning, where, the
created and then
\Vccige@%ugnd to the
specified PV. Currently,
support to create PV
only for Azure files
(SMB) and NFS is
present in the helm
chart.

: PV i
designer.volumes.wo rksp@_}%

Supports two types:

nfs - Creates an NFS PV
provided you have an NFS

designer.volumes.wo rksp?r%‘%qu'.etvﬁée LD
azurefiles-smb - Creates a
PV for pre-existing SMB type
Azure fileshares.

PV to be

designer.volumes.wo rkspgra%%@gﬁé@?example

csating access to

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

9.0.110.07.7

IfNotPresent

false

Designer Private Edition Guide

26

Configure Designer

designer-workspace-
pv.

Size of the PV to be
designer.volumes.workspaeeRedsEoragample,
5Gi.

The storage class
associated with the PV.
For static volume
provisioning to occur as
expected, it is highly

designer.volumes.workspacefPnrededé6lass
provide "" (intentional
empty double quotes) or
any distinct storage
class name that does
not exist already.

Mount options to be
given to the PV.

Note: Mount options differ
. according to the underlying
designer.volumes.workspagaby sHRUREDRKIOBINFS
or SMB. Using the same set of
mountOptions with different
storage types leads to volume
mount errors.

The IP address or FQDN
of the NFS server.

designer.volumes.workspacePy,server
9 pNote: This ﬁeelcyis only

applicable for nfs type PVs.

The exported path from
the NFS server.

designer.volumes.workspacePy ,J)ath_
Note: This field is only

applicable for nfs type PVs.

The azure fileshare
name for which the PV
must be created.

designer.volumes.workspacePv.shareName
Note: This field is only

applicable for azurefiles-
smb type PVs.

true if secret with data
to authenticate the
Azure storage account
must be created. Can be
false if

designer.volumes.workspacer v F%ea%stg%egrjét
manually created.

Note: This field is only

applicable for azurefiles-
smb type PVs.

designer.volumes.workspHuePamedodidlaieen to

Designer Private Edition Guide

Configure Designer

the secret created with

the
designer.volumes.workspacePv.createSecret
field. For example,

designer-storage-

secret).

Note: This field is only
applicable for azurefiles-
smb type PVs.

Base64 encoded name
of the storage account.
This goes in the secret
created with

designer.volumes.worksgdesigner.volumes.workspacePv.createSecret.

Note: This field is only
applicable for azurefiles-
smb type PVs.

Base64 encoded access
key of the storage
account. This goes in
the secret created with

designer.volumes.worksgdesigner.volumes.workspacePv.createSecret

Note: This field is only
applicable for azurefiles-
smb type PVs.

If a persistent volume is

designer.volumes.workspack@\areatedtehis value Mandatory true

designer.volumes.works

has to be true.

The type of the volume
provisioning to use:

static - This type is used

when a PV has been created

either by using the helm

values in

designer.volumes.workspacePv i
FShbmantally and the Mandatory dynami.c
workspace PVC must be

bound to it.

dynamic - This type is used

when a configured storage

class will dynamically allocate

a PV to the workspace PVC.

/designer/workspace

The path where the Note: This is not a

designer.volumes.wo rksp&?%&?ﬁcﬁ@%%ﬁ#ﬁ%@ﬁ? Mandatory Ul P ValE, L VELE

designer.volumes.workspaaeRyiordtesim Mandatory

MUST be /designer/

Designer container. workspace for the proper
functioning of Designer.

Persistent volume claim ;
designer-managed-
disk

workspace.

Designer Private Edition Guide

28

Configure Designer

designer.volumes

designer.volumes

designer.volumes

designer.volumes

Size of the persistent
volume claim for the
workspace.

.workspacePvc.claimSize

The persistent volume must
be equal to or greater than
this size.

storageClassName
provided in the

.works | eccr%si\ét e”g*@é?#%%{%g%

Designer workspace
(example, nfs).

The PV's name to which
the PVC must be bound

.works p@pgRica bpe ame when
designer.volumes.workspacePvc.type

is static).
If a PVC volume is to be

.logsPwareatedtehis value has

to be true, else false.

The type of volume
provisioning to use:

static - This type is used
when a PV has been created
and PVC logs must be bound
to it.

dynamic - This type is used
when a configured storage

designer.volumes. 1ogsP\fda.SEygiﬁdy”amica”y allocate
aPVidt

designer.volumes

designer.volumes

designer.volumes

designer.volumes

e PVC logs.
Note: The helm charts only
have support for creating
static PVs for the PVC
workspace. For PVC logs, it is
recommended to make use of
dynamic provisioning and let
the storage class do the PV
allocation.

The path where the

Designer, volume is
.logstt%.ﬁ@Jntng R

mounted inside
the Designer container.

Vlze.ré{%temt volume claim
name for logs.

Size of the persistent
volume claim for the

Designer logs.

.logsPvc.claimSize

The persistent volume must
be equal to or greater than
this size.

. logsPwtosdgeatpENmse

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

true

/designer/logs

Note: This is not a
customizable value. The value
MUST be /designer/logs for
the proper functioning of
Designer.

designer-logs

Designer Private Edition Guide

29

Configure Designer

provided in the
persistent volume that
is created for the
Designer logs
(example, nfs).

Note: In case of static volume
provisioning, this field must
match with the storage class
of the PV. If the PV does not
have a storage class, then it is
mandatory to provide "" for
this field in the helm values.
Otherwise, static volume
provisioning will not occur as
expected.

The PV's name to which
the PVC must be bound

designer.volumes. logsPVapplitaixde only when
designer.volumes.logsPvc.type

designer.podVolumes

designer.volumeMounts

designer.livenessProbe.

designer.livenessProbe.

designer.livenessProbe.

is static).

Log and workspace
persistent volume claim
names and name of the
volumes attached to the
pod.

Name and mount path
of the volumes to be
attached to the
Designer pods.

Designer liveness probe
A
Port.running th

SSREIAgETPort

The liveness probe will

Isa 3tanipbled figr a given
delay as specified here.

The interval between

designer.livenessProbe .ehatkirbessalrobe

request.

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

designer:
podVolumes:
- name: designer-
pv-volume

persistentVolumeClaim:
claimName:
designer-managed-disk
- name: designer-
log-volume

persistentVolumeClaim:
claimName:
designer-logs

volumeMounts:
- name: designer-
pv-volume
mountPath:
/designer/workspace
- name: designer-
log-volume
mountPath:
/designer/logs

/health

8888

20

Designer Private Edition Guide

Configure Designer

Number of liveness
probe failures after

designer.livenessProbe .vihidh reCoark the

. . D
designer. readlnessProbeprSO%)

container as unstable or

restart.

igner readiness
%e{]API path.

designer.readinessP robep%rtrgjlf'#nlﬂ%ﬁllitg?t

con

The readiness probe will

designer.readinessProbehes thartepDaftay a given

delay as specified here.
The interval between

designer.readinessProbecatte ckddiressaprobe

request.

Number of readiness
probe failures after

designer.readinessProbewifiadl upe®@rkithe

container as unstable or

restart.

This enables providing
the GWS Client ID and

Secret as an input to the

designer.designerSecretBegitpieErguods.

designer.designerSecre

designer.service.

designer.service.

designer.service.

designer.service.

designer.service.

Kubernetes Secrets is
used to store the GWS
client credentials.

GWS Client ID and GWS
Client Secret. Create a
new GWS Client if it
t%o%%npétegist. A Iink_ to
information on creating
a new GWS Client is
provided in the Platform

settings section.

Set to true if the
enableskrvice must be
created.

Service type. Valid
type values are: ClusterlIP,

NodePort,

LoadBalancer.

The Designer service
port portto be exposed in
the cluster.

The Designer
targetdopitcation port running
inside the container.

Port to be exposed in
nodePogdse service type is
NodePort.

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Optional

Mandatory

Mandatory

Mandatory

Mandatory for

/health

8888

20

true

true

NodePort

8888

http

30180

designer.service.type=Nuucrurt.

Designer Private Edition Guide

31

Configure Designer

designer.

designer.

designer.

designer.

designer.

designer.

designer.

designer.

designer.

designer.

designer.

The period after which

service.te rmingng:%%é'lﬁeﬂtgg 62&;@%;512@

service termination.

Set to true to enable
ingress.

ingress.enableafdgress should be enabled for
all cases except for a lab/
demo setup.

The apiVersion of the
ingress manifest to be
deployed. Currently,

ingress.apiVernetworking.k8s.io0/
vlbetal and
networking.k8s.1io/v1
are supported.

The ingress class name

for the ingress

deployed. Applicable
ingress.ingresstiyasbkame

Optional

Mandatory

Optional

Optional

designer.ingress.apiVersion

is networking.k8s.io/
vl1.

Annotations added for
ingress. The Designer Ul
requires Session
Stickiness if the replica
count is more than 1.

: nfigure Session

1ngress.annota§,§gﬁ%ess based on the
ingress controller type.
Configuration specific to
ingress such as Session
Stickiness can be
provided here.

ingress.paths Ingress path

Hostnames to be
ingress.hosts configured in ingress for
the Designer service.

TLS configuration for

ingress.tls .
9 ingress.

Maximum amount of
resources.limi@BUdpat K8s allocates
for the container.

Maximum amount of
ry that K8s

resources.limi enr%%(n?/r
. altoC5tes for the
container.

ranteed CPU
resources. requ%%c?.csa.t%# for the

Optional

Mandatory

Mandatory

Optional

Mandatory

Mandatory

Mandatory

30 seconds.

true

networking.k8s.io/v1l

[/1]
- .example.com

- .blue.example.com
- .green.example.com

[]

600m

161

500m

Designer Private Edition Guide

32

Configure Designer

designer.resources. requatdcatimmdborythe

container.

Guaranteed memory
Mandatory
container.

This setting controls
which user ID the
containers are run with.
This can be configured
to run Designer as a
non-root user. You can
either use the Genesys
user or arbitrary UIDs.
Both are supported by

designer.securityContextherDesiyserbase Optional

image. 500 is the ID of
the Genesys user.

The file system must reside
within the Genesys user
account in order to run
Designer as a Genesys user.
Change the NFS server host
path to the Genesys user:
chown -R genesys:genesys

Controls which primary
group ID the containers
are run with. This can
be configured to run
Designer as a non-root

designer.securityContexisaeuivAs@aupither use Optional

designer.nodeSelector

designer.affinity

designer.tolerations

the Genesys userGroup
(GID - 500) or arbitrary
GIDs. Both are
supported by the
Designer base image.

To allow pods to be
scheduled based on the
labels assigned to the
nodes.

Optional

The K8s standard node
affinity and anti-affinity
configurations can be
added here. Refer to the
this topic in the
Kubernetes
documentation site for
sample values.

Optional

Tolerations work with

taints to ensure that

pods are not scheduled Optional
on to inappropriate

nodes. Refer to the

512Mi

Default value:

nodeSelector: {}
Sample value:

nodeSelector:

{}

Designer Private Edition Guide

33

Configure Designer

Taints and Tolerations
topic in the Kubernetes
documentation site for
sample values.

Set to true if a pod

designer.podDisruptionBlidgettiendildget is to

be created.

The number of pods

designer.podDisruptionBt homullﬁ alwﬁyaso%

designer.dnsPolicy

designer.dnsConfig

le durl
d|srupt|on.

The DNS policy that
should be applied to the
Designer pods.

The DNS configuration
that should be applied
to the Designer pods.

The priority class name

designer.priorityClassNdme the pods should

designer.hpa.enabled

belong to.

Enables K8s Horizontal
Pod Autoscaler (HPA). It
automatically scales the
number of pods based
on average CPU
utilization and average
memory utilization. For
more information on
HPA refer to this topic in
the Kubernetes
documentation site.

The K8s HPA controller
will scale up or scale
down pods based on the
target CPU utilization
percentage specified

designer.hpa.targetCPUReereert scales up or

scales down pods
between the range -

designer.deployment.replicaCount

and

designer.deployment.maxreplicaCount.

The K8s HPA controller
will scale up or scale
down pods based on the
target memory
utilization percentage

designer.hpa.targetMemapdafiedriere. It scales

up or scales down pods
between the range -

designer.deployment.replicaCount

and

designer.deployment.maxreplicaCount.

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

false

false

70

70

Designer Private Edition Guide

34

Configure Designer

designer.

designer.

designer.

designer.

designer.

designer.

designer.

designer.

designer.

designer.

designer.

designer.

designer.

designer.

labels

annotations

prometheus.

prometheus.

prometheus.

prometheus.

prometheus.

prometheus.

prometheus.

prometheus.

prometheus.

prometheus.

prometheus.

prometheus.

Labels that will be
added to the Designer
pods.

Annotations added to
the Designer pods.

Set to true if
enatrbedetheus metrics
must be enabled.

Label key assigned to
tagitemmpods/service to filter
out.

Label value assigned to
tagVeelpeds/service to filter
out.

instance

Setto true if a
service monitor
resource 1is needed,
to monitor the pods
through the
Kubernetes service.

Th th.in which, the
serViG A ol kA

ser

The scrape interval
specified for the
Prometheus server. That

serigitetamedntaniad atal
which the Prometheus
server will fetch metrics
from the service.

Labels to be specified
serfior ¢eldosdriiae habeiter
resource.

Set to true if
alePrometheus alerts
must to be created.

Any custom alerts that
alerescraateomanst te
specified here.

Label specified
alef’(?ﬁhzataﬁ%igs resource.

Scenarios for which
alealests need to be
created.

Optiona

Optional

Optiona

Optional

Optiona

Optional

Optiona

Optional

Optiona

Optional

Optiona

Optional

Optiona

Optional

{}

{}

false

service

designer

{{instance}}

false

/metrics

10s

false

designer.prometheus.alerts

containerRestartAlert:
interval: 3m
threshold: 5

AlertPriority:
CRITICAL

MemoryUtilization:

Designer Private Edition Guide

35

Configure Designer

interval: 1m
threshold: 70

AlertPriority:
CRITICAL

endpointAvailable:
interval: 1m

AlertPriority:
CRITICAL
CPUUtilization:
interval: 1m
threshold: 70

AlertPriority:
CRITICAL

containerReadyAlert:
interval: 1m
readycount: 1

AlertPriority:
CRITICAL

WorkspaceUtilization:
interval: 3m
threshold: 80

workspaceClaim:
designer-managed-disk

AlertPriority:
CRITICAL
AbsentAlert:
interval: 1m

AlertPriority:
CRITICAL
Health:
interval: 3m

AlertPriority:
CRITICAL

WorkspaceHealth:
interval: 3m

AlertPriority:
CRITICAL
ESHealth:
interval: 3m

AlertPriority:
CRITICAL
GWSHealth:
interval: 3m

AlertPriority:
CRITICAL

Designer Private Edition Guide

36

Configure Designer

Set to true if the

designer.grafana.enable@rafana dashboard isto Optional true
be created.
Labels that have to be

designer.grafana.labelsadded to the Grafana Optional
ConfigMap.

Annotations that have
designer.grafana.annotdbibesdded to the Optional
Grafana ConfigMap.

Enables Kubernetes
Annotations and adds it
to all the resources that

have been created.
annotations Optional {}
For more information, refer to
the Annotations topic in the
Kubernetes documentation
site.

Any custom labels can
be configured here. It is
a key and value pair, for
example, key:"value".
These labels are added
to all resources.

Labels that will be
podLabels added to all application Optional {}
pods.

labels Optional {}

Annotations that will be
podAnnotations added to all application Optional {}
pods.

Designer ConfigMap settings

The following table provides information on the environment variables and service-level settings
stored in the Designer ConfigMap.

Parameter Description Mandatory? Default Value

This enables providing

environment variables
designer.designerConfigaDsgféar']{éér’lgoté’;Tteuses a
ConfigMap to store the

environment variables.

Mandatory true

Designer port for

container ("port" in
designer.designerConfiglensetidi§s PORT). The Mandatory "8888"

input should be a string,

within double quotes.

DAS hostname
designer.designerConfig("applicationHost"tiR HO$Mandatory das
flowsettings.json).

Designer Private Edition Guide

Configure Designer

DAS port

("applicationPort" in
designer.designerConfidglewsstiii§s JSRHERVER POMTandatory

input should be a string,

within double quotes.

This is normally not

changed. It is the

relative path to the

workspace on DAS. The
designer.designerConfigdefandt DEEUDEPLOY URL Mandatory

"/workspaces" should

be used always

("deployURL" in

flowsettings.json).

Set to "true" so
Designer works with
GWS. If set to "false",
Designer defaults to a
local mode and may be

designer.designerConfigussd seDifordsiEy HTGWS Mandatory
is unavailable
("usehtcc" in
flowsettings.json). Input
should be "true" or
"false".

GWS server host

("htccserver" in

flowsettings.json). For
designer.designerConfigexamwpl®ES HTCC SERVER Mandatory

"gws.genhtcc.com". The

input should be a string,

within double quotes.

GWS server port

("htccport" in
designer.designerConfigg)%;r\{r\Z%tlteﬁ ..E'WHE&T Mandatory

input should be a string,

within double quotes.

To enable or disable

Designer Analytics
designer.designerConfigl(,l§£§£&.ﬁ$§:ﬁ§%§$ﬁéﬁ]@wnﬁonaI

should be "true" or

"false".

Elasticsearch URL

("esUrl" in

flowsettings.json). For
designer.designerConfigexammplOEHER: Mi&d- Optional

service:9200". The input

should be a string,

within double quotes.

Elasticsearch Server
designer.designerConfigHestvhlabis ("esServer" Optional
in flowsettings.json). For

"80 n

"/workspaces"

"false"

"false"

Designer Private Edition Guide

38

Configure Designer

example, "es-
service"). The input
should be a string,
within double quotes.

Elasticsearch port
("esPort" in
designer.designe rConfigg%;H%%teﬁ%%Z'ﬁryogﬁé Optional
input should be a string,
within double quotes.

Enable file logging. If

not enabled, Designer
designer.designerConfigwéhgsediESo Rl e tiEEING MAABLED Y

logs. Input should be

"true" or "false".

Set to true to include
the contents of the

designer.designerFlowSeﬂcocvilﬁ Etlr&g_%%eml s Optional

a separate n?‘igMap.
Input should be true or
false.

The flowsettings.yaml
file should contain these
keys, so that the file's
contents will be
included in the
designer.designerFlowSeGdnfigMaamRefer to the Optional
Updating the
flowsettings file section
in the Deploy Designer
topic for more
information on this.

DAS deployment settings

The following table provides information on the DAS deployment settings. These settings are
configured in the das-values.yaml file. DAS Deployment Settings

Parameter Description Mandatory?

das.deployment. replicacl\cl)Hn ber of pods to be

ount o Mandatory

The maximum number

of replicas to be

.created. It is .
das.deployment.maxrepllr%%(go Sntended to Optional

configure this setting if

auto-scaling is used.

The deployment
das.deployment.strategystrategy to follow. This Mandatory
determines which type

"false"

false

{}

Default Value

2

10

rollingupdate

Designer Private Edition Guide

39

Configure Designer

das.deployment.color

das.deployment. type

of resources are
deployed. Valid values
are: rollingupdate,
blue-green, blue-
green-ingress, blue-
green-service,
canary.

¢ rollingupdate -
default Kubernetes
update strategy
where resources will
be updated using
the rolling upgrade
strategy.

* blue-green - for
deploying and
upgrading the DAS
service using the
blue-green strategy.

¢ blue-green-ingress

- for the blue-green
upgrade, this is to
create an ingress for
the first time.

¢ blue-green-service
- for the blue-green
upgrade, this is to
create a service for
the first time, and
update the service
during a service
cutover.

* canary - to deploy
canary pods along
with the blue-green
pods.

This is to deploy/
upgrade the DAS
service using the blue-
green upgrade strategy.
Valid values are: blue,
green.

Type of Kubernetes
controller. Valid values
is: StatefulSet

¢ StatefulSet - if the
Designer workspace
is stored in a remote
cloud storage
system, such as

Mandatory for blue-
green and blue-green-
service strategies.

Optional

StatefulSet

Designer Private Edition Guide

40

Configure Designer

das.image.repository

das.image. tag

das.image.pullPolicy

das.image.imagePullSecr.

das.podVolumes

das.volumes.podPvc.creattering Designer files.

das.volumes.podPvc. mourﬁ?%

Azure Files.

Docker repository that
contains the images for
DAS.

DAS image version.

Mandatory

Mandatory

DAS image pull policy
(imagePullPolicy). Valid
values are: Always,
IfNotPresent, Never.

e Always - always pull
the image.

+ IfNotPresent - pull Optional

the image only if it
does not already
exist on the node.

* Never - never pull
the image.

Secret name containing
the credentials for
agsﬁsnenticating access to Mandatory

the Docker repository.

Provides the name of
the volume and name of
the persistent volume
claim to be attached to
the pods

Mandatory

This volume is usually
created to mount a local
disk to a DAS container
for syncing data in case
cloud storage is used for
Optional
This value has to be
true or false
depending on whether
the local disk is needed
or not

The path where the
space volume is to
ounted inside the
DAS container.

Optional

IfNotPresent

das:
podVolumes:
- name: workspace

persistentVolumeClaim:

claimName: designer-
managed-disk
- name: logs

persistentVolumeClaim:

claimName: designer-
logs

false

Designer Private Edition Guide

41

Configure Designer

.Persistent volume claim
das.volumes.podPvc.claim

Mo me for the volume. Optional local-workspace

Size of the persistent
volume claim for the
pod.

das.volumes.podPvc.claimSize Optional
The persistent volume must
be equal to or greater than
this size.

storageClassName

provided in the
das.volumes.podPvc. stornagetdzed volume that Optional

is created for DAS

(example, nfs).

The read/write
priveleges and mount
priveleges of the
volume claim with
respect to the nodes.
Valid types are:
ReadWriteOnce,
ReadOnlyMany,
ReadWriteMany.

¢ ReadWriteOnce -
the volume can be
mounted as read-
write by a single

das.volumes.podec.accessl‘/ﬂ)%%% Optional ReadWriteOnce
¢ ReadOnlyMany -
the volume can be
mounted as read-
only by many nodes.

e ReadWriteMany -
the volume can be
mounted as read-
write by many
nodes.

For more information, refer to
the access modes topic in the
Kubernetes documentation

site.
volumeMounts:
The name of the volume w&%gﬁigtgéeédas/
das.volumeMounts and the mount path to Mandatory b

name: workspace
- mountPath: /das/log
name: logs

be used by the pods.

Set to true if
das.dasSecrets.enabled Kubernetes secrets Optional false
must be created to store

Designer Private Edition Guide 42

Configure Designer

das.

das.

das

das.

das.

das.

das.

das.

das.

das.

das.

das.

das.

das.

das.

das

keys/credentials/tokens.

Key value pairs
containing the secret,
such as, username and
password.

dasSecrets.secrets

DAS liveness probe API

livenessProbe.path path.

.livenessProbe. contaa%rettrrb'rgpj(ng the

container.

The liveness probe will
livenessProbe. startupBedded after a given
delay as specified here.

The interval between
livenessProbe. checkdaxtelivahess probe
request.

Number of liveness
probe failures after
livenessProbe. failuwhb{@yrb mark the
container as unstable or
restart.
DAS readiness probe API

readinessProbe. pathpath.

Part r ing the

readinessProbe. contcaol&%lfﬁgﬁt

The readiness probe will
readinessProbe.stariegbatay after a given
delay as specified here.

The interval between
readinessProbe.checdddtesadiness probe
request.

Number of readiness
probe failures after

readinessProbe. failwhadywotmark the
container as unstable or
restart.

Set to true if the
service.enabled service must be
created.

Service type. Valid
values are: ClusterlIP,
NodePort,
LoadBalancer.

service.type

The DAS service port to
service.port be exposed in the
cluster.

The DAS application
service.targetPort port running inside the
container.

.service.nodePort Port to be exposed in

Optional

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Optional

Mandatory

Mandatory

Mandatory

Mandatory if

/health

8081

10

/health

8081

10

true

NodePort

80

http

30280

Designer Private Edition Guide

43

Configure Designer

das.

das.

das.

das.

das

das.

das.

das.

das.

das.

das.

das.

das

.securityContext. run‘ﬂs%}?

case service type is
NodePort.

The period after which
service.te rminationﬁéﬁ“ rgn%egégpriit(?rts ©

e in case
of deletion.
Set to true to enable
ingress.
ingress.enabled Ingress should be enabled for
all cases except for a lab/
demo setup.

The apiVersion of the
ingress manifest
deployed. Supported
ingress.apiVersion versions are,
networking.k8s.io/
vlbetal and
networking.k8s.1io/v1.

The ingress class name

for the ingress

deployed. Applicable
ingress.ingressClasshgmehen

das.ingress.apiVersion

is networking.k8s.io/
v1.

Annotations added for

.ingress.anno‘ca‘cionsth)

e ingress resources.

ingress.paths Ingress path.
Hostnames to be

ingress.hosts configured in ingress for

the DAS service.

TLS configuration for

ingress.tls h
9 ingress.

Maximum amount of
resources.limits.cpdPU that K8s allocates
for the container.

Maximum amount of
memory that K8s

eéq orcyates for the
container.

Guaranteed CPU
resources. requests .apacation for the
container.

resources.limits.m

Guaranteed memory
resources.requests .aémmatjon for the
container.

This setting controls

hi user ID the
containers are run with
and can be configured

das.service.type s
NodePort.

Optional

Optional

Optional

Optional

Optional
Optional

Mandatory if ingress is
enabled.

Optional

Mandatory

Mandatory

Mandatory

Mandatory

Optional

30 seconds.

false

networking.k8s.1io/vl

[/1]

600m

1Gi

400m

512Mi

Designer Private Edition Guide

44

Configure Designer

das.securityContext. run

das.

das.

das.

das

das.

nodeSelector

affinity

tolerations

to run DAS as a non-root
user. You can either use
the Genesys user or
arbitrary UIDs. Both are
supported by the DAS
base image. 500 is the
ID of the Genesys user.

For more information refer to
the Security Context topic in
the Kubernetes
documentation site.

This setting controls
which primary group ID
the containers are run
with and can be
conﬁgured to run DAS

non-root user. You
CaT efther use the
Genesys userGroup
(GID - 500) or arbitrary
GIDs. Both are
supported by the DAS
base image.

To allow pods to be
scheduled based on the
labels assigned to the
nodes.

The K8s standard node
affinity and anti-affinity
configurations can be
added here. Refer to the
this topic in the
Kubernetes
documentation site for
sample values.

Tolerations work with
taints to ensure that
pods are not scheduled
on to inappropriate
nodes. Refer to the
Taints and Tolerations
topic in the Kubernetes
documentation site for
sample values.

Set to true if a pod

.podDisruptionBudgetdisnapfied budget is to

be created.
The number of pods

podDisruptionBudget, r%,ng?éjll ac}ls{vays be

disruption.

Optional

Optional

Optional

Optional

Optional

Optional

Default value:

nodeSelector: {} Sample
value:

nodeSelector:

{}

false

Designer Private Edition Guide

45

Configure Designer

das.

das.

das.

das.

das.

das.

das.

das.

das.

das.

das.

das.
das.

das

dnsPolicy

dnsConfig

priorityCla

hpa.enabled

hpa.targetC

The DNS policy that
should be applied to the
DAS pods.

The DNS configuration
that should be applied
to the DAS pods.

The priority class name
ssName that the pods should
belong to.

Set to true if a K8s
Horizontal Pod
Autoscaler (HPA) is to be
created.

The K8s HPA controller
will scale up/down pods
based on the target CPU
utilization percentage
ecified. It scale up/
PUPercenjtzwn pods between the
range

Optional

Optional

Optional

Optional

Optional

deployment.replicaCount

to
deployment.maxReplicas

The K8s HPA controller
will scale up or scale
down pods based on the
target CPU utilization
percentage specified

hpa.targetMemoryPerweret It scales up or

labels

annotations

prometheus.

prometheus.

prometheus.

prometheus.
prometheus.

.prometheus.

scales down pods
between the range -

Optional

deployment.replicaCount

and
deployment.maxReplicas.

Labels that will be
added to the DAS pods.

Annotations added to
the DAS pods.

Set to true if
enabled Prometheus metrics
must be enabled.

Label key assigned to
tagName the pods/service to filter
out.

Label key assigned to
tagValuethe pods/service to filter
out.

pod
instance

. Set.to true if a
SerVlce'@ervice monitor

Optional

Optional

Optional

Optional

Optional

Optional
Optional

Optional

false

75

70

{}

{}

false

service

designer

{{pod}}
{{instance}}

false

Designer Private Edition Guide

46

Configure Designer

das.

das.

das.

das.

das.

das.

prometheus.

prometheus.

prometheus.

prometheus.

prometheus.

prometheus.

resource is needed
to monitor the pods
through the

Kubernetes service.

serviceMEhe fath in,c hich the
metries e Xxposed.

The scrape interval
specified for the
Prometheus server. That

serviceMspiihe timetiateial at
which the Prometheus
server will fetch metrics
from the service.

Labels to be specified
serviceMonihersdrafied snonitor
resource.

Setto true if
alerts.ePrometheus alerts
must to be created.

alerts Lai)b Ig to be specified
'l‘r%r e alerts resource.

Any custom alerts that
alerts. arstonstedtmust be
specified here.

Scenarios for which

das.prometheus.alerts. alerts need to be

created.

Optional

Optional

Optional

Optional

Optional

Optional

Optional

/metrics

10s

false

das.prometheus.alerts.

containerRestartAlert:
interval: 3m
threshold: 5

AlertPriority:
CRITICAL

MemoryUtilization:
interval: 1m
threshold: 75

AlertPriority:
CRITICAL

endpointAvailable:
interval: 1m

AlertPriority:
CRITICAL
CPUUtilization:
interval: 1m
threshold: 75

AlertPriority:
CRITICAL

containerReadyAlert:
interval: 5m
readycount: 1

Designer Private Edition Guide

47

Configure Designer

AlertPriority:
CRITICAL

rsyncContainerReadyAlert:
interval: 5m
readycount: 1

AlertPriority:
CRITICAL

WorkspaceUtilization:
interval: 3m
threshold: 70

workspaceClaim:
designer-managed-disk

AlertPriority:
CRITICAL
AbsentAlert:
interval: 1m

AlertPriority:
CRITICAL

LocalWorkspaceUtilization:
interval: 3m
threshold: 70

AlertPriority:
CRITICAL
Health:
interval: 3m

AlertPriority:
CRITICAL

WorkspaceHealth:
interval: 3m

AlertPriority:
CRITICAL
PHPHealth:
interval: 3m

AlertPriority:
CRITICAL
ProxyHealth:
interval: 3m

AlertPriority:
CRITICAL
PhpLatency:
interval: 1m
threshold: 10

AlertPriority:
CRITICAL
HTTPLatency:
interval: 1m

Designer Private Edition Guide 48

Configure Designer

das.grafana.enabled

das.grafana.labels

das.grafana.annotations

annotations

labels

podLabels

podAnnotations

Set to true if the
Grafana dashboard is to
be created.

Labels that must be
added to the Grafana
ConfigMap.

Annotations that must
be added to the Grafana
ConfigMap.

Enables Kubernetes
Annotations and adds it
to all the resources that
have been created.

For more information, refer to
the Annotations topic in the
Kubernetes documentation
site.

Any custom labels can
be configured here. It is
a key and value pair, for
example, key:"value".
These labels are added
to all resources.

Labels that will be
added to all application
pods.

Annotations that will be
added to all application
pods.

DAS ConfigMap settings

Parameter

Description

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Mandatory?

threshold: 60

AlertPriority:
CRITICAL
HTTP4XXCount:
interval: 5m
threshold:
100

AlertPriority:
CRITICAL
HTTP5XXCount:
interval: 5m
threshold:
100

AlertPriority:
CRITICAL

true

{}

{}

{}

{}

Default Value

Designer Private Edition Guide

Configure Designer

das.dasConfig.create

das.dasConfig.envs

das.dasConfig.envs.

das.dasConfig.envs

das.dasConfig.envs

das.dasConfig.envs.

das.dasConfig.envs.

This setting enables

providing environment
variables as an input to
the DAS pods. It uses a
ConfigMap to store the
environment variables.

Mandatory

Enables file logging.
DAS supports only std

.DAS%Q@EE@Q@SIGI—\E@%“Q“% Mandatory

0 false.
Input should be "true"
or "false".

Enables log levels. Valid
values are: "FATAL",

DAS "ERROR", "WARN", Optional
"INFO", "DEBUG",
"TRACE".

Enables standard output

.DAS%%@G%@GM&BLE Mandatory

"false".

To enable Designer
Analytics. This

s SRR S fs0dticncnauso

templates. Input should
be "true" or "false".

Elasticsearch server
host name with an
http:// prefix. For
DAS SERWPIEShEIAFESCSEARCH GiftSanal
service. The input
should be a string within
double quotes.

Elasticsearch port. For

n 80 n
05 PR S as LEsHARCH Omana
within double quotes.

Elasticsearch URL for
basic authentication. It
should contain the URL
with an http or https
prefix accompanied with
the port number (for

. | ttp://es- :
das.dasConﬁg.envs.DAS_ELM% Optional

. The input
should be a string within
double quotes. This
setting is mandatory
when

DAS SERVICES ELASTICSEARCH ENABLED

is set to true.

das.dasConfig.envs.DAS_ELRA§3tcddBich secondary Optional

true

"false

"DEBUG"

"true"

"false"

Designer Private Edition Guide

50

Configure Designer

region URL for basic
authentication. It should
contain the URL with an
http or https prefix
accompanied with the
port number (for
example, http://es-
service:80). The input
should be a string within
double quotes. is an
integer starting from 1.
This setting is
mandatory when
secondary regions are
configured. For
example,
das.dasConfig.envs.DAS ELASTIC URL 1.

Post deployment Designer configuration settings

Post deployment, Designer configuration is managed from the following 3 locations:

Flow settings

Flow Settings is used for controlling global Designer settings that are applicable to all tenants and it
contains bootstrap configuration settings such as port, GWS info, and DAS URL.

Configuration path - /workspace/designer/flowsettings.json.

This will be configured using the helm install. Refer to the Update the flowsettings.json file section for
information on updating the flowsettings.json file.

Tenant settings

These are tenant specific settings if the Designer service is configured with multi-tenancy .
Configuration path - workspace//config/tenantsettings.json.

The user should logout and log back in after any changes to the tenantsettings.json file. The
Designer Ul will continue to show the older features until the user logs out and logs back in.

Tenant specific settings are configured by directly editing the file in the above path.

DesignerEnv transaction list

The DesignerEnv transaction list is available in Configuration Server (Tenant/Transactions/
DesignerEnv). This is mostly used to control the run-time settings. Any change to the DesignerEnv
transaction list does not require the application to be published again or a new build for the
application.

Designer Private Edition Guide 51

Configure Designer

The user should log out and log back in for the changes to reflect in the Designer Ul.

The DesignerEnv transaction list is configured using Agent Setup.

Post deployment configuration settings reference table

Category: Analytics

Setting Name flowsettings.json tenantsettings.jso®esignerEnv Description

This flag
: enables or

?Sst?;ﬁg‘lr;alytlches Yes No disables the
analytics
feature.

esUrl Elasticsearch

(optional) Yes ves No URL

Elasticsearch
server host
Yes Yes No name (for
example, es-
service).

esServer
(optional)

esPort Elasticsearch
(optional) Yes ves No port.
URL of
Elasticsearch

. Yes where
ReportingURL .
- No No o : Designer
(optional) Section: reporting applications

will report
data.

The maximum
time range (in
days) to query
in Designer
esMaxQueryDuratj Analytics. Each
(optional) 1l ves No day's data is
stored in a
separate index
in
Elasticsearch.
The maximum
count of nested
type objects
that will be
captured in
Yes Yes No SDRs. When
set to -1, which
is the default
value, no
objects will be
trimmed. All

sdrMax0bjCount
(optional)

Value

Sample value:
true

Default value:
false

Sample value:
http://es-
spot.uswl.genhtcc.com:80

Sample value:
es-
spot.uswl.genhtcc.com

Sample value:
80

Sample value:
http://es-
spot.uswl.genhtcc.com:80

Sample value: 90
Default value: 90

Sample value: 20

Designer Private Edition Guide

52

Configure Designer

SdrTracelLevel
(optional)

Category: Audit
Setting Name

Yes Yes No

flowsettings.json tenantsettings.jso®esignerEnv

the milestones
or activities
visited in
runtime are
expected to be
captured in an
SDR.

Value are:

e 100 —
Debug level
and up.
Currently,
there are
no Debug
messages.

e 200 —
Standard
level and
up. This
setting will
show all
blocks that
are entered
during a
call in the
blocks
array.

¢ 300 —
Important
level and
up. This
setting
filters out
all blocks
from the
blocks
array,
except
those
containing
data that
will change
from call to
call (such
as the
Menu block
and User
Input
block).

Description

Sample value: 300
Default value: 300

Value

Designer Private Edition Guide

53

Configure Designer

enableESAuditlLo

(optional) s s
enableFSAuditLo

(optional) 9@5 Yes
maxAppSizeCompaqgs Yes
(optional)

enableReadAuditgggs Yes
(optional)

Category: Authorization

Setting Name flowsettings.json tenantsettings.jso®esignerEnv

disableRBAC

(optional) =S =
rbacSection
(optional) Yes Yes

No

No

No

No

No

No

Enable or
disable audit
logs captured
in
Elasticsearch.
Enable or
Disable audit
logs captured
in the file
system under
the logs
directory orin
standard
output.

The maximum
size of data
object for
which a
difference will
be captured in
the audit logs,
value in bytes.
That is, the
difference
between the
Designer
object's old
value and new
value.

Control
whether
reading of
Designer
objects is
captured in
audit trails. If
enabled any
Designer
object viewed
in the Ul will be
recorded in the
audit logs.

Description

Controls if
Designer reads
and enforces
permissions
associated with
the logged in
user's roles.

In a Role
object, the
name of the

Sample value:
false
Default value:
false

Sample value:
true
Default value: true

Sample value:
1000000
Default value:
1000000

Sample value:
false
Default value:
false

Value

Sample value:
false
Default value:
false

Sample value:
CfgGenesysAdministratorServer

Designer Private Edition Guide

54

Configure Designer

section within
the Annex
where the
privileges are
stored.

Default value:
CfgGenesysAdministratorServer

Controls if

Designer

allows

partitioning of

the Designer Sample value:
workspace and false
restricts a Default value:
user's access false

to Designer

objects in the

user's

partitions.

disablePBAC

(optional) Yes Yes No

Category: Collaboration
Setting Name flowsettings.json tenantsettings.jso®esignerEnv Description Value

The type of
locking used, in
an editing
session for
applications,
modules, or
data tables.
Valid values
are: file,
redis, none.

* none -
resources
are not
locked and
can be
edited
i simultaneouslysample value:
locklng Yes No No by multiple gilep
(optional) y P Default value: file
users which '
can result
in one user
overwriting
another
user's
changes.

¢ file - uses
files to
keep track
of locks and
relies on
shared
storage (for
example,
NFS) to

Designer Private Edition Guide 55

Configure Designer

make lock
files
available to
each
Designer
pod. Lock
files are
stored in
the same
location as
the user's
Designer
workspace.

¢ redis - uses
Redis for
storing
resource
locks and is
recommended
for
production
environments.

Category: DAS

Setting Name flowsettings.json tenantsettings.jsoesignerEnv Description Value
The server
name Designer
uses to
generate the
i i URL to the Sample value:
appllca‘clonHos‘cYes No No application. das.uswl.genhtcc.com
(mandatory) ORS and MCP Default value:
fetch the localhost
application

code and other
resources from
this URL.

The
corresponding
applicationPortYes No No port to be used
with
applicationHost.
This is
normally not
changed. It is Sample value:

Sample value: 80
Default value: 80

. k
deployURL Yes No No the relative Lt GRRC,,
path to the /workspace
workspace on
DAS.

Category: Digital
Setting Name flowsettings.json tenantsettings.jso®esignerEnv Description Value

Designer Private Edition Guide 56

Configure Designer

If specified,
this is used to
filter which
Root Sample value: Any
rootsSRL . REGular
(optional) Yes Yes No Cgtegorles to EXpression
display when (REGEX).
selecting
Standard
Responses.
Specify how
Yes many times
the same
maxFlowEnt ryCouqt) S An Sample value: 20
- es No Section: application can .
(optional) Flowsettings B —— Default value: 20
specific digital
interaction.
Category: External APIs
Setting Name flowsettings.json tenantsettings.jso®esignerEnv Description Value
Specify the
proxy used for
Yes external
httpProxy . requests and Sample value:
(optional) Yes Yes ?fg'vfsnéttings nexus APl calls [http:/vpcproxy-000-int.geo.genprim.
(if
enable proxy
is true).
Specify the
backup proxy
used for
Yes external
requests and
redundantHttpProx - Sample value:
(optional) %ed Yes ??gw(s)gi:tings ?i?xus API calls [http://vpcproxy-001-int.geo.genprim.
enable proxy
is true), when
httpProxy is
down.
Category: Features
Setting Name flowsettings.json tenantsettings.jso®esignerEnv Description Value
L Default value:
This is an
object. See the {
5.5 Features nexus:
features Yes Yes No section for a true,
list of ,
supported enableBulkAudioImport:
features. ‘;rue
Category: GWS
Setting Name flowsettings.json tenantsettings.jso®esignerEnv Description Value

Designer Private Edition Guide 57

Configure Designer

usehtcc Yes
htccServer Yes
htccport Yes
ssoLoginUrl Yes

maxConcurrentHnggequest
(optional)

batchOpe rationR%gltTTL
(optional)

Category: Help

Setting Name flowsettings.json tenantsettings.jso®esignerEnv

docsMicroserviceURL
(optional) ?gs

No

No

No

No

No

No

No

No

No

No

No

No

No

No

Set to true so
that Designer
works with
GWS. If set to
false,
Designer
defaults to a
local mode and
may be used
temporarily if
GWS is
unavailable.

GWS Server

GWS port.

URL of GWS
authentication
Ul. Designer
redirects to
this URL for
authentication.

For batch
operations to
GWS, the max
number of
concurrent
requests that
Designer will
send to GWS.

For batch
operations to
GWS, the time,
in milliseconds,
for which
duration
Designer stores
the results of a
batch
operation on
the server,
before deleting
them.

Description

URL for
Designer
documentation.

Sample value:
true

Default value:
false

Sample value: gws-
uswl-int.genhtcc.com
Default value: gws-
uswl-int.genhtcc.com

Sample value: 80
Default value: 80

Sample value:
https://gws-
uswl.genhtcc.com
Default value:
https://gws-
uswl.genhtcc.com

Sample value: 5
Default value: 5

Sample value:
100000
Default value:
100000

Value

Default value:

https://docs.genesys.com/

Documentation/

Designer Private Edition Guide

58

Configure Designer

Category: IVR

Setting Name flowsettings.json tenantsettings.jso®esignerEnv

recordingType

(optional) Yes

Category: Logging

Setting Name flowsettings.json tenantsettings.jso®esignerEnv

logging: {
designer: {
level:
debug },
audit: {
level:
trace},
auditdebug:
{ level:
debug },
cli: {
level: debug
)

}

(optional)

Yes

Category: Nexus

Yes

No

No

No

Description

Specify the
recording type
to be used in
Record block.
Set as GIR. If
the option is
missing or
blank, Full
Call
Recording
type will be
used.

Description

Specify
Designer log
levels. Each
field has valid
values: trace,
debug, info,
warn, error,
or fatal.

* designer -
log level of
Designer.

¢ audit - log
level of
audit.

¢ auditdebug
- log leve
of audit
debug, this
will log
detailed
audit
information.

e cli-log
level for cli
commands
executed
on
Designer.

PSAAS/Public/
Administrator/
Designer

Value

Sample value: GIR
Default value: GIR

Value

Sample value:

logging: {
designer: {
level:
debug},
audit: {
level: trace

}I
auditdebug:
{ level:
debug},

cli: {
level: debug
}

}

Default value:

logging: {
designer: {
level: debug
iy

audit: {
level: trace
}I
auditdebug:
{ level:
debug },
cli: {
level: debug
}

}

Designer Private Edition Guide

59

Configure Designer

Setting Name flowsettings.json tenantsettings.jso®esignerEnv Description Value

URL of Nexus
that typically
includes the
url Yes API version Default value:
. No No) ath. For http://nex-
(optional) Section: nexus gxamme, dev.uswl.genhtcc.com
https://nexus-
server/nexus/
api/v3.

The Nexus x-

password No No api-key created Default value:

(optional) Section: nexus by Nexus dc4qgeirol3nsof569dfn234smf
deployment.

Yes

Boolean value
to indicate if
Yes httpProxy is
enable proxy used to reach

(optional) No No Section: nexus Nexus.

Default value:
false

Enable Contact
Identification
. Yes via Nexus (for
profile N
_ o No . example, to
(optional) Section: nexus enable Last
Called Agent
routing).

Category: Process
Setting Name flowsettings.json tenantsettings.jso®esignerEnv Description Value

Designer

process port in

the container. Sample value:
port Yes No No Normally, the 8888

default value Defualt value: 3000

should be left

as is.

Category: Provisioning
Setting Name flowsettings.json tenantsettings.jso®esignerEnv Description Value

Specify the

primary switch

name if more

than one

switch is
primarySwitch defined for the Default value: us-
(optional) Yes Yes No tenant. west-1

Designer

fetches and

works with

route points

from this

Designer Private Edition Guide 60

Configure Designer

Category: Routing

Setting Name flowsettings.json tenantsettings.jso®esignerEnv

Yes
ewtRefres hTimeoN‘b No Section:
(optional) flowsettings

Category: Redis

Setting Name flowsettings.json tenantsettings.jso®esignerEnv

redis: {

host: "",

port: "",

tlsEnabled:

true,

}gg%Tlmeout. Yes No No
listTimeout:

1800

h

(optional)

switch.

Description

Specify the
interval (in
seconds) at
which to
refresh the
Estimated
Waiting Time
when routing
an interaction.

Description

Used by
Designer for
resource index
caching and
multi-user
collaboration
locks on
Designer
resources.

It is a separate
object that
contains:

¢ host - Redis
host name.

e port - Redis
port.

¢ tisEnabled
- TLS
enabled or
not.

¢ |lockTimeout
- Timeout,
in seconds,
before a
resource
lock is
released for
an editing
session of
applications,
modules, or
data tables.

¢ listTimeout
- The cache
expiry
timeout (in

Value

Sample value: 5
Default value: 1

Value

Sample value:

redis: {
host: "",
port: ""
tlsEnabled:
true,
lockTimeout:
120,
listTimeout:
1800

}

Default value:

redis: {
host:
redis.server.
port: 6379,
tlsEnabled:
true,
lockTimeout:
120,
listTimeout:
1800

genhtcc.com,

Designer Private Edition Guide

61

Configure Designer

Category: Security
Setting Name

zipFileSizeLimi%gMegaBytes

(optional) ves
disgbleCSRF Yes Yes
(optional)

flowsettings.json tenantsettings.jso®esignerEnv

No

No

seconds) of
the
application
list and
shared
modules
list. By
default, it is
30 minutes.
That is, any
new
application/
modules
created in
the Ul will
be seen in
the listing
page after
30 mins. It
can be
reduced to
a smaller
value. This
is to
improve
the page
loading
performance
of the
Applications
and Shared
Modules
page. A
better
performance
is achieved
with a
higher
value.

Description

Defines the
maximum
zipFile size
limit (in
megabytes)
during bulk
audio import.

Disable CSRF
attack

protection. For

more
information,
refer to this

Value

Sample value: 50

Sample value:
false
Default value:
false

Designer Private Edition Guide

62

Configure Designer

disableSecu reCoqlésie

(optional) No No

Category: Session
Setting Name

idleTimeout

(optional) Yes Yes No
lockTimeout

(optional) Yes Yes No
lockKeepalive

(optional) Yes Yes No

Category: Workflow
Setting Name

maxBuilds

(optional) Yes Yes No

flowsettings.json tenantsettings.jsoesignerEnv

flowsettings.json tenantsettings.jsoesignerEnv

topic in the
CWE site.

By default, CSRF
attack protection is
enabled. It can be
disabled by setting
this flag to true.

Disables the
secure cookies
header.

Description

Idle timeout, in
seconds,
before a user
session is
terminated
while editing
applications,
modules, or
data tables.

Timeout, in
seconds,
before a
resource lock is
released, for
an editing
session of
applications,
modules, or
data tables.

Interval, in
seconds,
before the
client sends a
ping to the
server, to
refresh the lock
for an editing
session of
applications,
modules, or
data tables.

Description

Specify the
maximum
number of
builds allowed
per application.

Sample value:
false
Default value:
false

Value

Sample value: 840
Default value: 840

Sample value: 120
Default value: 120

Sample value: 15
Default value: 15

Value

Sample value: 20
Default value: 20

Designer Private Edition Guide

63

Configure Designer

Boolean value

Yes oo .
Sample value:
I . to |nd|;ate if il
(opti I) No No Section: PTE objects are Default value:
optiona flowsettings enabled at false '
runtime.
Features

The features specified in this section are configured under the features object in the
flowsettings.json file or the tenantsettings.json file.

For example,

"features": {
"nexus": true,

These features are configured only in the flowsettings.json file and the
tenantsettings.json file, and not in the DesignerEnv transaction list.

Feature
Category Setting Mandatory flowsettings.jsobenantsettings.jPascription
Name

Default
Value

Enable/

disable the
enableBulkAudOpgpratt Yes Yes bulk audio false

import

feature.

If this
feature is
enabled,
Designer will
validate
invalid
) grammar
Audio files during
grammar
upload and
you can
upload only
valid
grammar
files (GRXML
or Nuance
compiled
binary
grammar
files).

grammarValida®pdional Yes yes false

Designer Private Edition Guide

Configure Designer

externalAudioOwhmovat Yes
Nexus nexus Optional Yes
Survey survey Optional Yes

plugins Optional Yes
Ul Plugins

plugins Optional Yes
Milestone enableImplici®pdohnadMilestdees

Yes

Yes

Yes

Yes

Yes

Yes

If this
feature is
enabled, a
new audio
type,
External
Audio, is
available in
the Play
Message
block. It
accepts a
single
variable that
contains a
URL to the
audio
resource.
MCP will
fetch this
resource
directly and
play it. The
only
supported
value of
Play As is
Audio URI.
There is no
automatic
language
switching for
this audio

type.

Enable/
disable the
Nexus
feature.

Enable/
disable the
survey
feature.

Plugin
configuration
details.

(Steps are
given below the
table.)

Enable or
disable the
plugin
feature.
Enable
reporting

false

false

true

{}

false

false

Designer Private Edition Guide

65

Configure Designer

Bots enableDialogFOptiothd t Yes
Multisite T ;
Routing multisiteRoutOmpgional Yes

Adding a Ul plugin to Designer

Yes

Yes

each Shared
Module call
as an
internal
milestone. If
disabled,
Shared
Module calls
will not
generate a
milestone.

When
enabled,
Dialogflow
CX bot type
is added to
the bot
registry and
available for
selection in
the Bot
provider
drop-down
when you
configure a
new bot.

Enables the
Override
DN option in
the
Advanced
> Targeting
section of
the Route
Call block to
Force Route
the
interaction
toa
specified
DN.

false

false

1. Add the plugins array object in the flowsettings.json file (/ofs/designer/flowsettings.json).

The plugins object contains all the input properties for the plugin app. This is a required property.

Whenever there is a change in this object, refresh the browser for the changes to take effect.

Example:
"plugins": [
{

"url": "http://genesysexample.com/",
"displayName": "Nexus PII Management",

Designer Private Edition Guide

66

Configure Designer

"placement": "messageCollections",
"id": "nexuspii",
"mappings": {
"prod": {
"G1-AUS4": "https://genesysexample.com/admin/ux"
}I
"staging": {
"G1l-USW1": "http://genesysexample.com/"
}I
}
}I
{
H

2. Add the csplist array object in the flowsettings.json file (/ofs/designer/flowsettings.json).
The cspList object contains the URL forms to be allowed by Designer's security policy. This is a
required property. Whenever there is a change in this object, re-start the node container for the
changes to take effect.

Example:
If the URL is http://genesysexample.com/, the cspList would be:
"cspList": ["*.genexamplel.com:*", "*_ genexample2.com:*", "*.genexample3.com:*"]

3. Turn on the plugins and nexus feature flags in the Designer tenantSettings.json file (/ofs//config/
tenantSettings.json).

This is a required property. Whenever there is a change in this object, log out of Designer and log in
again for the changes to take effect.

If you want to enable the plugins feature for all tenants, add this feature flag in the flowsettings.json file.
The feature is enabled for all the tenants under that bucket.

Example:

{

"features": {
"plugins": true,
"nexus": true

3

4. Add the url_property under the plugins section, in Agent Setup. If there is no plugins section, create

one. This section is for the tenant URL override. If the DesignerEnv setting (Transactions/Internal/
DesignerEnv) is not provided, the plugin URL from the flowsettings.json file is considered.

This is an optional property. Whenever there is a change in this object, log out of Designer and log in
again for the changes to take effect.

Example:

{"urt_ " "https://plugin-genesysexample.com"}

Designer Private Edition Guide

67

Platform / Configuration Server and GWS settings for Designer

Platform / Configuration Server and GWS
settings for Designer

Contents

e 1 Create roles for Designer
* 2 Update the DesignerEnv transaction list
¢ 3 Platform settings

* 4 GWS configuration

Designer Private Edition Guide

68

Platform / Configuration Server and GWS settings for Designer

* Administrator
Learn about the Configuration Server objects and settings required for Designer.

Related documentation:

* For private edition

Create roles for Designer

Designer uses roles and access groups to determine permissions associated with the logged-in user.
To enable this, you must make these changes in GAX or CME.

Designer supports a number of bundled roles suitable for various levels of users.

* Designer Developer - Most users fall into this category. These users can create Designer applications,
upload audio, and create business controls. They have full access to Designer Analytics.

* Designer Business User - These users cannot create objects but they can manage them (for example,
upload audio, change data tables, and view analytics).

* Designer Analytics - These users only have access to Designer Analytics.

* Designer Admin - These users can set up and manage partitions associated with users and Designer
objects.

* Designer Operations - Users with this role have full access to all aspects of the Designer workspace.
This includes the Operations menu (normally hidden), where they can perform advanced operational
and maintenance tasks.

To create these roles, import the .conf files included in the Designer Deployment package. They
are located in the packages/roles/ folder.

In addition, ensure the following for user accounts that need access to Designer:

* The user must have read permissions on its own Person object.
e Users must be associated with one or more roles via access groups.
¢ The on-Premises user must have at least read access on the user, access group(s), and roles(s).

* The access groups must have read/write permissions to the Agent Setup folders - Scripts and
Transactions.

Designer Private Edition Guide 69

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Platform / Configuration Server and GWS settings for Designer

Update the DesignerkEnv transaction list

Designer requires a transaction list for configuration purposes as described in other sections of this
document. The DesignerEnv transaction list is automatically created in on logging onto Designer.

1. Edit any values according to the descriptions provided in the Post deployment configuration settings

reference table.

2. Save the list.

3. Ensure Designer users have at least read access to the DesignerEnv transaction list.

Platform settings

The platform settings listed below must be configured if the Designer application is used for voice

calls.

Component

SIP Switch -> Voip
Services -> msml
service

SIP Switch -> Voip
Services -> msml
service

SIPServer --> TServer

Switch object annex -->
gts

ORS --> orchestration

MCP

Config Key

userdata-map-format

userdata-map-filter

divert-on-ringing
agent-no-answer-
timeout
agent-no-answer-action

agent-no-
answeroverflow

after-routing-timeout

sip-treatments-
continuous

msml-record-support

ring-divert

new-session-on-reroute

[vxmli] transfer.allowed

Value

sip-headers-encoded

false

12

notready

24

true

true

false

TRUE

Description

Option needs to set to
pass JSON data as user
data in SIPS.

To allow userdata
passing to MSML
service.

RONA is handled by the
platform.

No value, empty.

To allow routed calls
recording via the Media
Server.

Required for SIPS
Default Routing (Default
Routing handling
(Voice)).

Required for Transfer
block (allows VXML
Transfer in MCP).

Designer Private Edition Guide

70

Platform / Configuration Server and GWS settings for Designer

Required for Transfer
MCP [cpa] outbound.method NATIVE block (allow CPA

detection for Transfer).

. Enables Customer
UcCs [cview] enabled TRUE Context Services.

GWS configuration

Ensure that the following steps are performed in GWS:

¢ Add Contact Center—Create a contact center in GWS, if it is not already created.

¢ Create API Client—Create new GWS client credentials, if they are not already created.

For more information, see Provision Genesys Web Services and Applications in the GWS
documentation.

Designer Private Edition Guide

71

Deploy Designer

Deploy Designer

Contents

e 1 Assumptions
* 2 Preparation
e 2.1 Set up Ingress
* 2.2 Set up Application Gateway (WAF) for Designer
» 2.3 Storage
e 2.4 Set up Secrets
¢ 3 Deployment strategies
* 4 Rolling Update deployment
* 4.1 Designer
* 4.2 DAS
¢ 5 Blue-Green deployment
* 5.1 Designer
* 5.2 DAS
e 6 Canary
* 6.1 Deployment
* 6.2 Cleaning up
e 7 Validations and checks
¢ 8 Post deployment procedures

* 8.1 Updating the flowsettings file

Designer Private Edition Guide

72

Deploy Designer

Learn how to deploy Designer into a private edition environment.

Related documentation:

* For private edition

Assumptions

¢ The instructions on this page assume you are deploying the service in a service-specific namespace,
named in accordance with the requirements on Creating namespaces. If you are using a single
namespace for all private edition services, replace the namespace element in the commands on this
page with the name of your single namespace or project.

¢ Similarly, the configuration and environment setup instructions assume you need to create namespace-
specific (in other words, service-specific) secrets. If you are using a single namespace for all private
edition services, you might not need to create separate secrets for each service, depending on your
credentials management requirements. However, if you do create service-specific secrets in a single
namespace, be sure to avoid naming conflicts.

Preparation

Review the Before you begin topic for the full list of prerequisites required to deploy
Designer.

Before you deploy Designer and DAS using Helm charts, complete the following preparatory steps:

Ensure the Helm client is installed.
Set up an Ingress Controller, if not already done.
Setup an NFS server, if not already done.

Create Persistent Volumes - a sample YAML file is provided in the Designer manifest package.

A

Download the Designer and DAS docker images and push to the local docker registry.

Designer Private Edition Guide 73

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Deploy Designer

6. Download the Designer package and extract to the current working directory.

7. Configure Designer and DAS value overrides (designer-values.yaml and das-values.yaml); ensure
the mandatory settings are configured. If the Blue-Green deployment process is used, Ingress settings
are explained in the Blue-Green deployment section.

Depending on the Kubernetes platform or the container orchestration platform that
you are deploying Designer on, you might have to carry out some additional steps
specific to that platform. For more information, navigate to the required topic in the
Kubernetes platform specific information section on the About page.

Set up Ingress
Given below are the requirements to set up an Ingress for the Designer Ul:
* Cookie name - designer.session.

e Header requirements - client IP & redirect, passthrough.

¢ Session stickiness - enabled.

Allowlisting - optional.

e TLS for ingress - optional (should be able to enable or disable TLS on the connection).

Set up Application Gateway (WAF) for Designer
Designer Ingress must be exposed to the internet using Application Gateway enabled with WAF.

When WAF is enabled, consider the following exception in the WAF rules for Designer:

¢ Designer sends a JSON payload with data, for example, {profile . {} }. Sometimes, this is detected
as OSFileAccessAttempt, which is a false positive detection. Disable this rule if you encounter a
similar issue in your WAF setup.

Storage

Designer storage

Designer requires storage to store designer application workspaces. Designer
storage is a shared file storage that will be used by the Designer and DAS
services.

This storage is critical. Ensure you take backups and snapshots at a regular interval,

Designer Private Edition Guide 74

Deploy Designer

probably, each day.

A Zone-Redundant Storage system is required to replicate data from the RWX
volumes and must be shared across multiple pods:

e Capacity - 1 TiB

e Tier - Premium

* Baseline |0/s - 1424

e Burst 10/s - 4000

e Egress Rate - 121.4 MiBytes/s
¢ Ingress Rate - 81.0 MiBytes/s

DAS storage

If the Designer workspace is stored in a cloud storage system such as Azure Files, then the data must
be synced to the DAS pods using the Designer-Sync service. In this case, DAS must use the
StatefulSet deployment type. In the DAS StatefulSet pods, each pod must be attached to a
premium SSD disk to store the workspace.

» Size - > 500GiB

¢ Max IOPS (Max IOPS w/ bursting) - 2,300 (3,500)

e Max throughput (Max throughput w/ bursting) - 150 MB/second (170 MB/second)

Permission considerations for Designer and DAS storage

NFS

For NFS RWX storages, the mount path should be owned by genesys:genesys, that is, 500:500 with
0777 permissions. It can be achieved by one of the below methods:

¢ From the NFS server, execute the chmod -R 777 and chown -R 500:500 commands to set the
required permissions.

e Create a dummy Linux based pod that mounts the NFS storage. From the pod, execute the chmod -R
777 and chown -R 500:500 commands. This sets the required permissions. However, this method
might require the Linux based pods to be run as privileged.

SMB / CIFS

For SMB / CIFS based RWX storages, for instance, Azure file share, the below mountOptions must be
used in the StorageClass or the PersistentVolume template:

mountOptions

- dir _mode=0777
- file mode=0777

Designer Private Edition Guide 75

Deploy Designer

- uid=500

- gid=500

- mfsymlinks

- cache=strict

Set up Secrets
Secrets are required by the Designer service to connect to GWS and Redis (if you are using them).

GWS Secrets:

¢ GWS provides a Client ID and secrets to all clients that can be connected. You can create Secrets for the
Designer client as specified in the Set up secrets for Designer section below.

Redis password:

e |If Designer is connected to Redis, you must provide the Redis password to Designer to authenticate the
connection.

Set up Secrets for Designer

Use the designer.designerSecrets parameter in the values.yaml file and configure Secrets as
follows:

designerSecrets:
enabled: true
secrets:

DES GWS CLIENT ID: xxxx

DES GWS_CLIENT SECRET: XxxxX
DES REDIS PASSWORD: XXXxXX
DES ELASTIC USERNAME: "xxxx"
DES ELASTIC PASSWORD: '"xxxxx"

Set up Secrets for DAS

Use the das.dasSecrets parameter in the values.yaml file and configure
Secrets as follows:

dasSecrets:

enabled: true

secrets:
DAS ELASTIC USERNAME : "xxxxx"
DAS ELASTIC PASSWORD : "xxxxx"
DAS ELASTIC USERNAME 1 : "xxxxx"
DAS ELASTIC PASSWORD 1 : "xxxxx"
DAS ELASTIC USERNAME 2 : "xxxxx"
DAS ELASTIC PASSWORD 2 : "xxxxx"

Deployment strategies

Designer supports the following deployment and upgrade strategies:

Designer Private Edition Guide 76

Deploy Designer

¢ Rolling Update (default).

¢ Blue-Green (recommended).
DAS (Designer Application Server) supports the following deployment and upgrade strategies:

¢ Rolling Update (default).
¢ Blue-Green (recommended).

e Canary (must be used along with Blue-Green and is recommended in production).

For full descriptions of the deployment and upgrade strategies, see Upgrade strategies in the Setting
up Genesys Multicloud CX Private Edition guide.

Rolling Update deployment

The rolling deployment is the standard default deployment to Kubernetes. It works slowly, one by
one, replacing pods of the previous version of your application with pods of the new version without
any cluster downtime. It is the default mechanism of upgrading for both Desigher and DAS.

Designer

To perform the initial deployment for a rolling upgrade in Designer, use the Helm command given
below. The values.yaml file can be created as required.

e helm upgrade --install --namespace designer designer -f designer-values.yaml
designer-100.0.112+xxxx.tgz --set designer.image.tag=9.0.1xx.XX.XX

The values.yaml overrides passed as an argument to the above Helm upgrade command:

designer.image.tag=9.0.1xx.xx.xx - This is the new Designer version to be installed, for example,
9.0.111.05.5.

If you are using the - -set flag in the helm install to populate the designer.designerConfig.envs
values, use --set-string, for example:

--set-string designer.designerConfig.envs.DES ES PORT="8080".

DAS

To perform the initial deployment for a rolling upgrade in DAS, use the Helm command given below.
The values.yaml file can be created as required.

¢ helm upgrade --install --namespace designer designer-das -f designer-das-values.yaml
designer-das-100.0.112+xxxx.tgz --set das.image.tag=9.0.1xx.XX.XX

The values.yaml overrides passed as an argument to the above Helm upgrade command:

das.image.tag=9.0.1xx.xX.xx - This is the new DAS version to be installed, for example,
9.0.111.05.5.

Designer Private Edition Guide 77

Deploy Designer

If you are using the --set flag in the helm install to populate the das.dasConfig.envs values,
values, use --set-string, for example:

--set-string das.dasConfig.envs.DAS SERVICES ELASTICSEARCH PORT="9200".

Blue-Green deployment

Blue-Green deployment is a release management technique that reduces risk and minimizes
downtime. It uses two production environments, known as Blue and Green or active and inactive, to
provide reliable testing, continuous no-outage upgrades, and instant rollbacks. When a new release
needs to be rolled out, an identical deployment of the application will be created using the Helm
package and after testing is completed, the traffic is moved to the newly created deployment which
becomes the active environment, and the old environment becomes inactive. This ensures that a fast
rollback is possible by just changing route if a new issue is found with live traffic. The old inactive
deployment is removed once the new active deployment becomes stable.

Service cutover is done by updating the Ingress rules. The diagram below shows the high-level
approach to how traffic can be routed to Blue and Green deployments with Ingress rules.

Deployment

- designer.blue.example.com ——————— DL LR LH T2 T

Blue Pods

—P designer.example.com Active color

Active version

Deployment

- i —P
designer.green.example.com Service designer-green Green Pods

Designer

Before you deploy Designer using the blue-green deployment strategy, complete the following
preparatory steps:

1. Create 3 hostnames as given below. The blue service hostname must contain the string blue. For
example, designer.blue.example.com or designer-blue.example.com. The green service hostname must
contain the string green. For example, designer.green.example.com or designer-green.example.com.
The blue/green services can be accessed separately with the blue/green hostnames:

e designer.example.com - For the production host URL, this is used for external access.

e designer.blue.example.com - For the blue service testing.

Designer Private Edition Guide 78

/File:DesBlueGreenDep.png
/File:DesBlueGreenDep.png

Deploy Designer

e designer.green.example.com - For the green service testing.

. Configure the hostnames in the designer-values.yaml file under ingress. Annotations and paths can

be modified as required.

ingress:

enabled: true

annotations: {}

paths: [/]

hosts:
- designer.example.com
- designer.blue.example.com
- designer.green.example.com

Deployment

The resources - ingress and persistent volume claims (PVC) - must be created initially before
deploying the Designer service as these resources are shared between blue/green services and they
are required to be created at the very beginning of the deployment. These resources are not required
for subsequent upgrades. The required values are passed using the -- set flag in the following
steps. Values can also be directly changed in the values.yaml file.

1.

2.

3.

Create Persistent Volume Claims required for the Designer service (assuming the volume service name
is designer-volume).

helm upgrade --install --namespace designer designer-volume -f designer-values.yaml
designer-9.0.xx.tgz --set designer.deployment.strategy=blue-green-volume

The values.yaml overrides passed as an argument to the above Helm upgrade command:
designer.deployment.strategy=blue-green-volume - This denotes that the Helm install will create a
persistent volume claim in the blue/green strategy.

Create Ingress rules for the Designer service (assuming the ingress service name will be designer-
ingress):

helm upgrade --install --namespace designer designer-ingress -f designer-values.yaml
designer-100.0.112+xxxx.tgz --set designer.deployment.strategy=blue-green-ingress --
set designer.deployment.color=green

The values.yaml overrides passed as an argument to the above Helm upgrade command:
designer.deployment.strategy=blue-green-ingress - This denotes that the Helm install will create
ingress rules for the Designer service.

designer.deployment.color=green - This denotes that the current production (active) color is green.

Deploy the Designer service color selected in step 2. In this case, green is selected and assuming the
service name is designer-green:

helm upgrade --install --namespace designer designer-green -f designer-values.yaml
designer-100.0.112+xxxx.tgz --set designer.deployment.strategy=blue-green --set
designer.image.tag=9.0.1xx.xx.xx --set designer.deployment.color=green

DAS

As with Designer, the Blue-Green strategy can be adopted for DAS as well. The Blue-Green
architecture used for DAS is given below. Here, the cutover mechanism is controlled by Service, the
Kubernetes manifest responsible for exposing the pods. The Ingress, when enabled, will point to the
appropriate service based on the URL.

Designer Private Edition Guide 79

Deploy Designer

das.blue.example.com

das.example.com

o designer-das
o service

das.green.example.com

Deployment

The Ingress must be created initially before deploying the DAS service since it is shared between
blue/green services and it is required to be created at the very beginning of the deployment. The
Ingress is not required for subsequent upgrades. The required values are passed using the -- set
flag in the following steps. Values can also be directly changed in the values.yaml file.

1.

2.

Deploy initial DAS pods and other resources by choosing an active color, in this example, green. Use the
below command to create a designer-das-green service:

helm upgrade --install --namespace designer designer-das-green -f designer-das-
values.yaml designer-das-100.0.106+xxxx.tgz --set das.deployment.strategy=blue-green
--set das.image.tag=9.0.1xx.xx.xx --set das.deployment.color=green

The values.yaml overrides passed as an argument to the above Helm upgrade command:
das.deployment.strategy=blue-green - This denotes that the DAS service will be installed using the
blue-green deployment strategy.

das.image.tag=9.0.1xx.xx.xx - This denotes the DAS version to be installed, for example,
9.0.111.04.4.

das.deployment.color=green - This denotes that the green color service is installed.

Once the initial deployment is done, the pods have to be exposed to the designer-das service. Execute
the following command to create the designer-das service:

helm upgrade --install --namespace designer designer-das designer-
das-100.0.106+xxx.tgz -f designer-das-values.yaml --set das.deployment.strategy=blue-
green-service --set das.deployment.color=green

The values.yaml overrides passed as an argument to the above helm upgrade
das.deployment.strategy=blue-green-service - This denotes that the designer-das service will be

Designer Private Edition Guide 80

/File:DASBlueGreenDep.png
/File:DASBlueGreenDep.png

Deploy Designer

installed and exposed to the active color pods.
das.deployment.color=green - This denotes that the designer-das service will point to green pods.

NodePort Service

The designer-das-green release creates a service called designer-das-green and the designer-
das-blue release creates a service called designer-das-blue. If you are using NodePort services,
ensure that the value of designer.service.nodePort is not the same for both the releases. In other
words, you should assign dedicated node ports for the releases. The default value for
designer.service.nodePort is 30280. If this was applied to designer-das-green, use a different
value for designer-das-blue, for example, 30281. Use the below helm command to achieve this:
helm upgrade --install --namespace designer designer-das designer-
das-100.0.106+xxx.tgz -f designer-das-values.yaml --set das.deployment.strategy=blue-
green-service --set das.deployment.color=green --set das.service.nodePort=30281

Canary

Canary is optional and is only used along with Blue-Green. It is recommended in production. Canary
pods are generally used to test new versions of images with live traffic. When you are installing the

Designer and DAS services for the first time, you will not use Canary pods. Only when upgrading the
services after initial deployment, you will use Canary pods for testing the new versions.

Deployment

1. Identify the current production color by checking the designer-das service selector labels (kubectl
describe service designer-das). Green is the production color in the below example as the selector
label is color=green.

kubectl describe service designer-das

Selector: color=green

2. To deploy canary pods, the das.deployment.strategy value must be set to canary in the designer-
das-values.yaml file or using the -- set flag as shown in the command below:
helm upgrade --install --namespace designer designer-das-canary -f das-values.yaml
designer-das-100.0.106+xxxx.tgz --set das.deployment.strategy=canary --set
das.image.tag=9.0.1xx.xx.xx --set das.deployment.color=green
The values.yaml overrides passed as an argument to the above Helm upgrade command:
das.deployment.strategy=canary - This denotes that the Helm install will create canary pods.
das.deployment.color=green - This denotes that the current production (active) color is green.

To make sure Canary pods receive live traffic, they have to be exposed to the designer-das service by
setting das.deployment.color=, which is obtained from step 1.

3. Once canary pods are up and running, ensure that the designer-das service points to the canary pods

Designer Private Edition Guide 81

/File:CanaryInDepStep1.png
/File:CanaryInDepStep1.png

Deploy Designer

using the kubectl describe svc designer-das command.

Endpcints: 10.206.0.101:8081,10.206.0.162:8081,10.206.0.90:8081

The IP address present in the Endpoints must match the IP address of the canary pod. The canary pod's
IP address is obtained using the kubectl describe pod command.

IP: 10.20
IPs:
IP: 10.20&6.0.90

=
w
o

oy

Cleaning up
After completing canary testing, the canary pods must be cleaned up.

The das.deployment. replicaCount must be made zero and the release is upgraded. It can be
changed in the designer-das-values.yaml file or through the - -set flag as follows:

¢ helm upgrade --install --namespace designer designer-das-canary -f das-values.yaml
designer-das-100.0.106+xxxx.tgz --set das.deployment.strategy=canary --set
das.image.tag=9.0.1xx.xx.xx --set das.deployment.color=blue --set
das.deployment.replicaCount=0

Validations and checks

Here are some common validations and checks that can be performed to know if the deployment was
successful.

e Check if the application pods are in running state by using the kubectl get pods command.

e Try to connect to the Designer or DAS URL as per the ingress rules from your browser. You must be able
to access the Designer and DAS webpages.

Post deployment procedures

Updating the flowsettings file

Post deployment, the flowsettings.json file can be modified through a Helm install as follows:

1. Extract the Designer Helm Chart and find the flowsettings.yaml file under the Designer Chart >
Config folder.

2. Modify the necessary settings (refer to the Post deployment configuration settings reference table for

Designer Private Edition Guide 82

/File:CanaryEndpoints.png
/File:CanaryEndpoints.png
/File:CanaryIPs.png
/File:CanaryIPs.png

Deploy Designer

the different settings and their allowed values).

3. Execute the below Helm upgrade command on the non-production color service. It can be done as part
of the Designer upgrade by passing the flowsettings.yaml file using the --values flag. In this case, a
new Designer version can be used for the upgrade. If it is only a flowsettings.json update, the same
Designer version is used.
helm upgrade --install --namespace designer designer-blue -f designer-values.yaml -f
flowsettings.yaml designer-9.0.xx.tgz --set designer.deployment.strategy=blue-green --
set designer.image.tag=9.0.1xx.xx.xx --set designer.deployment.color=blue

4. Once testing is completed on the non-production service, perform the cutover step as mentioned in the
Cutover section (Designer Blue-Green deployment). After cutover, the production service will contain
the updated settings. The non-active color Designer must also be updated with the updated settings
after the cutover.

Designer Private Edition Guide 83

Enable optional features

Enable optional features

Contents

* 1 Enable Designer Analytics and Audit Trail
* 1.1 Designer
* 1.2 DAS

e 2 Enable Personas
e 2.1 Deploy personas.json
* 2.2 Update Designer flowsettings.json
e 2.3 Update application settings
* 2.4 Adding voice definitions

Designer Private Edition Guide

84

Enable optional features

Learn how to enable optional features in Designer post deployment.

Related documentation:

* For private edition

Enable Designer Analytics and Audit Trail

Post Designer deployment, features such as Analytics and Audit Trail can be
enabled by performing the below steps.

Ensure Elasticsearch is deployed before proceeding.

Designer

1. Configure the following settings in flowsettings override (flowsettings.yaml) - Refer to the table in the
Post deployment Designer configuration settings section for option descriptions.

* enableAnalytics: true

enableESAuditLogs: true
* esServer

* esPort

* esUrl

2. Configure the below setting in the DesignerEnv transaction list:
ReportingURL in the reporting section.

3. Perform the steps in the Updating the flowsettings file section in Post deployment procedures.

DAS

1. Configure the following settings in the helm das-values.yaml file. For setting descriptions, refer to the

Designer Private Edition Guide 85

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Enable optional features

DAS deployment settings section in Deployment configuration settings.
dasEnv.envs.DAS SERVICES ELASTICSEARCH ENABLED = true
dasEnv.envs.DAS SERVICES ELASTICSEARCH HOST

dasEnv.envs.DAS SERVICES ELASTICSEARCH PORT

2. Execute the steps in the Upgrade section in the DAS deployment process for the Blue-Green strategy.
The same DAS version running in production can be used for the upgrade.

3. Execute the steps in the Cutover section in the DAS deployment process for the Blue-Green strategy.

Enable Personas

You can enable the Personas feature in Designer by following the below steps.

Deploy personas.json

e Deploy the personas.json file in the workspace location, /workspace/{tenantID}/workspace/
personas/personas.json.

¢ Create the personas directory if it does not exist.

Given below is a sample personas.json file:
[

{
Ilidll: "1"'
"name": "Samantha",
"gender": "female",

"tags": ["female", "middle-age", "default"],
"displayPersona": "female, 30-40s",

"voice": [{
"name": "samantha",
"language": "en-US",
"ttsname": "Samantha",
"ttsengine": "NuanceTTS",
"displayName": "Samantha"
oA
"name": "karen",
"language": "en-AU",
"ttsname": "Karen",
"ttsengine": "NuanceTTS",
"displayName": "Karen"
oA
"name": "amelie",
"language": "fr-CA",
"ttsname": "Amelie",
"ttsengine": "NuanceTTS",
"displayName": "Amelie"
oA
"name": "paulina",
"language": "es-MX",
"ttsname": "Paulina",
"ttsengine": "NuanceTTS",
"displayName": "Paulina"
}
1,
"digital": {},

Designer Private Edition Guide

Enable optional features

"email": {},

"chat": {},
"web": {}

Ilidll: II2II'
"name": "Tom",
"gender": "male",

"tags": ["male", "middle-age"],
"displayPersona": "male, 30-40s",

"voice": [{

"name": "tom",
"language": "en-US",
"ttsname": "Tom",
"ttsengine": "NuanceTTS",
"displayName": "Tom"

oA
"name": "lee",
"language": "en-AU",
"ttsname": "Lee",
"ttsengine": "NuanceTTS",
"displayName": "Lee"

oA
"name": "felix",
"language": "fr-CA",
"ttsname": "Felix",
"ttsengine": "NuanceTTS",
"displayName": "Felix"

oA
"name": "javier",
"language": "es-MX",
"ttsname": "Javier",
"ttsengine": "NuanceTTS",
"displayName": "Javier"

}

]I
"digital": {3},
"email": {},

"chat": {},

“Web" : {}

Ilidll: II3II,

"name": "Gabriela",
"gender": "female",

"tags": ["female", "young"],
"displayPersona": "female, 20-30s",
"voice": [{
"name": "gabriela",
"language": "en-US",
"ttsname": "en-US-Standard-E",
"ttsengine": "GTTS",
"displayName": "Gabriela"

"name": "sheila",
"language": "en-AU",
"ttsname": "en-AU-Standard-A",
"ttsengine": "GTTS",
"displayName": "Sheila"

oA
"name": "lili",
"language": "fr-CA",
"ttsname": "fr-CA-Standard-A",

Designer Private Edition Guide

87

Enable optional features

"ttsengine": "GTTS",
"displayName": "Lili"

}
]I
"digital": {},
"email": {},
"chat": {},
"web": {}
"id": "4",
"name": "Michael",
"gender": "male",

utagsu: [umaleu, uyoungu]'
"displayPersona": "male, 20-30s",

"voice": [{
"name": "michael",
"language": "en-US",

"ttsname": "en-US-Standard-B",
"ttsengine": "GTTS",
"displayName": "Michael"

"name": "royce",

"language": "en-AU",
"ttsname": "en-AU-Standard-B",
"ttsengine": "GTTS",
"displayName": "Royce"

"name": "alexandre",
"language": "fr-CA",
"ttsname": "fr-CA-Standard-B",
"ttsengine": "GTTS",
"displayName": "Alexandre"

}
]I

"digital": {3},
"email": {},

"chat": {},

“Web": {}

Ilidll: II5II,

"name": "Diane",
"gender": "female",

"tags": ["female", "mature"],
"displayPersona": "female, 40-50s",
"voice": [{
"name": "diane",
"language": "en-US",
"ttsname": "en-US-Standard-C",
"ttsengine": "GTTS",
"displayName": "Diane"

"name": "muriel",

"language": "en-AU",
"ttsname": "en-AU-Standard-C",
"ttsengine": "GTTS",
"displayName": "Muriel"

"name": "chloe",

"language": "fr-CA",
"ttsname": "fr-CA-Standard-C",
"ttsengine": "GTTS",

Designer Private Edition Guide

88

Enable optional features

"displayName": "Chloe"

}
]I
"digital": {3},
"email": {},
"chat": {},
"web": {}
}I
{
"id": "6",
"name": "David",
"gender": "male",
"tags": ["male", "mature"],
"displayPersona": "male, 40-50s",
"voice": [{
"name": "david",
"language": "en-US",
"ttsname": "en-US-Standard-D",
"ttsengine": "GTTS",
"displayName": "David"
oA
"name": "austin",
"language": "en-AU",
"ttsname": "en-AU-Standard-D",
"ttsengine": "GTTS",
"displayName": "Austin"
oA
"name": "pierre",
"language": "fr-CA",
"ttsname": "fr-CA-Standard-D",
"ttsengine": "GTTS",
"displayName": "Pierre"
}
]I
"digital": {3},
"email": {},
"chat": {},
"web": {}
}

Update Designer flowsettings.json

1. Enable the persona feature flag in the flowsettings.json override file.

"features": {
"persona": true

2. Perform the steps in the Updating the flowsettings file section for the changes to take effect.

Update application settings
Perform the following steps to enable the persona in the required Designer application:
1. Open the required Designer application and navigate to the Settings tab.

2. In the Application Settings, select the Enable Persona checkbox in the Persona tab.

3. If you are using a Google TTS custom voice, select Enable Custom Voices.

Designer Private Edition Guide

89

Enable optional features

4. Re-publish the application and create a new build.

Adding voice

definitions

Additional voice definitions can be added by Genesys. Contact your Genesys
representative for more information.

Designer supports Nuance and Google (standard and custom) TTS voice definitions. This example of a
voice definition contains both a standard and custom Google TTS voice:

"voice": [
{

voice definition

}'
{

definition.

Voice definitions

name

language

ttsname

ttsengine

displayName

"name": "fatima",

"language": "ar-SA",
"ttsname": "ar-XA-Wavenet-A",
"ttsengine": "GTTS",
"displayName": "Fatima"

"name": "ursula",

"language": "de-DE",
"ttsname": "de-DE-Wavenet-A",
"ttsengine": "GTTS",
"displayName": "Ursula",
"ttsCustomVoice" : true,
"ttsCustomVoiceURI: : ""

must include the following details:

Name

// Example of a standard Google TTS

// Example of a Custom Google TTS voice

Value description
Name of this voice.

Language that matches the Language system
variable.

Voice name used for this Language.

Specifies the TTS service provider for this voice.
Designer supports the following TTS engines:

¢ Enter NuanceTTS for Nuance voices.

e Enter GTTS for Google voices.

Name of this voice as displayed in the Designer Ul.

Note: The following values are required only if you are defining a custom Google TTS voice. Otherwise,
they do not need to be included in the voice definition.

Designer Private Edition Guide

90

Enable optional features

Name Value description

Enter true for this setting. This tells Designer that
ttsCustomVoice the voice is custom (that is, unique to your
environment) and to ignore the ttsname value.

ttsCustomVoiceURI Specifies the location of the custom voice.

To use custom Google TTS voices in an application, Enable Custom Voices must be
selected on the Persona tab in the application settings.

Designer Private Edition Guide

91

Upgrade, roll back, or uninstall Designer

Upgrade, roll back, or uninstall Designer

Contents

e 1 Supported upgrade strategies
e 2 Timing
* 2.1 Scheduling considerations
¢ 3 Monitoring
* 4 Preparatory steps
* 5 Rolling Update
¢ 5.1 Rolling Update: Upgrade
* 5.2 Rolling Update: Verify the upgrade
* 5.3 Rolling Update: Rollback
* 5.4 Rolling Update: Verify the rollback
* 6 Blue/Green
* 6.1 Blue/Green: Upgrade Designer
* 6.2 Blue/Green: Rollback Designer
* 6.3 Blue/Green: Upgrade DAS
* 6.4 Blue/Green: Rollback DAS
e 7 Canary
e 7.1 Cleaning up
e 8 Post-upgrade procedures
* 8.1 Upgrading the Designer workspace
» 8.2 Elasticsearch maintenance recommendations

¢ 9 Uninstall

Designer Private Edition Guide

92

Upgrade, roll back, or uninstall Designer

Learn how to upgrade, roll back, or uninstall Designer.

Related documentation:

* For private edition

The instructions on this page assume you have deployed the services in service-
specific namespaces. If you are using a single namespace for all private edition
services, replace the namespace element in the commands on this page with the

name of your single namespace or project.

Supported upgrade strategies

Designer supports the following upgrade strategies:
Service Upgrade Strategy

e Rolling Update
Designer e Blue/Green

* Canary

e Rolling Update
Designer Application Server e Blue/Green

e Canary

The upgrade or rollback process to follow depends on how you deployed the service initially. Based

Notes

Canary is used in combination
with Blue/Green.

Canary is used in combination
with Blue/Green.

on the deployment strategy adopted during initial deployment, refer to the corresponding upgrade or

rollback section on this page for related instructions.

For a conceptual overview of the upgrade strategies, refer to Upgrade strategies in the Setting up

Genesys Multicloud CX Private Edition guide.

Designer Private Edition Guide

93

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Upgrade, roll back, or uninstall Designer

Timing

A regular upgrade schedule is necessary to fit within the Genesys policy of supporting N-2 releases,
but a particular release might warrant an earlier upgrade (for example, because of a critical security
fix).

If the service you are upgrading requires a later version of any third-party services, upgrade the third-
party service(s) before you upgrade the private edition service. For the latest supported versions of
third-party services, see the Software requirements page in the suite-level guide.

Scheduling considerations

Genesys recommends that you upgrade the services methodically and sequentially: Complete the
upgrade for one service and verify that it upgraded successfully before proceeding to upgrade the
next service. If necessary, roll back the upgrade and verify successful rollback.

Monitoring

Monitor the upgrade process using standard Kubernetes and Helm metrics, as well as service-specific
metrics that can identify failure or successful completion of the upgrade (see Observability in
Designer).

Genesys recommends that you create custom alerts for key indicators of failure — for example, an
alert that a pod is in pending state for longer than a timeout suitable for your environment. Consider
including an alert for the absence of metrics, which is a situation that can occur if the Docker image
is not available. Note that Genesys does not provide support for custom alerts that you create in your
environment.

Preparatory steps

Ensure that your processes have been set up to enable easy rollback in case an upgrade leads to
compatibility or other issues.

Each time you upgrade a service:
1. Review the release note to identify changes.

2. Ensure that the new package is available for you to deploy in your environment.

3. Ensure that your existing -values.yaml file is available and update it if required to implement changes.

Designer Private Edition Guide 94

Upgrade, roll back, or uninstall Designer

Rolling Update

Rolling Update: Upgrade
Execute the following command to upgrade :
helm upgrade --install -f -values.yaml -n

Tip: If your review of Helm chart changes (see Preparatory Step 3) identifies that the only update you
need to make to your existing -values.yaml file is to update the image version, you can pass the
image tag as an argument by using the - -set flag in the command:

helm upgrade --install -f -values.yaml --set .image.tag=

Follow the same instructions to upgrade Designer and DAS. For example, the respective commands
are:

e Designer:

helm upgrade --install --namespace designer designer -f designer-values.yaml
designer-100.0.112+1401.tgz --set designer.image.tag=100.0.112.11

e DAS:

helm upgrade --install --namespace designer designer-das -f designer-das-values.yaml
designer-das-100.0.112+1401.tgz --set das.image.tag=9.0.111.05.5

If you are using the --set flag in the helm upgrade command to populate the
designer.designerConfig.envs or das.dasConfig.envs values, use --set-string, for example:

e Designer: --set-string designer.designerConfig.envs.DES ES PORT="8080"
* DAS: --set-string das.dasConfig.envs.DAS SERVICES ELASTICSEARCH PORT="9200"

Rolling Update: Verify the upgrade
Follow usual Kubernetes best practices to verify that the new service version is deployed. See the

information about initial deployment for additional functional validation that the service has
upgraded successfully.

Rolling Update: Rollback

Execute the following command to roll back the upgrade to the previous version:
helm rollback

or, to roll back to an even earlier version:

helm rollback

Alternatively, you can re-install the previous package:

1. Revert the image version in the .image.tag parameter in the -values.yaml file. If applicable, also

Designer Private Edition Guide 95

Upgrade, roll back, or uninstall Designer

revert any configuration changes you implemented for the new release.
2. Execute the following command to roll back the upgrade:
helm upgrade --install -f -values.yaml

Tip: You can also directly pass the image tag as an argument by using the --set flag in the
command:

helm upgrade --install -f -values.yaml --set .image.tag=

Follow the same instructions to roll back Designer and DAS. For example, the respective commands
are:

* Designer:

helm upgrade --install --namespace designer designer -f designer-values.yaml
designer-100.0.112+1401.tgz --set designer.image.tag=100.0.112.11

* DAS:
helm upgrade --install --namespace designer designer-das -f designer-das-values.yaml

designer-das-100.0.112+1401.tgz --set das.image.tag=9.0.111.05.5

Rolling Update: Verify the rollback

Verify the rollback in the same way that you verified the upgrade (see Rolling Update: Verify the
upgrade).

e Ensure that the image version in the -values.yaml file reflects the version that you rolled back to.

Blue/Green

Blue/Green: Upgrade Designer

1. Identify the current production color by checking the Designer ingress rules:
kubectl describe ingress designer-ingress

Green is the production color in the below example as the production host name points to the
green service.

kubectl describe ingress designer-ingress

Host Path Backends

designer.example.com ! designer-green:http (10.244.0.23:8888)
designer.green.example.com / designer-green:http (10.244.0.23:8888)
designer.blue.example.com ! designer-blue:http (10.244.0.45:8B88)

Designer Private Edition Guide 96

/File:DesUpgStep1.png
/File:DesUpgStep1.png

Upgrade, roll back, or uninstall Designer

2. Deploy the Designer service on to the non-production color (in this example, blue is the non-production
color and assuming the service name is designer-blue):

helm upgrade --install --namespace designer designer-blue -f designer-values.yaml
designer-100.0.112+1401.tgz --set designer.deployment.strategy=blue-green --set
designer.image.tag=100.0.111.05.5 --set designer.deployment.color=blue

Use the non-production host hame to access the non-production color. For example,
designer.blue.example.com). You can use this URL for testing.

NodePort Service

The designer-green release creates a service called designer-green and the designer-blue
release creates a service called designer-blue. If you are using NodePort services, ensure that the
value of designer.service.nodePort is not the same for both the releases. In other words, you
should assign dedicated node ports for the releases. The default value for
designer.service.nodePort is 30180. If this was applied to designer-green, use a different value
for designer-blue, for example, 30181. Use the below helm command to achieve this:

helm upgrade --install --namespace designer designer-blue -f designer-values.yaml
designer-100.0.112+1401.tgz --set designer.deployment.strategy=blue-green --set
designer.image.tag=100.0.111.05.5 --set designer.deployment.color=blue --set
designer.service.nodePort=30181

Cutover

Once testing is completed on the non-production color, move traffic to the new version by updating
the Ingress rules:

¢ Update the Designer Ingress with the new deployment color by running the following command (in this
case, blue is the new deployment color, that is, the non-production color):

helm upgrade --install --namespace designer designer-ingress -f designer-values.yaml

designer-100.0.112+1401.tgz --set designer.deployment.strategy=blue-green-ingress --
set designer.deployment.color=blue

Verify the upgrade

* Verify the ingress rules by running the following command:
kubectl describe ingress designer-ingress
The production host name must point to the new color service, that is, blue.

Blue/Green: Rollback Designer

To roll back the upgrade, modify the ingress rules to point back to the old deployment pods (green, in
this example) by performing a cutover again.

e Perform a cutover using the following command:

helm upgrade --install --namespace designer designer-ingress -f designer-values.yaml
designer-100.0.112+1401.tgz --set designer.deployment.strategy=blue-green-ingress --
set designer.deployment.color=green

Designer Private Edition Guide 97

Upgrade, roll back, or uninstall Designer

Verify the rollback

¢ \erify the rollback in the same way that you verified the upgrade (see Blue-Green: Verify the upgrade).
The type label must have the active color's label, that is, color=green.

Blue/Green: Upgrade DAS

1. Identify the current production color by checking the designer-das service selector labels:
kubectl describe service designer-das

Green is the production color in the below example as the selector label is color=green.

kubectl describe service designer-das

Selector: color=green

2. Deploy the DAS service on to the non-production color (in this example, blue is the non-production color
and assuming the service name is designer-das-blue):

helm upgrade --install --namespace designer designer-das-blue -f das-values.yaml
designer-das-100.0.106+1401.tgz --set das.deployment.strategy=blue-green --set
das.image.tag=9.0.111.05.5 --set das.deployment.color=blue

Use the non-production service name to access the non-production color.
NodePort Service

The designer-das-green release creates a service called designer-das-green and the designer-
das-blue release creates a service called designer-das-blue. If you are using NodePort services,
ensure that the value of designer.service.nodePort is not the same for both the releases. In other
words, you should assign dedicated node ports for the releases. The default value for
designer.service.nodePort is 30280. If this was applied to designer-das-green, use a different
value for designer-das-blue, for example, 30281. Use the below helm command to achieve this:

helm upgrade --install --namespace designer designer-das designer-das-100.0.106+xxx.tgz -f
designer-das-values.yaml --set das.deployment.strategy=blue-green-service --set
das.deployment.color=green --set das.service.nodePort=30281

Cutover

Once testing is completed on the non-production color, move traffic to the new version by updating
the designer-das service.

* Update the designer-das service with the new deployment color (in this example, blue is the new
deployment color, that is, non-production color)

helm upgrade --install --namespace designer designer-das-service -f designer-das-
values.yaml designer-das-100.0.106+1401.tgz --set das.deployment.strategy=blue-green-
service --set das.deployment.color=blue

Designer Private Edition Guide 98

/File:DasBGUpgStep1.png
/File:DasBGUpgStep1.png

Upgrade, roll back, or uninstall Designer

Verify the upgrade

* Verify the service by executing the kubectl describe service designer-das command.
The type label must have the active color's label, that is, color=blue.

Blue/Green: Rollback DAS

To roll back the upgrade, perform a cutover again to point the service back to the old deployment
(green).

e Perform a cutover using the following command:

helm upgrade --install --namespace designer designer-das-service -f designer-das-
values.yaml designer-das-100.0.106+1401.tgz --set das.deployment.strategy=blue-green-
service --set das.deployment.color=green

Verify the rollback

* Verify the rollback in the same way that you verified the upgrade (see Blue-Green: Verify the upgrade).
The type label must have the active color's label, color=green.

Canary

Canary is optional and is only used along with Blue-Green. It is recommended in production. Canary
pods are generally used to test new versions of images with live traffic. You will not use Canary pods
when you are installing the Designer and DAS services for the first time. You will only use Canary
pods for testing the new versions when upgrading the services after initial deployment.

1. Identify the current production color by checking the designer-das service selector labels (kubectl
describe service designer-das). Green is the production color in the below example as the selector
label is color=green.

kubectl describe service designer-das

Selector: color=green

2. To deploy canary pods, the das.deployment.strategy value must be set to canary in the designer-
das-values.yaml file or using the -- set flag as shown in the command below:
helm upgrade --install --namespace designer designer-das-canary -f das-values.yaml
designer-das-100.0.106+xxxx.tgz --set das.deployment.strategy=canary --set
das.image.tag=9.0.1xx.xx.xx --set das.deployment.color=green
The values.yaml overrides passed as an argument to the above Helm upgrade command:
das.deployment.strategy=canary - This denotes that the Helm install will create canary pods.
das.deployment.color=green - This denotes that the current production (active) color is green.

Designer Private Edition Guide 99

/File:CanaryInDepStep1.png
/File:CanaryInDepStep1.png

Upgrade, roll back, or uninstall Designer

To make sure Canary pods receive live traffic, they have to be exposed to the designer-das service by
setting das.deployment.color=, which is obtained from step 1.

3. Once canary pods are up and running, ensure that the designer-das service points to the canary pods
using the kubectl describe svc designer-das command.

Endpcints: 10.206.0.101:8081,10.206.0.162:8081,10.206.0.90:8081

The IP address present in the Endpoints must match the IP address of the canary pod. The canary pod's
IP address is obtained using the kubectl describe pod command.
IP: 10.20
IP=:
IP: 10.206.0.90

oy

. 0.90

Cleaning up

After completing canary testing, the canary pods must be cleaned up. The
das.deployment.replicaCount must be made zero and the release is upgraded. It can be changed
in the designer-das-values.yaml file or through the --set flag as follows:

* helm upgrade --install --namespace designer designer-das-canary -f das-values.yaml
designer-das-100.0.106+xxxx.tgz --set das.deployment.strategy=canary --set
das.image.tag=9.0.1xx.xx.xx --set das.deployment.color=blue --set
das.deployment.replicaCount=0

Post-upgrade procedures

Upgrading the Designer workspace

Workspace resources must be upgraded after cutover. Perform the following steps to upgrade the
system resources in the Designer workspace:

1. Log in to one of the Designer pods using the kubectl exec -it bash command.

2. Execute the following migration command (this creates new directories/new files introduced in the new
version):

node ./bin/cli.js workspace-upgrade -m -t

3. Execute the workspace resource upgrade command (this upgrades system resources, such as system
service PHP files, internal audio files and callback resources):
node ./bin/cli.js workspace-upgrade -t
In the above command, contact center id, is the Contact Center ID created in GWS for this tenant
(workspace resources are located under the Contact Center ID folder (/workspaces//workspace)).

Designer Private Edition Guide 100

/File:CanaryEndpoints.png
/File:CanaryEndpoints.png
/File:CanaryIPs.png
/File:CanaryIPs.png

Upgrade, roll back, or uninstall Designer

Elasticsearch maintenance recommendations

To help you better manage your indexes and snapshots, and to prevent too many indexes from
creating an overflow of shards, Genesys recommends that you set up a scheduled execution of
Elasticsearch Curator with the following two actions:

* Delete indexes older than the given threshold according to the index name and mask.

e sdr-* (3 months)

e audit-* (12 months)

¢ Make a snapshot of each index:
e sdr-* (yesterday and older)
e audit-*

e kibana-int-*

Uninstall

Warning

Uninstalling a service removes all Kubernetes resources associated with that service.
Genesys recommends that you contact Genesys Customer Care before uninstalling
any private edition services, particularly in a production environment, to ensure that
you understand the implications and to prevent unintended consequences arising
from, say, unrecognized dependencies or purged data.

Execute the following command to uninstall :

helm uninstall -n

Designer Private Edition Guide 101

Observability in Designer

Observability in Designer

Contents

e 1 Monitoring

* 1.1 Enable monitoring

¢ 1.2 Configure metrics

* 1.3 What do Designer metrics monitor?
e 2 Alerting

* 2.1 Configure alerts

* 3 Logging

Designer Private Edition Guide 102

Observability in Designer

Learn about the logs, metrics, and alerts you should monitor for Designer.

Related documentation:

* For private edition

Monitoring

Private edition services expose metrics that can be scraped by Prometheus, to support monitoring
operations and alerting.

¢ As described on Monitoring overview and approach, you can use a tool like Grafana to create
dashboards that query the Prometheus metrics to visualize operational status.

e As described on Customizing Alertmanager configuration, you can configure Alertmanager to send
notifications to notification providers such as PagerDuty, to notify you when an alert is triggered
because a metric has exceeded a defined threshold.

The services expose a number of Genesys-defined and third-party metrics. The metrics that are
defined in third-party software used by private edition services are available for you to use as long as
the third-party provider still supports them. For descriptions of available Designer metrics, see:

* Designer Application Server metrics

* Designer metrics

See also System metrics.

Desginer and DAS generate application related metrics at the /metric API in the standard
Prometheus client format.

In addition to the metrics listed in the DES and DAS metrics topics, you can also
obtain infrastructure related metrics by installing standard Prometheus clients in the
Kubernetes cluster.

Designer Private Edition Guide 103

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Observability in Designer

Enable monitoring

To enable monitoring you must configure the various Prometheus related options. For more details on
these various options, refer to the Designer deployment settings and DAS deployment settings
sections in the Configure Designer topic.

CRD or Endpoint/ Metrics update

Service annotations? et Selector interval

See selector
details on the
Designer
Application Server
metrics and alerts
page

See selector
details on the
Designer metrics
and alerts page

Designer

Application Server ServiceMonitor 8081

10 seconds

Designer ServiceMonitor 8888 10 seconds

Configure metrics

The metrics that are exposed by the DES and DAS services are available by default. No further
configuration is required in order to define or expose these metrics. You cannot define your own
custom metrics.

The Metrics pages linked to above show some of the metrics the DES and DAS services expose. You

can also query Prometheus directly or via a dashboard to see all the metrics available from the DES
and DAS services.

What do Designer metrics monitor?

The exposed DES and DAS metrics help you monitor a number of data points that are important in a
production environment. For more details on the individual metrics, refer to the Metrics pages.

Alerting

Private edition services define a number of alerts based on Prometheus metrics thresholds.

You can use general third-party functionality to create rules to trigger alerts based on
metrics values you specify. Genesys does not provide support for custom alerts that
you create in your environment.

For descriptions of available Designer alerts, see:

Designer Private Edition Guide 104

Observability in Designer

* Designer Application Server alerts

¢ Designer alerts

Configure alerts

Private edition services define a number of alerts by default (for Designer, see the pages linked to
above). No further configuration is required.

Enable alerts in Designer
To enable alerts in Designer, use either of the following methods:

Method 1: Enable Prometheus alerts in the values.yaml file.
designer:
prometheus:

alerts:
enabled: true # this will be false by default.

Method 2: Find out the active deployment color and execute the below
command in the corresponding deployment:

helm upgrade --install designer-blue -f designer-values.yaml designer-9.0.xx.tgz --

set designer.deployment.strategy=blue-green --set
designer.prometheus.alerts.enabled=true

Disable alerts in Designer
To disable or delete alerts, use either of the following methods:

Method 1: Disable Prometheus alerts in the values.yaml file.
designer:
prometheus:

alerts:
enabled: false # this will be false default.

Method 2: Pass the below parameter along with the Helm upgrade command.
helm upgrade --install designer-blue -f designer-values.yaml designer-9.0.xx.tgz --

set designer.deployment.strategy=blue-green --set
designer.prometheus.alerts.enabled=false

Enable alerts in DAS
To enable alerts, use either of the following methods:

Method 1: Enable Prometheus alerts in the values.yaml file.

das:
prometheus:

Designer Private Edition Guide 105

Observability in Designer

alerts:
enabled: true # this will be false default.

Method 2: Pass the below parameter along with the Helm upgrade command.

helm upgrade --install designer-das-blue -f designer-values.yaml designer-
das-9.0.xx.tgz --set das.deployment.strategy=blue-green --set
das.prometheus.alerts.enabled=true

Disable alerts in DAS
To disable or delete alerts, use either of the following methods:

Method 1: Disable Prometheus alerts in the values.yaml file.

das:
prometheus:
alerts:
enabled: false # this will be false default.

Method 2: Pass the below parameter along with the Helm upgrade command.

helm upgrade --install designer-das-blue -f designer-values.yaml designer-
das-9.0.xx.tgz --set das.deployment.strategy=blue-green --set
das.prometheus.alerts.enabled=false

Update alert parameters
The following alert parameters can be updated:

e Alert Threshold (ALERT_PARAMETER_NAME: threshold)
e Alert Interval (ALERT_PARAMETER_NAME: interval)
e Alert Severity (ALERT_PARAMETER_NAME: AlertPriority)

Perform the following steps to update the above alerts:

1. Refer to the list of alerts and identify the name of the alert you want to update or modify.

2. Update the alert by adding a parameter in the below format in the values.yaml file:

designer:
prometheus:
alerts:

For example, consider the CPU utilization alert. The alert name is CPUUtilization
with a default threshold of 75, severity set to CRITICAL and interval set to 180s.
To modify its threshold to 80, severity to HIGH, and interval to 120 seconds, you
will have to make the following changes in the values.yaml file:

designer:

Designer Private Edition Guide 106

Observability in Designer

prometheus:
alerts:
CPUUtilization:
threshold: 80
interval: 120
AlertPriority: HIGH

Though the ability to create custom alerts and some dashboards are packaged with
the Designer Helm charts, these are not documented and are not supported as of
now.

Logging

Refer to the Logging topic for information on configuring logging for the DES and DAS services.

Designer Private Edition Guide 107

DES metrics and alerts

DES metrics and alerts

Contents

e 1 Metrics

e 2 Alerts

Designer Private Edition Guide 108

DES metrics and alerts

Find the metrics DES exposes and the alerts defined for DES.

CRD or

Service .
annotations?

DES ServiceMonitor

See details about:

¢ DES metrics

e DES alerts

Metrics

Metrics
Port Endpoint/Selector update
interval
selector:
matchLabels:
{{- include

"designer.labels" . |
nindent 6
8888 3 10 seconds
Labels to identify which service to
communicate with depend on the
release name.

Path: /metrics

Given below are some of the metrics exposed by the DES service:

Designer exposes many Genesys-defined as well as system metrics. You can query
Prometheus directly to see all the available metrics. The metrics documented on this
page are likely to be particularly useful. Genesys does not commit to maintain other
currently available Designer metrics not documented on this page.

Metric and description

des_csp_violations_total

Number of CSP violations.

Metric details Indicator of
Unit:
Type: Counter

Label:
Sample value: 0

Designer Private Edition Guide

109

DES metrics and alerts

Alerts

The following alerts are defined for DES.

Alert Severity

CPUUtilization
(Alarm: Pod CPU
Usage)

CRITICAL

MemoryUtilization
(Alarm: Pod
Memory Usage)

CRITICAL

containerRestartAlert
(Alarm: Pod
Restarts Count)

CRITICAL

containerReadyAlert
(Alarm: Pod Ready
Count)

CRITICAL

AbsentAlert
(Alarm:
Deployment
availability)

CRITICAL

WorkspaceUtilization
(Alarm: Azure
Fileshare PVC
Usage)

HIGH

Health
(Alarm: Health
Status)

CRITICAL

WorkspaceHealth
(Alarm: Workspace
Health Status)

CRITICAL

ESHealth
(Alarm:
Elasticsearch
Health Status)

CRITICAL

Description Based on

Triggered when a
pod's CPU
utilization is
beyond the
threshold.

Triggered when a
pod's memory
utilization is
beyond the
threshold.

Triggered when a
pod's restart count
is beyond the
threshold.

Triggered when a
pod's ready count
is less than the
threshold (1).

Triggered when
Designer pod
metrics are
unavailable.

Triggered when file
share usage is
greater than the
threshold.

Triggered when
Designer health
status is 0.

Triggered when
Designer is not
able to
communicate with
the workspace.

Triggered when
Designer/DAS is
not able to reach
the Elasticsearch

Threshold
75%

Default interval:

180s

75%

Default interval:

180s

5

Default interval:

180s

1

Default interval:

60s

1

Default interval:

60s

80%

Default interval:

180s

0

Default interval:

60s

0

Default interval:

60s

0

Default interval:

60s

Designer Private Edition Guide

110

DES metrics and alerts

Alert Severity
GWSHealth
(Alarm: GWS CRITICAL

Health Status)

Description
server.

Triggered when
Designer/DAS is
not able to reach
the GWS server.

Based on

Threshold

0
Default interval:
60s

Designer Private Edition Guide

111

DAS metrics and alerts

DAS metrics and alerts

Contents

e 1 Metrics

e 2 Alerts

Designer Private Edition Guide 112

DAS metrics and alerts

Find the metrics DAS exposes and the alerts defined for DAS.

Metrics
Service anncoI:aDt?Jns" Port Endpoint/Selector update
) interval

selector:
matchLabels:
{{- include
"das.serviceSelectorLabels"
| nindent 6 }}
DAS ServiceMonitor 8081 Labels to identify which 10 seconds
service to communicate with
depend on an unique label
applicable to DAS.

Path: /metrics

See details about:

¢ DAS metrics
e DAS alerts

Metrics

Given below are some of the metrics exposed by the DAS service:

DAS exposes many Genesys-defined as well as system metrics. You can query
Prometheus directly to see all the available metrics. The metrics documented on this
page are likely to be particularly useful. Genesys does not commit to maintain other
currently available DAS metrics not documented on this page.

Metric and description Metric details Indicator of

sdr_requests_received Unit:
Type: Counter

Label:

Sample value: 1998352

Number of requests received since DAS is
running (provided for each CCID).

sdr_requests_rejected Unit:

Designer Private Edition Guide 113

DAS metrics and alerts

Metric and description

Number requests rejected since DAS is
running (provided for each CCID).

data_tables_requests_failures

Number of failed data table requests
since DAS is running (provided for each
CCID).

data_tables_request_duration

Data table requests latency in seconds,
since DAS is running (provided for each
CCID).

Metric details

Type: Counter
Label:
Sample value:

Unit:

Type: Counter
Label:
Sample value: 80

Unit: seconds

Type: Histogram
Label:
Sample value: 189

business_hours_requests_failure¥"it:

Number of failed business hours requests
since DAS is running.

Type: Counter
Label:
Sample value:

business_hours_request_duratiobnit: seconds

Business hours requests latency in
seconds, since DAS is running (provided
for each CCID).

special_days_requests_failures
Number of failed special days requests
since DAS is running.
special_days_request_duration
Special days requests latency in seconds,
since DAS is running (provided for each
CCID).
external_requests_failures

Number of failed external requests since
DAS is running.

external_requests_timedout

Number of timed out external requests
since DAS is running.

external_requests_duration

External requests latency in seconds,
since DAS is running.

Type: Histogram
Label:
Sample value: 26

Unit:

Type: Counter
Label:
Sample value:

Unit: seconds

Type: Histogram
Label:
Sample value: 34

Unit:

Type: Counter
Label:
Sample value:

Unit:

Type: Counter
Label:
Sample value:

Unit: seconds

Type: Histogram
Label:
Sample value:

das_http_request_duration_secoiddt: seconds

Indicator of

Designer Private Edition Guide

114

DAS metrics and alerts

Metric and description

HTTP request latency in seconds
(provided for each request type and
CCID).
das_http_requests_total

Number of HTTP requests (provided for
each request type and CCID).

nginx_metric_errors_total

Number of nginx-lua-prometheus errors.

Alerts

Metric details

Type: Histogram
Label:
Sample value: 40

Unit:

Type: Counter
Label:
Sample value: 40

Unit:

Type: Counter
Label:
Sample value: 2

The following alerts are defined for DAS.

Indicator of

Alert Severity Description Based on Threshold

Triggered when a 75% .
CPUUtilization pod's CPU Default interval:
(Alarm: Pod CPU CRITICAL utilization is 180s
Usage) beyond the

threshold.

Triggered when a 5%
MemoryUtilization pod's memory Default interval:
(Alarm: Pod CRITICAL utilization is 180s
Memory Usage) beyond the

threshold.

Tri d wh >
containerRestartAlert g?jgse::stz\a,\:ﬁtecgfnt Default interval:
(Alarm: Pod CRITICAL i‘; beyond the 180s
Restarts Count) threshold.

Tri d wh !

i riggered when a Default interval:
E:Xlr;tr?me;gg ?{iﬁglfrt CRITICAL pod’s ready count 60s
Count). is less than the
threshold (1).
1
/(Apljzfgtfﬁ\lert Triggered when Default interval:
: i 60s
availability) ’
WorkspaceUtilization HIGH Triggered when file 80%
Designer Private Edition Guide 115

DAS metrics and alerts

Alert Severity
(Alarm: Azure

Fileshare PVC

Usage)

Health
(Alarm: Health
Status)

CRITICAL

WorkspaceHealth
(Alarm: Workspace
Health Status)

CRITICAL

PHPHealth
(Alarm: PHP Health
Status)

CRITICAL

ProxyHealth
(Alarm: Proxy
Health Status)

CRITICAL

HTTP5XXCount
(Alarm: Application HIGH
5XX Error)

HTTP4XXCount
(Alarm: Application HIGH
4XX Error)

PhpLatency
(Alarm: DAS PHP HIGH
Latency Alert)

HTTPLatency
(Alarm: DAS HTTP HIGH
Latency Alert)

Description Based on

share usage is

greater than the
threshold.

Triggered when
DAS health status
is 0.

Triggered when
DAS is not able to
communicate with
the workspace.

Triggered when
Designer/DAS
experiences a PHP
Health check
failure.

Triggered when
Designer/DAS
experiences a
Proxy Health check
failure.

Triggered when
DAS exceeds the
allowed 5xx error
count threshold
specified here.

Triggered when
DAS exceeds the
4xx error count
threshold specified
here.

Triggered when the
average time
taken by a PHP
request is greater
than the threshold
(in seconds)
specified here.

Triggered when the
average time
taken by a HTTP
request is greater
than the threshold
(in seconds)
specified here.

Threshold

Default interval:

180s

0

Default interval:

60s

0

Default interval:

60s

0

Default interval:

60s

0

Default interval:

60s

10

Default interval:

180s

100

Default interval:

180s

10s

Default interval:

180s

10s

Default interval:

180s

Designer Private Edition Guide

116

Logging

Logging

Contents

e 1 Loglevels
* 1.1 Designer
* 1.2 DAS

Designer Private Edition Guide 117

Logging

Learn how to configure log levels for Designer and DAS.

Related documentation:

* For private edition

Designer and DAS support console output (stdout) logging. Genesys recommends configuring console
output logging to minimize the host IOPs and PVCs consumption by using log volumes. Console
output logs can be extracted using log collectors like fluentbit/fluentd and Elasticsearch.

Ensure the below setttings are configured in the respective values.yaml overrides for console
logging:

1. Designer
designerEnv.envs.DES FILE LOGGING ENABLED = false

2. DAS
dasEnv.envs.DAS FILE LOGGING ENABLED = falsedasEnv.envs.DAS STDOUT LOGGING ENABLE =
true

Log levels

Post deployment, Designer and DAS log levels can be modified as follows:

Designer

1. Configure the logging setting in the flowsettings override (flowsettings.yaml) - Refer to the table in
the Post deployment Designer configuration settings section for option descriptions.

2. Execute the steps in the Updating the flowsettings file section in Post deployment procedures for the
changes to take effect .

DAS

1. Configure the dasEnv.envs.DAS LOG LEVEL setting in the Helm das-values.yaml file. For setting
descriptions, refer to the DAS deployment settings section in Deployment configuration settings.

2. Execute the steps in the Upgrade section in the DAS deployment process for the Blue-Green strategy.
The same DAS version running in production can be used for the upgrade,

3. Execute the steps in the Cutover section in the DAS deployment process for the Blue-Green strategy.

Designer Private Edition Guide 118

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Designer on GKE

Designer on GKE

Contents

* 1 Configure a secret to access JFrog
* 2 Create a Designer secret with GWS

e 2.1 GWS settings for auth

¢ 3 Checking logs

Designer Private Edition Guide

119

Designer on GKE

Learn more about specific settings that you have to configure when deploying Designer on Google
Kubernetes Engine (GKE).

Related documentation:

» For private edition

Configure and deploy Designer as described in the topics under the Configure and
deploy section. Only additional information that is specific to deploying Designer on
GKE is provided here.

Configure a secret to access JFrog

If you haven't done so already, create a secret for accessing the JFrog registry (for example, jfrog-
stage-credentials):

kubectl create secret docker-registry jfrog-stage-credentials \
--docker-server=pureengage-docker-staging.jfrog.io \

--docker-username= \

--docker-password= \
--docker-email=

Now map the secret to the default service account:

kubectl secrets link default jfrog-stage-credentials --for=pull

Create a Designer secret with GWS

To create a Designer secret with GWS, update the following values to your Environment in the GWS
service:

¢ : Set to the internal API of GWS

e contactCenterlIds: Set to your tenant ID

Designer Private Edition Guide 120

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Designer on GKE

e redirectURIs: Set to the URL(s) to be used for Designer

¢ : Set to the domain address for the environment
And, optionally, update the following:

e -u opsAdmin: opsPass (this is the default delivered for tenants)
e client secret: Set to any value (used in secret)
* name: Set to anything

e client id: Set to your client ID (used in secret)

GWS settings for auth

In the Designer flowsettings override file, update the following options with these values:

e htccserver: gws-service-proxy.gws.svc.cluster.local

* gwsenvurl: http://gauth-environment.gauth.svc.cluster.local:80
e gwsauthurl: http://gauth-auth.gauth.svc.cluster.local:8

e ssoLoginUrl: https://gauth.apps.

Checking logs

After deploying Designer, you check the logs using the following commands:
Designer

kubectl get pods

kubectl logs

DAS

kubectl get pods

kubectl logs

Designer Private Edition Guide

121

Designer on AKS

Designer on AKS

Contents

* 1 Configure a secret to access JFrog
* 2 Create a Designer secret with GWS

e 2.1 GWS settings for auth

¢ 3 Checking logs

Designer Private Edition Guide

122

Designer on AKS

Learn more about specific settings that you have to configure when deploying Designer on Azure
Kubernetes Service (AKS).

Related documentation:

» For private edition

Configure and deploy Designer as described in the topics under the Configure and
deploy section. Only additional information that is specific to deploying Designer on
AKS is provided here.

Configure a secret to access JFrog

If you haven't done so already, create a secret for accessing the JFrog registry (for example, jfrog-
stage-credentials):

kubectl create secret docker-registry jfrog-stage-credentials \
--docker-server=pureengage-docker-staging.jfrog.io \

--docker-username= \

--docker-password= \
--docker-email=

Now map the secret to the default service account:

kubectl secrets link default jfrog-stage-credentials --for=pull

Create a Designer secret with GWS

To create a Designer secret with GWS, update the following values to your Environment in the GWS
service:

¢ : Set to the internal API of GWS

e contactCenterlIds: Set to your tenant ID

Designer Private Edition Guide 123

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Designer on AKS

e redirectURIs: Set to the URL(s) to be used for Designer

¢ : Set to the domain address for the environment
And, optionally, update the following:

e -u opsAdmin: opsPass (this is the default delivered for tenants)
e client secret: Set to any value (used in secret)
* name: Set to anything

e client id: Set to your client ID (used in secret)

GWS settings for auth

In the Designer flowsettings override file, update the following options with these values:

e htccserver: gws-service-proxy.gws.svc.cluster.local

* gwsenvurl: http://gauth-environment.gauth.svc.cluster.local:80
e gwsauthurl: http://gauth-auth.gauth.svc.cluster.local:8

e ssoLoginUrl: https://gauth.apps.

Checking logs

After deploying Designer, you check the logs using the following commands:
Designer

kubectl get pods

kubectl logs

DAS

kubectl get pods

kubectl logs

Designer Private Edition Guide

124

	Designer Private Edition Guide
	Table of Contents
	About Designer
	Architecture
	High availability and disaster recovery
	Before you begin
	Configure Designer
	Platform / Configuration Server and GWS settings for Designer
	Deploy Designer
	Enable optional features
	Upgrade, roll back, or uninstall Designer
	Observability in Designer
	DES metrics and alerts
	DAS metrics and alerts
	Logging
	Designer on GKE
	Designer on AKS

