
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Deploy Genesys Authentication

Genesys Authentication Private
Edition Guide

4/26/2024

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

• 1 Assumptions
• 2 Prepare your environment

• 2.1 GKE
• 2.2 AKS

• 3 Deploy
• 4 Configure external access

• 4.1 Provision ingresses for GKE or AKS

• 5 Validate the deployment

Genesys Authentication Private Edition Guide 2

Learn how to deploy Genesys Authentication into a private edition environment.

Related documentation:
•
•
•

RSS:

• For private edition

Assumptions

• The instructions on this page assume you are deploying the service in a service-specific namespace,
named in accordance with the requirements on Creating namespaces. If you are using a single
namespace for all private edition services, replace the namespace element in the commands on this
page with the name of your single namespace or project.

• Similarly, the configuration and environment setup instructions assume you need to create namespace-
specific (in other words, service-specific) secrets. If you are using a single namespace for all private
edition services, you might not need to create separate secrets for each service, depending on your
credentials management requirements. However, if you do create service-specific secrets in a single
namespace, be sure to avoid naming conflicts.

Important
Make sure to review Before you begin for the full list of prerequisites required to
deploy Genesys Authentication.

Prepare your environment

To prepare your environment for the deployment, complete the steps in this section for Google
Kubernetes Engine (GKE).

GKE
Log in to the GKE cluster from the host where you will run the deployment:

gcloud container clusters get-credentials

Genesys Authentication Private Edition Guide 3

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss

Create a new namespace for Genesys Authentication with a JSON file that
specifies the namespace metadata. For example, create-gauth-
namespace.json:
{

"apiVersion": "v1",
"kind": "Namespace",
"metadata": {

"name": "gauth",
"labels": {

"name": "gauth"
}

}
}

Execute the following command to create the namespace:
kubectl apply -f create-gauth-namespace.json

Confirm the namespace was created:
kubectl describe namespace gauth

AKS
Log in to the AKS cluster from the host where you will run the deployment:

az aks get-credentials --resource-group --name --admin

Create a new namespace for Genesys Authentication with a JSON file that
specifies the namespace metadata. For example, create-gauth-
namespace.json:
{

"apiVersion": "v1",
"kind": "Namespace",
"metadata": {

"name": "gauth",
"labels": {

"name": "gauth"
}

}
}

Execute the following command to create the namespace:
kubectl apply -f create-gauth-namespace.json

Confirm the namespace was created:
kubectl describe namespace gauth

Deploy

Genesys Authentication Private Edition Guide 4

To deploy Genesys Authentication, you'll need the Helm package and your overrides file. Copy
values.yaml and the Helm package (gauth-.tgz) to the installation location.

For debugging purposes, use the following command to render templates without installing so you
can check that resources are created properly:

helm template --debug /gauth-.tgz -f values.yaml

The result shows Kubernetes descriptors. The values you see are generated from Helm templates,
and based on settings from values.yaml. Ensure that no errors are displayed; you will later apply
this configuration to your Kubernetes cluster.

Now you're ready to deploy Genesys Authentication:

helm install gauth ./gauth-.tgz -f values.yaml -n gauth

Configure external access

Follow the instructions for either GKE or AKS to make the Genesys Authentication services accessible
from outside the cluster.

Provision ingresses for GKE or AKS
After deploying, make Genesys Authentication services accessible from outside the GKE or AKS
cluster using the NGINX Ingress Controller.

Create a YAML file called gauth-ingress.yaml with the content below. Note:
Replace gws. and gauth. with your GWS and Genesys Authentication domains,
such as gws.test.dev.
apiVersion: extensions/v1beta1
kind: Ingress
metadata:

name: gauth-gws-ingress
namespace: gauth
annotations:

add an annotation indicating the issuer to use.
cert-manager.io/cluster-issuer: "selfsigned-cluster-issuer"
Custom annotations for NGINX Ingress Controller
kubernetes.io/ingress.class: "nginx"
nginx.ingress.kubernetes.io/ssl-redirect: "false"
nginx.ingress.kubernetes.io/use-regex: "true"

spec:
rules:
- host: gws. - e.g. gws.test.dev

http:
paths:

- path: /ui/auth/.*
backend:

serviceName: gauth-auth-ui
servicePort: 80

- path: /auth/.*

Genesys Authentication Private Edition Guide 5

backend:
serviceName: gauth-auth
servicePort: 80

- path: /environment/.*
backend:

serviceName: gauth-environment
servicePort: 80

tls:
- hosts:

- gws. - e.g. gws.test.dev
secretName: gauth-gws-ingress-cert

apiVersion: extensions/v1beta1
kind: Ingress
metadata:

name: gauth-gauth-ingress
namespace: gauth
annotations:

add an annotation indicating the issuer to use.
cert-manager.io/cluster-issuer: "selfsigned-cluster-issuer"
Custom annotations for NGINX Ingress Controller
kubernetes.io/ingress.class: "nginx"
nginx.ingress.kubernetes.io/ssl-redirect: "false"
nginx.ingress.kubernetes.io/use-regex: "true"

spec:
rules:
- host: gauth. - e.g. gauth.test.dev

http:
paths:

- path: /ui/auth/.*
backend:

serviceName: gauth-auth-ui
servicePort: 80

- path: /auth/.*
backend:

serviceName: gauth-auth
servicePort: 80

- path: /environment/.*
backend:

serviceName: gauth-environment
servicePort: 80

tls:
- hosts:

- gauth. - e.g. gauth.test.dev
secretName: gauth-gauth-ingress-cert

Create ingresses with the following command:
kubectl apply -f gauth-ingress.yaml -n gws

Validate the deployment

Check the installed Helm release:

helm list

The results should show the Genesys Authentication deployment details. For example:

Genesys Authentication Private Edition Guide 6

NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
gauth gauth 1 2021-05-20 11:56:32.5531685 +0530 +0530
deployed gauth-0.1.77 0.1

Check the gauth namespace status:

helm status gauth

The result should show the namespace details with a status of deployed:

NAME: gauth
LAST DEPLOYED: Thu May 20 11:56:32 2021
NAMESPACE: gauth
STATUS: deployed
REVISION: 1
TEST SUITE: None

Check the Genesys Authentication Kubernetes objects created by Helm:

kubectl get all -n gauth

The result should show all the created pods, service ConfigMaps, and so on.

Finally, verify that you can now access Genesys Authentication at the following URL: https:///ui/auth/
sign-in.html

Genesys Authentication Private Edition Guide 7

	Genesys Authentication Private Edition Guide

